1
|
Hahn V, Zühlke D, Winter H, Landskron A, Bernhardt J, Sievers S, Schmidt M, von Woedtke T, Riedel K, Kolb JF. Proteomic profiling of antibiotic-resistant Escherichia coli GW-AmxH19 isolated from hospital wastewater treated with physical plasma. Proteomics 2024; 24:e2300494. [PMID: 38644344 DOI: 10.1002/pmic.202300494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
Microorganisms which are resistant to antibiotics are a global threat to the health of humans and animals. Wastewater treatment plants are known hotspots for the dissemination of antibiotic resistances. Therefore, novel methods for the inactivation of pathogens, and in particular antibiotic-resistant microorganisms (ARM), are of increasing interest. An especially promising method could be a water treatment by physical plasma which provides charged particles, electric fields, UV-radiation, and reactive species. The latter are foremost responsible for the antimicrobial properties of plasma. Thus, with plasma it might be possible to reduce the amount of ARM and to establish this technology as additional treatment stage for wastewater remediation. However, the impact of plasma on microorganisms beyond a mere inactivation was analyzed in more detail by a proteomic approach. Therefore, Escherichia coli GW-AmxH19, isolated from hospital wastewater in Germany, was used. The bacterial solution was treated by a plasma discharge ignited between each of four pins and the liquid surface. The growth of E. coli and the pH-value decreased during plasma treatment in comparison with the untreated control. Proteome and antibiotic resistance profile were analyzed. Concentrations of nitrite and nitrate were determined as long-lived indicative products of a transient chemistry associated with reactive nitrogen species (RNS). Conversely, hydrogen peroxide served as indicator for reactive oxygen species (ROS). Proteome analyses revealed an oxidative stress response as a result of plasma-generated RNS and ROS as well as a pH-balancing reaction as key responses to plasma treatment. Both, the generation of reactive species and a decreased pH-value is characteristic for plasma-treated solutions. The plasma-mediated changes of the proteome are discussed also in comparison with the Gram-positive bacterium Bacillus subtilis. Furthermore, no effect of the plasma treatment, on the antibiotic resistance of E. coli, was determined under the chosen conditions. The knowledge about the physiological changes of ARM in response to plasma is of fundamental interest to understand the molecular basis for the inactivation. This will be important for the further development and implementation of plasma in wastewater remediation.
Collapse
Affiliation(s)
- Veronika Hahn
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Daniela Zühlke
- Institute of Marine Biotechnology, Greifswald, Germany
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Hauke Winter
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Annchristin Landskron
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Jörg Bernhardt
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Michael Schmidt
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medicine, Greifswald, Germany
| | - Katharina Riedel
- Institute of Marine Biotechnology, Greifswald, Germany
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Juergen F Kolb
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| |
Collapse
|
2
|
Clemen R, Miebach L, Singer D, Freund E, von Woedtke T, Weltmann K, Bekeschus S. Oxidized Melanoma Antigens Promote Activation and Proliferation of Cytotoxic T-Cell Subpopulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404131. [PMID: 38958560 PMCID: PMC11434111 DOI: 10.1002/advs.202404131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Increasing evidence suggests the role of reactive oxygen and nitrogen species (RONS) in regulating antitumor immune effects and immunosuppression. RONS modify biomolecules and induce oxidative post-translational modifications (oxPTM) on proteins that can alarm phagocytes. However, it is unclear if and how protein oxidation by technical means could be a strategy to foster antitumor immunity and therapy. To this end, cold gas plasma technology producing various RONS simultaneously to oxidize the two melanoma-associated antigens MART and PMEL is utilized. Cold plasma-oxidized MART (oxMART) and PMEL (oxPMEL) are heavily decorated with oxPTMs as determined by mass spectrometry. Immunization with oxidized MART or PMEL vaccines prior to challenge with viable melanoma cells correlated with significant changes in cytokine secretion and altered T-cell differentiation of tumor-infiltrated leukocytes (TILs). oxMART promoted the activity of cytotoxic central memory T-cells, while oxPMEL led to increased proliferation of cytotoxic effector T-cells. Similar T-cell results are observed after incubating splenocytes of tumor-bearing mice with B16F10 melanoma cells. This study, for the first time, provides evidence of the importance of oxidative modifications of two melanoma-associated antigens in eliciting anticancer immunity.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| | - Lea Miebach
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| | - Debora Singer
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
| | - Eric Freund
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
- Department of NeurosurgeryWien University Medical CenterVienna1090Austria
| | - Thomas von Woedtke
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
- Institute for Hygiene and Environmental MedicineGreifswald University Medical CenterFerdinand‐Sauerbruch‐Str.17475GreifswaldGermany
| | - Klaus‐Dieter Weltmann
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| | - Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
| |
Collapse
|
3
|
Zhang J, Wu T, Wang Z, Xu S, Jing X, Zhang Z, Lin J, Zhang H, Liu D, Zhou R, Guo L, Wang X, Rong M, Shao Y, Ostrikov KK. Plasma-generated RONS in liquid transferred into cryo-microneedles patch for skin treatment of melanoma. Redox Biol 2024; 75:103284. [PMID: 39059203 PMCID: PMC11332077 DOI: 10.1016/j.redox.2024.103284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Malignant melanoma is the most lethal form of skin cancer. As a promising anti-cancer agent, plasma-activated water (PAW) rich in reactive oxygen and nitrogen species (RONS) has shown significant potential for melanoma treatment. However, rapid decay of RONS and inefficient delivery of PAW in conventional injection methods limit its practical applications. To address this issue, here we report a new approach for the production of plasma-activated cryo-microneedles (PA-CMNs) patches using custom-designed plasma devices and processes. Our innovation is to incorporate PAW into the PA-CMNs that are fabricated using a fast cryogenic micro-molding method. It is demonstrated that PA-CMNs can be easily inserted into skin to release RONS and slow the decay of RONS thereby prolonging their bioactivity and effectiveness. The new insights into the effective melanoma treatment suggest that the rich mixture of RONS within PA-CMNs prepared by custom-developed hybrid plasma-assisted configuration induces both ferroptosis and apoptosis to selectively kill tumor cells. A significant inhibition of subcutaneous A375 melanoma growth was observed in PA-CMNs-treated tumor-bearing nude mice without any signs of systemic toxicity. The new approach based on PA-CMNs may potentially open new avenues for a broader range of disease treatments.
Collapse
Affiliation(s)
- Jishen Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Tong Wu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Shengduo Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Xixi Jing
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Zizhu Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Jiao Lin
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China.
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Xiaohua Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Yongping Shao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| |
Collapse
|
4
|
Wu M, Shi Y, Liu Y, Huang H, Che J, Shi J, Xu C. Exosome-transmitted podoplanin promotes tumor-associated macrophage-mediated immune tolerance in glioblastoma. CNS Neurosci Ther 2024; 30:e14643. [PMID: 38470096 PMCID: PMC10929222 DOI: 10.1111/cns.14643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
AIMS Glioblastoma is the most frequent and aggressive primary brain tumor, characterized by rapid disease course and poor treatment responsiveness. The abundance of immunosuppressive macrophages in glioblastoma challenges the efficacy of novel immunotherapy. METHODS Bulk RNA-seq and single-cell RNA-seq of glioma patients from public databases were comprehensively analyzed to illustrate macrophage infiltration patterns and molecular characteristics of podoplanin (PDPN). Multiplexed fluorescence immunohistochemistry staining of PDPN, GFAP, CD68, and CD163 were performed in glioma tissue microarray. The impact of PDPN on macrophage immunosuppressive polarization was investigated using a co-culture system. Bone marrow-derived macrophages (BMDMs) and OT-II T cells isolated from BALB/c and OT-II mice respectively were co-cultured to determine T-cell adherence. Pathway alterations were probed through RNA sequencing and western blot analyses. RESULTS Our findings demonstrated that PDPN is notably correlated with the expression of CD68 and CD163 in glioma tissues. Additionally, macrophages phagocytosing PDPN-containing EVs (EVsPDPN ) from GBM cells presented increased CD163 expression and augmented secretion of immunoregulatory cytokine (IL-6, IL-10, TNF-α, and TGF-β1). PDPN within EVs was also associated with enhanced phagocytic activity and reduced MHC II expression in macrophages, compromising CD4+ T-cell activation. CONCLUSIONS This investigation underscores that EVsPDPN derived from glioblastoma cells contributes to M2 macrophage-mediated immunosuppression and is a potential prognostic marker and therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Mengwan Wu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Yu‐Yue Pathology Scientific Research CenterChongqingChina
- Jinfeng LaboratoryChongqingChina
| | - Ying Shi
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Yuyang Liu
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Hongxiang Huang
- Department of Oncology, The First Affiliated HospitalNanchang UniversityNanchangChina
| | - Jiajia Che
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Jing Shi
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Yu‐Yue Pathology Scientific Research CenterChongqingChina
- Jinfeng LaboratoryChongqingChina
| |
Collapse
|
5
|
Boeckmann L, Berner J, Kordt M, Lenz E, Schäfer M, Semmler ML, Frey A, Sagwal SK, Rebl H, Miebach L, Niessner F, Sawade M, Hein M, Ramer R, Grambow E, Seebauer C, von Woedtke T, Nebe B, Metelmann HR, Langer P, Hinz B, Vollmar B, Emmert S, Bekeschus S. Synergistic effect of cold gas plasma and experimental drug exposure exhibits skin cancer toxicity in vitro and in vivo. J Adv Res 2024; 57:181-196. [PMID: 37391038 PMCID: PMC10918357 DOI: 10.1016/j.jare.2023.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
INTRODUCTION Skin cancer is often fatal, which motivates new therapy avenues. Recent advances in cancer treatment are indicative of the importance of combination treatments in oncology. Previous studies have identified small molecule-based therapies and redox-based technologies, including photodynamic therapy or medical gas plasma, as promising candidates to target skin cancer. OBJECTIVE We aimed to identify effective combinations of experimental small molecules with cold gas plasma for therapy in dermato-oncology. METHODS Promising drug candidates were identified after screening an in-house 155-compound library using 3D skin cancer spheroids and high content imaging. Combination effects of selected drugs and cold gas plasma were investigated with respect to oxidative stress, invasion, and viability. Drugs that had combined well with cold gas plasma were further investigated in vascularized tumor organoids in ovo and a xenograft mouse melanoma model in vivo. RESULTS The two chromone derivatives Sm837 and IS112 enhanced cold gas plasma-induced oxidative stress, including histone 2A.X phosphorylation, and further reduced proliferation and skin cancer cell viability. Combination treatments of tumor organoids grown in ovo confirmed the principal anti-cancer effect of the selected drugs. While one of the two compounds exerted severe toxicity in vivo, the other (Sm837) resulted in a significant synergistic anti-tumor toxicity at good tolerability. Principal component analysis of protein phosphorylation profiles confirmed profound combination treatment effects in contrast to the monotherapies. CONCLUSION We identified a novel compound that, combined with topical cold gas plasma-induced oxidative stress, represents a novel and promising treatment approach to target skin cancer.
