1
|
Salihovic A, Ascham A, Taladriz-Sender A, Bryson S, Withers JM, McKean IJW, Hoskisson PA, Grogan G, Burley GA. Gram-scale enzymatic synthesis of 2'-deoxyribonucleoside analogues using nucleoside transglycosylase-2. Chem Sci 2024:d4sc04938a. [PMID: 39234214 PMCID: PMC11368039 DOI: 10.1039/d4sc04938a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Nucleosides are pervasive building blocks that are found throughout nature and used extensively in medicinal chemistry and biotechnology. However, the preparation of base-modified analogues using conventional synthetic methodology poses challenges in scale-up and purification. In this work, an integrated approach involving structural analysis, screening and reaction optimization, is established to prepare 2'-deoxyribonucleoside analogues catalysed by the type II nucleoside 2'-deoxyribosyltransferase from Lactobacillus leichmannii (LlNDT-2). Structural analysis in combination with substrate profiling, identified the constraints on pyrimidine and purine acceptor bases by LlNDT2. A solvent screen identifies pure water as a suitable solvent for the preparation of high value purine and pyrimidine 2'-deoxyribonucleoside analogues on a gram scale under optimized reaction conditions. This approach provides the basis to establish a convergent, step-efficient chemoenzymatic platform for the preparation of high value 2'-deoxyribonucleosides.
Collapse
Affiliation(s)
- Admir Salihovic
- Department of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow UK G1 1XL
- Strathclyde Centre for Molecular Bioscience, University of Strathclyde UK
| | - Alex Ascham
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| | - Andrea Taladriz-Sender
- Department of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow UK G1 1XL
- Strathclyde Centre for Molecular Bioscience, University of Strathclyde UK
| | - Samantha Bryson
- Department of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow UK G1 1XL
- Strathclyde Centre for Molecular Bioscience, University of Strathclyde UK
| | - Jamie M Withers
- Department of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow UK G1 1XL
- Strathclyde Centre for Molecular Bioscience, University of Strathclyde UK
| | - Iain J W McKean
- Department of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow UK G1 1XL
- Strathclyde Centre for Molecular Bioscience, University of Strathclyde UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| | - Glenn A Burley
- Department of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow UK G1 1XL
- Strathclyde Centre for Molecular Bioscience, University of Strathclyde UK
| |
Collapse
|
2
|
Bychek IA, Zenchenko AA, Kostromina MA, Khisamov MM, Solyev PN, Esipov RS, Mikhailov SN, Varizhuk IV. Bacterial Purine Nucleoside Phosphorylases from Mesophilic and Thermophilic Sources: Characterization of Their Interaction with Natural Nucleosides and Modified Arabinofuranoside Analogues. Biomolecules 2024; 14:1069. [PMID: 39334837 PMCID: PMC11430614 DOI: 10.3390/biom14091069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The enzymatic synthesis of nucleoside derivatives is an important alternative to multi-step chemical methods traditionally used for this purpose. Despite several undeniable advantages of the enzymatic approach, there are a number of factors limiting its application, such as the limited substrate specificity of enzymes, the need to work at fairly low concentrations, and the physicochemical properties of substrates-for example, low solubility. This research conducted by our group is dedicated to the advantages and limitations of using purine nucleoside phosphorylases (PNPs), the main enzymes for the metabolic reutilization of purines, in the synthesis of modified nucleoside analogues. In our work, the substrate specificity of PNP from various bacterial sources (mesophilic and thermophilic) was studied, and the effect of substrate, increased temperature, and the presence of organic solvents on the conversion rate was investigated.
Collapse
Affiliation(s)
- Irina A. Bychek
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia A. Zenchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria A. Kostromina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Marat M. Khisamov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Pavel N. Solyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Roman S. Esipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sergey N. Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina V. Varizhuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Liu G, Wang J, Chu J, Jiang T, Qin S, Gao Z, He B. Engineering Substrate Promiscuity of Nucleoside Phosphorylase Via an Insertions-Deletions Strategy. JACS AU 2024; 4:454-464. [PMID: 38425912 PMCID: PMC10900210 DOI: 10.1021/jacsau.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 03/02/2024]
Abstract
Nucleoside phosphorylases (NPs) are the key enzymes in the nucleoside metabolism pathway and are widely employed for the synthesis of nucleoside analogs, which are difficult to access via conventional synthetic methods. NPs are generally classified as purine nucleoside phosphorylase (PNP) and pyrimidine or uridine nucleoside phosphorylase (PyNP/UP), based on their substrate preference. Here, based on the evolutionary information on the NP-I family, we adopted an insertions-deletions (InDels) strategy to engineer the substrate promiscuity of nucleoside phosphorylase AmPNPΔS2V102 K, which exhibits both PNP and UP activities from a trimeric PNP (AmPNP) of Aneurinibacillus migulanus. Furthermore, the AmPNPΔS2V102 K exerted phosphorylation activities toward arabinose nucleoside, fluorosyl nucleoside, and dideoxyribose, thereby broadening the unnatural-ribose nucleoside substrate spectrum of AmPNP. Finally, six purine nucleoside analogues were successfully synthesized, using the engineered AmPNPΔS2V102 K instead of the traditional "two-enzymes PNP/UP" approach. These results provide deep insights into the catalytic mechanisms of the PNP and demonstrate the benefits of using the InDels strategy to achieve substrate promiscuity in an enzyme, as well as broadening the substrate spectrum of the enzyme.
Collapse
Affiliation(s)
- Gaofei Liu
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Jialing Wang
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Jianlin Chu
- School
of Pharmaceutical Sciences, Nanjing Tech
University, Nanjing 211800, China
| | - Tianyue Jiang
- School
of Pharmaceutical Sciences, Nanjing Tech
University, Nanjing 211800, China
| | - Song Qin
- School
of Pharmaceutical Sciences, Nanjing Tech
University, Nanjing 211800, China
| | - Zhen Gao
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Bingfang He
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- School
of Pharmaceutical Sciences, Nanjing Tech
University, Nanjing 211800, China
| |
Collapse
|
4
|
Thiele I, Yehia H, Krausch N, Birkholz M, Cruz Bournazou MN, Sitanggang AB, Kraume M, Neubauer P, Kurreck A. Production of Modified Nucleosides in a Continuous Enzyme Membrane Reactor. Int J Mol Sci 2023; 24:ijms24076081. [PMID: 37047056 PMCID: PMC10094030 DOI: 10.3390/ijms24076081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Nucleoside analogues are important compounds for the treatment of viral infections or cancers. While (chemo-)enzymatic synthesis is a valuable alternative to traditional chemical methods, the feasibility of such processes is lowered by the high production cost of the biocatalyst. As continuous enzyme membrane reactors (EMR) allow the use of biocatalysts until their full inactivation, they offer a valuable alternative to batch enzymatic reactions with freely dissolved enzymes. In EMRs, the enzymes are retained in the reactor by a suitable membrane. Immobilization on carrier materials, and the associated losses in enzyme activity, can thus be avoided. Therefore, we validated the applicability of EMRs for the synthesis of natural and dihalogenated nucleosides, using one-pot transglycosylation reactions. Over a period of 55 days, 2′-deoxyadenosine was produced continuously, with a product yield >90%. The dihalogenated nucleoside analogues 2,6-dichloropurine-2′-deoxyribonucleoside and 6-chloro-2-fluoro-2′-deoxyribonucleoside were also produced, with high conversion, but for shorter operation times, of 14 and 5.5 days, respectively. The EMR performed with specific productivities comparable to batch reactions. However, in the EMR, 220, 40, and 9 times more product per enzymatic unit was produced, for 2′-deoxyadenosine, 2,6-dichloropurine-2′-deoxyribonucleoside, and 6-chloro-2-fluoro-2′-deoxyribonucleoside, respectively. The application of the EMR using freely dissolved enzymes, facilitates a continuous process with integrated biocatalyst separation, which reduces the overall cost of the biocatalyst and enhances the downstream processing of nucleoside production.
