1
|
Guo W, Li K, Yu H, Chang C, Zhu J, Li Q, Jiang C. Background-free luminescent and chromatic assay for strong visual detection of creatinine. Talanta 2025; 287:127631. [PMID: 39870022 DOI: 10.1016/j.talanta.2025.127631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Creatinine is an essential biomarker for the clinical diagnosis and treatment of renal insufficiency. Although fluorescent methods are powerful tools for creatinine detection, almost all reported fluorescent probes rely on short-wavelength excitation and a single fluorescent signal, making them susceptible to environmental and operational conditions. In this study, a near-infrared excited, highly sensitive, and multi-output signal sensing system was established using upconversion nanoparticles and 3,5-dinitrobenzoic acid (DNBA) for synergistic luminescent and colorimetric assay for strong visual detection of creatinine. DNBA undergoes a specific colorimetric reaction with creatinine, quenching the green upconversion luminescence (UCL) while leaving the red UCL unaffected, thus constructing the luminescent and colorimetric sensing modes for creatinine. The designed near-infrared excited sensing system eliminates auto-fluorescence with a multi-output signal, thereby enhancing the sensitivity and convenience of creatinine detection. Under optimal conditions, the detection limit in the colorimetric mode is 26 nM, while the detection limit in the luminescent mode is 2 nM. Moreover, a portable sensing platform is further developed, demonstrating sensitive sensing performance and paving a new way for point-of-care testing (POCT) of human body fluid biomarkers.
Collapse
Affiliation(s)
- Wenshuai Guo
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Kangran Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Hao Yu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Caidie Chang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Jiawei Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China.
| | - Qiang Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China.
| | - Changlong Jiang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
2
|
Liu ZH, Mo XW, Jiang W, Liu C, Yin Y, Yang HY, Fu Y. Multifunctional hyaluronic acid ligand-assisted construction of CD44- and mitochondria-targeted self-assembled upconversion nanoparticles for enhanced photodynamic therapy. Dalton Trans 2024; 53:16885-16895. [PMID: 39365371 DOI: 10.1039/d4dt02399d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Upconversion nanoparticles (UCNPs) have been used as a potential nanocarrier for photosensitizers (PSs), which have demonstrated a great deal of promise in achieving an effective photodynamic therapy (PDT) for deep-seated tumors. However, overcoming biological barriers to achieve mitochondria-targeted PDT remains a major challenge. Herein, CD44- and mitochondria-targeted photodynamic nanosystems were fabricated through the self-assembly of hyaluronic acid-conjugated-methoxy poly(ethylene glycol)-diethylenetriamine-grafted-(chlorin e6-dihydrolipoic acid-(3-carboxypropyl)triphenylphosphine bromide) polymeric ligands (HA-c-mPEG-Deta-g-(Ce6-DHLA-TPP)) and NaErF4:Tm@NaYF4 core-shell UCNPs (termed CMPNs). The CMPNs presented ideal physiological stability, a good drug loading capacity and an improved capacity for the generation of singlet oxygen (1O2) based on the FRET mechanism. Significantly, confocal images revealed that CMPNs not only facilitated cellular uptake through CD44-receptor-targeted endocytosis, subsequently enabling rapid evasion from endo-lysosomal sequestration, but also specifically targeted mitochondria, ultimately inducing a profound disruption of mitochondrial membrane potential, which triggered apoptosis upon laser irradiation, thereby significantly enhancing the therapeutic effect. Furthermore, in vitro antitumor experiments further confirmed the substantial enhancement in cancer cell killing efficiency achieved by treating with CMPNs upon near-infrared (NIR) laser irradiation. This innovative approach holds promise for the development of NIR-laser-activated photodynamic nanoagents specifically designed for mitochondria-targeted PDT, thus addressing the limitations of the current PDT treatments.
Collapse
Affiliation(s)
- Ze Hao Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Xin Wang Mo
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Wei Jiang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Changling Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Yue Yin
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| |
Collapse
|
3
|
Zhu S, Xie X, Han L, Li H, Shi C, Yang Y, Sun J. Co-doped NaYF 4:Yb/Er/Tm upconversion luminescent coating to enhance the efficiency of photovoltaic cells. Phys Chem Chem Phys 2024; 26:17882-17891. [PMID: 38887823 DOI: 10.1039/d4cp00459k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The use of upconversion luminescent materials to broaden the utilization range of the solar spectrum to enhance the efficiency of photovoltaic cells offers a promising and sustainable approach. However, the low luminescence intensity and easy quenching of upconversion luminescent materials bring serious challenges to the practical application. Herein, a novel method using Co2+ ion doping to regulate the luminescence properties of NaYF4:Yb/Er/Tm is proposed. NaYF4:Yb/Er/Tm microcrystals doped with different proportions of Co2+ ions are prepared and used as coatings on the surface of photovoltaic cells. Co2+ ions regulate the crystallinity and size of the NaYF4:Yb/Er/Tm microcrystals and reduce the crystal field symmetry of the activator (Er3+ and Tm3+) ions. The results show that the emission intensity of green and red light is 18.19% and 83.24% times higher than that of undoped Co2+ ion materials, respectively. Besides, the efficiency of photovoltaic cells after coating Co2+ ion doped NaYF4:Yb/Er/Tm is 2.08% higher than that of the uncoated one. This work underscores the importance of Co2+ ion doping to improve and enhance the luminescence properties of NaYF4:Yb/Er/Tm, to further enhance the efficiency of photovoltaic cells.
Collapse
Affiliation(s)
- Shaoqi Zhu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201800, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaofeng Xie
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201800, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Lin Han
- Guo Neng Yunnan New Power Co., Guangfu Road, Kunming 650299, China
| | - Haiming Li
- Guo Neng Yunnan New Power Co., Guangfu Road, Kunming 650299, China
| | - Chenglin Shi
- Guo Neng Yunnan New Power Co., Guangfu Road, Kunming 650299, China
| | - Yong Yang
- Guo Neng Yunnan New Power Co., Guangfu Road, Kunming 650299, China
| | - Jing Sun
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201800, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
4
|
Li Z, Lu S, Liu W, Chen Z, Huang Y, Li X, Gong J, Chen X. Customized Lanthanide Nanobiohybrids for Noninvasive Precise Phototheranostics of Pulmonary Biofilm Infection. ACS NANO 2024; 18:11837-11848. [PMID: 38654614 DOI: 10.1021/acsnano.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A noninvasive strategy for in situ diagnosis and precise treatment of bacterial biofilm infections is highly anticipated but still a great challenge. Currently, no in vivo biofilm-targeted theranostic agent is available. Herein, we fabricated intelligent theranostic alginate lyase (Aly)-NaNdF4 nanohybrids with a 220 nm sunflower-like structure (NaNdF4@DMS-Aly) through an enrichment-encapsulating strategy, which exhibited excellent photothermal conversion efficiency and the second near-infrared (NIR-II) luminescence. Benefiting from the site-specific targeting and biofilm-responsive Aly release from NaNdF4@DMS-Aly, we not only enabled noninvasive diagnosis but also realized Aly-photothermal synergistic therapy and real-time evaluation of therapeutic effect in mice models with Pseudomonas aeruginosa biofilm-induced pulmonary infection. Furthermore, such nanobiohybrids with a sheddable siliceous shell are capable of delaying the NaNdF4 dissolution and biodegradation upon accomplishing the therapy, which is highly beneficial for the biosafety of theranostic agents.
Collapse
Affiliation(s)
- Zhuo Li
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Lu
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Wenzhen Liu
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunmei Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Xingjun Li
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Gong
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Xueyuan Chen
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| |
Collapse
|
5
|
You W, Zhang X, Yu R, Chen C, Li M, Pan G, Mao Y. Highly efficient upconversion luminescence in narrow-bandgap Y 2Mo 4O 15. OPTICS LETTERS 2024; 49:1824-1827. [PMID: 38560874 DOI: 10.1364/ol.519702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Lanthanide-doped upconversion (UC) materials have been extensively investigated for their unique capability to convert low-energy excitation into high-energy emission. Contrary to previous reports suggesting that efficient UC luminescence (UCL) is exclusively observed in materials with a wide bandgap, we have discovered in this study that Y2Mo4O15:Yb3+/Tm3+ microcrystals, a narrowband material, exhibit highly efficient UC emission. Remarkably, these microcrystals do not display any four- or five-photon UC emission bands. This particular optical phenomenon is independent of the variation in doping ion concentration, temperature, phonon energy, and excitation power density. Combining theoretical calculations and experimental results, we attribute the vanishing emission bands to the strong interaction between the bandgap of the Y2Mo4O15 host matrix (3.37 eV) and the high-energy levels (1I6 and 1D2) of Tm3+ ions. This interaction can effectively catalyze the UC emission process of Tm3+ ions, which leads to Y2Mo4O15:Yb3+/Tm3+ microcrystals possessing very strong UCL intensity. The brightness of these microcrystals outshines commercial UC NaYF4:Yb3+,Er3+ green phosphors by a factor of 10 and is 1.4 times greater than that of UC NaYF4:Yb3+,Tm3+ blue phosphors. Ultimately, Y2Mo4O15:Yb3+/Tm3+ microcrystals, with their distinctive optical characteristics, are being tailored for sophisticated anti-counterfeiting and information encryption applications.
