1
|
Ghosal M, Mondal S, Ghosh T, Prusty D, Senapati D. Core-to-Shell Thickness-Regulated Ag@Au Nanocatalyst for LSPR-Improved In Situ Detection of Extracellular Peroxide: Response in a Cancer Cell. Anal Chem 2025. [PMID: 39983018 DOI: 10.1021/acs.analchem.4c04651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
In the current study, we designed a unique core-to-shell thickness-regulated Ag@Au nanocatalyst (CSNPs) for H2O2-induced selective oxidative etching of core silver. Synthesized CSNPs exhibit high colloidal stability and demonstrate a significant localized surface plasmon resonance (LSPR) effect in the biological window. These unique properties in turn allow us to formulate a unique CSNP-based LSPR-induced electrochemical detection assay for selective trace-level sensing of H2O2 in vitro. Conceptually, we utilized LSPR to amplify the electrochemical signals by inducing the generation of hot electrons and hot holes, which can be harnessed for catalytic purposes. Here, the Au shell acts as a supplier of the hot electron for enhanced catalytic reduction of H2O2 where the free electron of the Au shell is subsidized by the Ag core by its subsequent oxidation. The combination of high LSPR property, stability, and efficient binding property makes these NPs not only a surface-enhanced Raman scattering (SERS) enhancer but also a promising electrocatalyst for biomolecule detection, which emphasizes the significant potential of these engineered nanomaterials in various applications.
Collapse
Affiliation(s)
- Manorama Ghosal
- Chemical Sciences Division, Homi Bhabha National Institute, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata 700064, India
| | - Subrata Mondal
- Department of Chemistry, Dinhata College, Dinhata, Cooch Behar 736135, India
| | - Tanmay Ghosh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis # 08-03, Singapore 138634, Republic of Singapore
| | - Debasish Prusty
- Biophysics and Structural Genomics Division, Homi Bhabha National Institute, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata 700064, India
| | - Dulal Senapati
- Chemical Sciences Division, Homi Bhabha National Institute, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
2
|
Wu D, Jiang D, Xin Y, Chen B, Xu S, Zhang X, Cao Y, Hu J. Tailoring Oxygen Reduction Selectivity for Acidic H 2O 2 Electrosynthesis on Single-Atom Co-N-C Catalyst via PEG Post-treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10524-10530. [PMID: 39925215 DOI: 10.1021/acsami.4c14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The selective two-electron oxygen reduction reaction (ORR) for H2O2 electrosynthesis provides a promising alternative to anthraquinone-based redox technology. However, atomically dispersed Co-N-C materials routinely lead the ORR process to follow a four-electron path via accessible Co-N4 moieties rather than terminating in competitive H2O2 production. Herein, we demonstrate that by simultaneously reconstructing Co-N2-C and modifying oxygen functional groups into a Co-adjacent carbon matrix through low-temperature pyrolysis with oxygen-containing molecules, a Co SAC four-electron catalyst with typical Co-N4 sites can be transformed into a Co SAC-PEG electrocatalyst with high H2O2 selectivity. A combination of X-ray absorption and infrared spectroscopy confirmed that the shift in ORR selectivity from the four-electron pathway to the two-electron pathway originated from the transfer of the real active sites from rigid in-plane embedded Co-N4 to the oxygen functional groups modified with low-coordinated Co-N2-C for Co SAC-PEG. In stark contrast to the remarkable 4e- prototype Co SAC, the Co SAC-PEG after treatment has a surprising Eonset and selectivity for H2O2 electrosynthesis in acidic electrolytes. This study presents a new avenue for the selective manipulation of the ORR pathway via tailoring the flexible structure of single Co sites by a one-step post treatment process, ultimately converting the readily available 4e- catalyst directly into a difficult-to-obtain 2e- catalyst.
Collapse
Affiliation(s)
- Danyang Wu
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Dandan Jiang
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Yehong Xin
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Baojiu Chen
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Sai Xu
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Xizhen Zhang
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Yongze Cao
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Jinwen Hu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Mohajeri M, Shanbhag S, Trasias E, Mousazadeh F, de Jong W, Phadke SA. Valorization of Hydrogen Peroxide for Sodium Percarbonate and Hydrogen Coproduction via Alkaline Water Electrolysis: Conceptual Process Design and Techno-Economic Evaluation. Ind Eng Chem Res 2025; 64:2801-2815. [PMID: 39935944 PMCID: PMC11812344 DOI: 10.1021/acs.iecr.4c03408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/06/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
The recent interest in the production of green hydrogen through water electrolysis is hampered by its high cost when compared to steam methane reforming. To overcome this disadvantage, some studies explore replacing oxygen production with hydrogen peroxide at the anode, which has a higher value. Existing electrocatalysis research primarily focuses on hydrogen peroxide synthesis, neglecting process design and separation. Additionally, hydrogen peroxide's thermodynamic instability in alkaline conditions and the existence of other ions make the separation difficult. This paper proposes a novel concept for the paired water electrolysis process that can be used to improve green hydrogen production economics through valuable chemical coproductions. Valorizing hydrogen peroxide to sodium percarbonate as the final product was chosen to address hydrogen peroxide separation challenges. An electrolyzer stack of 2 MW was chosen, incorporating a recirculating structure, and a boron-doped diamond anode to enhance the hydrogen peroxide production as the base case. According to the techno-economic analysis, for a 2 MW electrolyzer stack, capital expenditure was calculated as 64.5 M€, operational expenses as 21.6 M€, and revenue was calculated as 2.5 M€, resulting in a negative cash flow of -19.1 M€. Results revealed that the process can be profitable (breakeven point) at a capacity of approximately 308 electrolyzer stacks, which is 616 MW in capacity. A sensitivity analysis was conducted to determine how cost drivers including electricity price, anode price, Faradaic efficiency, price of the products and tax subsidy affect the breakeven point. A breakeven point of 60 electrolyzer stacks (120 MW) was found with a 100% increase in the sodium percarbonate sale price. In comparison, a theoretical 100% Faradaic efficiency in the anode material would result in a breakeven point of 38 electrolyzer stacks (76 MW). Even a more realistic 75% Faradaic efficiency leads to a breakeven plant size of 75 stacks (150 MW). Further, multiple two-parameter sensitivity analyses were conducted to assess the relations between Faradaic efficiency, sodium percarbonate sale price and anode material price. For instance, if sodium percarbonate price increases by 100% and Faradaic efficiency increases to 75%, the breakeven capacity drops down to 13 stacks (26 MW). Despite facing economic challenges for the proposed process design based on available technologies, the techno-economic analysis highlights key targets for future works. It also provides valuable insights into the economic feasibility of simultaneously producing hydrogen and sodium percarbonate through water electrolysis, indicating promising potential for the future.