Collapse
Affiliation(s)
- Lars Boeckmann
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Julia Berner
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, 17475 Greifswald, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Marcel Kordt
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Elea Lenz
- Institute for Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Mirijam Schäfer
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Marie-Luise Semmler
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Anna Frey
- Institute for Chemistry, Rostock University, 18059 Rostock, Germany
| | - Sanjeev Kumar Sagwal
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Felix Niessner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Marie Sawade
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Martin Hein
- Institute for Chemistry, Rostock University, 18059 Rostock, Germany
| | - Robert Ramer
- Institute for Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Eberhard Grambow
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Christian Seebauer
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, 17475 Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Barbara Nebe
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Hans-Robert Metelmann
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, 17475 Greifswald, Germany
| | - Peter Langer
- Institute for Chemistry, Rostock University, 18059 Rostock, Germany
| | - Burkhard Hinz
- Institute for Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Steffen Emmert
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Sander Bekeschus
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany.
| |
Collapse
|
6
|
Bekeschus S. Gas plasmas technology: from biomolecule redox research to medical therapy. Biochem Soc Trans 2023; 51:2071-2083. [PMID: 38088441 DOI: 10.1042/bst20230014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Physical plasma is one consequence of gas ionization, i.e. its dissociation of electrons and ions. If operated in ambient air containing oxygen and nitrogen, its high reactivity produces various reactive oxygen and nitrogen species (RONS) simultaneously. Technology leap innovations in the early 2010s facilitated the generation of gas plasmas aimed at clinics and operated at body temperature, enabling their potential use in medicine. In parallel, their high potency as antimicrobial agents was systematically discovered. In combination with first successful clinical trials, this led in 2013 to the clinical approval of first medical gas plasma devices in Europe for promoting the healing of chronic and infected wounds and ulcers in dermatology. While since then, thousands of patients have benefited from medical gas plasma therapy, only the appreciation of the critical role of gas plasma-derived RONS led to unraveling first fragments of the mechanistic basics of gas plasma-mediated biomedical effects. However, drawing the complete picture of effectors and effects is still challenging. This is because gas plasma-produced RONS not only show a great variety of dozens of types but also each of them having distinct spatio-temporal concentration profiles due to their specific half-lives and reactivity with other types of RONS as well as different types of (bio) molecules they can react with. However, this makes gas plasmas fascinating and highly versatile tools for biomolecular redox research, especially considering that the technical capacity of increasing and decreasing individual RONS types holds excellent potential for tailoring gas plasmas toward specific applications and disease therapies.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic of Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| |
Collapse
|
7
|
Clemen R, Minkus L, Singer D, Schulan P, von Woedtke T, Wende K, Bekeschus S. Multi-Oxidant Environment as a Suicidal Inhibitor of Myeloperoxidase. Antioxidants (Basel) 2023; 12:1936. [PMID: 38001789 PMCID: PMC10668958 DOI: 10.3390/antiox12111936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Tissue inflammation drives the infiltration of innate immune cells that generate reactive species to kill bacteria and recruit adaptive immune cells. Neutrophil activation fosters the release of myeloperoxidase (MPO) enzyme, a heme-containing protein generating hypochlorous acid (HOCl) from hydrogen peroxide (H2O2) and chloride ions. MPO-dependent oxidant formation initiates bioactive oxidation and chlorination products and induces oxidative post-translational modifications (oxPTMs) on proteins and lipid oxidation. Besides HOCl and H2O2, further reactive species such as singlet oxygen and nitric oxide are generated in inflammation, leading to modified proteins, potentially resulting in their altered bioactivity. So far, knowledge about multiple free radical-induced modifications of MPO and its effects on HOCl generation is lacking. To mimic this multi-oxidant microenvironment, human MPO was exposed to several reactive species produced simultaneously via argon plasma operated at body temperature. Several molecular gas admixes were used to modify the reactive species type profiles generated. MPO was investigated by studying its oxPTMs, changes in protein structure, and enzymatic activity. MPO activity was significantly reduced after treatment with all five tested plasma gas conditions. Dynamic light scattering and CD-spectroscopy revealed altered MPO protein morphology indicative of oligomerization. Using mass spectrometry, various oxPTMs, such as +1O, +2O, and +3O, were determined on methionine and cysteine (Cys), and -1H-1N+1O was detected in asparagine (Asp). The modification types identified differed between argon-oxygen and argon-nitrogen plasmas. However, all plasma gas conditions led to the deamidation of Asp and oxidation of Cys residues, suggesting an inactivation of MPO due to oxPTM-mediated conformational changes.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Lara Minkus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Paul Schulan
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475 Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| |
Collapse
|
8
|
Miebach L, Melo‐Zainzinger G, Freund E, Clemen R, Cecchini AL, Bekeschus S. Medical Gas Plasma Technology Combines with Antimelanoma Therapies and Promotes Immune-Checkpoint Therapy Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303183. [PMID: 37541287 PMCID: PMC10558686 DOI: 10.1002/advs.202303183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/11/2023] [Indexed: 08/06/2023]
Abstract
Strategies to improve activity and selectivity are major goals in oncological drug development. Medical gas plasma therapy has been subject to intense research in dermatooncology recently. Based on partial gas ionization, this approach is exceptional in generating a variety of reactive oxygen species simultaneously that can be applied locally at the tumor side. It is hypothesized that combined gas plasma treatment can potentiate drug responses in the treatment of melanoma. Using a plasma jet approved as medical device in Europe, a systematic screening of 46 mitochondria-targeted drugs identifies five agents synergizing in vitro and in vivo. Increased intratumoral leucocyte infiltration points to immunomodulatory aspects of the treatment, motivating to investigate responses to immune checkpoint blockade in combination with plasma. Tumor growth is monitored based on bioluminescent imaging, and single-cell suspensions are retrieved from each tumor to characterize tumor-infiltrating leucocytes using multicolor flow cytometry. Gene expression profiling is done using a validated NanoString panel targeting 770 genes specifically designed for immuno-oncological research. Cell type abundancies are characterized from bulk RNA samples using the CIBERSORT computational framework. Collectively, the results indicate that local application of medical gas plasma technology synergizes with mitochondria-targeted drugs and anti-PD1 checkpoint therapy in treating melanoma.