Collapse
|
5
|
Kaspar F, Brandt F, Westarp S, Eilert L, Kemper S, Kurreck A, Neubauer P, Jacob CR, Schallmey A. Biased Borate Esterification during Nucleoside Phosphorylase-Catalyzed Reactions: Apparent Equilibrium Shifts and Kinetic Implications. Angew Chem Int Ed Engl 2023; 62:e202218492. [PMID: 36655928 DOI: 10.1002/anie.202218492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/20/2023]
Abstract
Biocatalytic nucleoside (trans-)glycosylations catalyzed by nucleoside phosphorylases have evolved into a practical and convenient approach to the preparation of modified nucleosides, which are important pharmaceuticals for the treatment of various cancers and viral infections. However, the obtained yields in these reactions are generally determined exclusively by the innate thermodynamic properties of the nucleosides involved, hampering the biocatalytic access to many sought-after target nucleosides. We herein report an additional means for reaction engineering of these systems. We show how apparent equilibrium shifts in phosphorolysis and glycosylation reactions can be effected through entropically driven, biased esterification of nucleosides and ribosyl phosphates with inorganic borate. Our multifaceted analysis further describes the kinetic implications of this in situ reactant esterification for a model phosphorylase.
Collapse
Affiliation(s)
- Felix Kaspar
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany.,Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, 13355, Berlin, Germany
| | - Felix Brandt
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106, Braunschweig, Germany
| | - Sarah Westarp
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, 13355, Berlin, Germany.,BioNukleo GmbH, Ackerstraße 76, 13355, Berlin, Germany
| | - Lea Eilert
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany.,Present address: Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Sebastian Kemper
- Institute for Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Anke Kurreck
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, 13355, Berlin, Germany.,BioNukleo GmbH, Ackerstraße 76, 13355, Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, 13355, Berlin, Germany
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106, Braunschweig, Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| |
Collapse
|
6
|
Magnetic Multi-Enzymatic System for Cladribine Manufacturing. Int J Mol Sci 2022; 23:ijms232113634. [DOI: 10.3390/ijms232113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Enzyme-mediated processes have proven to be a valuable and sustainable alternative to traditional chemical methods. In this regard, the use of multi-enzymatic systems enables the realization of complex synthetic schemes, while also introducing a number of additional advantages, including the conversion of reversible reactions into irreversible processes, the partial or complete elimination of product inhibition problems, and the minimization of undesirable by-products. In addition, the immobilization of biocatalysts on magnetic supports allows for easy reusability and streamlines the downstream process. Herein we have developed a cascade system for cladribine synthesis based on the sequential action of two magnetic biocatalysts. For that purpose, purine 2′-deoxyribosyltransferase from Leishmania mexicana (LmPDT) and Escherichia coli hypoxanthine phosphoribosyltransferase (EcHPRT) were immobilized onto Ni2+-prechelated magnetic microspheres (MagReSyn®NTA). Among the resulting derivatives, MLmPDT3 (activity: 11,935 IU/gsupport, 63% retained activity, operational conditions: 40 °C and pH 5–7) and MEcHPRT3 (12,840 IU/gsupport, 45% retained activity, operational conditions: pH 5–8 and 40–60 °C) emerge as optimal catalysts for further synthetic application. Moreover, the MLmPDT3/MEcHPRT3 system was biochemically characterized and successfully applied to the one-pot synthesis of cladribine under various conditions. This methodology not only displayed a 1.67-fold improvement in cladribine synthesis (compared to MLmPDT3), but it also implied a practically complete transformation of the undesired by-product into a high-added-value product (90% conversion of Hyp into IMP). Finally, MLmPDT3/MEcHPRT3 was reused for 16 cycles, which displayed a 75% retained activity.
Collapse
|
7
|
Timofeev VI, Abramchik YA, Muravyova TI, Zhukhlistova NE, Esipov RS, Kuranova IP. Three-Dimensional Structure of Recombinant Thermophilic Ribokinase from Thermus speсies 2.9 in Complex with Adenosine Diphosphate. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521050205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Green Production of Cladribine by Using Immobilized 2'-Deoxyribosyltransferase from Lactobacillus delbrueckii Stabilized through a Double Covalent/Entrapment Technology. Biomolecules 2021; 11:biom11050657. [PMID: 33947162 PMCID: PMC8146660 DOI: 10.3390/biom11050657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, enzyme-mediated processes offer an eco-friendly and efficient alternative to the traditional multistep and environmentally harmful chemical processes. Herein we report the enzymatic synthesis of cladribine by a novel 2'-deoxyribosyltransferase (NDT)-based combined biocatalyst. To this end, Lactobacillus delbrueckii NDT (LdNDT) was successfully immobilized through a two-step immobilization methodology, including a covalent immobilization onto glutaraldehyde-activated biomimetic silica nanoparticles followed by biocatalyst entrapment in calcium alginate. The resulting immobilized derivative, SiGPEI 25000-LdNDT-Alg, displayed 98% retained activity and was shown to be active and stable in a broad range of pH (5-9) and temperature (30-60 °C), but also displayed an extremely high reusability (up to 2100 reuses without negligible loss of activity) in the enzymatic production of cladribine. Finally, as a proof of concept, SiGPEI 25000-LdNDT-Alg was successfully employed in the green production of cladribine at mg scale.
Collapse
|
9
|
Del Arco J, Acosta J, Fernández-Lucas J. New trends in the biocatalytic production of nucleosidic active pharmaceutical ingredients using 2'-deoxyribosyltransferases. Biotechnol Adv 2021; 51:107701. [PMID: 33515673 DOI: 10.1016/j.biotechadv.2021.107701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/27/2020] [Accepted: 01/21/2021] [Indexed: 12/16/2022]
Abstract
Nowadays, pharmaceutical industry demands competitive and eco-friendly processes for active pharmaceutical ingredients (APIs) manufacturing. In this context, enzyme and whole-cell mediated processes offer an efficient, sustainable and cost-effective alternative to the traditional multi-step and environmentally-harmful chemical processes. Particularly, 2'-deoxyribosyltransferases (NDTs) have emerged as a novel synthetic alternative, not only to chemical but also to other enzyme-mediated synthetic processes. This review describes recent findings in the development and scaling up of NDTs as industrial biocatalysts, including the most relevant and recent examples of single enzymatic steps, multienzyme cascades, chemo-enzymatic approaches, and engineered biocatalysts. Finally, to reflect the inventive and innovative steps of NDT-mediated bioprocesses, a detailed analysis of recently granted patents, with specific focus on industrial synthesis of nucleoside-based APIs, is hereunder presented.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55 - 66, Barranquilla, Colombia.
| |
Collapse
|
10
|
Liu G, Tong X, Wang J, Wu B, Chu J, Jian Y, He B. Reshaping the binding pocket of purine nucleoside phosphorylase for improved production of 2-halogenated-2′-deoxyadenosines. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02424d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Semi-rational design and iterative combinatorial mutation of AmPNP with gratifyingly improved activity toward steric impediment of 2-halogenated-2′-deoxyadenosine biosynthesis.