Collapse
Affiliation(s)
- Mahdi Mohajeri
- Chemical
Engineering Department, Delft University
of Technology, Delft 2629 HZ, The Netherlands
| | - Shachi Shanbhag
- Chemical
Engineering Department, Delft University
of Technology, Delft 2629 HZ, The Netherlands
| | - Eleftherios Trasias
- Chemical
Engineering Department, Delft University
of Technology, Delft 2629 HZ, The Netherlands
| | - Farzad Mousazadeh
- Chemical
Engineering Department, Delft University
of Technology, Delft 2629 HZ, The Netherlands
| | - Wiebren de Jong
- Process
& Energy, Mechanical Engineering, Delft
University of Technology, Delft 2628 CB, The Netherlands
| | - Sohan A. Phadke
- Process
& Energy, Mechanical Engineering, Delft
University of Technology, Delft 2628 CB, The Netherlands
| |
Collapse
|
4
|
Chen C, Gu K, Wang P, Liu ZQ, Ao Y. Spatially Separated Redox Centers in Anthraquinone-grafted Metal-Organic Frameworks for Efficient Piezo-photocatalytic H 2O 2 Production. Angew Chem Int Ed Engl 2025:e202425656. [PMID: 39910640 DOI: 10.1002/anie.202425656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
Piezo-photocatalytic production of hydrogen peroxide (H2O2) from water and air is promising but its large-scale application is still challenging as insufficient reaction active sites and low reaction efficiency. We have applied molecular engineering methods to design an anthraquinone molecularly (AQ) grafted metal-organic framework piezo-photocatalyst (UiO-66-AQ) for H2O2 generation from water and air. The catalyst achieves a peak H2O2 yield of 7872.4 μM g-1 h-1 by facilitating two critical reactions: single-electron water oxidation (WOR) and two-electron oxygen reduction (ORR) on spatially separated redox sites. Experiments and computational simulations reveal efficient charge separation through a ligand-to-chain transfer mechanism. Electrons and holes are selectively transferred to AQ and UiO-66 promoting ORR and WOR under ultrasound and visible light. The high reaction rate of ORR (rapid generation of endoperoxide) compensates for the slow kinetics of WOR (generation of OH*) and greatly increases the rate of full-reaction of H2O2 production. Additionally, a continuous flow tubular reactor equipped with UiO-66-AQ catalytic membranes affords 96 % removal of organic dyes by a in situFenton process under visible light and water flow, confirming the significant potential of the catalyst for practical applications. This work deepens the understanding of directional carrier migration at piezo-photocatalytic spatial separation sites, opening new pathways for environmentally friendly and efficient H2O2 synthesis.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University,No.1, Xikang road, Nanjing, 210098, China
| | - Kaiye Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University,No.1, Xikang road, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University,No.1, Xikang road, Nanjing, 210098, China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University. No. 230, Wai Huan Xi Road, 510006, P. R. China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University,No.1, Xikang road, Nanjing, 210098, China
| |
Collapse
|
5
|
Liu Z, Wang Z, Lv D, Yang H, Kang Z, Ghosh S, Menezes PW, Chen Z. Efficient Electrosynthesis of Hydrogen Peroxide Enabled by a Hierarchical Hollow RE-P-O (RE = Sm, La, Gd) Architecture with Open Channels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2311997. [PMID: 39748623 PMCID: PMC11837885 DOI: 10.1002/adma.202311997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/17/2024] [Indexed: 01/04/2025]
Abstract
The electrochemical two-electron oxygen reduction reaction (2e- ORR) offers a sustainable pathway for the production of H2O2; however, the development of electrocatalysts with exceptional activity, selectivity, and long-term stability remains a challenging task. Herein, a novel approach is presented to addressing this challenge by synthesizing hierarchical hollow SmPO4 nanospheres with open channels via a two-step hydrothermal treatment. The produced compound demonstrates remarkable 2e- selectivity, exceeding 93% across a wide potential range of 0.0-0.6 V in 0.1 m KOH, with a peak of 96% at 0.45 V. When employed as the cathode in a flow cell, the synthesized SmPO4 exhibits impressive stability at 100 mA cm-2 for 12 h, consistently achieving a Faradaic efficiency above 90%. Using X-ray absorption, in situ Raman and Fourier-transform infrared spectroscopies, theoretical calculations, and post-ORR assessments, it is found that this hollow compound possesses intrinsic open channels and is characterized by the optimal metal atomic spacing, and exceptional structural and compositional stabilities. These factors significantly enhance the thermodynamics, kinetics, and stability of the 2e- ORR process. Notably, the produced compound also exhibits outstanding 2e- ORR performance in neutral environments. Furthermore, this strategy can be extended to other hollow rare-earth-P-O compounds, demonstrating excellent 2e- ORR performance under both neutral and alkaline conditions.
Collapse
Affiliation(s)
- Zhiwei Liu
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Zhaowu Wang
- School of ScienceHebei University of TechnologyTianjin300401China
- School of Physics and Engineering, Longmen LaboratoryHenan University of Science and TechnologyLuoyang471023China
| | - Diandian Lv
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Hongyuan Yang
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Suptish Ghosh
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| | - Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
- Material Chemistry Group for Thin Film Catalysis – CatLabHelmholtz‐Zentrum Berlin für Materialien und EnergieAlbert‐Einstein‐Str. 1512489BerlinGermany
| | - Ziliang Chen
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
- Material Chemistry Group for Thin Film Catalysis – CatLabHelmholtz‐Zentrum Berlin für Materialien und EnergieAlbert‐Einstein‐Str. 1512489BerlinGermany
| |
Collapse
|
6
|
Mehta S, Elmerhi N, Kaur S, Mohammed AK, Nagaiah TC, Shetty D. Modulating Core Polarity in Metal-free Covalent Organic Frameworks for Selective Electrocatalytic Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2025; 64:e202417403. [PMID: 39472302 PMCID: PMC11773118 DOI: 10.1002/anie.202417403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 11/24/2024]
Abstract
Tuning the charge density at the active site to balance the adsorption ability and reactivity of oxygen is extremely significant for driving a two-electron oxygen reduction reaction (ORR) to produce hydrogen peroxide (H2O2). Herein, we have highlighted the influence of intermolecular polarity in covalent organic frameworks (COFs) on the efficiency and selectivity of electrochemical H2O2 production. Different C3 symmetric building blocks have been utilized to regulate the charge density at the active sites. The benzene-cored COF, which exhibits reduced polarity than the triazine-cored COF, displayed enhanced performance in H2O2 production, achieving 93.1 % selectivity for H2O2 at 0.4 V with almost two-electron transfer and a faradaic efficiency of 90.5 %. In-situ electrochemical Raman spectroscopy and scanning electrochemical microscopy (SECM) were employed to confirm H2O2 generation and analyze spatial reactivity patterns. These techniques provided detailed insights into localized catalytic behavior, emphasizing the influence of core polarity.
Collapse
Affiliation(s)
- Shivangi Mehta
- Department of ChemistryIndian Institute of Technology RoparRupnagarPunjab140001India
| | - Nada Elmerhi
- Department of ChemistryKhalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
- Center for Catalysis & Separations (CeCaS)Khalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
| | - Sukhjot Kaur
- Department of ChemistryIndian Institute of Technology RoparRupnagarPunjab140001India
| | - Abdul Khayum Mohammed
- Department of ChemistryKhalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
| | - Tharamani C. Nagaiah
- Department of ChemistryIndian Institute of Technology RoparRupnagarPunjab140001India
| | - Dinesh Shetty
- Department of ChemistryKhalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
- Center for Catalysis & Separations (CeCaS)Khalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
| |
Collapse
|
7
|
Kapaev RR, Leifer N, Kottaichamy AR, Ohayon A, Wu L, Shalom M, Noked M. Formation of H 2O 2 in Near-Neutral Zn-air Batteries Enables Efficient Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2025; 64:e202418792. [PMID: 39629883 PMCID: PMC11773304 DOI: 10.1002/anie.202418792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Indexed: 12/14/2024]
Abstract
Rechargeable Zn-air batteries (ZABs) with near-neutral electrolytes hold promise as cheap, safe and sustainable devices, but they suffer from slow charge kinetics and remain poorly studied. Here we reveal a charge storage mechanism of near-neutral Zn-air batteries that is mediated by formation of dissolved hydrogen peroxide upon cell discharge and its oxidation upon charge. This H2O2-mediated pathway facilitates oxygen evolution reaction (OER) at ~1.5 V vs. Zn2+/Zn, reducing charge overpotentials by ~0.2-0.5 V and mitigating carbon corrosion-a common issue in ZABs. The manifestation of this mechanism strongly depends on the electrolyte composition and positive electrode material, contributing up to ~60 % of the capacity with ZnSO4 solutions and carbon nanotubes. Enhancing the H2O2-mediated pathway offers a route to higher energy efficiency and durability in near-neutral ZABs, advancing practical, sustainable energy storage.