Collapse
Affiliation(s)
- Lea Miebach
- Department of General, Thoracic, Vascular, and Visceral SurgeryGreifswald University Medical Center17475GreifswaldGermany
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)17489GreifswaldGermany
| | - Gabriella Melo‐Zainzinger
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)17489GreifswaldGermany
- Cancer Research UnitBoehringer IngelheimVienna1121Austria
| | - Eric Freund
- Department of General, Thoracic, Vascular, and Visceral SurgeryGreifswald University Medical Center17475GreifswaldGermany
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)17489GreifswaldGermany
- Department of NeurosurgeryWien University Medical CenterVienna1090Austria
| | - Ramona Clemen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)17489GreifswaldGermany
| | | | - Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)17489GreifswaldGermany
- Clinic for Dermatology and VenerologyRostock University Medical Center18057RostockGermany
| |
Collapse
|
9
|
Striesow J, Wesche J, McKitterick N, Busch LM, von Woedtke T, Greinacher A, Bekeschus S, Wende K. Gas plasma-induced platelet activation corresponds to reactive species profiles and lipid oxidation. Free Radic Biol Med 2023; 207:212-225. [PMID: 37490986 DOI: 10.1016/j.freeradbiomed.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Surgical-induced hemostasis is a critical step in the closure of incisions, which is frequently achieved via electrocauterization and subsequent tissue necrotization. The latter is associated with postoperative complications. Recent in vivo work suggested reactive species-producing gas plasma technology as a pro-homeostatic agent acting via platelet activation. However, it remained elusive how platelet activation is linked to lipid and protein oxidation and the reactive species compositions. A direct relation between the reactive species composition and platelet activation was revealed by assessing the production of several reactive species and by using antioxidants. In addition, platelet lipidome and proteome analysis identified significantly regulated key lipids in the platelet activation pathway, such as diacylglycerols and phosphatidylinositol as well as oxylipins like thromboxanes. Lipid oxidation products mainly derived from phosphatidylethanolamine and phosphatidylserine species were observed at modest levels. In addition, oxidative post-translational modifications were identified on key proteins of the hemostasis machinery. This study provides new insights into oxidation-induced platelet activation in general and suggests a potential role of those processes in gas plasma-mediated hemostasis in particular.
Collapse
Affiliation(s)
- Johanna Striesow
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Jan Wesche
- Institute of Transfusion Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475, Greifswald, Germany
| | - Nicholas McKitterick
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Larissa M Busch
- Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Felix-Hausdorff-Str. 8, 17475, Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475, Greifswald, Germany
| | - Andreas Greinacher
- Institute of Transfusion Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
10
|
Bekeschus S. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy. Redox Biol 2023; 65:102798. [PMID: 37556976 PMCID: PMC10433236 DOI: 10.1016/j.redox.2023.102798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023] Open
Abstract
Despite continuous therapeutic progress, cancer remains an often fatal disease. In the early 2010s, first evidence in rodent models suggested promising antitumor action of gas plasma technology. Medical gas plasma is a partially ionized gas depositing multiple physico-chemical effectors onto tissues, especially reactive oxygen and nitrogen species (ROS/RNS). Today, an evergrowing body of experimental evidence suggests multifaceted roles of medical gas plasma-derived therapeutic ROS/RNS in targeting cancer alone or in combination with oncological treatment schemes such as ionizing radiation, chemotherapy, and immunotherapy. Intriguingly, gas plasma technology was recently unraveled to have an immunological dimension by inducing immunogenic cell death, which could ultimately promote existing cancer immunotherapies via in situ or autologous tumor vaccine schemes. Together with first clinical evidence reporting beneficial effects in cancer patients following gas plasma therapy, it is time to summarize the main concepts along with the chances and limitations of medical gas plasma onco-therapy from a biological, immunological, clinical, and technological point of view.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
11
|
Byun J, Wu Y, Lee J, Kim JS, Shim G, Oh YK. External cold atmospheric plasma-responsive on-site hydrogel for remodeling tumor immune microenvironment. Biomaterials 2023; 299:122162. [PMID: 37257401 DOI: 10.1016/j.biomaterials.2023.122162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/05/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Although immunotherapy has recently emerged as a promising anti-tumor approach, it remains limited by the immunosuppressive tumor microenvironment. Cold atmospheric plasma irradiation can generate reactive oxygen species and trigger the presentation of tumor-associated antigens. Here, we exploited cold atmospheric plasma for on-site hydrogel application in the tumor environment, aiming to facilitate the sustainable uptake of tumor-associated antigens and nanoadjuvants by dendritic cells. Hyaluronic acid-tyramine conjugate was intratumorally injected as a liquid and formed an on-site hydrogel under irradiation with cold atmospheric plasma. Intratumoral delivery of hyaluronic acid-tyramine conjugate with transforming growth factor β-blocking nanoadjuvant (TLN) followed by cold atmospheric plasma irradiation yielded a micro-network of TLN-loaded hydrogel (TLN@CHG). In vivo intratumoral injection of TLN@CHG promoted the activation of dendritic cells and more effectively increased the proportion of CD4 T cells and CD8 T cells in the tumor microenvironment, compared to the groups receiving TLN or hydrogel alone. Moreover, in CT26 tumor model mice, cold atmospheric plasma-induced TLN@CHG therapy ablated the primary tumor and provided 100% survival among mice rechallenged with CT26 cells. Taken together, our findings suggest that an on-site hydrogel-based micro-network of TLN has the potential to remodel the tumor immune microenvironment. Although we used TLN in this study, the concept could be extended to support the sustained action of other nanoadjuvants in a hydrogel micro-network.
Collapse
Affiliation(s)
- Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Nowak B, Wądołek A, Mazuryk O, Poznańska A, Majzner K, Majka G, Oszajca M, Barańska M, Stochel G, Marcinkiewicz J. Investigation of the Immunogenic Properties of Ovalbumin Modified by Urban Airborne Particulate Matter. Arch Immunol Ther Exp (Warsz) 2023; 71:13. [PMID: 37245200 DOI: 10.1007/s00005-023-00679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/13/2023] [Indexed: 05/29/2023]
Abstract
Exposure to air particulate matter (PM) is linked to the blood oxidative stress and systemic inflammation. The aim of this study was to elucidate whether oxidative PM modification of ovalbumin (OVA), the major antioxidant serum protein, may alter its antigenicity and/or immunogenicity. Ovalbumin was exposed via dialysis to the standard urban PM (SRM 1648a) or to PM with removed organic content (encoded as LAP). Both structural changes and biological properties of PM-modified OVA were measured. T lymphocytes and dendritic cells (the major antigen-presenting cells) isolated from C57BL/6 and OT-II (323-339 epitope) OVA-specific T cell receptor (TCR)-transgenic mice were used to test the effect of PM on OVA immunogenicity. The immunogenicity of both SRM 1648a and LAP-modified OVA was significantly higher than that of control OVA, as measured by the epitope-specific T cell proliferation and interferon γ production by the stimulated cells. This effect was associated with mild oxidative changes in the carrier molecule outside the structure of the OVA epitope and with increased resistance to proteolysis of PM-modified OVA. Interestingly, dendritic cells showed enhanced capacity for the uptake of proteins when the cells were cultured with PM-modified OVA. Our results suggest that the enhanced immunogenicity of PM-modified OVA is not associated with altered antigenicity or antigen presentation. However, it may result from slower degradation and longer persistence of modified antigens in dendritic cells. Whether this phenomenon is associated with enhanced risk prevalence of autoimmune diseases observed in the areas with high urban PM pollution needs to be explained.
Collapse
Affiliation(s)
- Bernadeta Nowak
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.
| | - Anna Wądołek
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Olga Mazuryk
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Anna Poznańska
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Katarzyna Majzner
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Grzegorz Majka
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Maria Oszajca
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Małgorzata Barańska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Grażyna Stochel
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Janusz Marcinkiewicz
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
13
|
Chen J, Wang Z, Sun J, Zhou R, Guo L, Zhang H, Liu D, Rong M, Ostrikov KK. Plasma-Activated Hydrogels for Microbial Disinfection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207407. [PMID: 36929325 DOI: 10.1002/advs.202207407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/11/2023] [Indexed: 05/18/2023]
Abstract
A continuous risk from microbial infections poses a major environmental and public health challenge. As an emerging strategy for inhibiting bacterial infections, plasma-activated water (PAW) has proved to be highly effective, environmental-friendly, and non-drug resistant to a broad range of microorganisms. However, the relatively short lifetime of reactive oxygen and nitrogen species (RONS) and the high spreadability of liquid PAW inevitably limit its real-life applications. In this study, plasma-activated hydrogel (PAH) is developed to act as reactive species carrier that allow good storage and controlled slow-release of RONS to achieve long-term antibacterial effects. Three hydrogel materials, including hydroxyethyl cellulose (HEC), carbomer 940 (Carbomer), and acryloyldimethylammonium taurate/VP copolymer (AVC) are selected, and their antibacterial performances under different plasma activation conditions are investigated. It is shown that the composition of the gels plays the key role in determining their biochemical functions after the plasma activation. The antimicrobial performance of AVC is much better than that of PAW and the other two hydrogels, along with the excellent stability to maintain the antimicrobial activity for more than 14 days. The revealed mechanism of the antibacterial ability of the PAH identifies the unique combination of short-lived species (1 O2 , ∙OH, ONOO- and O2 - ) stored in hydrogels. Overall, this study demonstrates the efficacy and reveals the mechanisms of the PAH as an effective and long-term disinfectant capable of delivering and preserving antibacterial chemistries for biomedical applications.