Collapse
|
6
|
Tseng YT, Chiu YC, Pham VD, Wu WH, Le-Vu TT, Wang CH, Kuo SW, Chan MWY, Lin CH, Li SC, Li YD, Kan HC, Lin JY, Chau LK, Hsu CC. Ultrasensitive Upconversion Nanoparticle Immunoassay for Human Serum Cardiac Troponin I Detection Achieved with Resonant Waveguide Grating. ACS Sens 2024; 9:455-463. [PMID: 38234004 DOI: 10.1021/acssensors.3c02240] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Selective detection of biomarkers at low concentrations in blood is crucial for the clinical diagnosis of many diseases but remains challenging. In this work, we aimed to develop an ultrasensitive immunoassay that can detect biomarkers in serum with an attomolar limit of detection (LOD). We proposed a sandwich-type heterogeneous immunosensor in a 3 × 3 well array format by integrating a resonant waveguide grating (RWG) substrate with upconversion nanoparticles (UCNPs). UCNPs were used to label a target biomarker captured by capture antibody molecules immobilized on the surface of the RWG substrate, and the RWG substrate was used to enhance the upconversion luminescence (UCL) of UCNPs through excitation resonance. The LOD of the immunosensor was greatly reduced due to the increased UCL of UCNPs and the reduction of nonspecific adsorption of detection antibody-conjugated UCNPs on the RWG substrate surface by coating the RWG substrate surface with a carboxymethyl dextran layer. The immunosensor exhibited an extremely low LOD [0.24 fg/mL (9.1 aM)] and wide detection range (1 fg/mL to 100 pg/mL) in the detection of cardiac troponin I (cTnI). The cTnI concentrations in human serum samples collected at different times during cyclophosphamide, epirubicin, and 5-fluorouracil (CEF) chemotherapy in a breast cancer patient were measured by an immunosensor, and the results showed that the CEF chemotherapy did cause cardiotoxicity in the patient. Having a higher number of wells in such an array-based biosensor, the sensor can be developed as a high-throughput diagnostic tool for clinically important biomarkers.
Collapse
Affiliation(s)
- Yen-Ta Tseng
- Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Yu-Chung Chiu
- Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Van-Dai Pham
- Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Wen-Hsuan Wu
- Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Thanh Thu Le-Vu
- Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Chih-Hsien Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, National Sun Yat Sen University, Kaohsiung 804, Taiwan
| | - Michael W Y Chan
- Center for Nano Bio-Detection, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Chun-Hung Lin
- Department of Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi 622, Taiwan
| | - Szu-Chin Li
- Department of Hematology and Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi 622, Taiwan
| | - Yi-Da Li
- Department of Cardiology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi 622, Taiwan
| | - Hung-Chih Kan
- Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Jiunn-Yuan Lin
- Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Lai-Kwan Chau
- Department of Chemistry and Biochemistry, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| | - Chia-Chen Hsu
- Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
| |
Collapse
|
7
|
Han JH, Samanta T, Cho HB, Jang SW, Viswanath NSM, Kim YR, Seo JM, Im WB. Intense Hydrochromic Photon Upconversion from Lead-Free 0D Metal Halides For Water Detection and Information Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302442. [PMID: 37399104 DOI: 10.1002/adma.202302442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Hydrochromic materials that change their luminescence color upon exposure to moisture have attracted considerable attention owing to their applications in sensing and information encryption. However, the existing materials lack high hydrochromic response and color tunability. This study reports the development of a new and bright 0D Cs3 GdCl6 metal halide as the host for hydrochromic photon upconversion in the form of polycrystals (PCs) and nanocrystals. Lanthanides co-doped cesium gadolinium chloride metal halides exhibit upconversion luminescence (UCL) in the visible-infrared region upon 980 nm laser excitation. In particular, PCs co-doped with Yb3+ and Er3+ exhibit hydrochromic UCL color change from green to red. These hydrochromic properties are quantitatively confirmed through the sensitive detection of water in tetrahydrofuran solvent via UCL color changes. This water-sensing probe exhibits excellent repeatability and is particularly suitable for real-time and long-term water monitoring. Furthermore, the hydrochromic UCL property is exploited for stimuli-responsive information encryption via cyphertexts. These findings will pave the way for the development of new hydrochromic upconverting materials for emerging applications, such as noncontact sensors, anti-counterfeiting, and information encryption.
Collapse
Affiliation(s)
- Joo Hyeong Han
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Tuhin Samanta
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Han Bin Cho
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sung Woo Jang
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - N S M Viswanath
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Yu Ri Kim
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jeong Min Seo
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Won Bin Im
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
8
|
Eom YS, Park JH, Kim TH. Recent Advances in Stem Cell Differentiation Control Using Drug Delivery Systems Based on Porous Functional Materials. J Funct Biomater 2023; 14:483. [PMID: 37754897 PMCID: PMC10532449 DOI: 10.3390/jfb14090483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
The unique characteristics of stem cells, which include self-renewal and differentiation into specific cell types, have paved the way for the development of various biomedical applications such as stem cell therapy, disease modelling, and drug screening. The establishment of effective stem cell differentiation techniques is essential for the effective application of stem cells for various purposes. Ongoing research has sought to induce stem cell differentiation using diverse differentiation factors, including chemicals, proteins, and integrin expression. These differentiation factors play a pivotal role in a variety of applications. However, it is equally essential to acknowledge the potential hazards of uncontrolled differentiation. For example, uncontrolled differentiation can give rise to undesirable consequences, including cancerous mutations and stem cell death. Therefore, the development of innovative methods to control stem cell differentiation is crucial. In this review, we discuss recent research cases that have effectively utilised porous functional material-based drug delivery systems to regulate stem cell differentiation. Due to their unique substrate properties, drug delivery systems based on porous functional materials effectively induce stem cell differentiation through the steady release of differentiation factors. These ground-breaking techniques hold considerable promise for guiding and controlling the fate of stem cells for a wide range of biomedical applications, including stem cell therapy, disease modelling, and drug screening.
Collapse
Affiliation(s)
| | | | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea; (Y.-S.E.); (J.-H.P.)
| |
Collapse
|
9
|
Vorotnikov YA, Vorotnikova NA, Shestopalov MA. Silica-Based Materials Containing Inorganic Red/NIR Emitters and Their Application in Biomedicine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5869. [PMID: 37687562 PMCID: PMC10488461 DOI: 10.3390/ma16175869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
The low absorption of biological substances and living tissues in the red/near-infrared region (therapeutic window) makes luminophores emitting in the range of ~650-1350 nm favorable for in vitro and in vivo imaging. In contrast to commonly used organic dyes, inorganic red/NIR emitters, including ruthenium complexes, quantum dots, lanthanide compounds, and octahedral cluster complexes of molybdenum and tungsten, not only exhibit excellent emission in the desired region but also possess additional functional properties, such as photosensitization of the singlet oxygen generation process, upconversion luminescence, photoactivated effects, and so on. However, despite their outstanding functional applicability, they share the same drawback-instability in aqueous media under physiological conditions, especially without additional modifications. One of the most effective and thus widely used types of modification is incorporation into silica, which is (1) easy to obtain, (2) biocompatible, and (3) non-toxic. In addition, the variety of morphological characteristics, along with simple surface modification, provides room for creativity in the development of various multifunctional diagnostic/therapeutic platforms. In this review, we have highlighted biomedical applications of silica-based materials containing red/NIR-emitting compounds.
Collapse
Affiliation(s)
- Yuri A. Vorotnikov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia;
| | | | - Michael A. Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia;
| |
Collapse
|
10
|
Malhotra K, Hrovat D, Kumar B, Qu G, Houten JV, Ahmed R, Piunno PAE, Gunning PT, Krull UJ. Lanthanide-Doped Upconversion Nanoparticles: Exploring A Treasure Trove of NIR-Mediated Emerging Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2499-2528. [PMID: 36602515 DOI: 10.1021/acsami.2c12370] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) possess the remarkable ability to convert multiple near-infrared (NIR) photons into higher energy ultraviolet-visible (UV-vis) photons, making them a prime candidate for several advanced applications within the realm of nanotechnology. Compared to traditional organic fluorophores and quantum dots (QDs), UCNPs possess narrower emission bands (fwhm of 10-50 nm), large anti-Stokes shifts, low toxicity, high chemical stability, and resistance to photobleaching and blinking. In addition, unlike UV-vis excitation, NIR excitation is nondestructive at lower power intensities and has high tissue penetration depths (up to 2 mm) with low autofluorescence and scattering. Together, these properties make UCNPs exceedingly favored for advanced bioanalytical and theranostic applications, where these systems have been well-explored. UCNPs are also well-suited for bioimaging, optically modulating chemistries, forensic science, and other state-of-the-art research applications. In this review, an up-to-date account of emerging applications in UCNP research, beyond bioanalytical and theranostics, are presented including optogenetics, super-resolution imaging, encoded barcodes, fingerprinting, NIR vision, UCNP-assisted photochemical manipulations, optical tweezers, 3D printing, lasing, NIR-II imaging, UCNP-molecule nanohybrids, and UCNP-based persistent luminescent nanocrystals.