Collapse
Affiliation(s)
- Roman R. Kapaev
- Department of Chemistry and BINA—BIU Center for Nanotechnology and Advanced MaterialsBar-Ilan UniversityRamat-Gan5290002Israel (R. R. K.) (M. N.
| | - Nicole Leifer
- Department of Chemistry and BINA—BIU Center for Nanotechnology and Advanced MaterialsBar-Ilan UniversityRamat-Gan5290002Israel (R. R. K.) (M. N.
| | | | - Amit Ohayon
- Department of Chemistry and BINA—BIU Center for Nanotechnology and Advanced MaterialsBar-Ilan UniversityRamat-Gan5290002Israel (R. R. K.) (M. N.
| | - Langyuan Wu
- Department of Chemistry and BINA—BIU Center for Nanotechnology and Advanced MaterialsBar-Ilan UniversityRamat-Gan5290002Israel (R. R. K.) (M. N.
| | - Menny Shalom
- Department of ChemistryBen-Gurion University of the NegevBeer-Sheva8410501Israel
| | - Malachi Noked
- Department of Chemistry and BINA—BIU Center for Nanotechnology and Advanced MaterialsBar-Ilan UniversityRamat-Gan5290002Israel (R. R. K.) (M. N.
| |
Collapse
|
8
|
Mou Y, Zhang J, Qin H, Li X, Zeng Z, Zhang R, Liang Z, Cao R. The steric hindrance effect of Co porphyrins promoting two-electron oxygen reduction reaction selectivity. Chem Commun (Camb) 2025; 61:1878-1881. [PMID: 39774541 DOI: 10.1039/d4cc06012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
A new Co 5,10,15,20-tetrakis(2',6'-dipivaloyloxyphenyl)porphyrin (1) with eight ester groups in all ortho and ortho' positions of phenyl groups was designed, which displayed significantly improved 2e oxygen reduction reaction (ORR) selectivity compared with a 5,10,15,20-tetrakis(para-dipivaloyloxyphenyl) porphyrin (2) without large steric groups. This work is significant to reveal the steric hindrance effect of metal porphyrins on electrocatalytic ORR selectivity.
Collapse
Affiliation(s)
- Yonghong Mou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Jieling Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haonan Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xinyue Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zequan Zeng
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Rong Zhang
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
9
|
Liu Y, Liu H, Qian J, Luan J, Mu Y, Xiao C, Zhang Q, Lam SS, Li W, Zeng L. Enhanced Electrocatalytic Hydrogen Peroxide Production via a CuWO 4/WO 3 Heterojunction with High Selectivity and Stability. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5026-5037. [PMID: 39801065 DOI: 10.1021/acsami.4c19881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The electrocatalytic conversion of oxygen to hydrogen peroxide offers a promising pathway for sustainable energy production. However, the development of catalysts that are highly active, stable, and cost-effective for hydrogen peroxide synthesis remains a significant challenge. In this study, a novel polyacid-based metal-organic coordination compound (Cu-PW) was synthesized using a hydrothermal approach. Cu-PW served as a precursor to construct a composite electrocatalyst featuring a heterointerface between CuWO4 and WO3 (CuWO4/WO3) through pyrolysis. The CuWO4/WO3 heterojunction exhibits an impressive H2O2 selectivity of 91.84% at 0.5 V, marking a 19.65% improvement compared to the pristine Cu-PW. Furthermore, the CuWO4/WO3 catalyst demonstrates exceptional stability, maintaining continuous operation for 29 h. At 0.1 V, it delivers a hydrogen peroxide yield of 1537.8 mmol g-1 h-1, with a Faraday efficiency (FE) of 85%. Additionally, this catalyst effectively degrades methyl blue, achieving a 95% removal from an aqueous system within 30 min. Theoretical analysis further corroborates the high electroactivity of CuWO4/WO3 heterojunction structure. The Cu-O-W bridge formed during the reaction facilitates interfacial electron transport and enhances the role of the W-O bond in proton adsorption and transfer kinetics. This strong interfacial coupling in CuWO4/WO3 promotes electron transfer and the formation of *OOH intermediates, thereby favoring hydrogen peroxide generation. Hence, the as-prepared CuWO4/WO3 demonstrates great potential as an efficient electrocatalyst for the green synthesis of hydrogen peroxide, exhibiting high efficiency as a two-electron oxygen reduction reaction catalyst. This work offers a new approach for fabricating CuWO4/WO3 electrocatalyst with high electroactivity and selectivity, paving the way for cost-effective and sustainable hydrogen peroxide production, significantly reducing reliance on the conventional anthraquinone process.
Collapse
Affiliation(s)
- Yu Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Hongxiao Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junning Qian
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Luan
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yongbiao Mu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cailin Xiao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Wenjia Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lin Zeng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Zeng Y, Tan X, Zhuang Z, Chen C, Peng Q. Nature-Inspired N, O Co-Coordinated Manganese Single-Atom Catalyst for Efficient Hydrogen Peroxide Electrosynthesis. Angew Chem Int Ed Engl 2025; 64:e202416715. [PMID: 39448377 DOI: 10.1002/anie.202416715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The two-electron oxygen reduction reaction (2e- ORR) is a pivotal pathway for the distributed production of hydrogen peroxide (H2O2). In nature, enzymes containing manganese (Mn) centers can convert reactive oxygen species into H2O2. However, Mn-based heterogeneous catalysts for 2e- ORR are scarcely reported. Herein, we developed a nature-inspired single-atom electrocatalyst comprising N, O co-coordinated Mn sites, utilizing carbon dots as the modulation platform (Mn CD/C). As-synthesized Mn CD/C exhibited exceptional 2e- ORR activity with an onset potential of 0.786 V and a maximum H2O2 selectivity of 95.8 %. Impressively, Mn CD/C continuously produced 0.1 M H2O2 solution at 200 mA/cm2 for 50 h in the flow cell, with negligible loss in activity and H2O2 faradaic efficiency, demonstrating practical application potential. The enhanced activity was attributed to the incorporation of Mn atomic sites into the carbon dots. Theoretical calculations revealed that the N, O co-coordinated structure, combined with abundant oxygen-containing functional groups on the carbon dots, optimized the binding strength of intermediate *OOH at the Mn sites to the apex of the catalytic activity volcano. This work illustrates that carbon dots can serve as a versatile platform for modulating the microenvironment of single-atom catalysts and for the rational design of nature-inspired catalysts.
Collapse
Affiliation(s)
- Yuan Zeng
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xin Tan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zewen Zhuang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qing Peng
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Cui W, Zhen Z, Sun Y, Liu X, Chen J, Liu S, Ren H, Lin Y, Wu M, Li Z. Vacancy-Activated B-Doping for Efficient 2e - Oxygen Reduction through Suppressing H 2O 2 Decomposition at High Overpotential. Angew Chem Int Ed Engl 2025:e202423056. [PMID: 39776105 DOI: 10.1002/anie.202423056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
The production of hydrogen peroxide (H2O2) through two-electron oxygen reduction reaction (2e- ORR) has emerged as a more environmentally friendly alternative to the traditional anthraquinone method. Although oxidized carbon catalysts have intensive developed due to their high selectivity and activity, the yield and conversion rate of H2O2 under high overpotential still limited. The produced H2O2 was rapidly consumed by the increased intensity of H2O2 reduction, which could ascribe to decomposition of peroxide radicals under high voltage in the carbon catalyst. To overcome this issue, a B doped carbon have been developed to catalyze 2e- ORR with high efficient through suppressing H2O2 decomposition at high potential. Thus, thermal reducing of oxygen containing groups (OCGs) on graphite could construct defects and vacancies, which in situ convert to B-Cx subunits on the edge of graphene sheets. The introduction of B-Cx effectively prevented the decomposition of the *O-O bond and provided suitable adsorption capacity for *OOH, achieving excellent selectivity for the 2e- ORR across a wide voltage range. Finally, a remarkable H2O2 yield of 7.91 mmol cm-2 h-1 was delivered at an industrial current density of 600 mA cm-2, which could provide "green" pathway for scale-upable synthesis H2O2.