Collapse
Affiliation(s)
- Gaofei Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211800
- China
| | - Xin Tong
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211800
- China
| | - Jialing Wang
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211800
- China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211800
- China
| | - Jianlin Chu
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211800
- China
| | - Yongchan Jian
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211800
- China
| | - Bingfang He
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211800
- China
| |
Collapse
|
11
|
Artsemyeva JN, Remeeva EA, Buravskaya TN, Konstantinova ID, Esipov RS, Miroshnikov AI, Litvinko NM, Mikhailopulo IA. Anion exchange resins in phosphate form as versatile carriers for the reactions catalyzed by nucleoside phosphorylases. Beilstein J Org Chem 2020; 16:2607-2622. [PMID: 33133292 PMCID: PMC7588730 DOI: 10.3762/bjoc.16.212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
In the present work, we suggested anion exchange resins in the phosphate form as a source of phosphate, one of the substrates of the phosphorolysis of uridine, thymidine, and 1-(β-ᴅ-arabinofuranosyl)uracil (Ara-U) catalyzed by recombinant E. coli uridine (UP) and thymidine (TP) phosphorylases. α-ᴅ-Pentofuranose-1-phosphates (PF-1Pis) obtained by phosphorolysis were used in the enzymatic synthesis of nucleosides. It was found that phosphorolysis of uridine, thymidine, and Ara-U in the presence of Dowex® 1X8 (phosphate; Dowex-nPi) proceeded smoothly in the presence of magnesium cations in water at 20-50 °C for 54-96 h giving rise to quantitative formation of the corresponding pyrimidine bases and PF-1Pis. The resulting PF-1Pis can be used in three routes: (1) preparation of barium salts of PF-1Pis, (2) synthesis of nucleosides by reacting the crude PF-1Pi with an heterocyclic base, and (3) synthesis of nucleosides by reacting the ionically bound PF-1Pi to the resin with an heterocyclic base. These three approaches were tested in the synthesis of nelarabine, kinetin riboside, and cladribine with good to excellent yields (52-93%).
Collapse
Affiliation(s)
- Julia N Artsemyeva
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Acad. Kuprevicha 5/2, Republic of Belarus
| | - Ekaterina A Remeeva
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Acad. Kuprevicha 5/2, Republic of Belarus
| | - Tatiana N Buravskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Acad. Kuprevicha 5/2, Republic of Belarus
| | - Irina D Konstantinova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 GSP-7, Moscow B-437, Russian Federation
| | - Roman S Esipov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 GSP-7, Moscow B-437, Russian Federation
| | - Anatoly I Miroshnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 GSP-7, Moscow B-437, Russian Federation
| | - Natalia M Litvinko
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Acad. Kuprevicha 5/2, Republic of Belarus
| | - Igor A Mikhailopulo
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Acad. Kuprevicha 5/2, Republic of Belarus
| |
Collapse
|
12
|
Rivero CW, De Benedetti EC, Sambeth J, Trelles JA. Biotransformation of cladribine by a nanostabilized extremophilic biocatalyst. J Biotechnol 2020; 323:166-173. [PMID: 32841608 DOI: 10.1016/j.jbiotec.2020.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/01/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022]
Abstract
Cladribine (2-chloro-2'-deoxy-β-d-adenosine) is a 2'-deoxyadenosine analogue, approved by the FDA for the treatment of hairy cell leukemia and more recently has been proved for therapeutic against many autoimmune diseases as multiple sclerosis. The biosynthesis of this compound using Thermomonospora alba CECT 3324 as biocatalyst is herein reported. This thermophilic microorganism was successfully entrapped in polyacrylamide gel supplemented with nanoclays such as bentonite. The immobilized biocatalyst (T. alba-Ac-Bent 1.00 %), was able to biosynthesize cladribine with a conversion of 89 % in 1 h of reaction and retains its activity for more than 270 reuses without significantly activity loss, showing better operational stability and mechanical properties than the natural matrix. A microscale assay using the developed system, could allow the production of at least 181 mg of cladribine in successive bioprocesses.
Collapse
Affiliation(s)
- Cintia W Rivero
- Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Argentina; National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Argentina
| | - Eliana C De Benedetti
- Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Argentina; National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Argentina
| | - Jorge Sambeth
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Argentina; Center for Research and Development in Applied Sciences "Dr. Jorge J. Ronco", National University of La Plata, La Plata, Argentina
| | - Jorge A Trelles
- Laboratory of Sustainable Biotechnology (LIBioS), National University of Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Argentina; National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Argentina.
| |
Collapse
|
13
|
Honarmand Ebrahimi K, Rowbotham JS, McCullagh J, James WS. Mechanism of Diol Dehydration by a Promiscuous Radical-SAM Enzyme Homologue of the Antiviral Enzyme Viperin (RSAD2). Chembiochem 2020; 21:1605-1612. [PMID: 31951306 DOI: 10.1002/cbic.201900776] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/30/2022]
Abstract
3'-Deoxynucleotides are an important class of drugs because they interfere with the metabolism of nucleotides, and their incorporation into DNA or RNA terminates cell division and viral replication. These compounds are generally produced by multi-step chemical synthesis, and an enzyme with the ability to catalyse the removal of the 3'-deoxy group from different nucleotides has yet to be described. Here, using a combination of HPLC, HRMS and NMR spectroscopy, we demonstrate that a thermostable fungal radical S-adenosylmethionine (SAM) enzyme, with similarity to the vertebrate antiviral enzyme viperin (RSAD2), can catalyse the transformation of CTP, UTP and 5-bromo-UTP to their 3'-deoxy-3',4'-didehydro (ddh) analogues. We show that, unlike the fungal enzyme, human viperin only catalyses the transformation of CTP to ddhCTP. Using electron paramagnetic resonance spectroscopy and molecular docking and dynamics simulations in combination with mutagenesis studies, we provide insight into the origin of the unprecedented substrate promiscuity of the enzyme and the mechanism of dehydration of a nucleotide. Our findings highlight the evolution of substrate specificity in a member of the radical-SAM enzymes. We predict that our work will help in using a new class of the radical-SAM enzymes for the biocatalytic synthesis of 3'-deoxy nucleotide/nucleoside analogues.
Collapse
Affiliation(s)
- Kourosh Honarmand Ebrahimi
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, OX1 3TA, Oxford, UK
| | - Jack S Rowbotham
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, OX1 3TA, Oxford, UK
| | - James McCullagh
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, OX1 3TA, Oxford, UK
| | - William S James
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, Oxford, UK
| |
Collapse
|
14
|
Kaspar F, Giessmann RT, Hellendahl KF, Neubauer P, Wagner A, Gimpel M. General Principles for Yield Optimization of Nucleoside Phosphorylase-Catalyzed Transglycosylations. Chembiochem 2020; 21:1428-1432. [PMID: 31820837 PMCID: PMC7318676 DOI: 10.1002/cbic.201900740] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Indexed: 11/29/2022]
Abstract
The biocatalytic synthesis of natural and modified nucleosides with nucleoside phosphorylases offers the protecting-group-free direct glycosylation of free nucleobases in transglycosylation reactions. This contribution presents guiding principles for nucleoside phosphorylase-mediated transglycosylations alongside mathematical tools for straightforward yield optimization. We illustrate how product yields in these reactions can easily be estimated and optimized using the equilibrium constants of phosphorolysis of the nucleosides involved. Furthermore, the varying negative effects of phosphate on transglycosylation yields are demonstrated theoretically and experimentally with several examples. Practical considerations for these reactions from a synthetic perspective are presented, as well as freely available tools that serve to facilitate a reliable choice of reaction conditions to achieve maximum product yields in nucleoside transglycosylation reactions.