Collapse
Affiliation(s)
- Karan Malhotra
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - David Hrovat
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Balmiki Kumar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Grace Qu
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Justin Van Houten
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Reda Ahmed
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Paul A E Piunno
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Patrick T Gunning
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| |
Collapse
|
11
|
Upconverting Nanoparticles as a New Bio-Imaging Strategy-Investigating Intracellular Trafficking of Endogenous Processes in Neural Tissue. Int J Mol Sci 2023; 24:ijms24021122. [PMID: 36674638 PMCID: PMC9866400 DOI: 10.3390/ijms24021122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
In recent years, rare-earth-doped upconverting nanoparticles (UCNPs) have been widely used in different life sciences due to their unique properties. Nanoparticles have become a multifunctional and promising new approach to neurobiological disorders and have shown extraordinary application potential to overcome the problems related to conventional treatment strategies. This study evaluated the internalization mechanisms, bio-distribution, and neurotoxicity of NaYF4:20%Yb3+,2%Er3+ UCNPs in rat organotypic hippocampal slices. TEM results showed that UCNPs were easily internalized by hippocampal cells and co-localized with selected organelles inside neurons and astrocytes. Moreover, the UCNPs were taken into the neurons via clathrin- and caveolae-mediated endocytosis. Propidium iodide staining and TEM analysis did not confirm the adverse effects of UCNPs on hippocampal slice viability and morphology. Therefore, UCNPs may be a potent tool for bio-imaging and testing new therapeutic strategies for brain diseases in the future.
Collapse
|
12
|
Ding L, Shan X, Wang D, Liu B, Du Z, Di X, Chen C, Maddahfar M, Zhang L, Shi Y, Reece P, Halkon B, Aharonovich I, Xu X, Wang F. Lanthanide Ion Resonance-Driven Rayleigh Scattering of Nanoparticles for Dual-Modality Interferometric Scattering Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203354. [PMID: 35975425 PMCID: PMC9661846 DOI: 10.1002/advs.202203354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Light scattering from nanoparticles is significant in nanoscale imaging, photon confinement. and biosensing. However, engineering the scattering spectrum, traditionally by modifying the geometric feature of particles, requires synthesis and fabrication with nanometre accuracy. Here it is reported that doping lanthanide ions can engineer the scattering properties of low-refractive-index nanoparticles. When the excitation wavelength matches the ion resonance frequency of lanthanide ions, the polarizability and the resulted scattering cross-section of nanoparticles are dramatically enhanced. It is demonstrated that these purposely engineered nanoparticles can be used for interferometric scattering (iSCAT) microscopy. Conceptually, a dual-modality iSCAT microscopy is further developed to identify different nanoparticle types in living HeLa cells. The work provides insight into engineering the scattering features by doping elements in nanomaterials, further inspiring exploration of the geometry-independent scattering modulation strategy.
Collapse
Affiliation(s)
- Lei Ding
- School of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNew South Wales2007Australia
- School of Electrical and Data EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Xuchen Shan
- School of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNew South Wales2007Australia
- School of Electrical and Data EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology SydneyUltimoNew South Wales2007Australia
- School of PhysicsBeihang UniversityBeijing100191China
| | - Dejiang Wang
- School of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Baolei Liu
- School of PhysicsBeihang UniversityBeijing100191China
| | - Ziqing Du
- School of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Xiangjun Di
- School of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Chaohao Chen
- School of Electrical and Data EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Mahnaz Maddahfar
- School of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Ling Zhang
- School of Electrical and Data EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Yuzhi Shi
- National Key Laboratory of Science and Technology on Micro/Nano FabricationDepartment of Micro/Nano ElectronicsShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Peter Reece
- School of PhysicsThe University of New South WalesKensingtonNew South Wales2033Australia
| | - Benjamin Halkon
- Centre for Audio, Acoustics & VibrationFaculty of Engineering & ITUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Igor Aharonovich
- School of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNew South Wales2007Australia
- ARC Centre of Excellence for Transformative Meta‐Optical Systems (TMOS)Faculty of ScienceUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Xiaoxue Xu
- School of Biomedical Engineering, Faculty of Engineering and Information TechnologyUniversity of Technology SydneyUltimoNew South Wales2007Australia
| | - Fan Wang
- School of Electrical and Data EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology SydneyUltimoNew South Wales2007Australia
- School of PhysicsBeihang UniversityBeijing100191China
| |
Collapse
|
13
|
Sahoo S, Mondal S, Sarma D. Luminescent Lanthanide Metal Organic Frameworks (LnMOFs): A Versatile Platform towards Organomolecule Sensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Sun L, Sun C, Ge Y, Zhang Z, Zhou J. Inner filter effect-based upconversion fluorescence sensing of sulfide ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3680-3685. [PMID: 36063084 DOI: 10.1039/d2ay01072k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Upconversion nanocrystals (UCNCs) have emerged as a new type of fluorescent probe for sensing applications. Herein, we designed a 980 nm excited upconversion luminescence system, composed of core-shell-structured NaYF4 : Yb,Er@NaYF4 : Yb nanocrystals (csUCNCs) and the triethylenetetramine-Cu complex (complex-I), for quantitative detection of sulfide ions. Taking advantage of the specific recognition of complex-I toward S2-, the as-formed compound (complex-II) exhibits excellent spectral overlap not only in the range of fluorescence emissions of UCNCs but also in the excitation wavelength for UCNCs; fluorescence quenching of UCNCs occurs where the complex-II acts as the energy acceptor. Due to the electrostatic repulsion between positively charged ligand-free csUCNCs and complex-I, the fluorescence quenching is based on the primary and secondary inner filter effect rather than the fluorescence resonance energy transfer process. The detection limit of S2- for the upconversion-based system is calculated to be 2.7 μM, exhibiting higher detection sensitivity over the single complex-I compound measured by the spectrophotometric method. Moreover, no significant variation in upconversion luminescence is observed upon the addition of other interfering ions, showing the excellent selectivity of this nanoprobe toward S2-.
Collapse
Affiliation(s)
- Lanjuan Sun
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu 211189, P. R. China.
| | - Chunning Sun
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Yang Ge
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu 211189, P. R. China.
| | - Zhaoming Zhang
- Shangdong Yellow Triangle Biotechnology Industry Research Institute Co.Ltd., Dongying Shangdong 257091, P. R. China
| | - Jiancheng Zhou
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu 211189, P. R. China.
| |
Collapse
|
15
|
Bartusik-Aebisher D, Mielnik M, Cieślar G, Chodurek E, Kawczyk-Krupka A, Aebisher D. Photon Upconversion in Small Molecules. Molecules 2022; 27:molecules27185874. [PMID: 36144609 PMCID: PMC9502815 DOI: 10.3390/molecules27185874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Upconversion (UC) is a process that describes the emission of shorter-wavelength light compared to that of the excitation source. Thus, UC is also referred to as anti-Stokes emission because the excitation wavelength is longer than the emission wavelength. UC materials are used in many fields, from electronics to medicine. The objective of using UC in medical research is to synthesize upconversion nanoparticles (UCNPs) composed of a lanthanide core with a coating of adsorbed dye that will generate fluorescence after excitation with near-infrared light to illuminate deep tissue. Emission occurs in the visible and UV range, and excitation mainly in the near-infrared spectrum. UC is observed for lanthanide ions due to the arrangement of their energy levels resulting from f-f electronic transitions. Organic compounds and transition metal ions are also able to form the UC process. Biocompatible UCNPs are designed to absorb infrared light and emit visible light in the UC process. Fluorescent dyes are adsorbed to UCNPs and employed in PDT to achieve deeper tissue effects upon irradiation with infrared light. Fluorescent UCNPs afford selectivity as they may be activated only by illumination of an area of diseased tissue, such as a tumor, with infrared light and are by themselves atoxic in the absence of infrared light. UCNP constructs can be monitored as to their location in the body and uptake by cancer cells, aiding in evaluation of exact doses required to treat the targeted cancer. In this paper, we review current research in UC studies and UCNP development.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Mateusz Mielnik
- English Division Science Club, Medical College of The University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Ewa Chodurek
- Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
- Correspondence: (A.K.-K.); (D.A.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland
- Correspondence: (A.K.-K.); (D.A.)
| |
Collapse
|
16
|
Ho TH, Yang CH, Jiang ZE, Lin HY, Chen YF, Wang TL. NIR-Triggered Generation of Reactive Oxygen Species and Photodynamic Therapy Based on Mesoporous Silica-Coated LiYF 4 Upconverting Nanoparticles. Int J Mol Sci 2022; 23:ijms23158757. [PMID: 35955888 PMCID: PMC9368848 DOI: 10.3390/ijms23158757] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
To date, the increase in reactive oxygen species (ROS) production for effectual photodynamic therapy (PDT) treatment still remains challenging. In this study, a facile and effective approach is utilized to coat mesoporous silica (mSiO2) shell on the ligand-free upconversion nanoparticles (UCNPs) based on the LiYF4 host material. Two kinds of mesoporous silica-coated UCNPs (UCNP@mSiO2) that display green emission (doped with Ho3+) and red emission (doped with Er3+), respectively, were successfully synthesized and well characterized. Three photosensitizers (PSs), merocyanine 540 (MC 540), rose bengal (RB), and chlorin e6 (Ce6), with the function of absorption of green or red emission, were selected and loaded into the mSiO2 shell of both UCNP@mSiO2 nanomaterials. A comprehensive study for the three UCNP@mSiO2/PS donor/acceptor pairs was performed to investigate the efficacy of fluorescence resonance energy transfer (FRET), ROS generation, and in vitro PDT using a MCF-7 cell line. ROS generation detection showed that as compared to the oleate-capped and ligand-free UCNP/PS pairs, the UCNP@mSiO2/PS nanocarrier system demonstrated more pronounced ROS generation due to the UCNP@mSiO2 nanoparticles in close vicinity to PS molecules and a higher loading capacity of the photosensitizer. As a result, the three LiYF4 UCNP@mSiO2/PS nanoplatforms displayed more prominent therapeutic efficacies in PDT by using in vitro cytotoxicity tests.