Collapse
Affiliation(s)
- Jinkun Chen
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Jiachen Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Materials Science, and Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| |
Collapse
|
14
|
Živanić M, Espona‐Noguera A, Lin A, Canal C. Current State of Cold Atmospheric Plasma and Cancer-Immunity Cycle: Therapeutic Relevance and Overcoming Clinical Limitations Using Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205803. [PMID: 36670068 PMCID: PMC10015903 DOI: 10.1002/advs.202205803] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Indexed: 05/19/2023]
Abstract
Cold atmospheric plasma (CAP) is a partially ionized gas that gains attention as a well-tolerated cancer treatment that can enhance anti-tumor immune responses, which are important for durable therapeutic effects. This review offers a comprehensive and critical summary on the current understanding of mechanisms in which CAP can assist anti-tumor immunity: induction of immunogenic cell death, oxidative post-translational modifications of the tumor and its microenvironment, epigenetic regulation of aberrant gene expression, and enhancement of immune cell functions. This should provide a rationale for the effective and meaningful clinical implementation of CAP. As discussed here, despite its potential, CAP faces different clinical limitations associated with the current CAP treatment modalities: direct exposure of cancerous cells to plasma, and indirect treatment through injection of plasma-treated liquids in the tumor. To this end, a novel modality is proposed: plasma-treated hydrogels (PTHs) that can not only help overcome some of the clinical limitations but also offer a convenient platform for combining CAP with existing drugs to improve therapeutic responses and contribute to the clinical translation of CAP. Finally, by integrating expertise in biomaterials and plasma medicine, practical considerations and prospective for the development of PTHs are offered.
Collapse
Affiliation(s)
- Milica Živanić
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringEscola d'Enginyeria Barcelona Est (EEBE)and Research Centre for Biomedical Engineering (CREB)Universitat Politècnica de Catalunya (UPC)c/Eduard Maristany 14Barcelona08019Spain
- Biomaterials and Tissue EngineeringInstitut de Recerca Sant Joan de DéuSanta Rosa 39–57Esplugues de Llobregat08950Spain
- Plasma Lab for Applications in Sustainability and Medicine‐Antwerp (PLASMANT)Department of ChemistryUniversity of AntwerpUniversiteitsplein 1Wilrijk‐Antwerp2610Belgium
| | - Albert Espona‐Noguera
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringEscola d'Enginyeria Barcelona Est (EEBE)and Research Centre for Biomedical Engineering (CREB)Universitat Politècnica de Catalunya (UPC)c/Eduard Maristany 14Barcelona08019Spain
- Biomaterials and Tissue EngineeringInstitut de Recerca Sant Joan de DéuSanta Rosa 39–57Esplugues de Llobregat08950Spain
| | - Abraham Lin
- Plasma Lab for Applications in Sustainability and Medicine‐Antwerp (PLASMANT)Department of ChemistryUniversity of AntwerpUniversiteitsplein 1Wilrijk‐Antwerp2610Belgium
- Center for Oncological Research (CORE)Integrated Personalized & Precision Oncology Network (IPPON)University of AntwerpUniversiteitsplein 1Wilrijk‐Antwerp2610Belgium
| | - Cristina Canal
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringEscola d'Enginyeria Barcelona Est (EEBE)and Research Centre for Biomedical Engineering (CREB)Universitat Politècnica de Catalunya (UPC)c/Eduard Maristany 14Barcelona08019Spain
- Biomaterials and Tissue EngineeringInstitut de Recerca Sant Joan de DéuSanta Rosa 39–57Esplugues de Llobregat08950Spain
| |
Collapse
|
15
|
Clemen R, Arlt K, Miebach L, von Woedtke T, Bekeschus S. Oxidized Proteins Differentially Affect Maturation and Activation of Human Monocyte-Derived Cells. Cells 2022; 11:cells11223659. [PMID: 36429087 PMCID: PMC9688260 DOI: 10.3390/cells11223659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
In cancer, antigen-presenting cells (APC), including dendritic cells (DCs), take up and process proteins to mount adaptive antitumor immune responses. This often happens in the context of inflamed cancer, where reactive oxygen species (ROS) are ubiquitous to modify proteins. However, the inflammatory consequences of oxidized protein uptake in DCs are understudied. To this end, we investigated human monocyte-derived cell surface marker expression and cytokine release profiles when exposed to oxidized and native proteins. Seventeen proteins were analyzed, including viral proteins (e.g., CMV and HBV), inflammation-related proteins (e.g., HO1 and HMGB1), matrix proteins (e.g., Vim and Coll), and vastly in the laboratory used proteins (e.g., BSA and Ova). The multifaceted nature of inflammation-associated ROS was mimicked using gas plasma technology, generating reactive species cocktails for protein oxidation. Fourteen oxidized proteins led to elevated surface marker expression levels of CD25, CD40, CD80, CD86, and MHC-II as well as strongly modified release of IL6, IL8, IL10, IL12, IL23, MCP-1, and TNFα compared to their native counterparts. Especially IL8, heme oxygenase 2, and vimentin oxidation gave pronounced effects. Furthermore, protein kinase phospho-array studies in monocyte-derived cells pulsed with native vs. oxidized IL8 and insulin showed enhanced AKT and RSK2 phosphorylation. In summary, our data provide for the first time an overview of the functional consequences of oxidized protein uptake by human monocyte-derived cells and could therefore be a starting point for exploiting such principle in anticancer therapy in the future.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Kevin Arlt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Correspondence:
| |
Collapse
|
16
|
Clemen R, Arlt K, von Woedtke T, Bekeschus S. Gas Plasma Protein Oxidation Increases Immunogenicity and Human Antigen-Presenting Cell Maturation and Activation. Vaccines (Basel) 2022; 10:1814. [PMID: 36366323 PMCID: PMC9698879 DOI: 10.3390/vaccines10111814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 08/06/2023] Open
Abstract
Protein vaccines rely on eliciting immune responses. Inflammation is a prerequisite for immune responses to control infection and cancer but is also associated with disease onset. Reactive oxygen species (ROSs) are central during inflammation and are capable of inducing non-enzymatic oxidative protein modifications (oxMods) associated with chronic disease, which alter the functionality or immunogenicity of proteins that are relevant in cancer immunotherapy. Specifically, antigen-presenting cells (APCs) take up and degrade extracellular native and oxidized proteins to induce adaptive immune responses. However, it is less clear how oxMods alter the protein's immunogenicity, especially in inflammation-related short-lived reactive species. Gas plasma technology simultaneously generates a multitude of ROSs to modify protein antigens in a targeted and controlled manner to study the immunogenicity of oxMods. As model proteins relevant to chronic inflammation and cancer, we used gas plasma-treated insulin and CXCL8. We added those native or oxidized proteins to human THP-1 monocytes or primary monocyte-derived cells (moDCs). Both oxidized proteins caused concentration-independent maturation phenotype alterations in moDCs and THP-1 cells concerning surface marker expression and chemokine and cytokine secretion profiles. Interestingly, concentration-matched H2O2-treated proteins did not recapitulate the effects of gas plasma, suggesting sufficiently short diffusion distances for the short-lived reactive species to modify proteins. Our data provide evidence of dendric cell maturation and activation upon exposure to gas plasma- but not H2O2-modified model proteins. The biological consequences of these findings need to be elucidated in future inflammation and cancer disease models.
Collapse
|
17
|
Mrochen DM, Miebach L, Skowski H, Bansemer R, Drechsler CA, Hofmanna U, Hein M, Mamat U, Gerling T, Schaible U, von Woedtke T, Bekeschus S. Toxicity and virucidal activity of a neon-driven micro plasma jet on eukaryotic cells and a coronavirus. Free Radic Biol Med 2022; 191:105-118. [PMID: 36041652 PMCID: PMC9420207 DOI: 10.1016/j.freeradbiomed.2022.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Plasma medicine is a developing field that utilizes the effects of cold physical plasma on biological substrates for therapeutic purposes. Approved plasma technology is frequently used in clinics to treat chronic wounds and skin infections. One mode of action responsible for beneficial effects in patients is the potent antimicrobial activity of cold plasma systems, which is linked to their unique generation of a plethora of reactive oxygen and nitrogen species (ROS). During the SARS-CoV-2 pandemic, it became increasingly clear that societies need novel ways of passive and active protection from viral airway infections. Plasma technology may be suitable for superficial virus inactivation. Employing an optimized neon-driven micro plasma jet, treatment time-dependent ROS production and cytotoxic effects to different degrees were found in four different human cell lines with respect to their metabolic activity and viability. Using the murine hepatitis virus (MHV), a taxonomic relative of human coronaviruses, plasma exposure drastically reduced the number of infected murine fibroblasts by up to 3000-fold. Direct plasma contact (conductive) with the target maximized ROS production, cytotoxicity, and antiviral activity compared to non-conductive treatment with the remote gas phase only. Strikingly, antioxidant pretreatment reduced but not abrogated conductive plasma exposure effects, pointing to potential non-ROS-related mechanisms of antiviral activity. In summary, an optimized micro plasma jet showed antiviral activity and cytotoxicity in human cells, which was in part ROS-dependent. Further studies using more complex tissue models are needed to identify a safe dose-effect window of antiviral activity at modest toxicity.