Collapse
Affiliation(s)
- Wangyang Cui
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Zhiyuan Zhen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yuanyuan Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Xiaofeng Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Jinhui Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Sijia Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yan Lin
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Zhongtao Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| |
Collapse
|
12
|
Li M, Yang T, Du W, Bai J, Ma H, Liu J, Chai Z. A Janus structured TaO/TaN heterojunction as an efficient oxygen reduction electrocatalyst for H 2O 2 production. Chem Commun (Camb) 2024; 60:14786-14789. [PMID: 39576236 DOI: 10.1039/d4cc05209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
A Janus TaO/TaN heterojunction hybrid with graphene exhibited excellent activity, selectivity and durability for the 2e- oxygen reduction reaction (ORR), compared to TaON@Gr, due to the optimized O2 adsorption and favored *OOH binding in the Janus TaO/TaN heterojunction. This provides a new approach for the structural design of high-performance 2e- ORR catalysts.
Collapse
Affiliation(s)
- Mei Li
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Ting Yang
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Wenling Du
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Jiaxin Bai
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Haoran Ma
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Jiansheng Liu
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Zhanli Chai
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
13
|
Urrego‐Ortiz R, Almeida MO, Calle‐Vallejo F. Error Awareness in the Volcano Plots of Oxygen Electroreduction to Hydrogen Peroxide. CHEMSUSCHEM 2024; 17:e202400873. [PMID: 38889075 PMCID: PMC11632588 DOI: 10.1002/cssc.202400873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
Electrocatalysis holds the key to the decentralized production of hydrogen peroxide via the two-electron oxygen reduction reaction (ORR, O2(g)+2H++2e-->H2O2(aq)). However, cost-effective, active, and selective catalysts are still sought after. While density functional theory (DFT) has already led to the discovery of various enhanced catalysts, it has a severe yet often unnoticed drawback: the ill description of O2 and H2O2. Here, we analyze the impact of the errors in those two species on the most widespread activity plots in the literature, namely free-energy diagrams and Sabatier-type volcano plots. Uncorrected or partially corrected gas-phase energies lead to appreciably different activity plots that may provide inaccurate predictions. Indeed, we show for a variety of electrocatalysts that only when the errors in O2 and H2O2 are corrected can DFT mimic the experiments. In sum, this work provides concrete guidelines to avoid a common pitfall of computational models for electrocatalytic hydrogen peroxide production.
Collapse
Affiliation(s)
- Ricardo Urrego‐Ortiz
- Department of Materials Science and Chemical Physics & Institute of Theoretical and Computational Chemistry (IQTCUB)University of BarcelonaC/Martí i Franquès 108028BarcelonaSpain
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF)Department of Polymers and Advanced Materials: Physics, Chemistry and TechnologyUniversity of the Basque Country UPV/EHUAv. Tolosa 7220018San SebastiánSpain
| | - Michell O. Almeida
- Department of PharmacySchool of Pharmaceutical SciencesUniversity of São PauloAv Prof Lineu Prestes 580, Building 13São Paulo05508-000SPBrazil
| | - Federico Calle‐Vallejo
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF)Department of Polymers and Advanced Materials: Physics, Chemistry and TechnologyUniversity of the Basque Country UPV/EHUAv. Tolosa 7220018San SebastiánSpain
- IKERBASQUE, Basque Foundation for SciencePlaza de Euskadi 548009BilbaoSpain
| |
Collapse
|
14
|
Ni H, Yang T, Peng X, Zhang H, Kong A. Membrane-free Electrolysis Production of Hydrogen Peroxide on Low-cost Metal-free Electrocatalysts for Dye Degradation. Chemistry 2024; 30:e202403279. [PMID: 39501718 DOI: 10.1002/chem.202403279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 11/20/2024]
Abstract
The efficient production of hydrogen peroxide (H2O2) solution was achieved by combining cathodic two-electron oxygen reduction (2e- ORR) and anodic two-electron water oxidation (2e- WOR) in two half-reaction cells. h-BN loaded on carbon fibers (h-BN@C) is prepared and employed as an anode material to catalyze 2e- WOR, while sulfonated commercial BP-2000 carbons (BP-2000-SO3H) were prepared as the cathode materials for 2e- ORR. In a 2 M KHCO3 solution, an overall Faradaic efficiency of 97 % and a total H2O2 production rate of 1872 mmol g-1 h-1 over metal-free electrodes were accomplished in a membrane-free flow cell. The dilute H2O2 solution could be directly used to degrade Rhodamine B, methyl blue and methylene orange dyes in water. This work proved low-cost production of dilute H2O2 solution in simple membrane-free flow cells with single electrolyte and on-site utilization for efficient dye degradation.
Collapse
Affiliation(s)
- Hao Ni
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Tao Yang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xueqing Peng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Hengqiang Zhang
- College of Chemistry and Chemical Engineering, Hebei Normal University for Nationalities, Chengde, 067000, P. R. China
| | - Aiguo Kong
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
15
|
Zhao D, Jiao D, Yi L, Yu Y, Zou J, Cui X, Hu W. Tandem Oxidation Activation of Carbon for Enhanced Electrochemical Synthesis of H 2O 2: Unveiling the Role of Quinone Groups and Their Operando Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406890. [PMID: 39301967 DOI: 10.1002/smll.202406890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Oxygen-doped carbon materials show great promise to catalyze two-electron oxygen reduction reaction (2e-ORR) for electrochemical synthesis of hydrogen peroxide (H2O2), but the identification of the active sites is the subject of ongoing debate. In this study, a tandem oxidation strategy is developed to activate carbon black for achieving highly efficient electrochemical synthesis of H2O2. Acetylene black (AB) is processed with O2 plasma and subsequent electrochemical oxidation, resulting in a remarkable selectivity of >96% over a wide potential range, and a record-setting high yield of >10 mol gcat -1 h-1 with good durability in gas diffusion electrode. Comprehensive characterizations and calculations revealed that the presence of abundant C═O groups at the edge sites positively correlated to and accounted for the excellent 2e-ORR performance. Notably, the edge hydroquinone group formed from quinone under operando conditions, which is overlooked in previous research, is identified as the most active catalytic site.
Collapse
Affiliation(s)
- Dantong Zhao
- School of Materials and Energy, Chongqing Key Laboratory of Battery Materials and Technology, Southwest University, Chongqing, 400715, P. R. China
| | - Dongxu Jiao
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
| | - Lingya Yi
- School of Materials and Energy, Chongqing Key Laboratory of Battery Materials and Technology, Southwest University, Chongqing, 400715, P. R. China
| | - Yang Yu
- School of Materials and Energy, Chongqing Key Laboratory of Battery Materials and Technology, Southwest University, Chongqing, 400715, P. R. China
| | - Jiajia Zou
- School of Materials and Energy, Chongqing Key Laboratory of Battery Materials and Technology, Southwest University, Chongqing, 400715, P. R. China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
| | - Weihua Hu
- School of Materials and Energy, Chongqing Key Laboratory of Battery Materials and Technology, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
16
|
Wang J, Xing J, Wang Y, Zhang X, Zhang S. First-principles study of electrochemical H 2O 2 production on Pd-B 40 single-atom catalyst. J Mol Graph Model 2024; 132:108847. [PMID: 39163731 DOI: 10.1016/j.jmgm.2024.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Hydrogen peroxide (H2O2), a versatile green compound, is increasingly in demand. The electrochemical two-electron oxygen reduction reaction (2e- ORR) is a simple and environmentally friendly substitute method to the traditional anthraquinone oxidation method for H2O2 production. This study systematically investigates the 2e- ORR process on single transition metal atom-loaded boron fullerene (M - B40) using density functional theory calculations. In evaluating the stability of the catalysts, we found that Au, Pd, Pt, Rh, and Ir atoms adsorbed on hexagonal or heptagonal sites of B40 exhibit good stability. Among these, Pd-modified B40 heptagonal cavity (Pd-B40-heptagonal) demonstrates an ideal Gibbs free energy change for OOH* (4.49 eV) and efficiently catalyzes H2O2 production at a low overpotential (0.27 V). Electronic structure analysis reveals that electron transfer between Pd-B40-heptagonal and adsorbed O2 facilitates O2 activation. Additionally, the high 2e- ORR activity of Pd-B40-heptagonal is attributed to electron transfer from the Pd-d orbitals to the π* anti-bonding of p orbitals of OOH*, moderately activating the O-O bond. This study offers valuable understanding designing high-performance electrocatalysts for 2e- ORR.