Collapse
Affiliation(s)
- Tsung-Han Ho
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Chien-Hsin Yang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Zheng-En Jiang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Yih-Fung Chen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tzong-Liu Wang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan
- Correspondence: ; Tel.: +886-7-5919278
| |
Collapse
|
17
|
Borse S, Rafique R, Murthy ZVP, Park TJ, Kailasa SK. Applications of upconversion nanoparticles in analytical and biomedical sciences: a review. Analyst 2022; 147:3155-3179. [PMID: 35730445 DOI: 10.1039/d1an02170b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have gained more attention from researchers due to their unique properties of photon conversion from an excitation/incident wavelength to a more suitable emission wavelength at a designated site, thus improving the scope in the life sciences field. Due to their fascinating and unique optical properties, UCNPs offer attractive opportunities in theranostics for early diagnostics and treatment of deadly diseases such as cancer. Also, several efforts have been made on emerging approaches for the fabrication and surface functionalization of luminescent UCNPs in optical biosensing applications using various infrared excitation wavelengths. In this review, we discussed the recent advancements of UCNP-based analytical chemistry approaches for sensing and theranostics using a 980 nm laser as the excitation source. The key analytical merits of UNCP-integrated fluorescence analytical approaches for assaying a wide variety of target analytes are discussed. We have described the mechanisms of the upconversion (UC) process, and the application of surface-modified UCNPs for in vitro/in vivo bioimaging, photodynamic therapy (PDT), and photothermal therapy (PTT). Based on the latest scientific achievements, the advantages and disadvantages of UCNPs in biomedical and optical applications are also discussed to overcome the shortcomings and to improve the future study directions. This review delivers beneficial practical information of UCNPs in the past few years, and insights into their research in various fields are also discussed precisely.
Collapse
Affiliation(s)
- Shraddha Borse
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat - 395007, Gujarat, India.
| | - Rafia Rafique
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Z V P Murthy
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat - 395007, Gujarat, India.
| |
Collapse
|
18
|
Wang Q, Ye J, Wang J, Liu M, Li C, Lv W, Liu S, Niu N, Xu J, Fu Y. Tumor-responsive nanomedicine based on Ce 3+-modulated up-/downconversion dual-mode emission for NIR-II imaging-guided dynamic therapy. J Mater Chem B 2022; 10:3824-3833. [PMID: 35502611 DOI: 10.1039/d2tb00626j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemodynamic therapy (CDT) and photodynamic therapy (PDT) based on intratumoral generation of reactive oxygen species (ROS) have been playing crucial roles in conquering tumors. However, the above therapeutic methods are still constrained by the overexpressed tumor glutathione (GSH) and intrinsic tumor resistance to conventional organic photosensitizers. Herein, lanthanide-doped nanoparticles (LDNPs) were coated with inorganic bimetallic copper and manganese silicate nanospheres (CMSNs) and modified with sodium alginate (SA) for second near-infrared (NIR-II, 1000-1700 nm) imaging-guided CDT and PDT. Interestingly, cross-relaxation (CR) pathways between Ce3+ and Ho3+ and CR between Ce3+ and Er3+ are fully exploited to enable dual-mode upconversion (UC) and NIR-II downconversion (DC) emissions of LDNPs under 980 nm laser excitation. UC emission can induce CMSNs to produce toxic singlet oxygen (1O2) for PDT, and the released Mn2+ and Cu+ ions caused by GSH-induced degradation of CMSNs can react with endogenous H2O2 to produce hydroxyl radical (˙OH) for CDT. Significantly, the ultrabright NIR-II DC emission endows the systems with exceptional optical imaging capabilities. All results affirm the potency of such an "all in one" theranostic nanomedicine integrating PDT, CDT and remarkable NIR-II imaging abilities accompanied by the function of modulating tumor microenvironment in cancer theranostics.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Jikun Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Mengting Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Wubin Lv
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Na Niu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China. .,Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China.,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China. .,Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China.,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China.,Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
19
|
Recent advances in chromophore-assembled upconversion nanoprobes for chemo/biosensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Zhang Z, Chen Y, Zhang Y. Self-Assembly of Upconversion Nanoparticles Based Materials and Their Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103241. [PMID: 34850560 DOI: 10.1002/smll.202103241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/15/2021] [Indexed: 05/27/2023]
Abstract
In the past few decades, significant progress of the conventional upconversion nanoparticles (UCNPs) based nanoplatform has been achieved in many fields, and with the development of nanoscience and nanotechnology, more and more complex situations need a UCNPs based nanoplatform having multifunctions for specific multimodal or multiplexed applications. Through self-assembly, different UCNPs or UCNPs with other materials could be combined together within an entity. It is more like an ideal UCNPs nanoplatform, a unique system with the properties defined by its individual components as well as by the morphology of the composite. Various designs can show their different desired properties depending on the application situation. This review provides a complete summary on the optimization of the synthesis method for the recently designed UCNPs assemblies and summarizes various applications, including dual-modality cell imaging, molecular delivery, detection, and programmed control therapy. The challenges and limitations the UCNPs assembly faces and the potential solutions in this field are also presented.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yongming Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
| |
Collapse
|
21
|
Thi Nguyen LY, Lee YH, Chang YF, Hsu CC, Lin JY, Kan HC. Subwavelength-resolution imaging of surface plasmon polaritons with up-conversion fluorescence microscopy. OPTICS EXPRESS 2022; 30:3113-3124. [PMID: 35209437 DOI: 10.1364/oe.449147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Imaging and characterization of surface plasmon polaritons (SPPs) are crucial for the research and development of the plasmonic devices and circuits. Here, we report on direct imaging of SPPs propagation on SiO2/metal interface with subwavelength spatial resolution using up-conversion fluorescence microscopy, that exploits rare-earth ions, such as Er3+, Yb3+, and Nd3+, doped nanoparticles as the fluorophores. We demonstrated that by further taking the intensity ratio of the image obtained with fluorescent emission at different wavelengths, we are able to substantially enhance the features associated to the SPP wavefronts in the image for quantitative analysis, such as the wavevector and propagation direction of the SPPs. Our results agree with the theoretic prediction of the SPP wavelengths quantitatively. We further demonstrate the evolution of the SPP wavefronts due to refraction SPPs, and reproduced the experiment with finite difference time domain (FDTD) method simulations. The relative refractive index of SPP estimated from the experiment also agrees quantitatively with those extracted from the theory and the simulation.
Collapse
|
22
|
Mehrdel B, Nikbakht A, Aziz AA, Jameel MS, Dheyab MA, Khaniabadi PM. Upconversion lanthanide nanomaterials: basics introduction, synthesis approaches, mechanism and application in photodetector and photovoltaic devices. NANOTECHNOLOGY 2021; 33:082001. [PMID: 34753124 DOI: 10.1088/1361-6528/ac37e3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Upconversion (UC) of lanthanide-doped nanostructure has the unique ability to convert low energy infrared (IR) light to high energy photons, which has significant potential for energy conversion applications. This review concisely discusses the basic concepts and fundamental theories of lanthanide nanostructures, synthesis techniques, and enhancement methods of upconversion for photovoltaic and for near-infrared (NIR) photodetector (PD) application. In addition, a few examples of lanthanide-doped nanostructures with improved performance were discussed, with particular emphasis on upconversion emission enhancement using coupling plasmon. The use of UC materials has been shown to significantly improve the NIR light-harvesting properties of photovoltaic devices and photocatalytic materials. However, the inefficiency of UC emission also prompted the need for additional modification of the optical properties of UC material. This improvement entailed the proper selection of the host matrix and optimization of the sensitizer and activator concentrations, followed by subjecting the UC material to surface-passivation, plasmonic enhancement, or doping. As expected, improving the optical properties of UC materials can lead to enhanced efficiency of PDs and photovoltaic devices.
Collapse
Affiliation(s)
- Baharak Mehrdel
- New Technologies Research Centre, Amirkabir University of Technology, (Tehran Polytechnic), Tehran, 158754413, Iran
| | - Ali Nikbakht
- New Technologies Research Centre, Amirkabir University of Technology, (Tehran Polytechnic), Tehran, 158754413, Iran
| | - Azlan Abdul Aziz
- Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Mahmood S Jameel
- Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Mohammed Ali Dheyab
- Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Pegah Moradi Khaniabadi
- Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University, PO Box 35, 123, Al Khod, Muscat, Oman
| |
Collapse
|
23
|
Zhang Z, Liu Y, Chen Y. Recent Progress in Utilizing Upconversion Nanoparticles with Switchable Emission for Programmed Therapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhen Zhang
- School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China
| | - Yilin Liu
- School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China
| | - Yongming Chen
- School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China
| |
Collapse
|
24
|
Charging and ultralong phosphorescence of lanthanide facilitated organic complex. Nat Commun 2021; 12:6532. [PMID: 34764301 PMCID: PMC8586359 DOI: 10.1038/s41467-021-26927-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/22/2021] [Indexed: 11/08/2022] Open
Abstract
Emission from the triplet state of an organo-lanthanide complex is observed only when the energy transfer to the lanthanide ion is absent. The triplet state lifetime under cryogenic conditions for organo-lanthanide compounds usually ranges up to tens of milliseconds. The compound LaL1(TTA)3 reported herein exhibits 77 K phosphorescence observable by the naked eye for up to 30 s. Optical spectroscopy, density functional theory (DFT) and time-dependent DFT techniques have been applied to investigate the photophysical processes of this compound. In particular, on-off continuous irradiation cycles reveal a charging behaviour of the emission which is associated with triplet-triplet absorption because it shows a shorter rise lifetime than the corresponding decay lifetime and it varies with illumination intensity. The discovery of the behaviour of this compound provides insight into important photophysical processes of the triplet state of organo-lanthanide systems and may open new fields of application such as data encryption, anti-counterfeiting and temperature switching. Compounds featuring long-lived luminescence have potential applications in a variety of fields, including anti-counterfeiting and switches. Here the authors report a lanthanide-based compound that exhibits phosphorescence observable by the naked eye for up to 30 s at 77 K; On-off continuous irradiation cycles reveal a charging behaviour associated with triplet-triplet absorption, showing a shorter rise lifetime than the decay lifetime.