Collapse
Affiliation(s)
| | - Robert T. Giessmann
- Department of BiotechnologyTechnical University of BerlinACK24, Ackerstrasse 7613355BerlinGermany
| | - Katja F. Hellendahl
- Department of BiotechnologyTechnical University of BerlinACK24, Ackerstrasse 7613355BerlinGermany
| | - Peter Neubauer
- Department of BiotechnologyTechnical University of BerlinACK24, Ackerstrasse 7613355BerlinGermany
| | - Anke Wagner
- BioNukleo GmbHAckerstrasse 7613355BerlinGermany
- Department of BiotechnologyTechnical University of BerlinACK24, Ackerstrasse 7613355BerlinGermany
| | - Matthias Gimpel
- Department of BiotechnologyTechnical University of BerlinACK24, Ackerstrasse 7613355BerlinGermany
| |
Collapse
|
15
|
Tamborini L, Previtali C, Annunziata F, Bavaro T, Terreni M, Calleri E, Rinaldi F, Pinto A, Speranza G, Ubiali D, Conti P. An Enzymatic Flow-Based Preparative Route to Vidarabine. Molecules 2020; 25:molecules25051223. [PMID: 32182773 PMCID: PMC7179437 DOI: 10.3390/molecules25051223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/27/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022] Open
Abstract
The bi-enzymatic synthesis of the antiviral drug vidarabine (arabinosyladenine, ara-A), catalyzed by uridine phosphorylase from Clostridium perfringens (CpUP) and a purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP), was re-designed under continuous-flow conditions. Glyoxyl–agarose and EziGTM1 (Opal) were used as immobilization carriers for carrying out this preparative biotransformation. Upon setting-up reaction parameters (substrate concentration and molar ratio, temperature, pressure, residence time), 1 g of vidarabine was obtained in 55% isolated yield and >99% purity by simply running the flow reactor for 1 week and then collecting (by filtration) the nucleoside precipitated out of the exiting flow. Taking into account the substrate specificity of CpUP and AhPNP, the results obtained pave the way to the use of the CpUP/AhPNP-based bioreactor for the preparation of other purine nucleosides.
Collapse
Affiliation(s)
- Lucia Tamborini
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy; (C.P.); (F.A.); (P.C.)
- Correspondence: (L.T.); (D.U.); Tel.: +39-02-50319367 (L.T.); +39-0382-987889 (D.U.)
| | - Clelia Previtali
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy; (C.P.); (F.A.); (P.C.)
| | - Francesca Annunziata
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy; (C.P.); (F.A.); (P.C.)
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (T.B.); (M.T.); (E.C.); (F.R.)
| | - Marco Terreni
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (T.B.); (M.T.); (E.C.); (F.R.)
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (T.B.); (M.T.); (E.C.); (F.R.)
| | - Francesca Rinaldi
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (T.B.); (M.T.); (E.C.); (F.R.)
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milano, Italy;
| | - Giovanna Speranza
- Department of Chemistry, University of Milan, via Golgi 19, 20133 Milano, Italy;
| | - Daniela Ubiali
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (T.B.); (M.T.); (E.C.); (F.R.)
- Correspondence: (L.T.); (D.U.); Tel.: +39-02-50319367 (L.T.); +39-0382-987889 (D.U.)
| | - Paola Conti
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy; (C.P.); (F.A.); (P.C.)
| |
Collapse
|
16
|
Abstract
3′,5′-O-Bis(tert-butyldimethylsilyl)-8-fluoro-N-2-isobutyryl-2′-deoxyguanosine was synthesized from 3′,5′-O-bis(tert-butyldimethylsilyl)-N-2-isobutyryl-2′-deoxyguanosine by the treatment with N-fluorobenzenesulfonimide. A similar fluorination reaction with 3′,5′-O-bis(tert-butyldimethylsilyl)-N-2-(N,N-dimethylformamidine)-2′-deoxyguanosine, however, failed to give the corresponding fluorinated product. It was found that 8-fluoro-N-2-isobutyryl-2′-deoxyguanosine is labile under acidic conditions, but sufficiently stable in dichloroacetic acid used in solid phase synthesis. Incorporation of 8-fluoro-N-2-isobutyryl-2′-deoxyguanosine into oligonucleotides through the phosphoramidite chemistry-based solid phase synthesis failed to give the desired products. Furthermore, treatment of 8-fluoro-N-2-isobutyryl-2′-deoxyguanosine with aqueous ammonium hydroxide did not give 8-fluoro-2′-deoxyguanosine, but led to the formation of a mixture consisting of 8-amino-N-2-isobutyryl-2′-deoxyguanosine and C8:5′-O-cyclo-2′-deoxyguanosine. Taken together, an alternative N-protecting group and possibly modified solid phase synthetic cycle conditions will be required for the incorporation of 8-fluoro-2′-deoxyguanosine into oligonucleotides through the phosphoramidite chemistry-based solid phase synthesis.
Collapse
|
17
|
Yehia H, Westarp S, Röhrs V, Kaspar F, Giessmann RT, Klare HF, Paulick K, Neubauer P, Kurreck J, Wagner A. Efficient Biocatalytic Synthesis of Dihalogenated Purine Nucleoside Analogues Applying Thermodynamic Calculations. Molecules 2020; 25:E934. [PMID: 32093094 PMCID: PMC7070685 DOI: 10.3390/molecules25040934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
The enzymatic synthesis of nucleoside analogues has been shown to be a sustainable and efficient alternative to chemical synthesis routes. In this study, dihalogenated nucleoside analogues were produced by thermostable nucleoside phosphorylases in transglycosylation reactions using uridine or thymidine as sugar donors. Prior to the enzymatic process, ideal maximum product yields were calculated after the determination of equilibrium constants through monitoring the equilibrium conversion in analytical-scale reactions. Equilibrium constants for dihalogenated nucleosides were comparable to known purine nucleosides, ranging between 0.071 and 0.081. To achieve 90% product yield in the enzymatic process, an approximately five-fold excess of sugar donor was needed. Nucleoside analogues were purified by semi-preparative HPLC, and yields of purified product were approximately 50% for all target compounds. To evaluate the impact of halogen atoms in positions 2 and 6 on the antiproliferative activity in leukemic cell lines, the cytotoxic potential of dihalogenated nucleoside analogues was studied in the leukemic cell line HL-60. Interestingly, the inhibition of HL-60 cells with dihalogenated nucleoside analogues was substantially lower than with monohalogenated cladribine, which is known to show high antiproliferative activity. Taken together, we demonstrate that thermodynamic calculations and small-scale experiments can be used to produce nucleoside analogues with high yields and purity on larger scales. The procedure can be used for the generation of new libraries of nucleoside analogues for screening experiments or to replace the chemical synthesis routes of marketed nucleoside drugs by enzymatic processes.
Collapse
Affiliation(s)
- Heba Yehia
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (H.Y.); (S.W.); (F.K.); (R.T.G.); (K.P.); (P.N.)
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Sarah Westarp
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (H.Y.); (S.W.); (F.K.); (R.T.G.); (K.P.); (P.N.)
- BioNukleo GmbH, Ackerstr. 76, 13355 Berlin, Germany
| | - Viola Röhrs
- Chair of Applied Biochemistry, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (V.R.); (J.K.)
| | - Felix Kaspar
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (H.Y.); (S.W.); (F.K.); (R.T.G.); (K.P.); (P.N.)
- BioNukleo GmbH, Ackerstr. 76, 13355 Berlin, Germany
| | - Robert T. Giessmann
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (H.Y.); (S.W.); (F.K.); (R.T.G.); (K.P.); (P.N.)
| | - Hendrik F.T. Klare
- Faculty II Mathematics and Natural Sciences, Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany;
| | - Katharina Paulick
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (H.Y.); (S.W.); (F.K.); (R.T.G.); (K.P.); (P.N.)
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (H.Y.); (S.W.); (F.K.); (R.T.G.); (K.P.); (P.N.)
| | - Jens Kurreck
- Chair of Applied Biochemistry, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (V.R.); (J.K.)
| | - Anke Wagner
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (H.Y.); (S.W.); (F.K.); (R.T.G.); (K.P.); (P.N.)