Collapse
Affiliation(s)
- Daniel M Mrochen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of General, Visceral, Vascular, and Thoracic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Henry Skowski
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Robert Bansemer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Chiara A Drechsler
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of Obstetrics and Gynecology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Ulfilas Hofmanna
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Manuel Hein
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany
| | - Uwe Mamat
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany; Leibniz Research Alliance INFECTIONS, Germany
| | - Torsten Gerling
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Ulrich Schaible
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany; Leibniz Research Alliance INFECTIONS, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany.
| |
Collapse
|
18
|
Lin A, De Backer J, Quatannens D, Cuypers B, Verswyvel H, De La Hoz EC, Ribbens B, Siozopoulou V, Van Audenaerde J, Marcq E, Lardon F, Laukens K, Vanlanduit S, Smits E, Bogaerts A. The effect of local non-thermal plasma therapy on the cancer-immunity cycle in a melanoma mouse model. Bioeng Transl Med 2022; 7:e10314. [PMID: 36176603 PMCID: PMC9472020 DOI: 10.1002/btm2.10314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Melanoma remains a deadly cancer despite significant advances in immune checkpoint blockade and targeted therapies. The incidence of melanoma is also growing worldwide, which highlights the need for novel treatment options and strategic combination of therapies. Here, we investigate non-thermal plasma (NTP), an ionized gas, as a promising, therapeutic option. In a melanoma mouse model, direct treatment of tumors with NTP results in reduced tumor burden and prolonged survival. Physical characterization of NTP treatment in situ reveals the deposited NTP energy and temperature associated with therapy response, and whole transcriptome analysis of the tumor identified several modulated pathways. NTP treatment also enhances the cancer-immunity cycle, as immune cells in both the tumor and tumor-draining lymph nodes appear more stimulated to perform their anti-cancer functions. Thus, our data suggest that local NTP therapy stimulates systemic, anti-cancer immunity. We discuss, in detail, how these fundamental insights will help direct the translation of NTP technology into the clinic and inform rational combination strategies to address the challenges in melanoma therapy.
Collapse
Affiliation(s)
- Abraham Lin
- PLASMANT‐Research GroupUniversity of AntwerpAntwerpen‐WilrijkBelgium
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON)University of AntwerpAntwerpen‐WilrijkBelgium
| | - Joey De Backer
- Department of Biomedical SciencesUniversity of AntwerpAntwerpen‐WilrijkBelgium
| | - Delphine Quatannens
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON)University of AntwerpAntwerpen‐WilrijkBelgium
| | - Bart Cuypers
- Adrem Data Lab, Department of Computer ScienceUniversity of AntwerpAntwerpenBelgium
| | - Hanne Verswyvel
- PLASMANT‐Research GroupUniversity of AntwerpAntwerpen‐WilrijkBelgium
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON)University of AntwerpAntwerpen‐WilrijkBelgium
| | | | - Bart Ribbens
- Industrial Vision Lab (InViLab)University of AntwerpAntwerpenBelgium
| | | | - Jonas Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON)University of AntwerpAntwerpen‐WilrijkBelgium
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON)University of AntwerpAntwerpen‐WilrijkBelgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON)University of AntwerpAntwerpen‐WilrijkBelgium
| | - Kris Laukens
- Adrem Data Lab, Department of Computer ScienceUniversity of AntwerpAntwerpenBelgium
| | - Steve Vanlanduit
- Industrial Vision Lab (InViLab)University of AntwerpAntwerpenBelgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON)University of AntwerpAntwerpen‐WilrijkBelgium
| | - Annemie Bogaerts
- PLASMANT‐Research GroupUniversity of AntwerpAntwerpen‐WilrijkBelgium
| |
Collapse
|
19
|
Gelbrich N, Miebach L, Berner J, Freund E, Saadati F, Schmidt A, Stope M, Zimmermann U, Burchardt M, Bekeschus S. Non-invasive medical gas plasma augments bladder cancer cell toxicity in preclinical models and patient-derived tumor tissues. J Adv Res 2022; 47:209-223. [PMID: 35931323 PMCID: PMC10173201 DOI: 10.1016/j.jare.2022.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Medical gas plasma therapy has been successfully applied to several types of cancer in preclinical models. First palliative tumor patients suffering from advanced head and neck cancer benefited from this novel therapeutic modality. The gas plasma-induced biological effects of reactive oxygen and nitrogen species (ROS/RNS) generated in the plasma gas phase result in oxidation-induced lethal damage to tumor cells. OBJECTIVES This study aimed to verify these anti-tumor effects of gas plasma exposure on urinary bladder cancer. METHODS 2D cell culture models, 3D tumor spheroids, 3D vascularized tumors grown on the chicken chorion-allantois-membrane (CAM) in ovo, and patient-derived primary cancer tissue gas plasma-treated ex vivo were used. RESULTS Gas plasma treatment led to oxidation, growth retardation, motility inhibition, and cell death in 2D and 3D tumor models. A marked decline in tumor growth was also observed in the tumors grown in ovo. In addition, results of gas plasma treatment on primary urothelial carcinoma tissues ex vivo highlighted the selective tumor-toxic effects as non-malignant tissue exposed to gas plasma was less affected. Whole-transcriptome gene expression analysis revealed downregulation of tumor-promoting fibroblast growth factor receptor 3 (FGFR3) accompanied by upregulation of apoptosis-inducing factor 2 (AIFm2), which plays a central role in caspase-independent cell death signaling. CONCLUSION Gas plasma treatment induced cytotoxicity in patient-derived cancer tissue and slowed tumor growth in an organoid model of urinary bladder carcinoma, along with less severe effects in non-malignant tissues. Studies on the potential clinical benefits of this local and safe ROS therapy are awaited.
Collapse
Affiliation(s)
- Nadine Gelbrich
- Clinic and Policlinic for Urology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic for General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Julia Berner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic for Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic for General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Fariba Saadati
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic of Dermatology and Venerology, Rostock University Medical Center, Stempelstr. 13, 18057 Rostock, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Matthias Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Uwe Zimmermann
- Clinic and Policlinic for Urology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Martin Burchardt
- Clinic and Policlinic for Urology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| |
Collapse
|
20
|
Bekeschus S, Saadati F, Emmert S. The potential of gas plasma technology for targeting breast cancer. Clin Transl Med 2022; 12:e1022. [PMID: 35994412 PMCID: PMC9394754 DOI: 10.1002/ctm2.1022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 11/12/2022] Open
Abstract
Despite therapeutic improvements in recent years, breast cancer remains an often fatal disease. In addition, breast cancer ulceration may occur during late stages, further complicating therapeutic or palliative interventions. In the past decade, a novel technology received significant attention in the medical field: gas plasma. This topical treatment relies on the partial ionization of gases that simultaneously produce a plethora of reactive oxygen and nitrogen species (ROS/RNS). Such local ROS/RNS overload inactivates tumour cells in a non-necrotic manner and was recently identified to induce immunogenic cancer cell death (ICD). ICD promotes dendritic cell maturation and amplifies antitumour immunity capable of targeting breast cancer metastases. Gas plasma technology was also shown to provide additive toxicity in combination with radio and chemotherapy and re-sensitized drug-resistant breast cancer cells. This work outlines the assets of gas plasma technology as a novel tool for targeting breast cancer by summarizing the action of plasma devices, the roles of ROS, signalling pathways, modes of cell death, combination therapies and immunological consequences of gas plasma exposure in breast cancer cells in vitro, in vivo, and in patient-derived microtissues ex vivo.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)GreifswaldGermany
| | - Fariba Saadati
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)GreifswaldGermany
- Clinic and Policlinic for Dermatology and VenereologyRostock University Medical CenterRostockGermany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and VenereologyRostock University Medical CenterRostockGermany
| |
Collapse
|
21
|
Miebach L, Freund E, Cecchini AL, Bekeschus S. Conductive Gas Plasma Treatment Augments Tumor Toxicity of Ringer's Lactate Solutions in a Model of Peritoneal Carcinomatosis. Antioxidants (Basel) 2022; 11:antiox11081439. [PMID: 35892641 PMCID: PMC9331608 DOI: 10.3390/antiox11081439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Reactive species generated by medical gas plasma technology can be enriched in liquids for use in oncology targeting disseminated malignancies, such as metastatic colorectal cancer. Notwithstanding, reactive species quantities depend on the treatment mode, and we recently showed gas plasma exposure in conductive modes to be superior for cancer tissue treatment. However, evidence is lacking that such a conductive mode also equips gas plasma-treated liquids to confer augmented intraperitoneal anticancer activity. To this end, employing atmospheric pressure argon plasma jet kINPen-treated Ringer's lactate (oxRilac) in a CT26-model of colorectal peritoneal carcinomatosis, we tested repeated intraabdominal injection of such remotely or conductively oxidized liquid for antitumor control and immunomodulation. Enhanced reactive species formation in conductive mode correlated with reduced tumor burden in vivo, emphasizing the advantage of conduction over the free mode for plasma-conditioned liquids. Interestingly, the infiltration of lymphocytes into the tumors was equally enhanced by both treatments. However, significantly lower levels of interleukin (IL)4 and IL13 and increased levels of IL2 argue for a shift in intratumoral T-helper cell subpopulations correlating with disease control. In conclusion, our data argue for using conductively over remotely prepared plasma-treated liquids for anticancer treatment.