Collapse
|
25
|
Wang X, She M, Gu W, Bu Y, Yan X. Structures, plasmon-enhanced luminescence, and applications of heterostructure phosphors. Phys Chem Chem Phys 2021; 23:20765-20794. [PMID: 34545869 DOI: 10.1039/d1cp01860d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heterostructure phosphor composites have been used widely in the fields of targeted bio-probes and bio-imaging, hyperthermia treatment, photocatalysis, solar cells, and fingerprint identification. The structures, plasmon-enhanced luminescence and mechanism of metal/fluorophore heterostructure composites, such as core-shell nanocrystals, multilayers, adhesion, islands, arrays, and composite optical glass, are reviewed in detail. Their extended applications were explored widely since the surface plasmon resonance effect increased the up-conversion efficiency of fluorophores significantly. We summarize their synthesis methods, size and shape control, absorption and excitation spectra, plasmon-enhanced up-conversion luminescence, and specific applications. The most important results acquired in each case are summarized, and the main challenges that need to be overcome are discussed.
Collapse
Affiliation(s)
- Xiangfu Wang
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China. .,State Key Laboratory of Green Building Materials, China Building Materials Academy, No. 1 Guanzhuang Dongli, Chaoyang District, Beijing 100024, China
| | - Min She
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Wenqin Gu
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Yanyan Bu
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China. .,College of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Xiaohong Yan
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
26
|
A Synergy Approach to Enhance Upconversion Luminescence Emission of Rare Earth Nanophosphors with Million-Fold Enhancement Factor. CRYSTALS 2021. [DOI: 10.3390/cryst11101187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lanthanide (Ln3+)–doped upconversion nanoparticles (UCNPs) offer an ennormous future for a broad range of biological applications over the conventional downconversion fluorescent probes such as organic dyes or quantum dots. Unfortunately, the efficiency of the anti−Stokes upconversion luminescence (UCL) process is typically much weaker than that of the Stokes downconversion emission. Albeit recent development in the synthesis of UCNPs, it is still a major challenge to produce a high−efficiency UCL, meeting the urgent need for practical applications of enhanced markers in biology. The poor quantum yield efficiency of UCL of UCNPs is mainly due to the fol-lowing reasons: (i) the low absorption coefficient of Ln3+ dopants, the specific Ln3+ used here being ytterbium (Yb3+), (ii) UCL quenching by high−energy oscillators due to surface defects, impurities, ligands, and solvent molecules, and (iii) the insufficient local excitation intensity in broad-field il-lumination to generate a highly efficient UCL. In order to tackle the problem of low absorption cross-section of Ln3+ ions, we first incorporate a new type of neodymium (Nd3+) sensitizer into UCNPs to promote their absorption cross-section at 793 nm. To minimize the UCL quenching induced by surface defects and surface ligands, the Nd3+-sensitized UCNPs are then coated with an inactive shell of NaYF4. Finally, the excitation light intensity in the vicinity of UCNPs can be greatly enhanced using a waveguide grating structure thanks to the guided mode resonance. Through the synergy of these three approaches, we show that the UCL intensity of UCNPs can be boosted by a million−fold compared with conventional Yb3+–doped UCNPs.
Collapse
|
27
|
Karami A, Farivar F, de Prinse TJ, Rabiee H, Kidd S, Sumby CJ, Bi J. Facile Multistep Synthesis of ZnO-Coated β-NaYF 4:Yb/Tm Upconversion Nanoparticles as an Antimicrobial Photodynamic Therapy for Persistent Staphylococcus aureus Small Colony Variants. ACS APPLIED BIO MATERIALS 2021; 4:6125-6136. [PMID: 35006903 DOI: 10.1021/acsabm.1c00473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antibacterial treatment strategies using functional nanomaterials, such as photodynamic therapy, are urgently required to combat persistent Staphylococcus aureus small colony variant (SCV) bacteria. Using a stepwise approach involving thermolysis to form β-NaYF4:Yb/Tm upconversion nanoparticles (UCNPs) and surface ligand exchange with cetyltrimethylammonium bromide (CTAB), followed by zeolite imidazolate framework-8 (ZIF-8) coating and conversion to zinc oxide (ZnO), β-NaYF4:Yb/Tm@ZnO nanoparticles were synthesized. The direct synthesis of β-NaYF4:Yb/Tm@ZIF-8 UCNPs proved problematic due to the hydrophobic nature of the as-synthesized material, which was shown by zeta potential measurements using dynamic light scattering (DLS). To facilitate deposition of a ZnO coating, the zeta potentials of (i) as-synthesized UCNPs, (ii) calcined UCNPs, (iii) polyvinylpyrrolidone (PVP), and (iv) CTAB-coated UCNPs were measured, which revealed the CTAB-coated UCNPs to be the most hydrophilic and the better-dispersed form in water. β-NaYF4:Yb/Tm@ZIF-8 composites formed using the CTAB-coated UCNPs were then converted into β-NaYF4:Yb/Tm@ZnO nanoparticles by calcination under carefully controlled conditions. Photoluminescence analysis confirmed the upconversion process for the UCNP core, which allows the β-NaYF4:Yb/Tm@ZnO nanoparticles to photogenerate reactive oxygen species (ROS) when activated by near-infrared (NIR) radiation. The NIR-activated UCNPs@ZnO nanoparticles demonstrated potent efficacy against both Staphylococcus aureus (WCH-SK2) and its associated SCV form (0.67 and 0.76 log colony forming unit (CFU) reduction, respectively), which was attributed to ROS generated from the NIR activated β-NaYF4:Yb/Tm@ZnO nanoparticles.
Collapse
Affiliation(s)
- Afshin Karami
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Farzaneh Farivar
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Thomas J de Prinse
- Institute for Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Hesamoddin Rabiee
- Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Stephen Kidd
- Australian Centre for Antimicrobial Resistance Ecology, Research Centre for Infectious Disease, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Christopher J Sumby
- Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jingxiu Bi
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
28
|
Zhang L, Jin D, Stenzel MH. Polymer-Functionalized Upconversion Nanoparticles for Light/Imaging-Guided Drug Delivery. Biomacromolecules 2021; 22:3168-3201. [PMID: 34304566 DOI: 10.1021/acs.biomac.1c00669] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The strong upconversion luminescence (UCL) of upconversion nanoparticles (UCNPs) endows the nanoparticles with attractive features for combined imaging and drug delivery. UCNPs convert near-infrared (NIR) light into light of shorter wavelengths such as light in the ultraviolet (UV) and visible regions, which can be used for light-guided drug delivery. Although light-responsive drug delivery systems as such have been known for many years, their application in medicine is limited, as strong UV-light can be damaging to tissue; moreover, UV light will not penetrate deeply into the skin, an issue that UCNPs can now address. However, UCNPs, as obtained after synthesis, are usually hydrophobic and require further surface functionalization to be stable in plasma. Polymers can serve as versatile surface coatings, as they can provide good colloidal stability, prevent the formation of a protein corona, provide a matrix for drugs, and be stimuli-responsive. In this Review, we provide a brief overview of the most recent progress in the synthesis of UCNPs with different shapes/sizes. We will then discuss the purpose of polymer coating for drug delivery before summarizing the strategies to coat UCNPs with various polymers. We will introduce the different polymers that have so far been used to coat UCNPs with the purpose to create a drug delivery system, focusing in detail on light-responsive polymers. To expand the application of UCNPs to allow photothermal therapy or magnetic resonance imaging (MRI) or to simply enhance the loading capacity of drugs, UCNPs were often combined with other materials to generate multifunctional nanoparticles such as carbon-based NPs and nanoMOFs. We then conclude with a discussion on drug loading and release and summarize the current knowledge on the toxicity of these polymer-coated UCNPs.