- BioNukleo GmbH, Ackerstr. 76, 13355 Berlin, Germany
| |
Collapse
|
18
|
Kamel S, Thiele I, Neubauer P, Wagner A. Thermophilic nucleoside phosphorylases: Their properties, characteristics and applications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140304. [DOI: 10.1016/j.bbapap.2019.140304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 01/22/2023]
|
19
|
Abstract
We here described a three-step multi-enzymatic reaction for the one-pot synthesis of vidarabine 5′-monophosphate (araA-MP), an antiviral drug, using arabinosyluracil (araU), adenine (Ade), and adenosine triphosphate (ATP) as precursors. To this aim, three enzymes involved in the biosynthesis of nucleosides and nucleotides were used in a cascade mode after immobilization: uridine phosphorylase from Clostridium perfringens (CpUP), a purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP), and deoxyadenosine kinase from Dictyostelium discoideum (DddAK). Specifically, CpUP catalyzes the phosphorolysis of araU thus generating uracil and α-d-arabinose-1-phosphate. AhPNP catalyzes the coupling between this latter compound and Ade to form araA (vidarabine). This nucleoside becomes the substrate of DddAK, which produces the 5′-mononucleotide counterpart (araA-MP) using ATP as the phosphate donor. Reaction conditions (i.e., medium, temperature, immobilization carriers) and biocatalyst stability have been balanced to achieve the highest conversion of vidarabine 5′-monophosphate (≥95.5%). The combination of the nucleoside phosphorylases twosome with deoxyadenosine kinase in a one-pot cascade allowed (i) a complete shift in the equilibrium-controlled synthesis of the nucleoside towards the product formation; and (ii) to overcome the solubility constraints of araA in aqueous medium, thus providing a new route to the highly productive synthesis of araA-MP.
Collapse
|
20
|
Efficient Synthesis of Purine Nucleoside Analogs by a New Trimeric Purine Nucleoside Phosphorylase from Aneurinibacillus migulanus AM007. Molecules 2019; 25:molecules25010100. [PMID: 31888088 PMCID: PMC6983109 DOI: 10.3390/molecules25010100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 11/16/2022] Open
Abstract
Purine nucleoside phosphorylases (PNPs) are promising biocatalysts for the synthesis of purine nucleoside analogs. Although a number of PNPs have been reported, the development of highly efficient enzymes for industrial applications is still in high demand. Herein, a new trimeric purine nucleoside phosphorylase (AmPNP) from Aneurinibacillus migulanus AM007 was cloned and heterologously expressed in Escherichia coli BL21(DE3). The AmPNP showed good thermostability and a broad range of pH stability. The enzyme was thermostable below 55 °C for 12 h (retaining nearly 100% of its initial activity), and retained nearly 100% of the initial activity in alkaline buffer systems (pH 7.0–9.0) at 60 °C for 2 h. Then, a one-pot, two-enzyme mode of transglycosylation reaction was successfully constructed by combining pyrimidine nucleoside phosphorylase (BbPyNP) derived from Brevibacillus borstelensis LK01 and AmPNP for the production of purine nucleoside analogs. Conversions of 2,6-diaminopurine ribonucleoside (1), 2-amino-6-chloropurine ribonucleoside (2), and 6-thioguanine ribonucleoside (3) synthesized still reached >90% on the higher concentrations of substrates (pentofuranosyl donor: purine base; 20:10 mM) with a low enzyme ratio of BbPyNP: AmPNP (2:20 μg/mL). Thus, the new trimeric AmPNP is a promising biocatalyst for industrial production of purine nucleoside analogs.
Collapse
|
21
|
Kaspar F, Giessmann RT, Krausch N, Neubauer P, Wagner A, Gimpel M. A UV/Vis Spectroscopy-Based Assay for Monitoring of Transformations Between Nucleosides and Nucleobases. Methods Protoc 2019; 2:E60. [PMID: 31311105 PMCID: PMC6789650 DOI: 10.3390/mps2030060] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
Efficient reaction monitoring is crucial for data acquisition in kinetic and mechanistic studies. However, for conversions of nucleosides to their corresponding nucleobases, as observed in enzymatically catalyzed nucleoside phosphorylation reactions, the current analytical arsenal does not meet modern requirements regarding cost, speed of analysis and high throughput. Herein, we present a UV/Vis spectroscopy-based assay employing an algorithm for spectral unmixing in a 96-well plate format. The algorithm relies on fitting of reference spectra of nucleosides and their bases to experimental spectra and allows determination of nucleoside/nucleobase ratios in solution with high precision. The experimental procedure includes appropriate dilution of a sample into aqueous alkaline solution, transfer to a multi-well plate, measurement of a UV/Vis spectrum and subsequent in silico spectral unmixing. This enables data collection in a high-throughput fashion and reduces costs compared to state-of-the-art HPLC analyses by approximately 5-fold while being 20-fold faster and offering comparable precision. Additionally, the method is robust regarding dilution and sample transfer errors as it only considers spectral form and not absolute intensity. It can be applied to all natural nucleosides and nucleobases and even unnatural ones as demonstrated by several examples.
Collapse
Affiliation(s)
- Felix Kaspar
- Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, D-13355 Berlin, Germany
| | - Robert T Giessmann
- Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, D-13355 Berlin, Germany
| | - Niels Krausch
- Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, D-13355 Berlin, Germany
| | - Peter Neubauer
- Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, D-13355 Berlin, Germany
| | - Anke Wagner
- Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, D-13355 Berlin, Germany.
- BioNukleo GmbH, Ackerstraße 76, D-13355 Berlin, Germany.
| | - Matthias Gimpel
- Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, D-13355 Berlin, Germany
| |
Collapse
|
22
|
Dynamic Modelling of Phosphorolytic Cleavage Catalyzed by Pyrimidine-Nucleoside Phosphorylase. Processes (Basel) 2019. [DOI: 10.3390/pr7060380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pyrimidine-nucleoside phosphorylases (Py-NPases) have a significant potential to contribute to the economic and ecological production of modified nucleosides. These can be produced via pentose-1-phosphates, an interesting but mostly labile and expensive precursor. Thus far, no dynamic model exists for the production process of pentose-1-phosphates, which involves the equilibrium state of the Py-NPase catalyzed reversible reaction. Previously developed enzymological models are based on the understanding of the structural principles of the enzyme and focus on the description of initial rates only. The model generation is further complicated, as Py-NPases accept two substrates which they convert to two products. To create a well-balanced model from accurate experimental data, we utilized an improved high-throughput spectroscopic assay to monitor reactions over the whole time course until equilibrium was reached. We examined the conversion of deoxythymidine and phosphate to deoxyribose-1-phosphate and thymine by a thermophilic Py-NPase from Geobacillus thermoglucosidasius. The developed process model described the reactant concentrations in excellent agreement with the experimental data. Our model is built from ordinary differential equations and structured in such a way that integration with other models is possible in the future. These could be the kinetics of other enzymes for enzymatic cascade reactions or reactor descriptions to generate integrated process models.
Collapse
|
23
|
Abstract
Despite the impressive progress in nucleoside chemistry to date, the synthesis of nucleoside analogues is still a challenge. Chemoenzymatic synthesis has been proven to overcome most of the constraints of conventional nucleoside chemistry. A purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP) has been used herein to catalyze the synthesis of Ribavirin, Tecadenoson, and Cladribine, by a “one-pot, one-enzyme” transglycosylation, which is the transfer of the carbohydrate moiety from a nucleoside donor to a heterocyclic base. As the sugar donor, 7-methylguanosine iodide and its 2′-deoxy counterpart were synthesized and incubated either with the “purine-like” base or the modified purine of the three selected APIs. Good conversions (49–67%) were achieved in all cases under screening conditions. Following this synthetic scheme, 7-methylguanine arabinoside iodide was also prepared with the purpose to synthesize the antiviral Vidarabine by a novel approach. However, in this case, neither the phosphorolysis of the sugar donor, nor the transglycosylation reaction were observed. This study was enlarged to two other ribonucleosides structurally related to Ribavirin and Tecadenoson, namely, Acadesine, or AICAR, and 2-chloro-N6-cyclopentyladenosine, or CCPA. Only the formation of CCPA was observed (52%). This study paves the way for the development of a new synthesis of the target APIs at a preparative scale. Furthermore, the screening herein reported contributes to the collection of new data about the specific substrate requirements of AhPNP.