Collapse
Affiliation(s)
- Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (E.F.)
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (E.F.)
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Alessandra Lourenço Cecchini
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86051-990, Brazil;
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (E.F.)
- Correspondence: ; Tel.: +49-3834-554-3948
| |
Collapse
|
22
|
Differential Sensitivity of Two Leukemia Cell Lines towards Two Major Gas Plasma Products Hydrogen Peroxide and Hypochlorous Acid. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Oxidative stress has major implications for health and disease. At the same time, the term collectively describes the reactions to different types of reactive oxygen species (ROS) and oxidants, including hydrogen peroxide (H2O2) and hypochlorous acid (HOCl). However, how both compare in terms of cytotoxicity and mechanism of action is less known. Using two leukemia cell lines, Jurkat and THP-1, as model systems at similar cell concentrations, we found an 8-fold greater sensitivity of the former over the latter for H2O2 exposure. Unexpectantly, this was not the case with HOCl exposure. Jurkat cells were 2-fold more resistant to HOCl-induced cytotoxicity than THP-1 cells. In each cell type, the relatively more toxic oxidant also induced activation of caspases 3 and 7 at earlier time points, as time-lapse fluorescence microscopy revealed. The effects observed did not markedly correlate with changes in intracellular GSH and GSSG levels. In addition, siRNA-mediated knockdown of the Nrf2 target HMOX-1 encoding for HO-1 protein and the growth and survival factor IL-8 revealed Jurkat cells to become more sensitive to HOCl, while HO-1 and IL-8 siRNA-mediated knockdown in THP-1 cells produced greater sensitivity towards H2O2. siRNA-mediated knockdown of catalase increased oxidant sensitivity only negligibly. Collectively, the data suggest striking HOCl-resistance of Jurkat and H2O2 resistance of THP-1 cells, showing similar protective roles of HO-1 and IL-8, while caspase activation kinetics differ.
Collapse
|
23
|
Ahmadi M, Potlitz F, Link A, von Woedtke T, Nasri Z, Wende K. Flucytosine-based prodrug activation by cold physical plasma. Arch Pharm (Weinheim) 2022; 355:e2200061. [PMID: 35621706 DOI: 10.1002/ardp.202200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 11/11/2022]
Abstract
Reactive oxygen species (ROS) are known to trigger drug release from arylboronate-containing ROS-responsive prodrugs. In cancer cells, elevated levels of ROS can be exploited for the selective activation of prodrugs via Baeyer-Villiger type oxidation rearrangement sequences. Here, we report a proof of concept to demonstrate that these cascades can as well be initiated by cold physical plasma (CPP). An analog of a recently reported fluorouracil prodrug based on the less toxic drug 5-fluorocytosine (5-FC) was synthesized with a view to laboratory safety reasons and used as a model compound to prove our hypothesis that CPP is suitable as a trigger for the prodrug activation. Although the envisioned oxidation and rearrangement with successive loss of boronic acid species could be achieved by plasma treatment, the anticipated spontaneous liberation of 5-FC was inefficient in the model case. However, the obtained results suggest that custom-tailored CPP-responsive prodrugs might become an evolving research field.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Center for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Felix Potlitz
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Andreas Link
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Thomas von Woedtke
- Center for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany.,Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany.,Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Zahra Nasri
- Center for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Kristian Wende
- Center for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| |
Collapse
|
24
|
Insight into the Impact of Oxidative Stress on the Barrier Properties of Lipid Bilayer Models. Int J Mol Sci 2022; 23:ijms23115932. [PMID: 35682621 PMCID: PMC9180489 DOI: 10.3390/ijms23115932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
As a new field of oxidative stress-based therapy, cold physical plasma is a promising tool for several biomedical applications due to its potential to create a broad diversity of reactive oxygen and nitrogen species (RONS). Although proposed, the impact of plasma-derived RONS on the cell membrane lipids and properties is not fully understood. For this purpose, the changes in the lipid bilayer functionality under oxidative stress generated by an argon plasma jet (kINPen) were investigated by electrochemical techniques. In addition, liquid chromatography-tandem mass spectrometry was employed to analyze the plasma-induced modifications on the model lipids. Various asymmetric bilayers mimicking the structure and properties of the erythrocyte cell membrane were transferred onto a gold electrode surface by Langmuir-Blodgett/Langmuir-Schaefer deposition techniques. A strong impact of cholesterol on membrane permeabilization by plasma-derived species was revealed. Moreover, the maintenance of the barrier properties is influenced by the chemical composition of the head group. Mainly the head group size and its hydrogen bonding capacities are relevant, and phosphatidylcholines are significantly more susceptible than phosphatidylserines and other lipid classes, underlining the high relevance of this lipid class in membrane dynamics and cell physiology.
Collapse
|
25
|
Wang P, Zhou R, Zhou R, Li W, Weerasinghe J, Chen S, Rehm BHA, Zhao L, Frentiu FD, Zhang Z, Yan K, Lor M, Suhrbier A, Richard DJ, Thompson EW, Ostrikov KK, Dai X. Cold atmospheric plasma for preventing infection of viruses that use ACE2 for entry. Theranostics 2022; 12:2811-2832. [PMID: 35401827 PMCID: PMC8965494 DOI: 10.7150/thno.70098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 11/05/2022] Open
Abstract
Rational: The mutating SARS-CoV-2 potentially impairs the efficacy of current vaccines or antibody-based treatments. Broad-spectrum and rapid anti-virus methods feasible for regular epidemic prevention against COVID-19 or alike are urgently called for. Methods: Using SARS-CoV-2 virus and bioengineered pseudoviruses carrying ACE2-binding spike protein domains, we examined the efficacy of cold atmospheric plasma (CAP) on virus entry prevention. Results: We found that CAP could effectively inhibit the entry of virus into cells. Direct CAP or CAP-activated medium (PAM) triggered rapid internalization and nuclear translocation of the virus receptor, ACE2, which began to return after 5 hours and was fully recovered by 12 hours. This was seen in vitro with both VERO-E6 cells and human mammary epithelial MCF10A cells, and in vivo. Hydroxyl radical (·OH) and species derived from its interactions with other species were found to be the most effective CAP components for triggering ACE2 nucleus translocation. The ERα/STAT3(Tyr705) and EGFR(Tyr1068/1086)/STAT3(Tyr705) axes were found to interact and collectively mediate the effects on ACE2 localization and expression. Conclusions: Our data support the use of PAM in helping control SARS-CoV-2 if developed into products for nose/mouth spray; an approach extendable to other viruses utilizing ACE2 for host entry.
Collapse
Affiliation(s)
- Peiyu Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
- Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Renwu Zhou
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Rusen Zhou
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Wenshao Li
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane 4000, Queensland, Australia
| | - Janith Weerasinghe
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Liqian Zhao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Francesca D. Frentiu
- School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane 4059, Australia
| | - Zhifa Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Herston QLD 4006, Australia
| | - Mary Lor
- QIMR Berghofer Medical Research Institute, Herston QLD 4006, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Herston QLD 4006, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, Queensland, Australia
| | - Derek J. Richard
- School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
- Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Erik W. Thompson
- School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
- Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- CAPsoul Biotechnology Company, Ltd, Beijing, China
| |
Collapse
|
26
|
Wang T, Xu H. Multi-faced roles of reactive oxygen species in anti-tumor T cell immune responses and combination immunotherapy. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
T cells play a central role in anti-tumor immunity, and reactive oxygen species (ROS) lie at the crossroad on the anti-tumor T cell responses. To activate efficient T cell immunity, a moderate level of ROS is needed, however, excessive ROS would cause toxicity to the T cells, because the improper level leads to the formation and maintenance of an immunosuppressive tumor microenvironment. Up to date, strategies that modulate ROS, either increasing or decreasing, have been widely investigated. Some of them are utilized in anti-tumor therapies, showing inevitable impacts on the anti-tumor T cell immunity with both obverse and reverse sides. Herein, the impacts of ROS-increasing and ROS-decreasing treatments on the T cell responses in the tumor microenvironment are reviewed and discussed. At the same time, outcomes of combination immunotherapies are introduced to put forward inspirations to unleash the potential of immunotherapies.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Haiyan Xu
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
27
|
Miebach L, Freund E, Clemen R, Weltmann KD, Metelmann HR, von Woedtke T, Gerling T, Wende K, Bekeschus S. Conductivity augments ROS and RNS delivery and tumor toxicity of an argon plasma jet. Free Radic Biol Med 2022; 180:210-219. [PMID: 35065239 DOI: 10.1016/j.freeradbiomed.2022.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
Abstract
Gas plasma jet technology was recently identified as a potential adjuvant in the palliation of cancer patients. However, a practical point raised is if higher therapeutic efficacy is achieved with the gas plasma applied in direct contact to the tumor tissue (conducting) or during treatment with the remote cloud of reactive oxygen and nitrogen species (ROS/RNS) being expelled. In a bedside-to-bench study, this clinical question was translated into studying these two distinct treatment modalities using a three-dimensional tumor cell-matrix-hydrogel assay with subsequent quantitative confocal imaging. Z-resolved fluorescence analysis of two cancer cell lines revealed greater toxicity of the conducting mode. This result was re-iterated in the growth analysis of vascularized tumor tissue cultured on chicken embryos' CAM using in ovo bioluminescence imaging. Furthermore, for conducting compared to free mode, optical emission spectroscopy revealed stronger RNS signal lines in the gas phase, while both ROS/RNS deposition in the liquid was drastically exacerbated in the conducting mode. Altogether, our results are vital in understanding the importance of standardized treatment distances on the therapeutic efficacy of gas plasma exposure in clinical oncology and will help to give critical implications for clinicians involved in plasma onco-therapy in the future.