Collapse
Affiliation(s)
- Junkai Wang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454003, China.
| | - Jingyi Xing
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454003, China
| | - Yifei Wang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454003, China
| | - Xin Zhang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454003, China
| | - Shaowei Zhang
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, Ex4 4QF, UK.
| |
Collapse
|
17
|
Regnier M, Vega C, Ioannou DI, Noël T. Enhancing electrochemical reactions in organic synthesis: the impact of flow chemistry. Chem Soc Rev 2024; 53:10741-10760. [PMID: 39297689 DOI: 10.1039/d4cs00539b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Utilizing electrons directly offers significant potential for advancing organic synthesis by facilitating novel reactivity and enhancing selectivity under mild conditions. As a result, an increasing number of organic chemists are exploring electrosynthesis. However, the efficacy of electrochemical transformations depends critically on the design of the electrochemical cell. Batch cells often suffer from limitations such as large inter-electrode distances and poor mass transfer, making flow cells a promising alternative. Implementing flow cells, however, requires a foundational understanding of microreactor technology. In this review, we briefly outline the applications of flow electrosynthesis before providing a comprehensive examination of existing flow reactor technologies. Our goal is to equip organic chemists with the insights needed to tailor their electrochemical flow cells to meet specific reactivity requirements effectively. We also highlight the application of reactor designs in scaling up electrochemical processes and integrating high-throughput experimentation and automation. These advancements not only enhance the potential of flow electrosynthesis for the synthetic community but also hold promise for both academia and industry.
Collapse
Affiliation(s)
- Morgan Regnier
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Clara Vega
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Dimitris I Ioannou
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
He J, Li Z, Feng P, Lu G, Ding T, Chen L, Duan X, Zhu M. Piezo-catalysis Mechanism Elucidation by Tracking Oxygen Reduction to Hydrogen Peroxide with In situ EPR Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202410381. [PMID: 39087309 DOI: 10.1002/anie.202410381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
For piezoelectric catalysis, the catalytic mechanism is a topic of great controversy, with debates centered around whether it belongs to the energy band theory or the screening charge effect which are similar to mechanisms of photocatalysis and electrochemical catalysis, respectively. Due to the formation of different intermediate active-species during two-electron oxygen reduction reaction (ORR) via electro- and photo-catalysis, the key to solving this problem is precisely monitoring the active species involved in ORR during electro-, photo-, and piezo-catalysis under identical condition. Here, a semiconductor material, BiOBr with abundant oxygen vacancies (BOB-OV) was found remarkable catalytic activity in H2O2 production by all three catalytic methods. By employing in situ electron paramagnetic resonance (EPR) spectroscopy, the H2O2 evolution pathway through piezo-catalysis over BOB-OV was monitored, which showed a similar reaction pathway to that observed in photo-catalytic process. This finding represents solid evidence supporting the notion that piezo-catalytic mechanism of ORR is more inclined towards photo-catalysis rather than electro-catalysis. Significantly, this exploratory conclusion provides insight to deepen our understanding of piezo-catalysis.
Collapse
Affiliation(s)
- Jie He
- Guangdong Key Laboratory of Environmental Pollution and Health/Department of Chemistry, College of Environment and Climate, Jinan University, Guangzhou, 511443, China
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA-5005, Australia
| | - Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health/Department of Chemistry, College of Environment and Climate, Jinan University, Guangzhou, 511443, China
| | - Pengju Feng
- Guangdong Key Laboratory of Environmental Pollution and Health/Department of Chemistry, College of Environment and Climate, Jinan University, Guangzhou, 511443, China
| | - Gang Lu
- Guangdong Key Laboratory of Environmental Pollution and Health/Department of Chemistry, College of Environment and Climate, Jinan University, Guangzhou, 511443, China
| | - Tengda Ding
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Li Chen
- Department of General Practice, First Medical Center Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA-5005, Australia
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health/Department of Chemistry, College of Environment and Climate, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
19
|
Wang R, Zhang Z, Zhou H, Yu M, Liao L, Wang Y, Wan S, Lu H, Xing W, Valtchev V, Qiu S, Fang Q. Structural Modulation of Covalent Organic Frameworks for Efficient Hydrogen Peroxide Electrocatalysis. Angew Chem Int Ed Engl 2024; 63:e202410417. [PMID: 38924241 DOI: 10.1002/anie.202410417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The electrochemical production of hydrogen peroxide (H2O2) using metal-free catalysts has emerged as a viable and sustainable alternative to the conventional anthraquinone process. However, the precise architectural design of these electrocatalysts poses a significant challenge, requiring intricate structural engineering to optimize electron transfer during the oxygen reduction reaction (ORR). Herein, we introduce a novel design of covalent organic frameworks (COFs) that effectively shift the ORR from a four-electron to a more advantageous two-electron pathway. Notably, the JUC-660 COF, with strategically charge-modified benzyl moieties, achieved a continuous high H2O2 yield of over 1200 mmol g-1 h-1 for an impressive duration of over 85 hours in a flow cell setting, marking it as one of the most efficient metal-free and non-pyrolyzed H2O2 electrocatalysts reported to date. Theoretical computations alongside in situ infrared spectroscopy indicate that JUC-660 markedly diminishes the adsorption of the OOH* intermediate, thereby steering the ORR towards the desired pathway. Furthermore, the versatility of JUC-660 was demonstrated through its application in the electro-Fenton reaction, where it efficiently and rapidly removed aqueous contaminants. This work delineates a pioneering approach to altering the ORR pathway, ultimately paving the way for the development of highly effective metal-free H2O2 electrocatalysts.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Ziqi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Haiping Zhou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Mingrui Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130012, R. P., China
| | - Li Liao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R., China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Sheng Wan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Wei Xing
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130012, R. P., China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R., China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie 6 Marechal Juin, 14050, Caen, France
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| |
Collapse
|
20
|
Cheng S, Sun Y, Li Y, Zhang S, Yang L, Chen C, Huang Z, Xia X, Li H. Synergy of oxygen reduction for H 2O 2 production and electro-fenton induced by atomic hydrogen over a bifunctional cathode towards water purification. CHEMOSPHERE 2024; 364:143022. [PMID: 39103102 DOI: 10.1016/j.chemosphere.2024.143022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
In the Electro-Fenton (EF) process, hydrogen peroxide (H2O2) is produced in situ by a two-electron oxygen reduction reaction (2e ORR), which is further activated by electrocatalysts to generate reactive oxygen specieces (ROS). However, the selectivity of 2e transfer from catalysts to O2 is still unsatisfactory, resulting in the insufficient H2O2 availability. Carbon based materials with abundant oxygen-containing functional groups have been used as excellent 2e ORR electrocatalysts, and atomic hydrogen (H*) can quickly transfer one electron to H2O2 in a wide pH range and avoiding the restrict of traditional Fenton reaction. Herein, nickel nanoparticles growth on oxidized carbon deposited on modified carbon felt (Ni/Co@CFAO) was prepared as a bifunctional catalytic electrode coupling 2e ORR to form H2O2 with H* reducing H2O2 to produce ROS for highly efficient degradation of antibiotics. Electrochemical oxidation and thermal treatment were used to modulate the structure of carbon substrates for increasing the electro-generation of H2O2, while H* was produced over Ni sites through H2O/H+ reduction constructing an in-situ EF system. The experimental results indicated that 2e ORR and H* induced EF processes could promote each other mutually. The optimized Ni/Co@CFAO with a Ni:C mass ratio of 1:9 exhibited a high 2e selectivity and H2O2 yield of 49 mg L-1. As a result, the designed Ni/Co@CFAO exhibited excellent electrocatalytic ability to degrade tetracycline (TC) under different aqueous environmental conditions, and achieved 98.5% TC removal efficiency within 60 min H2O2 and H* were generated simultaneously at the bifunctional cathode and react to form strong oxidizing free radicals •OH. At the same time, O2 gained an electron to form •O2-, which could react with •OH and H2O to form 1O2, which had relatively long life (10-6∼10-3 s), further promoting the efficient removal of antibiotics in water.