Collapse
|
24
|
Zhou X, Yan W, Zhang C, Yang Z, Neubauer P, Mikhailopulo IA, Huang Z. Biocatalytic synthesis of seleno-, thio- and chloro-nucleobase modified nucleosides by thermostable nucleoside phosphorylases. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2018.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
25
|
Knies C, Reuter H, Hammerbacher K, Bender E, Bonaterra GA, Kinscherf R, Rosemeyer H. Synthesis of New Potential Lipophilic Co-Drugs of 2-Chloro-2'-deoxyadenosine (Cladribine, 2-CdA, Mavenclad®, Leustatin®) and 6-Azauridine (z 6 U) with Valproic Acid. Chem Biodivers 2019; 16:e1800497. [PMID: 30614625 DOI: 10.1002/cbdv.201800497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/03/2019] [Indexed: 11/11/2022]
Abstract
2-Chloro-2'-deoxyadenosine (cladribine, 1) was acylated with valproic acid (2) under various reaction conditions yielding 2-chloro-2'-deoxy-3',5'-O-divalproyladenosine (3) as well as the 3'-O- and 5'-O-monovalproylated derivatives, 2-chloro-2'-deoxy-3'-O-valproyladenosine (4) and 2-chloro-2'-deoxy-5'-O-valproyladenosine (5), as new co-drugs. In addition, 6-azauridine-2',3'-O-(ethyl levulinate) (8) was valproylated at the 5'-OH group (→9). All products were characterized by 1 H- and 13 C-NMR spectroscopy and ESI mass spectrometry. The structure of the by-product 6 (N-cyclohexyl-N-(cyclohexylcarbamoyl)-2-propylpentanamide), formed upon valproylation of cladribine in the presence of N,N-dimethylaminopyridine and dicyclohexylcarbodiimide, was analyzed by X-ray crystallography. Cladribine as well as its valproylated co-drugs were tested upon their cancerostatic/cancerotoxic activity in human astrocytoma/oligodendroglioma GOS-3 cells, in rat malignant neuro ectodermal BT4Ca cells, as well as in phorbol-12-myristate 13-acetate (PMA)-differentiated human THP-1 macrophages. The most important result of these experiments is the finding that only the 3'-O-valproylated derivative 4 exhibits a significant antitumor activity while the 5'-O- as well as the 3',5'-O-divalproylated cladribine derivatives 3 and 5 proved to be inactive.
Collapse
Affiliation(s)
- Christine Knies
- Organic Chemistry I - Bioorganic Chemistry, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastr. 7, D-49069, Osnabrück, Germany
| | - Hans Reuter
- Anorganische Chemie II, Strukturchemie, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastr. 7, D-49069, Osnabrück, Germany
| | - Katharina Hammerbacher
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, D-35032, Marburg, Germany
| | - Eugenia Bender
- Organic Chemistry I - Bioorganic Chemistry, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastr. 7, D-49069, Osnabrück, Germany
| | - Gabriel A Bonaterra
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, D-35032, Marburg, Germany
| | - Ralf Kinscherf
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, D-35032, Marburg, Germany
| | - Helmut Rosemeyer
- Organic Chemistry I - Bioorganic Chemistry, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastr. 7, D-49069, Osnabrück, Germany
| |
Collapse
|
26
|
Hatano A, Wakana H, Terado N, Kojima A, Nishioka C, Iizuka Y, Imaizumi T, Uehara S. Bio-catalytic synthesis of unnatural nucleosides possessing a large functional group such as a fluorescent molecule by purine nucleoside phosphorylase. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01063g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Unnatural nucleosides are attracting interest as potential diagnostic tools, medicines, and functional molecules.
Collapse
Affiliation(s)
- Akihiko Hatano
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Hiroyuki Wakana
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Nanae Terado
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Aoi Kojima
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Chisato Nishioka
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Yu Iizuka
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Takuya Imaizumi
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Sanae Uehara
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| |
Collapse
|
27
|
Loan TD, Easton CJ, Alissandratos A. Recombinant cell-lysate-catalysed synthesis of uridine-5'-triphosphate from nucleobase and ribose, and without addition of ATP. N Biotechnol 2018; 49:104-111. [PMID: 30347258 DOI: 10.1016/j.nbt.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022]
Abstract
Nucleoside triphosphates (NTPs) are important synthetic targets with diverse applications in therapeutics and diagnostics. Enzymatic routes to NTPs from simple building blocks are attractive, however the cost and complexity of assembling the requisite mixtures of multiple enzymes hinders application. Here, we describe the use of an engineered E. coli cell-free lysate as an efficient readily-prepared multi-enzyme biocatalyst for the production of uridine triphosphate (UTP) from free ribose and nucleobase. Endogenous lysate enzymes are able to support the nucleobase ribosylation and nucleotide phosphorylation steps, while uridine phosphorylation and the production of ribose phosphates (ribose 1-phosphate, ribose 5-phosphate and phosphoribosyl pyrophosphate) require recombinant enrichment of endogenous activities. Co-expression vectors encoding all required recombinant enzymes were employed for host cell transformation, such that a cell-free lysate with all necessary activities was obtained from a single bacterial culture. ATP required as phosphorylation cofactor was recycled by endogenous lysate enzymes using cheap, readily-prepared acetyl phosphate. Surprisingly, acetyl phosphate initiated spontaneous generation of ATP in the lysate, most likely from the breakdown of endogenous pools of adenosine-containing starting materials (e.g. adenosine cofactors, ribonucleic acids). The sub-stoichiometric amount of ATP produced and recycled in this way was enough to support all ATP-dependent steps without addition of any exogenous cofactor or auxiliary enzyme. Using this approach, equimolar solutions of orotic acid and ribose are transformed near quantitatively into 1.4 g L-1 UTP within 2.5 h, using a low-cost, readily-generated biocatalytic preparation.
Collapse
Affiliation(s)
- Thomas D Loan
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christopher J Easton
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Apostolos Alissandratos
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
28
|
Del Arco J, Fernández-Lucas J. Purine and pyrimidine salvage pathway in thermophiles: a valuable source of biocatalysts for the industrial production of nucleic acid derivatives. Appl Microbiol Biotechnol 2018; 102:7805-7820. [PMID: 30027492 DOI: 10.1007/s00253-018-9242-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022]
Abstract
Due to their similarity to natural counterparts, nucleic acid derivatives (nucleobases, nucleosides, and nucleotides, among others) are interesting molecules for pharmaceutical, biomedical, or food industries. For this reason, there is increasing worldwide demand for the development of efficient synthetic processes for these compounds. Chemical synthetic methodologies require numerous protection-deprotection steps and often lead to the presence of undesirable by-products or enantiomeric mixtures. These methods also require harsh operating conditions, such as the use of organic solvents and hazard reagents. Conversely, enzymatic production by whole cells or enzymes improves regio-, stereo-, and enantioselectivity and provides an eco-friendly alternative. Because of their essential role in purine and pyrimidine scavenging, enzymes from purine and pyrimidine salvage pathways are valuable candidates for the synthesis of many different nucleic acid components. In recent years, many different enzymes from these routes, such as nucleoside phosphorylases, nucleoside kinases, 2'-deoxyribosyltransferases, phosphoribosyl transferases, or deaminases, have been successfully employed as biocatalysts in the production of nucleobase, nucleoside, or nucleotide analogs. Due to their great activity and stability at extremely high temperatures, the use of enzymes from thermophiles in industrial biocatalysis is gaining momentum. Thermophilic enzymes not only display unique characteristics such as temperature, chemical, and pH stability but also provide many different advantages from an industrial perspective. This mini-review aims to cover the most representative enzymatic approaches for the synthesis of nucleic acid derivatives. In this regard, we provide detailed comments about enzymes involved in crucial steps of purine and pyrimidine salvage pathways in thermophiles, as well as their biological role, biochemical characterization, active site mechanism, and substrate specificity. In addition, the most interesting synthetic examples reported in the literature are also included.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Urbanización El Bosque, c/ Tajo, s/n, E-28670, Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Urbanización El Bosque, c/ Tajo, s/n, E-28670, Villaviciosa de Odón, Madrid, Spain. .,Grupo de Investigación en Desarrollo Agroindustrial Sostenible, Universidad de la Costa, CUC, Calle 58 #55-66, Barranquilla, Colombia.