Collapse
Affiliation(s)
- Lin Zhang
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW Sydney), Sydney NSW 2052, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney NSW 2007, Australia
| | - Martina H Stenzel
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW Sydney), Sydney NSW 2052, Australia
| |
Collapse
|
29
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
30
|
A Fluorescent Sensor for Daunorubicin Determination Using 808 nm-excited Upconversion Nanoparticles. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Ngo TT, Cabello-Olmo E, Arroyo E, Becerro AI, Ocaña M, Lozano G, Míguez H. Highly Versatile Upconverting Oxyfluoride-Based Nanophosphor Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30051-30060. [PMID: 34142553 PMCID: PMC8251696 DOI: 10.1021/acsami.1c07012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/02/2021] [Indexed: 05/26/2023]
Abstract
Fluoride-based compounds doped with rare-earth cations are the preferred choice of materials to achieve efficient upconversion, of interest for a plethora of applications ranging from bioimaging to energy harvesting. Herein, we demonstrate a simple route to fabricate bright upconverting films that are transparent, self-standing, flexible, and emit different colors. Starting from the solvothermal synthesis of uniform and colloidally stable yttrium fluoride nanoparticles doped with Yb3+ and Er3+, Ho3+, or Tm3+, we find the experimental conditions to process the nanophosphors as optical quality films of controlled thickness between few hundreds of nanometers and several micrometers. A thorough analysis of both structural and photophysical properties of films annealed at different temperatures reveals a tradeoff between the oxidation of the matrix, which transitions through an oxyfluoride crystal phase, and the efficiency of the upconversion photoluminescence process. It represents a significant step forward in the understanding of the fundamental properties of upconverting materials and can be leveraged for the optimization of upconversion systems in general. We prove bright multicolor upconversion photoluminescence in oxyfluoride-based phosphor transparent films upon excitation with a 980 nm laser for both rigid and flexible versions of the layers, being possible to use the latter to coat surfaces of arbitrary shape. Our results pave the way toward the development of upconverting coatings that can be conveniently integrated in applications that demand a large degree of versatility.
Collapse
Affiliation(s)
| | | | - Encarnación Arroyo
- Instituto de Ciencia de Materiales
de Sevilla, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Ana I. Becerro
- Instituto de Ciencia de Materiales
de Sevilla, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Manuel Ocaña
- Instituto de Ciencia de Materiales
de Sevilla, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Gabriel Lozano
- Instituto de Ciencia de Materiales
de Sevilla, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Hernán Míguez
- Instituto de Ciencia de Materiales
de Sevilla, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
32
|
Kumar B, Malhotra K, Fuku R, Van Houten J, Qu GY, Piunno PA, Krull UJ. Recent trends in the developments of analytical probes based on lanthanide-doped upconversion nanoparticles. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Nannuri SH, Nikam AN, Pandey A, Mutalik S, George SD. Subcellular imaging and diagnosis of cancer using engineered nanoparticles. Curr Pharm Des 2021; 28:690-710. [PMID: 34036909 DOI: 10.2174/1381612827666210525154131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
The advances in the synthesis of nanoparticles with engineered properties are reported to have profound applications in oncological disease detection via optical and multimodal imaging and therapy. Among various nanoparticle-assisted imaging techniques, engineered fluorescent nanoparticles show great promise from high contrast images and localized therapeutic applications. Of all the fluorescent nanoparticles available, the gold nanoparticles, carbon dots, and upconversion nanoparticles are emerging recently as the most promising candidates for diagnosis, treatment, and cancer monitoring. This review addresses the recent progress in engineering the properties of these emerging nanoparticles and their application for cancer diagnosis and therapy. In addition, the potential of these particles for subcellular imaging is also reviewed here.
Collapse
Affiliation(s)
- Shivanand H Nannuri
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ajinkya N Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
34
|
Peltomaa R, Benito-Peña E, Gorris HH, Moreno-Bondi MC. Biosensing based on upconversion nanoparticles for food quality and safety applications. Analyst 2021; 146:13-32. [PMID: 33205784 DOI: 10.1039/d0an01883j] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Food safety and quality regulations inevitably call for sensitive and accurate analytical methods to detect harmful contaminants in food and to ensure safe food for the consumer. Both novel and well-established biorecognition elements, together with different transduction schemes, enable the simple and rapid analysis of various food contaminants. Upconversion nanoparticles (UCNPs) are inorganic nanocrystals that convert near-infrared light into shorter wavelength emission. This unique photophysical feature, along with narrow emission bandwidths and large anti-Stokes shift, render UCNPs excellent optical labels for biosensing because they can be detected without optical background interferences from the sample matrix. In this review, we show how this exciting technique has evolved into biosensing platforms for food quality and safety monitoring and highlight recent applications in the field.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Biochemistry/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | | | | | | |
Collapse
|
35
|
Grzyb T, Kamiński P, Przybylska D, Tymiński A, Sanz-Rodríguez F, Haro Gonzalez P. Manipulation of up-conversion emission in NaYF 4 core@shell nanoparticles doped by Er 3+, Tm 3+, or Yb 3+ ions by excitation wavelength-three ions-plenty of possibilities. NANOSCALE 2021; 13:7322-7333. [PMID: 33889899 DOI: 10.1039/d0nr07136f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoparticles (NPs) based on host compound NaYF4 with core@shell structures were synthesised by the precipitation reaction in high-boiling point octadecene/oleic acid solvent. Four laser wavelengths were used (808, 975, 1208, or 1532 nm) for excitation of the obtained NPs. The resulting emission and mechanisms responsible for spectroscopic properties were studied in detail. Depending on NP compositions, i.e. type of doping ion (Er3+, Tm3+, or Yb3+) or presence of dopants in the same or different phases, adjustable up-conversion (UC) could be obtained with emission peaks covering the visible to near-infrared range (475 to 1625 nm). The presented results demonstrated multifunctionality of the prepared NPs. NaYF4:2%Tm3+@NaYF4 NPs exhibited emission at 700 and 1450 nm under 808 nm laser excitation or 800 and 1625 nm emission under 1208 nm laser radiation, as a result of ground- and excited-state absorption processes (GSA and ESA, respectively). However, NaYF4:5%Er3+,2%Tm3+@NaYF4 NPs showed the most interesting properties, as they can convert all studied laser wavelengths due to the absorption of Tm3+ (808, 1208 nm) or Er3+ ions (808, 975, 1532 nm), revealing a photon avalanche process under 1208 nm laser excitation, as well as GSA and ESA at other excitation wavelengths. The NaYF4:2%Tm3+@NaYF4:5%Er3+ NPs revealed the resultant emission properties, as the dopant ions were separated within core and shell phases. The NaYF4:18%Yb3+,2%Tm3+@NaYF4 and NaYF4:18%Yb3+,2%Tm3+@NaYF4:5%Er3+ samples showed the brightest emission, around 800 nm, under 975 nm excitation, though other laser wavelengths allowed for observation of luminescence, as well, especially in NPs with Er3+ in the outer shell, capable of UC under 1532 nm. The presented results highlight the unique and universal properties of lanthanide ions for designing luminescent NPs for a variety of potential applications, such as confocal microscopy.
Collapse
Affiliation(s)
- Tomasz Grzyb
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | | | | | | | | | | |
Collapse
|
36
|
Zhang Z, Zhang Y. Orthogonal Emissive Upconversion Nanoparticles: Material Design and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004552. [PMID: 33543556 DOI: 10.1002/smll.202004552] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Upconversion nanoparticles (UCNPs) have gone beyond traditional fluorophores in a lot of fields due to the outstanding features such as sharp excitation and emission bands, chemical and photo stability of high quality, low auto fluorescence, and high tissue permeation depth of the near-infrared irradiation light used for excitation. Conventional UCNPs carrying single/multiple emissions under a single excitation wavelength can be only employed in concurrent activation, orthogonal emissive upconversion nanoparticles (OUCNPs) with the emissions, a kind of luminescence reliant on excitation, in which by switching the external excitation different lanthanide activators can adopt independent way to control the emission, is more like an ideal UCNPs nanoplatform which can switch their activated emissions depending upon the different application for which it is used at the right time when necessary. This review summaries what has been achieved on the synthesis optimization of designed OUCNPs in recent years and sums up various applications including bioimaging, photo-switching, and programmable control process. And also, the limitations OUCNPs face, and the efforts that have been made to overcome these limitations are discussed.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
| |
Collapse
|
37
|
Investigation of Gd 2O 3: Er 3+/Yb 3+ Upconversion Nanoparticles (UCNPs) as a Multi-model Contrast Agent for Functional Optical Coherence Tomography (fOCT). J Fluoresc 2021; 31:541-550. [PMID: 33452637 DOI: 10.1007/s10895-021-02681-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Currently, upconversion nanoparticles (UCNPs) implanted as a contrast agent for optical coherence tomography (OCT) system due to its biocompatibility, anti-stock emission, narrow emission bandwidth non-photobleaching effects etc., but it was not used as multi model imaging probe. We synthesized multimodal imaging probe having upconversion property along with paramagnetic property and used as dual contrast agents for Photothermal Optical Coherence Tomography (PTOCT) and Magnetomotive Optical Coherence Tomography (MMOCT). The synthesized Gd2O3:Er3+/Yb3+ UCNPs shows the bright yellow upconversion emission, biocompatibility with hydrophilic property. A custom built SSOCT setup modified for PTOCT and MMOCT imaging along with custom MATLAB algorithm for signal extraction. A dynamic study was performed with synthesized UCNPs as an imaging probe and functional OCT system for targeted imaging. This shows the utility of the Gd2O3:Er3+/Yb3+ UCNPs as molecular probe for targeted imaging applications.