Collapse
Affiliation(s)
- Shiyu Cheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yingbo Sun
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ying Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Shaoqi Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ling Yang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Chen Chen
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Zhegang Huang
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xue Xia
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Hua Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
21
|
Kim JH, Lee JG, Choi MJ. Progress of Metal Chalcogenides as Catalysts for Efficient Electrosynthesis of Hydrogen Peroxide. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4277. [PMID: 39274667 PMCID: PMC11396670 DOI: 10.3390/ma17174277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
Hydrogen peroxide (H2O2) is a high-demand chemical, valued as a powerful and eco-friendly oxidant for various industrial applications. The traditional industrial method for producing H2O2, known as the anthraquinone process, is both costly and environmentally problematic. Electrochemical synthesis, which produces H2O2 using electricity, offers a sustainable alternative, particularly suited for small-scale, continuous on-site H2O2 generation due to the portability of electrocatalytic devices. For efficient H2O2 electrosynthesis, electrocatalysts must exhibit high selectivity, activity, and stability for the two-electron pathway-oxygen reduction reaction (2e- ORR). Transition-metal chalcogenide (TMC)-based materials have emerged as promising candidates for effective 2e- ORR due to their high activity in acidic environments and the abundance of their constituent elements. This review examines the potential of TMC-based catalysts in H2O2 electrosynthesis, categorizing them into noble-metal and non-noble-metal chalcogenides. It underscores the importance of achieving high selectivity, activity, and stability in 2e- ORR. By reviewing recent advancements and identifying key challenges, this review provides valuable insights into the development of TMC-based electrocatalysts for sustainable H2O2 production.
Collapse
Affiliation(s)
- Jeong-Hyun Kim
- Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jeong-Gyu Lee
- Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Min-Jae Choi
- Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
22
|
Cheng Q, Wei H, Wang J, Wang ZQ, Gong XQ, Wang D. Clarifying the Direct Generation of •OH Radicals in Photocatalytic O 2 Reduction: Theoretical Prediction Combined with Experimental Validation. J Phys Chem Lett 2024; 15:8650-8659. [PMID: 39151150 DOI: 10.1021/acs.jpclett.4c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
This work systematically studied thermocatalytic and photocatalytic pathways of formaldehyde degradation and H-assisted O2 reduction over a Pt13/anatase-TiO2(101) composite via DFT calculations together with constrained molecular dynamics (MD) simulations. We show that photocatalytic O2 reduction on Pt/TiO2 can directly generate •OH radicals (*O2 → *OOH → •OH) via two hydrogenation steps with small barriers, and the product selectivity (*H2O2 or •OH) is decided by the relative position between catalyst Fermi level and •OH/*H2O2 redox potential (theoretical determination of 0.07 V referencing to the SHE). Such a novel reaction channel was furthermore validated at the liquid-solid interface via constrained MD simulations and experimental electron paramagnetic resonance detections, and a wide range of H resources, e.g., *HCHO, *HCO, *H (H+ + e-), can always drive the direct •OH generation. The additional portion of e--triggered •OH radicals are prone to diffuse into solution or the TiO2 surface and furthermore cooperate with the conventional h+-driven photooxidations.
Collapse
Affiliation(s)
- Qian Cheng
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Hehe Wei
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinling Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhi-Qiang Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xue-Qing Gong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
23
|
Deng D, Wang Y, Jiang J, Bai Y, Chen Y, Zheng H, Ou H, Lei Y. Indium oxide with oxygen vacancies boosts O 2 adsorption and activation for electrocatalytic H 2O 2 production. Chem Commun (Camb) 2024; 60:9364-9367. [PMID: 39129473 DOI: 10.1039/d4cc03361b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Oxygen reduction reaction via the two-electron pathway (2e- ORR) offers a sustainable opportunity for hydrogen peroxide (H2O2) production, but suffers from low selectivity. In this work, indium oxide with oxygen vacancies (In2O3-x) exhibits a H2O2 selectivity close to 98% at 0.6 V vs. RHE. Further, a Faradaic efficiency (FE) of around 95% at 0.4-0.6 V vs. RHE and a H2O2 productivity of 3.7 mol gcatalyst-1 h-1 are reached in a flow cell. In situ Raman spectra indicate that In2O3-x promotes the adsorption and activation of O2 and stabilizes oxygen intermediates. This work provides an insight into improving H2O2 selectivity for 2e- ORR catalysts.
Collapse
Affiliation(s)
- Danni Deng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Jiabi Jiang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Yu Bai
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Yingbi Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Haitao Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Houzheng Ou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| |
Collapse
|
24
|
Ligthart N, van Langevelde PH, Padding JT, Hetterscheid DG, Vermaas DA. 20-Fold Increased Limiting Currents in Oxygen Reduction with Cu-tmpa by Replacing Flow-By with Flow-Through Electrodes. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:12909-12918. [PMID: 39211382 PMCID: PMC11351704 DOI: 10.1021/acssuschemeng.4c03919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Electrochemical oxygen reduction is a promising and sustainable alternative to the current industrial production method for hydrogen peroxide (H2O2), which is a green oxidant in many (emerging) applications in the chemical industry, water treatment, and fuel cells. Low solubility of O2 in water causes severe mass transfer limitations and loss of H2O2 selectivity at industrially relevant current densities, complicating the development of practical-scale electrochemical H2O2 synthesis systems. We tested a flow-by and flow-through configuration and suspension electrodes in an electrochemical flow cell to investigate the influence of electrode configuration and flow conditions on mass transfer and H2O2 production. We monitored the H2O2 production using Cu-tmpa (tmpa = tris(2-pyridylmethyl)amine) as a homogeneous copper-based catalyst in a pH-neutral phosphate buffer during 1 h of catalysis and estimated the limiting current density from CV scans. We achieve the highest H2O2 production and a 15-20 times higher geometrical limiting current density in the flow-through configuration compared to the flow-by configuration due to the increased surface area and foam structure that improved mass transfer. The activated carbon (AC) material in suspension electrodes, which have an even larger surface area, decomposes all produced H2O2 and proves unsuitable for H2O2 synthesis. Although the mass transfer limitations seem to be alleviated on the microscale in the flow-through system, the high O2 consumption and H2O2 production cause challenges in maintaining the initially reached current density and Faradaic efficiency (FE). The decreasing ratio between the concentrations of the O2 and H2O2 in the bulk electrolyte will likely pose a challenge when proceeding to larger systems with longer electrodes. Tuning the reactor design and operating conditions will be essential in maximizing the FE and current density.
Collapse
Affiliation(s)
- Nathalie
E.G. Ligthart
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Phebe H. van Langevelde
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Johan T. Padding
- Department
of Process and Energy, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Dennis G.H. Hetterscheid
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - David A. Vermaas
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| |
Collapse
|
25
|
Zhang H, Xu H, Yao C, Chen S, Li F, Zhao D. Metal Atom-Support Interaction in Single Atom Catalysts toward Hydrogen Peroxide Electrosynthesis. ACS NANO 2024; 18:21836-21854. [PMID: 39108203 DOI: 10.1021/acsnano.4c07916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Single metal atom catalysts (SACs) have garnered considerable attention as promising agents for catalyzing important industrial reactions, particularly the electrochemical synthesis of hydrogen peroxide (H2O2) through the two-electron oxygen reduction reaction (ORR). Within this field, the metal atom-support interaction (MASI) assumes a decisive role, profoundly influencing the catalytic activity and selectivity exhibited by SACs, and triggers a decade-long surge dedicated to unraveling the modulation of MASI as a means to enhance the catalytic performance of SACs. In this comprehensive review, we present a systematic summary and categorization of recent advancements pertaining to MASI modulation for achieving efficient electrochemical H2O2 synthesis. We start by introducing the fundamental concept of the MASI, followed by a detailed and comprehensive analysis of the correlation between the MASI and catalytic performance. We describe how this knowledge can be harnessed to design SACs with optimized MASI to increase the efficiency of H2O2 electrosynthesis. Finally, we distill the challenges that lay ahead in this field and provide a forward-looking perspective on the future research directions that can be pursued.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Haitao Xu
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Canglang Yao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Shanshan Chen
- MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Feng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
26
|
Deng Z, Choi SJ, Li G, Wang X. Advancing H 2O 2 electrosynthesis: enhancing electrochemical systems, unveiling emerging applications, and seizing opportunities. Chem Soc Rev 2024; 53:8137-8181. [PMID: 39021095 DOI: 10.1039/d4cs00412d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hydrogen peroxide (H2O2) is a highly desired chemical with a wide range of applications. Recent advancements in H2O2 synthesis center on the electrochemical reduction of oxygen, an environmentally friendly approach that facilitates on-site production. To successfully implement practical-scale, highly efficient electrosynthesis of H2O2, it is critical to meticulously explore both the design of catalytic materials and the engineering of other components of the electrochemical system, as they hold equal importance in this process. Development of promising electrocatalysts with outstanding selectivity and activity is a prerequisite for efficient H2O2 electrosynthesis, while well-configured electrolyzers determine the practical implementation of large-scale H2O2 production. In this review, we systematically summarize fundamental mechanisms and recent achievements in H2O2 electrosynthesis, including electrocatalyst design, electrode optimization, electrolyte engineering, reactor exploration, potential applications, and integrated systems, with an emphasis on active site identification and microenvironment regulation. This review also proposes new insights into the existing challenges and opportunities within this rapidly evolving field, together with perspectives on future development of H2O2 electrosynthesis and its industrial-scale applications.