| |
Collapse
|
29
|
Alexeev CS, Kulikova IV, Gavryushov S, Tararov VI, Mikhailov SN. Quantitative Prediction of Yield in Transglycosylation Reaction Catalyzed by Nucleoside Phosphorylases. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cyril S. Alexeev
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov str. 32 119991 Moscow Russia
| | - Irina V. Kulikova
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov str. 32 119991 Moscow Russia
| | - Sergei Gavryushov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov str. 32 119991 Moscow Russia
- Sechenov First Moscow State Medical University; 2-4 Bolshaya Pirogovskaya st. Moscow 119991 Russia
| | - Vitali I. Tararov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov str. 32 119991 Moscow Russia
| | - Sergey N. Mikhailov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov str. 32 119991 Moscow Russia
| |
Collapse
|
30
|
Drenichev MS, Alexeev CS, Kurochkin NN, Mikhailov SN. Use of Nucleoside Phosphorylases for the Preparation of Purine and Pyrimidine 2′-Deoxynucleosides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mikhail S. Drenichev
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov str. 32 Moscow 119991 Russia
| | - Cyril S. Alexeev
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov str. 32 Moscow 119991 Russia
| | - Nikolay N. Kurochkin
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov str. 32 Moscow 119991 Russia
| | - Sergey N. Mikhailov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov str. 32 Moscow 119991 Russia
| |
Collapse
|
31
|
Cattaneo G, Rabuffetti M, Speranza G, Kupfer T, Peters B, Massolini G, Ubiali D, Calleri E. Synthesis of Adenine Nucleosides by Transglycosylation using Two Sequential Nucleoside Phosphorylase-Based Bioreactors with On-Line Reaction Monitoring by using HPLC. ChemCatChem 2017. [DOI: 10.1002/cctc.201701222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Giulia Cattaneo
- University of Pavia; Department of Drug Sciences; Viale T. Taramelli 12 I-27100 Pavia Italy
- Present address: Resindion s.r.l.; Via Roma 55 I-20082 Binasco MI Italy
| | - Marco Rabuffetti
- University of Milan; Department of Chemistry; Via C. Golgi 19 I-20133 Milano Italy
| | - Giovanna Speranza
- University of Milan; Department of Chemistry; Via C. Golgi 19 I-20133 Milano Italy
- National Research Council; Institute of Molecular Sciences and Technologies (ISTM-CNR); Via C. Golgi 19 I-20133 Milano Italy
| | - Tom Kupfer
- Instrumental Analytics R&D; Merck KGaA; Frankfurter Str. 250 DE-64271 Darmstadt Germany
| | - Benjamin Peters
- Instrumental Analytics R&D; Merck KGaA; Frankfurter Str. 250 DE-64271 Darmstadt Germany
| | - Gabriella Massolini
- University of Pavia; Department of Drug Sciences; Viale T. Taramelli 12 I-27100 Pavia Italy
| | - Daniela Ubiali
- University of Pavia; Department of Drug Sciences; Viale T. Taramelli 12 I-27100 Pavia Italy
- National Research Council; Institute of Molecular Sciences and Technologies (ISTM-CNR); Via C. Golgi 19 I-20133 Milano Italy
| | - Enrica Calleri
- University of Pavia; Department of Drug Sciences; Viale T. Taramelli 12 I-27100 Pavia Italy
| |
Collapse
|
32
|
New nucleoside hydrolase with transribosylation activity from Agromyces sp. MM-1 and its application for enzymatic synthesis of 2'-O-methylribonucleosides. J Biosci Bioeng 2017; 125:38-45. [PMID: 28826816 DOI: 10.1016/j.jbiosc.2017.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
Abstract
Microorganisms were screened for transribosylation activity between 2'-O-methyluridine (2'-OMe-UR) and nucleobases, for the purpose of developing a biotransformation process to synthesize 2'-O-methylribonucleosides (2'-OMe-NRs), which are raw materials for nucleic acid drugs. An actinomycete, Agromyces sp. MM-1 was found to produce 2'-O-methyladenosine (2'-OMe-AR) when whole cells were used in a reaction mixture containing 2'-OMe-UR and adenine. The enzyme responsible for the transribosylation was partially purified from Agromyces sp. MM-1 cells through a six-step separation procedure, and identified as a nucleoside hydrolase family enzyme termed AgNH. AgNH was a bi-functional enzyme catalyzing both hydrolysis towards 2'-OMe-NRs and transribosylation between 2'-OMe-UR and various nucleobases as well as adenine. In the hydrolysis reaction, AgNH preferred guanosine analogues as its substrates. In the transribosylation reaction, AgNH showed strong activity towards 6-chloroguanine, with 25-fold relative activity when adenine was used as the acceptor substrate. The transribosylation reaction product from 2'-OMe-UR and 6-chloroguanine was determined to 2'-O-methyl-6-chloroguanosine (2'-OMe-6ClGR). Under the optimal conditions, the maximum molar yield of 2'-OMe-6ClGR reached 2.3% in a 293-h reaction, corresponding to 440 mg/L.
Collapse
|
33
|
Mitsukawa Y, Hibi M, Matsutani N, Horinouchi N, Takahashi S, Ogawa J. Enzymatic synthesis of 2'-O-methylribonucleosides with a nucleoside hydrolase family enzyme from Lactobacillus buchneri LBK78. J Biosci Bioeng 2017; 123:659-664. [PMID: 28202305 DOI: 10.1016/j.jbiosc.2017.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/25/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
2'-O-Methylribonucleosides (2'-OMe-NRs) are promising raw materials for the production of nucleic acid drugs. We previously reported that LbNH, a nucleoside hydrolase from Lactobacillus buchneri LBK78 (NITE P-01581), was the first enzyme found to act on 2'-OMe-NRs. In the present study, we determined that LbNH also has the transribosylation activity between 2'-OMe-NRs and nucleobases, in addition to the hydrolyzing activity towards 2'-OMe-NRs. When 2'-O-methyluridine (2'-OMe-UR) and adenine were reacted with LbNH, 2'-O-methyladenosine (2'-OMe-AR) was produced. LbNH preferred purine nucleobases as its acceptor substrates for the transribosylation with 2'-OMe-UR as a donor substrate. Kinetic analysis of LbNH revealed that adenine behaved as a mixed inhibitor of the hydrolysis of 2'-OMe-UR. Under the optimal reaction conditions, the maximum molar yield of enzymatic 2'-OMe-AR produced reached 0.97% towards 2'-OMe-UR, corresponding to 0.16 g/L.