Collapse
|
38
|
Vu DT, Le TTV, Hsu CC, Lai ND, Hecquet C, Benisty H. Positive role of the long luminescence lifetime of upconversion nanophosphors on resonant surfaces for ultra-compact filter-free bio-assays. BIOMEDICAL OPTICS EXPRESS 2021; 12:1-19. [PMID: 33659069 PMCID: PMC7899508 DOI: 10.1364/boe.405759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
We introduce a compact array fluorescence sensor principle that takes advantage of the long luminescence lifetimes of upconversion nanoparticles (UCNPs) to deploy a filter-free, optics-less contact geometry, advantageous for modern biochemical assays of biomolecules, pollutants or cells. Based on technologically mature CMOS chips for ∼10 kHz technical/scientific imaging, we propose a contact geometry between assayed molecules or cells and a CMOS chip that makes use of only a faceplate or direct contact, employing time-window management to reject the 975 nm excitation light of highly efficient UCNPs. The chip surface is intended to implement, in future devices, a resonant waveguide grating (RWG) to enhance excitation efficiency, aiming at the improvement of upconversion luminescence emission intensity of UCNP deposited atop of such an RWG structure. Based on mock-up experiments that assess the actual chip rejection performance, we bracket the photometric figures of merit of such a promising chip principle and predict a limit of detection around 10-100 nanoparticles.
Collapse
Affiliation(s)
- Duc Tu Vu
- Laboratoire Charles Fabry, CNRS, Institut d’Optique Graduate School, Université Paris-Saclay, Palaiseau, 91127, France
- Faculty of Electrical and Electronics Engineering, Phenikaa University, Yen Nghia, Ha-Dong District, Hanoi, 10000, Vietnam
- Laboratoire Lumière, Matière et Interfaces (LuMIn), FRE 2036, École Normale Supérieure Paris-Saclay, 4 Avenue des Sciences, Gif-sur-Yvette, 91190, France
| | - Thanh-Thu Vu Le
- Department of Physics and Center for Nano Bio-Detection, National Chung Cheng University, Ming Hsiung, Chia Yi, 621, Taiwan
| | - Chia-Chen Hsu
- Department of Physics and Center for Nano Bio-Detection, National Chung Cheng University, Ming Hsiung, Chia Yi, 621, Taiwan
| | - Ngoc Diep Lai
- Laboratoire Lumière, Matière et Interfaces (LuMIn), FRE 2036, École Normale Supérieure Paris-Saclay, 4 Avenue des Sciences, Gif-sur-Yvette, 91190, France
| | - Christophe Hecquet
- Laboratoire Charles Fabry, CNRS, Institut d’Optique Graduate School, Université Paris-Saclay, Palaiseau, 91127, France
| | - Henri Benisty
- Laboratoire Charles Fabry, CNRS, Institut d’Optique Graduate School, Université Paris-Saclay, Palaiseau, 91127, France
| |
Collapse
|
39
|
Synthesis, Optical Properties, and Sensing Applications of LaF 3:Yb 3+/Er 3+/Ho 3+/Tm 3+ Upconversion Nanoparticles. NANOMATERIALS 2020; 10:nano10122477. [PMID: 33321848 PMCID: PMC7774313 DOI: 10.3390/nano10122477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022]
Abstract
Herein, we successfully synthesized a series of LaF3:Yb3+/Er3+/Ho3+/Tm3+ upconversion nanoparticles (UCNPs) and LaF3:Yb3+0.20, Er3+0.02@LaF3:Yb3+0.20 core/shell UCNPs by modifying the amount of NaOH and the reaction time. Hexagonal LaF3 nanocrystals with uniform particle sizes and bright UC emissions were obtained. The crystal structures of the lanthanide-doped LaF3 UCNPs were investigated using wide-angle X-ray diffraction. The morphologies and particle sizes of the nanocrystals were determined using transmission electron microscopy. The photoluminescence (PL) spectra of the LaF3 nanocrystals could be tuned by altering the doping ratio of Er3+, Ho3+, and Tm3+. In addition, the PL intensities increased after coating the UCNP cores with an active shell. The fluorescence intensities of the UCNPs synthesized via a one-hour reaction with the addition of 2.5 or 5 mmol NaOH increased by up to 17 times compared with the sample prepared without the addition of NaOH. By modifying the doping ratio of Yb/Tm, UV-emissive LaF3 nanocrystals were obtained. After surface modification by ligand exchange, the hydrophobic LaF3:Yb3+0.20, Er3+0.02@LaF3:Yb3+0.20 core/shell UCNPs became water-dispersible. These colloid UCNPs could be utilized as a fluorescent probe for the detection of Hg2+ ions under 980 nm near-infrared irradiation.
Collapse
|
40
|
Lim K, Kim HK, Le XT, Nguyen NT, Lee ES, Oh KT, Choi HG, Youn YS. Highly Red Light-Emitting Erbium- and Lutetium-Doped Core-Shell Upconverting Nanoparticles Surface-Modified with PEG-Folic Acid/TCPP for Suppressing Cervical Cancer HeLa Cells. Pharmaceutics 2020; 12:E1102. [PMID: 33212942 PMCID: PMC7698343 DOI: 10.3390/pharmaceutics12111102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) combined with upconverting nanoparticles (UCNPs) are viewed together as an effective method of ablating tumors. After absorbing highly tissue-penetrating near-infrared (NIR) light, UCNPs emit a shorter wavelength light (~660 nm) suitable for PDT. In this study, we designed and prepared highly red fluorescence-emitting silica-coated core-shell upconverting nanoparticles modified with polyethylene glycol (PEG5k)-folic acid and tetrakis(4-carboxyphenyl)porphyrin (TCPP) (UCNPs@SiO2-NH2@FA/PEG/TCPP) as an efficient photodynamic agent for killing tumor cells. The UCNPs consisted of two simple lanthanides, erbium and lutetium, as the core and shell, respectively. The unique core-shell combination enabled the UCNPs to emit red light without green light. TCPP, folic acid, and PEG were conjugated to the outer silica layer of UCNPs as a photosensitizing agent, a ligand for tumor attachment, and a dispersing stabilizer, respectively. The prepared UCNPs of ~50 nm diameter and -34.5 mV surface potential absorbed 808 nm light and emitted ~660 nm red light. Most notably, these UCNPs were physically well dispersed and stable in the aqueous phase due to PEG attachment and were able to generate singlet oxygen (1O2) with a high efficacy. The HeLa cells were treated with each UCNP sample (0, 1, 5, 10, 20, 30 μg/mL as a free TCPP). The results showed that the combination of UCNPs@SiO2-NH2@FA/PEG/TCPP and the 808 nm laser was significantly cytotoxic to HeLa cells, almost to the same degree as naïve TCPP plus the 660 nm laser based on MTT and Live/Dead assays. Furthermore, the UCNPs@SiO2-NH2@FA/PEG/TCPP was well internalized into HeLa cells and three-dimensional HeLa spheroids, presumably due to the surface folic acid and small size in conjunction with endocytosis and the nonspecific uptake. We believe that our UCNPs@SiO2-NH2@FA/PEG/TCPP will serve as a new platform for highly efficient and deep-penetrating photodynamic agents suitable for various tumor treatments.
Collapse
Affiliation(s)
- Kyungseop Lim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| | - Hwang Kyung Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| | - Xuan Thien Le
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| | - Nguyen Thi Nguyen
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| | - Eun Seong Lee
- Division of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do 14662, Korea;
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Korea;
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| |
Collapse
|
41
|
Yang F, Zhang Q, Huang S, Ma D. Recent advances of near infrared inorganic fluorescent probes for biomedical applications. J Mater Chem B 2020; 8:7856-7879. [PMID: 32749426 DOI: 10.1039/d0tb01430c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Near infrared (NIR)-excitable and NIR-emitting probes have fuelled advances in biomedical applications owing to their power in enabling deep tissue imaging, offering high image contrast and reducing phototoxicity. There are essentially three NIR biological windows, i.e., 700-950 nm (NIR I), 1000-1350 nm (NIR II) and 1550-1870 nm (NIR III). Recently emerging optical probes that can be excited by an 800 nm laser and emit in the NIR II or III windows, denoted as NIR I-to-NIR II/III, are particularly attractive. That is because the longer wavelengths in the NIR II and NIR III windows offer deeper penetration and higher signal to noise ratio than those in the NIR I window. NIR imaging has indeed become a quickly evolving field and, simultaneously, stimulated the further development of new classes of NIR I-to-NIR II/III inorganic fluorescent probes, which include PbS, Ag2S-based quantum dots (QDs) and rare earth (RE) doped NPs (RENPs) that possess quite diverse optical properties and follow different emission mechanisms. This review summarizes the recent progress on material merits, synthetic routes, the rational choice of excitation in the NIR I window, NIR II/III emission optimization, and surface modification of aforementioned fluorescent probes. We also introduce the latest notable accomplishments enabled by these probes in fluorescence imaging, lifetime-based multiplexed imaging and photothermal therapy (PTT), together with a critical discussion of forthcoming challenges and perspectives for clinic use.
Collapse
Affiliation(s)
- Fan Yang
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada.
| | | | | | | |
Collapse
|
42
|
Yang CT, Hattiholi A, Selvan ST, Yan SX, Fang WW, Chandrasekharan P, Koteswaraiah P, Herold CJ, Gulyás B, Aw SE, He T, Ng DCE, Padmanabhan P. Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging. Acta Biomater 2020; 110:15-36. [PMID: 32335310 DOI: 10.1016/j.actbio.2020.03.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022]
Abstract
Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review. STATEMENT OF SIGNIFICANCE: The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work.