Collapse
Affiliation(s)
- Zhiping Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Seung Joon Choi
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Ge Li
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
27
|
Zhou Z, Wei W, Wu H, Gong H, Zhou K, Zheng Q, Liu S, Gui L, Jiang Z, Zhu S. Coupling Electro-Fenton and Electrocoagulation of Aluminum-Air Batteries for Enhanced Tetracycline Degradation: Improving Hydrogen Peroxide and Power Generation. Molecules 2024; 29:3781. [PMID: 39202861 PMCID: PMC11356830 DOI: 10.3390/molecules29163781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Electro-Fenton (EF) technology has shown great potential in environmental remediation. However, developing efficient heterogeneous EF catalysts and understanding the relevant reaction mechanisms for pollutant degradation remain challenging. We propose a new system that combines aluminum-air battery electrocoagulation (EC) with EF. The system utilizes dual electron reduction of O2 to generate H2O2 in situ on the air cathodes of aluminum-air batteries and the formation of primary cells to produce electricity. Tetracycline (TC) is degraded by ·OH produced by the Fenton reaction. Under optimal conditions, the system exhibits excellent TC degradation efficiency and higher H2O2 production. The TC removal rate by the reaction system using a graphite cathode reached nearly 100% within 4 h, whereas the H2O2 yield reached 127.07 mg/L within 24 h. The experimental results show that the novel EF and EC composite system of aluminum-air batteries, through the electroflocculation mechanism and ·OH and EF reactions, with EC as the main factor, generates multiple •OH radicals that interact to efficiently remove TC. This work provides novel and important insights into EF technology, as well as new strategies for TC removal.
Collapse
Affiliation(s)
- Zhenghan Zhou
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Z.); (H.W.); (S.L.); (L.G.); (Z.J.)
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Hefei 230061, China
| | - Wei Wei
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Z.); (H.W.); (S.L.); (L.G.); (Z.J.)
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Hefei 230061, China
- An Hui Shun Yu Water Co., Ltd., Hefei 230601, China; (K.Z.); (Q.Z.)
| | - Houfan Wu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Z.); (H.W.); (S.L.); (L.G.); (Z.J.)
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Hefei 230061, China
| | - Haoyang Gong
- Hefei Water Supply Group Co., Ltd., No. 70, Tunxi Road, Hefei 230011, China;
| | - Kai Zhou
- An Hui Shun Yu Water Co., Ltd., Hefei 230601, China; (K.Z.); (Q.Z.)
| | - Qiyuan Zheng
- An Hui Shun Yu Water Co., Ltd., Hefei 230601, China; (K.Z.); (Q.Z.)
| | - Shaogen Liu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Z.); (H.W.); (S.L.); (L.G.); (Z.J.)
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Hefei 230061, China
| | - Ling Gui
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Z.); (H.W.); (S.L.); (L.G.); (Z.J.)
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Hefei 230061, China
| | - Zhongqi Jiang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Z.); (H.W.); (S.L.); (L.G.); (Z.J.)
| | - Shuguang Zhu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; (Z.Z.); (H.W.); (S.L.); (L.G.); (Z.J.)
- Energy Saving Research Institute, Anhui Jianzhu University, Hefei 230601, China
- Engineering Research Center of Building Energy Efficiency Control and Evaluation, Ministry of Education, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
28
|
Wang Z, Wang C, Wu X, Oh WD, Huang M, Zhou T. Sustainable H 2O 2 production in a floating dual-cathode electro-Fenton system for efficient decontamination of organic pollutants. CHEMOSPHERE 2024; 362:142635. [PMID: 38897323 DOI: 10.1016/j.chemosphere.2024.142635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Electrochemical advanced oxidation processes (EAOPs) based on natural air diffusion electrode (NADE) promise efficient and affordable advanced oxidation water purification, but the sustainable operation of such reaction systems remains challenging due to severe cathode electrowetting. Herein, a novel floating cathode (FC) composed of a stable hydrophobic three-phase interface was established by designing a flexible catalytic layer of FC. This innovative electrode configuration could effectively prolong the service life of the cathode by mitigating the interference of H2 bubbles from the hydrogen evolution reaction (HER), and the H2O2 production rate reached 37.59 mg h-1·cm-2 and realize a long-term stable operation for 10 h. Additionally, an FC/carbon felt (CF) dual-cathode electro-Fenton system was constructed for in situ sulfamethoxazole (SMX) degradation. Efficient H2O2 production on FC and Fe(III) reduction on CF were synchronously achieved, attaining excellent degradation efficiency for both SMX (ca. 100%) with 2.5 mg L-1 of Fe(Ⅱ) injection. For real wastewater, the COD removal of the FC/CF dual-cathode electro-Fenton system was stabilized at exceeding 75%. The practical application potential of the FC/CF dual-cathode electro-Fenton system was also demonstrated for the treatment of actual landfill leachate in continuous flow mode. This work provides a valuable path for constructing a sustainable dual-cathode electro-Fenton system for actual wastewater treatment.
Collapse
Affiliation(s)
- Zhicheng Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chen Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Mingjie Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Tao Zhou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
29
|
Luo Y, Li K, Hu Y, Chen T, Wang Q, Hu J, Feng J, Feng J. TiN as Radical Scavenger in Fe─N─C Aerogel Oxygen Reduction Catalyst for Durable Fuel Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309822. [PMID: 38396268 DOI: 10.1002/smll.202309822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Fe─N─C is the most promising alternative to platinum-based catalysts to lower the cost of proton-exchange-membrane fuel cell (PEMFC). However, the deficient durability of Fe─N─C has hindered their application. Herein, a TiN-doped Fe─N─C (Fe─N─C/TiN) is elaborately synthesized via the sol-gel method for the oxygen-reduction reaction (ORR) in PEMFC. The interpenetrating network composed by Fe─N─C and TiN can simultaneously eliminate the free radical intermediates while maintaining the high ORR activity. As a result, the H2O2 yields of Fe─N─C/TiN are suppressed below 4%, ≈4 times lower than the Fe─N─C, and the half-wave potential only lost 15 mV after 30 kilo-cycle accelerated durability test (ADT). In a H2─O2 fuel cell assembled with Fe─N─C/TiN, it presents 980 mA cm-2 current density at 0.6 V, 880 mW cm-2 peak power density, and only 17 mV voltage loss at 0.80 A cm-2 after 10 kilo-cycle ADT. The experiment and calculation results prove that the TiN has a strong adsorption interaction for the free radical intermediates (such as *OH, *OOH, etc.), and the radicals are scavenged subsequently. The rational integration of Fe single-atom, TiN radical scavenger, and highly porous network adequately utilize the intrinsic advantages of composite structure, enabling a durable and active Pt-metal-free catalyst for PEMFC.