Collapse
Affiliation(s)
- Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Ramona Clemen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Klaus-Dieter Weltmann
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Hans-Robert Metelmann
- Department of Oral and Maxillo-Facial Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute of Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Torsten Gerling
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
28
|
Laroussi M, Bekeschus S, Keidar M, Bogaerts A, Fridman A, Lu XP, Ostrikov KK, Hori M, Stapelmann K, Miller V, Reuter S, Laux C, Mesbah A, Walsh J, Jiang C, Thagard SM, Tanaka H, Liu DW, Yan D, Yusupov M. Low Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3135118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Cold Physical Plasma in Cancer Therapy: Mechanisms, Signaling, and Immunity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9916796. [PMID: 35284036 PMCID: PMC8906949 DOI: 10.1155/2021/9916796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Despite recent advances in therapy, cancer still is a devastating and life-threatening disease, motivating novel research lines in oncology. Cold physical plasma, a partially ionized gas, is a new modality in cancer research. Physical plasma produces various physicochemical factors, primarily reactive oxygen and nitrogen species (ROS/RNS), causing cancer cell death when supplied at supraphysiological concentrations. This review outlines the biomedical consequences of plasma treatment in experimental cancer therapy, including cell death modalities. It also summarizes current knowledge on intracellular signaling pathways triggered by plasma treatment to induce cancer cell death. Besides the inactivation of tumor cells, an equally important aspect is the inflammatory context in which cell death occurs to suppress or promote the responses of immune cells. This is mainly governed by the release of damage-associated molecular patterns (DAMPs) to provoke immunogenic cancer cell death (ICD) that, in turn, activates cells of the innate immune system to promote adaptive antitumor immunity. The pivotal role of the immune system in cancer treatment, in general, is highlighted by many clinical trials and success stories on using checkpoint immunotherapy. Hence, the potential of plasma treatment to induce ICD in tumor cells to promote immunity targeting cancer lesions systemically is also discussed.
Collapse
|
30
|
Lack of Adverse Effects of Cold Physical Plasma-Treated Blood from Leukemia Patients: A Proof-of-Concept Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common blood malignancy with multiple therapeutic challenges. Cold physical plasma has been considered a promising approach in cancer therapy in recent years. In this study, we aimed to evaluate the cytotoxic effect of cold plasma or plasma-treated solutions (PTS) on hematologic parameters in the whole blood of CLL patients. The mean red blood cell count, white blood cell (WBC) count, platelet and hemoglobin counts, and peripheral blood smear images did not significantly differ between treated and untreated samples in either CLL or healthy individuals. However, both direct plasma and indirect PTS treatment increased lipid peroxidation and RNS deposition in the whole blood of CLL patients and in healthy subjects. In addition, the metabolic activity of WBCs was decreased with 120 s of cold plasma or PTS treatment after 24 h and 48 h. However, cold plasma and PTS treatment did not affect the prothrombin time, partial thromboplastin time, nor hemolysis in either CLL patients or in healthy individuals. The present study identifies the components of cold plasma to reach the blood without disturbing the basic parameters important in hematology, confirming the idea that the effect of cold plasma may not be limited to solid tumors and possibly extends to hematological disorders. Further cellular and molecular studies are needed to determine which cells in CLL patients are targeted by cold plasma or PTS.
Collapse
|
31
|
ROS Pleiotropy in Melanoma and Local Therapy with Physical Modalities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6816214. [PMID: 34777692 PMCID: PMC8580636 DOI: 10.1155/2021/6816214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Metabolic energy production naturally generates unwanted products such as reactive oxygen species (ROS), causing oxidative damage. Oxidative damage has been linked to several pathologies, including diabetes, premature aging, neurodegenerative diseases, and cancer. ROS were therefore originally anticipated as an imperative evil, a product of an imperfect system. More recently, however, the role of ROS in signaling and tumor treatment is increasingly acknowledged. This review addresses the main types, sources, and pathways of ROS in melanoma by linking their pleiotropic roles in antioxidant and oxidant regulation, hypoxia, metabolism, and cell death. In addition, the implications of ROS in various physical therapy modalities targeting melanoma, such as radiotherapy, electrochemotherapy, hyperthermia, photodynamic therapy, and medical gas plasma, are also discussed. By including ROS in the main picture of melanoma skin cancer and as an integral part of cancer therapies, a greater understanding of melanoma cell biology is presented, which ultimately may elucidate additional clues on targeting therapy resistance of this most deadly form of skin cancer.
Collapse
|
32
|
Rasouli M, Fallah N, Bekeschus S. Combining Nanotechnology and Gas Plasma as an Emerging Platform for Cancer Therapy: Mechanism and Therapeutic Implication. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2990326. [PMID: 34745414 PMCID: PMC8566074 DOI: 10.1155/2021/2990326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
Nanomedicine and plasma medicine are innovative and multidisciplinary research fields aiming to employ nanotechnology and gas plasma to improve health-related treatments. Especially cancer treatment has been in the focus of both approaches because clinical response rates with traditional methods that remain improvable for many types of tumor entities. Here, we discuss the recent progress of nanotechnology and gas plasma independently as well as in the concomitant modality of nanoplasma as multimodal platforms with unique capabilities for addressing various therapeutic issues in oncological research. The main features, delivery vehicles, and nexus between reactivity and therapeutic outcomes of nanoparticles and the processes, efficacy, and mechanisms of gas plasma are examined. Especially that the unique feature of gas plasma technology, the local and temporally controlled deposition of a plethora of reactive oxygen, and nitrogen species released simultaneously might be a suitable additive treatment to the use of systemic nanotechnology therapy approaches. Finally, we focus on the convergence of plasma and nanotechnology to provide a suitable strategy that may lead to the required therapeutic outcomes.
Collapse
Affiliation(s)
- Milad Rasouli
- Plasma Medicine Group, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Jalale-Al-Ahmad Ave, 1411713137 Tehran, Iran
- Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofatteh Ave, Tehran 15614, Iran
| | - Nadia Fallah
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, 49 Dr. Mofatteh Ave, 31979-37551 Tehran, Iran
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
33
|
Patient-Derived Human Basal and Cutaneous Squamous Cell Carcinoma Tissues Display Apoptosis and Immunomodulation following Gas Plasma Exposure with a Certified Argon Jet. Int J Mol Sci 2021; 22:ijms222111446. [PMID: 34768877 PMCID: PMC8584092 DOI: 10.3390/ijms222111446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) have been subject of increasing interest in the pathophysiology and therapy of cancers in recent years. In skin cancer, ROS are involved in UV-induced tumorigenesis and its targeted treatment via, e.g., photodynamic therapy. Another recent technology for topical ROS generation is cold physical plasma, a partially ionized gas expelling dozens of reactive species onto its treatment target. Gas plasma technology is accredited for its wound-healing abilities in Europe, and current clinical evidence suggests that it may have beneficial effects against actinic keratosis. Since the concept of hormesis dictates that low ROS levels perform signaling functions, while high ROS levels cause damage, we investigated herein the antitumor activity of gas plasma in non-melanoma skin cancer. In vitro, gas plasma exposure diminished the metabolic activity, preferentially in squamous cell carcinoma cell (SCC) lines compared to non-malignant HaCaT cells. In patient-derived basal cell carcinoma (BCC) and SCC samples treated with gas plasma ex vivo, increased apoptosis was found in both cancer types. Moreover, the immunomodulatory actions of gas plasma treatment were found affecting, e.g., the expression of CD86 and the number of regulatory T-cells. The supernatants of these ex vivo cultured tumors were quantitatively screened for cytokines, chemokines, and growth factors, identifying CCL5 and GM-CSF, molecules associated with skin cancer metastasis, to be markedly decreased. These findings suggest gas plasma treatment to be an interesting future technology for non-melanoma skin cancer topical therapy.