Collapse
Affiliation(s)
- Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Aishwarya Hattiholi
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore; School of Biological Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Subramanian Tamil Selvan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
| | - Sean Xuexian Yan
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Wei-Wei Fang
- School of Chemistry and Chemical Engineering, HeFei University of Technology, HeFei, AnHui 230009, PR China
| | | | - Podili Koteswaraiah
- School of Biological Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Christian J Herold
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna General Hospital, Austria
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore; Karolinska Institutet, Department of Clinical Neuroscience, S-171 76, Stockholm, Sweden
| | - Swee Eng Aw
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore
| | - Tao He
- School of Chemistry and Chemical Engineering, HeFei University of Technology, HeFei, AnHui 230009, PR China
| | - David Chee Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
43
|
Qiao Y, Geng H, Jiang N, Zhu X, Li C, Cai Q. Polymyxin B–modified upconversion nanoparticles for selective detection of Gram-negative bacteria such as Escherichia coli. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820911266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Upconversion nanoparticles, Yb,Tm,Fe-doped NaYF4 nanoparticles, are synthesized and modified with polymyxin B for the selective detection of Gram-negative bacteria. Polymyxin B, a cyclic cationic antimicrobial peptide which can specifically bind to the lipopolysaccharides of cell wall of Gram-negative bacteria, such as Escherichia coli, is used to target and bind Gram-negative bacteria. The bacteria are then quantified by measuring the fluorescence intensity of the upconversion nanoparticle–bacteria complexes at 801 nm under 980 nm excitation. A limit of detection of 36 CFU/mL is achieved in the detection of Escherichia coli, and Escherichia coli in soybean milk is successfully detected. The limited autofluorescence and photobleaching properties of the upconversion nanoparticles make the proposed method useful for in vivo fluorescence imaging of Gram-negative bacteria.
Collapse
Affiliation(s)
- Yan Qiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P.R. China
| | - Hongchao Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P.R. China
| | - Ning Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P.R. China
| | - Xingqi Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P.R. China
| | - Chenyi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P.R. China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P.R. China
| |
Collapse
|
44
|
Su Y, Zhang Y, Li C, Xu G, Bai J. Direct Hybridization of Pd on Metal–Organic Framework (MOF)@PAN(C) to Catalyze Suzuki Reaction. Catal Letters 2020. [DOI: 10.1007/s10562-020-03213-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
In Vitro Imaging of Animal Tissue with Upconversion Nanoparticles (UCNPs) as a Molecular Probing Agent Using Swept Source Optical Coherence Tomography (SSOCT). J Med Biol Eng 2020. [DOI: 10.1007/s40846-020-00511-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Xia B, Yan X, Fang WW, Chen S, Jiang Z, Wang J, Sun TC, Li Q, Li Z, Lu Y, He T, Cao B, Yang CT. Activatable Cell-Penetrating Peptide Conjugated Polymeric Nanoparticles with Gd-Chelation and Aggregation-Induced Emission for Bimodal MR and Fluorescence Imaging of Tumors. ACS APPLIED BIO MATERIALS 2020; 3:1394-1405. [DOI: 10.1021/acsabm.9b01049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bin Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Xu Yan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Wei-Wei Fang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Sheng Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - ZhiLin Jiang
- Centre for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, People’s Republic of China
| | - JinChen Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Tian-Ci Sun
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Qing Li
- The Central Laboratory of Medical Research Centre, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230009, People’s Republic of China
| | - Zhen Li
- Centre for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, People’s Republic of China
| | - Yang Lu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Tao He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - BaoQiang Cao
- Department of General Surgery, Anhui No. 2 Provincial People’s Hospital, Hefei, Anhui 230041, People’s Republic of China
| | - Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608
- Duke-NUS Medical School, 8 College Road, Singapore 169857
| |
Collapse
|
47
|
Biegger P, Ladd ME, Komljenovic D. Multifunctional Magnetic Resonance Imaging Probes. Recent Results Cancer Res 2020; 216:189-226. [PMID: 32594388 DOI: 10.1007/978-3-030-42618-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Magnetic resonance imaging is characterized by high spatial resolution and unsurpassed soft tissue discrimination. Development and characterization of both intrinsic and extrinsic magnetic resonance (MR) imaging probes in the last decade has further strengthened the pivotal role MR imaging holds in the assessment of cancer in preclinical and translational settings. Sophisticated chemical modifications of a variety of nanoparticulate probes hold the potential to deliver valuable multifunctional tools applicable in diagnostics and/or treatment in human oncology. MR imaging suffers from a lack of sensitivity achievable by, e.g., nuclear medicine imaging methods. Advantages of including additional functionality/functionalities in a probe suitable for MR imaging are thus numerous, comprising the addition of fundamentally different imaging information (diagnostics), drug delivery (therapy), or the combination of both (theranostics). In recent years, we have witnessed a plethora of preclinical multimodal or multifunctional imaging probes being published mainly as proof-of-principle studies, yet only a handful are readily applicable in clinical settings. This chapter summarizes recent innovations in the development of multifunctional MR imaging probes and discusses the suitability of these probes for clinical transfer.
Collapse
Affiliation(s)
- Philipp Biegger
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Dorde Komljenovic
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
48
|
An Nd 3+-Sensitized Upconversion Fluorescent Sensor for Epirubicin Detection. NANOMATERIALS 2019; 9:nano9121700. [PMID: 31795129 PMCID: PMC6955805 DOI: 10.3390/nano9121700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022]
Abstract
We describe here an Nd3+-sensitized upconversion fluorescent sensor for epirubicin (EPI) detection in aqueous solutions under 808 nm laser excitation. The upconversion fluorescence of nanoparticles is effectively quenched in the presence of EPI via a fluorescence resonance energy transfer mechanism. The dynamic quenching constant was 2.10 × 104 M−1. Normalized fluorescence intensity increased linearly as the EPI concentration was raised from 0.09 μM to 189.66 μM and the fluorometric detection limit was 0.05 μM. The sensing method was simple, fast, and low-cost and was able to be applied to determine the levels of EPI in urine with spike recoveries from 97.5% to 102.6%. Another important feature of the proposed fluorescent sensor is that it holds a promising potential for in vivo imaging and detection due to its distinctive properties such as weak autofluorescence, low heating effect, and high light penetration depth.
Collapse
|
49
|
Zhu X, Zhang J, Liu J, Zhang Y. Recent Progress of Rare-Earth Doped Upconversion Nanoparticles: Synthesis, Optimization, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901358. [PMID: 31763145 PMCID: PMC6865011 DOI: 10.1002/advs.201901358] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/18/2019] [Indexed: 05/09/2023]
Abstract
Upconversion is a nonlinear optical phenomenon that involves the emission of high-energy photons by sequential absorption of two or more low-energy excitation photons. Due to their excellent physiochemical properties such as deep penetration depth, little damage to samples, and high chemical stability, upconversion nanoparticles (UCNPs) are extensively applied in bioimaging, biosensing, theranostic, and photochemical reactions. Here, recent achievements in the synthesis, optimization, and applications of UCNP-based nanomaterials are reviewed. The state-of-the-art approaches to synthesize UCNPs in the past few years are introduced first, followed by a summary of several strategies to optimize upconversion emissive properties and various applications of UCNPs. Lastly, the challenges and future perspectives of UCNPs are provided as a conclusion.
Collapse
Affiliation(s)
- Xiaohui Zhu
- School of Environmental and Chemical EngineeringShanghai University99 Shangda Road, Baoshan DistrictShanghai200444China
| | - Jing Zhang
- School of Environmental and Chemical EngineeringShanghai University99 Shangda Road, Baoshan DistrictShanghai200444China
| | - Jinliang Liu
- School of Environmental and Chemical EngineeringShanghai University99 Shangda Road, Baoshan DistrictShanghai200444China
| | - Yong Zhang
- School of Environmental and Chemical EngineeringShanghai University99 Shangda Road, Baoshan DistrictShanghai200444China
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeBlock E4 #04‐08, 4 Engineering Drive 3Singapore117583Singapore
| |
Collapse
|
50
|
Kumar B, Murali A, Mattan I, Giri S. Near-Infrared-Triggered Photodynamic, Photothermal, and on Demand Chemotherapy by Multifunctional Upconversion Nanocomposite. J Phys Chem B 2019; 123:3738-3755. [PMID: 30969119 DOI: 10.1021/acs.jpcb.9b01870] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In an attempt to integrate photodynamic therapy (PDT) with photothermal therapy and chemotherapy for enhanced anticancer activity, we have rationally synthesized a multifunctional upconversion nanoplatform using NaYF4:Yb/Tm/Er/Fe nanoparticles (NPs) as the core and NaYbF4:1% Tm as a shell. The as-synthesized core-shell upconversion (CSU) NPs exhibited diverse and enhanced photoluminescence emissions in a wide range (UV to NIR) consequent upon Fe3+ doping in the core and fabrication of an active shell. Subsequently, CSU was first decorated with titania NPs as photosensitizers. Next, the mesoporous silica (MS) shell loaded with doxorubicin (DOX) via a photocleavable Ru complex as the gating molecule was developed around titania-containing CSU. Finally, gold nanorods (GNRs) with localized surface plasmon resonance (LSPR) at 800 nm were incorporated around the MS layer to obtain the multifunctional nanoplatform. We demonstrated that the UV, blue, and NIR emissions from the CSU produced ROS-mediated PDT through titania activation, induced DOX release through photocleavage of the Ru complex, and generated hyperthermia by LSPR activity of GNRs, respectively, upon a single NIR excitation through FRET. The therapeutic efficacy was validated on HeLa cell lines in vitro by various microscopic and biochemical studies under a significantly milder NIR irradiation and lower dosage of the nanoplatforms, which have been further demonstrated as diagnostic nanoprobes for cell imaging.
Collapse
|