Collapse
Affiliation(s)
- Yuuki Mitsukawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Makoto Hibi
- Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Narihiro Matsutani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Nobuyuki Horinouchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satomi Takahashi
- Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
34
|
Krause M, Neubauer A, Neubauer P. The fed-batch principle for the molecular biology lab: controlled nutrient diets in ready-made media improve production of recombinant proteins in Escherichia coli. Microb Cell Fact 2016; 15:110. [PMID: 27317421 PMCID: PMC4912726 DOI: 10.1186/s12934-016-0513-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/09/2016] [Indexed: 11/10/2022] Open
Abstract
While the nutrient limited fed-batch technology is the standard of the cultivation of microorganisms and production of heterologous proteins in industry, despite its advantages in view of metabolic control and high cell density growth, shaken batch cultures are still the standard for protein production and expression screening in molecular biology and biochemistry laboratories. This is due to the difficulty and expenses to apply a controlled continuous glucose feed to shaken cultures. New ready-made growth media, e.g. by biocatalytic release of glucose from a polymer, offer a simple solution for the application of the fed-batch principle in shaken plate and flask cultures. Their wider use has shown that the controlled diet not only provides a solution to obtain significantly higher cell yields, but also in many cases folding of the target protein is improved by the applied lower growth rates; i.e. final volumetric yields for the active protein can be a multiple of what is obtained in complex medium cultures. The combination of the conventional optimization approaches with new and easy applicable growth systems has revolutionized recombinant protein production in Escherichia coli in view of product yield, culture robustness as well as significantly increased cell densities. This technical development establishes the basis for successful miniaturization and parallelization which is now an important tool for synthetic biology and protein engineering approaches. This review provides an overview of the recent developments, results and applications of advanced growth systems which use a controlled glucose release as substrate supply.
Collapse
Affiliation(s)
- Mirja Krause
- />Laboratory of Bioprocess Engineering, Department of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstr. 76, ACK 24, 13355 Berlin, Germany
- />Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 5A, 90220 Oulu, Finland
| | | | - Peter Neubauer
- />Laboratory of Bioprocess Engineering, Department of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstr. 76, ACK 24, 13355 Berlin, Germany
| |
Collapse
|
35
|
Vichier-Guerre S, Dugué L, Bonhomme F, Pochet S. Expedient and generic synthesis of imidazole nucleosides by enzymatic transglycosylation. Org Biomol Chem 2016; 14:3638-53. [PMID: 26986701 DOI: 10.1039/c6ob00405a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward route to original imidazole-based nucleosides that makes use of an enzymatic N-transglycosylation step is reported in both the ribo- and deoxyribo-series. To illustrate the scope of this approach, a diverse set of 4-aryl and 4-heteroaryl-1H-imidazoles featuring variable sizes and hydrogen-bonding patterns was prepared using a microwave-assisted Suzuki-Miyaura cross-coupling reaction. These imidazole derivatives were examined as possible substrates for the nucleoside 2'-deoxyribosyltransferase from L. leichmannii and the purine nucleoside phosphorylase from E. coli. The optimum transglycosylation conditions, including the use of co-adjuvants to address solubility issues, were defined. Enzymatic conversion of 4-(hetero)arylimidazoles to 2'-deoxyribo- or ribo-nucleosides proceeded in good to high conversion yields, except bulky hydrophobic imidazole derivatives. Nucleoside deoxyribosyltransferase of class II was found to convert the widest range of functionalized imidazoles into 2'-deoxyribonucleosides and was even capable of bis-glycosylating certain heterocyclic substrates. Our findings should enable chemoenzymatic access to a large diversity of flexible nucleoside analogues as molecular probes, drug candidates and original building blocks for synthetic biology.
Collapse
Affiliation(s)
- S Vichier-Guerre
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS, UMR3523, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
36
|
Stachelska-Wierzchowska A, Wierzchowski J, Bzowska A, Wielgus-Kutrowska B. Site-Selective Ribosylation of Fluorescent Nucleobase Analogs Using Purine-Nucleoside Phosphorylase as a Catalyst: Effects of Point Mutations. Molecules 2015; 21:E44. [PMID: 26729076 PMCID: PMC6274182 DOI: 10.3390/molecules21010044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 01/31/2023] Open
Abstract
Enzymatic ribosylation of fluorescent 8-azapurine derivatives, like 8-azaguanine and 2,6-diamino-8-azapurine, with purine-nucleoside phosphorylase (PNP) as a catalyst, leads to N9, N8, and N7-ribosides. The final proportion of the products may be modulated by point mutations in the enzyme active site. As an example, ribosylation of the latter substrate by wild-type calf PNP gives N7- and N8-ribosides, while the N243D mutant directs the ribosyl substitution at N9- and N7-positions. The same mutant allows synthesis of the fluorescent N7-β-d-ribosyl-8-azaguanine. The mutated form of the E. coli PNP, D204N, can be utilized to obtain non-typical ribosides of 8-azaadenine and 2,6-diamino-8-azapurine as well. The N7- and N8-ribosides of the 8-azapurines can be analytically useful, as illustrated by N7-β-d-ribosyl-2,6-diamino-8-azapurine, which is a good fluorogenic substrate for mammalian forms of PNP, including human blood PNP, while the N8-riboside is selective to the E. coli enzyme.
Collapse
Affiliation(s)
- Alicja Stachelska-Wierzchowska
- Department of Physics and Biophysics, University of Varmia & Masuria in Olsztyn, 4 Oczapowskiego St., 10-719 Olsztyn, Poland.
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Varmia & Masuria in Olsztyn, 4 Oczapowskiego St., 10-719 Olsztyn, Poland.
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.
| |
Collapse
|
37
|
Fernández-Lucas J. Multienzymatic synthesis of nucleic acid derivatives: a general perspective. Appl Microbiol Biotechnol 2015; 99:4615-27. [PMID: 25952113 DOI: 10.1007/s00253-015-6642-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 11/28/2022]
Abstract
Living cells are most perfect synthetic factory. The surprising synthetic efficiency of biological systems is allowed by the combination of multiple processes catalyzed by enzymes working sequentially. In this sense, biocatalysis tries to reproduce nature's synthetic strategies to perform the synthesis of different organic compounds using natural catalysts such as cells or enzymes. Nowadays, the use of multienzymatic systems in biocatalysis is becoming a habitual strategy for the synthesis of organic compounds that leads to the realization of complex synthetic schemes. By combining several steps in one pot, a significant step economy can be realized and the potential for environmentally benign synthesis is improved. Using this sustainable synthetic system, several work-up steps can be avoided and pure products are ideally isolated after a series of reactions in one single vessel after just one straightforward purification step. In recent years, enzymatic methodology for the preparation of nucleic acid derivatives (NADs) has become a standard technique for the synthesis of a wide variety of natural NADs. Enzymatic methods have been shown to be an efficient alternative for the synthesis of nucleoside and nucleotide analogs to the traditional multistep chemical methods, since chemical glycosylation reactions include several protection-deprotection steps and the use of chemical reagents and organic solvents that are expensive and environmentally harmful. In this minireview, we want to illustrate what we consider the most current relevant examples of in vivo and in vitro multienzymatic systems used for the synthesis of nucleic acid derivatives showing advantages and disadvantages of each methodology. Finally, a detailed perspective about the impact of -omics in multienzymatic systems has been described.
Collapse
Affiliation(s)
- Jesús Fernández-Lucas
- Applied Biotechnology Group, Department of Pharmacy and Biotechnology, Faculty of Biomedical Sciences, European University of Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670, Villaviciosa de Odón, Madrid, Spain,
| |
Collapse
|
38
|
An Efficient Chemoenzymatic Process for Preparation of Ribavirin. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2015. [DOI: 10.1155/2015/734851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ribavirin is an important antiviral drug, which is used for treatment of many diseases. The pilot-scale chemoenzymatic process for synthesis of the active pharmaceutical ingredient Ribavirin was developed with 32% overall yield and more than 99.5% purity. The described method includes the chemical synthesis of 1,2,4-triazole-3-carboxamide, which is a key intermediate and enzyme-catalyzed transglycosylation reaction for preparation of the desired product. 1,2,4-Triazole-3-carboxamide was synthesized from 5-amino-1,2,4-triazole-3-carboxylic acid by classical Chipen-Grinshtein method. Isolated fromE. сoliBL21(DE3)/pERPUPHHO1 strain the purine nucleoside phosphorylase was used as a biocatalytical system. All steps of this process were optimized and scaled.
Collapse
|