Collapse
|
34
|
Jiang L, Luo S, Qiu T, Li Q, Jiang C, Sun X, Yang G, Zhang C, Liu X, Jiang L. Bidirectional role of reactive oxygen species during inflammasome activation in acrolein-induced human EAhy926 cells pyroptosis. Toxicol Mech Methods 2021; 31:680-689. [PMID: 34238121 DOI: 10.1080/15376516.2021.1953204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Acrolein, a known toxin in tobacco smoke, has been demonstrated to be associated with inflammatory cardiovascular diseases, such as atherosclerosis. However, the definite mechanism of acrolein-induced inflammation remains unclear. Here, we report that acrolein induces reactive oxygen species (ROS) production in EAhy926 cells. Additionally, acrolein induces EAhy926 cells' inflammatory response and pyroptosis by activating NOD-like receptor protein 3 (NLRP3) inflammasome. Also, acrolein-induced cytotoxicity could be attenuated by N-acetyl-L-cysteine (NAC). Furthermore, acrolein upregulates the level of autophagy which can be reversed by NAC. Notably, the present study also indicates that autophagy inhibited by inhibitor 3-methyladenine (3MA) and siAtg7 exacerbate acrolein-induced NLRP3 inflammasome activation and pyroptosis. In summary, acrolein induced cytotoxicity by ROS-mediated NLRP3 inflammasome activation, and ROS upregulates the level of autophagy to inhibit the NLRP3 inflammasome excessive activation, indicating the bidirectional role of ROS in acrolein-induced cellular inflammation. Our results may provide novel mechanistic insights into acrolein-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Liping Jiang
- Preventive Medicine Laboratory, College of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Songsong Luo
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, Dalian, Liaoning, China
| | - Tianming Qiu
- Department of Occupational and Environmental Health, College of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | | | - Chunteng Jiang
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xiance Sun
- Department of Occupational and Environmental Health, College of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Guang Yang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Cong Zhang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaofang Liu
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Lijie Jiang
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
35
|
Khabipov A, Freund E, Liedtke KR, Käding A, Riese J, van der Linde J, Kersting S, Partecke LI, Bekeschus S. Murine Macrophages Modulate Their Inflammatory Profile in Response to Gas Plasma-Inactivated Pancreatic Cancer Cells. Cancers (Basel) 2021; 13:2525. [PMID: 34064000 PMCID: PMC8196763 DOI: 10.3390/cancers13112525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages and immuno-modulation play a dominant role in the pathology of pancreatic cancer. Gas plasma is a technology recently suggested to demonstrate anticancer efficacy. To this end, two murine cell lines were employed to analyze the inflammatory consequences of plasma-treated pancreatic cancer cells (PDA) on macrophages using the kINPen plasma jet. Plasma treatment decreased the metabolic activity, viability, and migratory activity in an ROS- and treatment time-dependent manner in PDA cells in vitro. These results were confirmed in pancreatic tumors grown on chicken embryos in the TUM-CAM model (in ovo). PDA cells promote tumor-supporting M2 macrophage polarization and cluster formation. Plasma treatment of PDA cells abrogated this cluster formation with a mixed M1/M2 phenotype observed in such co-cultured macrophages. Multiplex chemokine and cytokine quantification showed a marked decrease of the neutrophil chemoattractant CXCL1, IL6, and the tumor growth supporting TGFβ and VEGF in plasma-treated compared to untreated co-culture settings. At the same time, macrophage-attractant CCL4 and MCP1 release were profoundly enhanced. These cellular and secretome data suggest that the plasma-inactivated PDA6606 cells modulate the inflammatory profile of murine RAW 264.7 macrophages favorably, which may support plasma cancer therapy.
Collapse
Affiliation(s)
- Aydar Khabipov
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Eric Freund
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Kim Rouven Liedtke
- Department of Trauma and Orthopedic Surgery, Schleswig-Holstein University Medical Center, Arnold-Heller-Straße 3, 24105 Kiel, Germany;
| | - Andre Käding
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
| | - Janik Riese
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
| | - Julia van der Linde
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
| | - Stephan Kersting
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
| | - Lars-Ivo Partecke
- Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (A.K.); (E.F.); (A.K.); (J.R.); (J.v.d.L.); (S.K.); (L.-I.P.)
- Department of General, Visceral and Thoracic Surgery, Schleswig Helios Medical Center, St. Jürgener Str. 1-3, 24837 Schleswig, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
36
|
ROS Cocktails as an Adjuvant for Personalized Antitumor Vaccination? Vaccines (Basel) 2021; 9:vaccines9050527. [PMID: 34069708 PMCID: PMC8161309 DOI: 10.3390/vaccines9050527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer is the second leading cause of death worldwide. Today, the critical role of the immune system in tumor control is undisputed. Checkpoint antibody immunotherapy augments existing antitumor T cell activity with durable clinical responses in many tumor entities. Despite the presence of tumor-associated antigens and neoantigens, many patients have an insufficient repertoires of antitumor T cells. Autologous tumor vaccinations aim at alleviating this defect, but clinical success is modest. Loading tumor material into autologous dendritic cells followed by their laboratory expansion and therapeutic vaccination is promising, both conceptually and clinically. However, this process is laborious, time-consuming, costly, and hence less likely to solve the global cancer crisis. Therefore, it is proposed to re-focus on personalized anticancer vaccinations to enhance the immunogenicity of autologous therapeutic tumor vaccines. Recent work re-established the idea of using the alarming agents of the immune system, oxidative modifications, as an intrinsic adjuvant to broaden the antitumor T cell receptor repertoire in cancer patients. The key novelty is the use of gas plasma, a multi-reactive oxygen and nitrogen species-generating technology, for diversifying oxidative protein modifications in a, so far, unparalleled manner. This significant innovation has been successfully used in proof-of-concept studies and awaits broader recognition and implementation to explore its chances and limitations of providing affordable personalized anticancer vaccines in the future. Such multidisciplinary advance is timely, as the current COVID-19 crisis is inexorably reflecting the utmost importance of innovative and effective vaccinations in modern times.
Collapse
|
37
|
Bekeschus S, Meyer D, Arlt K, von Woedtke T, Miebach L, Freund E, Clemen R. Argon Plasma Exposure Augments Costimulatory Ligands and Cytokine Release in Human Monocyte-Derived Dendritic Cells. Int J Mol Sci 2021; 22:3790. [PMID: 33917526 PMCID: PMC8038845 DOI: 10.3390/ijms22073790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cold physical plasma is a partially ionized gas expelling many reactive oxygen and nitrogen species (ROS/RNS). Several plasma devices have been licensed for medical use in dermatology, and recent experimental studies suggest their putative role in cancer treatment. In cancer therapies with an immunological dimension, successful antigen presentation and inflammation modulation is a key hallmark to elicit antitumor immunity. Dendritic cells (DCs) are critical for this task. However, the inflammatory consequences of DCs following plasma exposure are unknown. To this end, human monocyte-derived DCs (moDCs) were expanded from isolated human primary monocytes; exposed to plasma; and their metabolic activity, surface marker expression, and cytokine profiles were analyzed. As controls, hydrogen peroxide, hypochlorous acid, and peroxynitrite were used. Among all types of ROS/RNS-mediated treatments, plasma exposure exerted the most notable increase of activation markers at 24 h such as CD25, CD40, and CD83 known to be crucial for T cell costimulation. Moreover, the treatments increased interleukin (IL)-1α, IL-6, and IL-23. Altogether, this study suggests plasma treatment augmenting costimulatory ligand and cytokine expression in human moDCs, which might exert beneficial effects in the tumor microenvironment.
Collapse
Affiliation(s)
- Sander Bekeschus
- The Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany; (D.M.); (K.A.); (T.v.W.); (L.M.); (E.F.); (R.C.)
| | - Dorothee Meyer
- The Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany; (D.M.); (K.A.); (T.v.W.); (L.M.); (E.F.); (R.C.)
| | - Kevin Arlt
- The Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany; (D.M.); (K.A.); (T.v.W.); (L.M.); (E.F.); (R.C.)
| | - Thomas von Woedtke
- The Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany; (D.M.); (K.A.); (T.v.W.); (L.M.); (E.F.); (R.C.)
- Institute of Hygiene and Environmental Medicine, Greifswald University Medical Center, 17475 Greifswald, Germany
| | - Lea Miebach
- The Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany; (D.M.); (K.A.); (T.v.W.); (L.M.); (E.F.); (R.C.)
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, 17475 Greifswald, Germany
| | - Eric Freund
- The Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany; (D.M.); (K.A.); (T.v.W.); (L.M.); (E.F.); (R.C.)
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, 17475 Greifswald, Germany
| | - Ramona Clemen
- The Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany; (D.M.); (K.A.); (T.v.W.); (L.M.); (E.F.); (R.C.)
| |
Collapse
|