Collapse
Affiliation(s)
- Yi Luo
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Road, Changsha, Hunan, 410073, China
- Department of Aviation Oil and Material, Air Force Logistics Academy, 72 Xi Ge Road, Xuzhou, Jiangsu, 221000, China
| | - Ke Li
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Ba Yi Road, Wuhan, Hubei, 300720, China
| | - Yijie Hu
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Road, Changsha, Hunan, 410073, China
| | - Teng Chen
- Department of Aviation Oil and Material, Air Force Logistics Academy, 72 Xi Ge Road, Xuzhou, Jiangsu, 221000, China
| | - Qichen Wang
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Jianqiang Hu
- Department of Aviation Oil and Material, Air Force Logistics Academy, 72 Xi Ge Road, Xuzhou, Jiangsu, 221000, China
| | - Jian Feng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Road, Changsha, Hunan, 410073, China
| | - Junzong Feng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Road, Changsha, Hunan, 410073, China
| |
Collapse
|
30
|
Rademaker D, Tanase S, Kang H, Hofmann JP, Hetterscheid DGH. Selective Electrochemical Oxygen Reduction to Hydrogen Peroxide by Confinement of Cobalt Porphyrins in a Metal-Organic Framework. Chemistry 2024:e202401339. [PMID: 38872486 DOI: 10.1002/chem.202401339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Sustainable alternatives for the energy intensive synthesis of H2O2 are necessary. Molecular cobalt catalysts show potential but are typically restricted by undesired bimolecular pathways leading to the breakdown of both H2O2 and the catalyst. The confinement of cobalt porphyrins in the PCN-224 metal-organic framework leads to an enhanced selectivity towards H2O2 and stability of the catalyst. Consequently, oxygen can now be selectively reduced to hydrogen peroxide with a stable conversion for at least 5 h, illustrating the potential of catalysts confined in MOFs to increase the selectivity and stability of electrocatalytic conversions.
Collapse
Affiliation(s)
- Dana Rademaker
- Leiden Institute of Chemistry, Leiden University, 2300, RA Leiden, The Netherlands
| | - Stefania Tanase
- Van't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Hongrui Kang
- Surface Science Laboratory Department of Materials- and Geosciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Jan P Hofmann
- Surface Science Laboratory Department of Materials- and Geosciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | | |
Collapse
|
31
|
Yang H, An N, Kang Z, Menezes PW, Chen Z. Understanding Advanced Transition Metal-Based Two Electron Oxygen Reduction Electrocatalysts from the Perspective of Phase Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400140. [PMID: 38456244 DOI: 10.1002/adma.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Non-noble transition metal (TM)-based compounds have recently become a focal point of extensive research interest as electrocatalysts for the two electron oxygen reduction (2e- ORR) process. To efficiently drive this reaction, these TM-based electrocatalysts must bear unique physiochemical properties, which are strongly dependent on their phase structures. Consequently, adopting engineering strategies toward the phase structure has emerged as a cutting-edge scientific pursuit, crucial for achieving high activity, selectivity, and stability in the electrocatalytic process. This comprehensive review addresses the intricate field of phase engineering applied to non-noble TM-based compounds for 2e- ORR. First, the connotation of phase engineering and fundamental concepts related to oxygen reduction kinetics and thermodynamics are succinctly elucidated. Subsequently, the focus shifts to a detailed discussion of various phase engineering approaches, including elemental doping, defect creation, heterostructure construction, coordination tuning, crystalline design, and polymorphic transformation to boost or revive the 2e- ORR performance (selectivity, activity, and stability) of TM-based catalysts, accompanied by an insightful exploration of the phase-performance correlation. Finally, the review proposes fresh perspectives on the current challenges and opportunities in this burgeoning field, together with several critical research directions for the future development of non-noble TM-based electrocatalysts.
Collapse
Affiliation(s)
- Hongyuan Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Na An
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
32
|
Qiao R, Wang J, Hu H, Lu S. Covalent Organic Frameworks Based Electrocatalysts for Two-Electron Oxygen Reduction Reaction: Design Principles, Recent Advances, and Perspective. Molecules 2024; 29:2563. [PMID: 38893439 PMCID: PMC11173880 DOI: 10.3390/molecules29112563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Hydrogen peroxide (H2O2) is an environmentally friendly oxidant with a wide range of applications, and the two-electron pathway (2e-) of the oxygen reduction reaction (ORR) for H2O2 production has attracted much attention due to its eco-friendly nature and operational simplicity in contrast to the conventional anthraquinone process. The challenge is to design electrocatalysts with high activity and selectivity and to understand their structure-activity relationship and catalytic mechanism in the ORR process. Covalent organic frameworks (COFs) provide an efficient template for the construction of highly efficient electrocatalysts due to their designable structure, excellent stability, and controllable porosity. This review firstly outlines the design principles of COFs, including the selection of metallic and nonmetallic active sites, the modulation of the electronic structure of the active sites, and the dimensionality modulation of the COFs, to provide guidance for improving the production performance of H2O2. Subsequently, representative results are summarized in terms of both metallic and metal-free sites to follow the latest progress. Moreover, the challenges and perspectives of 2e- ORR electrocatalysts based on COFs are discussed.
Collapse
Affiliation(s)
| | | | | | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
33
|
Zhao G, Chen T, Tang A, Yang H. Roles of Oxygen-Containing Functional Groups in Carbon for Electrocatalytic Two-Electron Oxygen Reduction Reaction. Chemistry 2024; 30:e202304065. [PMID: 38487973 DOI: 10.1002/chem.202304065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 04/05/2024]
Abstract
Recent years have witnessed great research interests in developing high-performance electrocatalysts for the two-electron (2e-) oxygen reduction reaction (ORR) that enables the sustainable and flexible synthesis of H2O2. Carbon-based electrocatalysts exhibit attractive catalytic performance for the 2e- ORR, where oxygen-containing functional groups (OFGs) play a decisive role. However, current understanding is far from adequate, and the contribution of OFGs to the catalytic performance remains controversial. Therefore, a critical overview on OFGs in carbon-based electrocatalysts toward the 2e- ORR is highly desirable. Herein, we go over the methods for constructing OFGs in carbon including chemical oxidation, electrochemical oxidation, and precursor inheritance. Then we review the roles of OFGs in activating carbon toward the 2e- ORR, focusing on the intrinsic activity of different OFGs and the interplay between OFGs and metal species or defects. At last, we discuss the reasons for inconsistencies among different studies, and personal perspectives on the future development in this field are provided. The results provide insights into the origin of high catalytic activity and selectivity of carbon-based electrocatalysts toward the 2e- ORR and would provide theoretical foundations for the future development in this field.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
| | - Tianci Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
34
|
Yu A, Liu S, Yang Y. Recent advances in electrosynthesis of H 2O 2via two-electron oxygen reduction reaction. Chem Commun (Camb) 2024; 60:5232-5244. [PMID: 38683172 DOI: 10.1039/d4cc01476f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The electrosynthesis of hydrogen peroxide (H2O2) via a selective two-electron oxygen reduction reaction (2e- ORR) presents a green and low-energy-consumption alternative to the traditional, energy-intensive anthraquinone process. This review encapsulates the principles of designing relational electrocatalysts for 2e- ORR and explores remaining setups for large-scale H2O2 production. Initially, the review delineates the fundamental reaction mechanisms of H2O2 production via 2e- ORR and assesses performance. Subsequently, it methodically explores the pivotal influence of microstructures, heteroatom doping, and metal hybridization along with setup configurations in achieving a high-performance catalyst and efficient reactor for H2O2 production. Thereafter, the review introduces a forward-looking methodology that leverages the synergistic integration of catalysts and reactors, aiming to harmonize the complementary characteristics of both components. Finally, it outlines the extant challenges and the promising avenues for the efficient electrochemical production of H2O2, setting the stage for future research endeavors.
Collapse
Affiliation(s)
- Ao Yu
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA.
| | - Shengwen Liu
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA.
| | - Yang Yang
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA.
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA
- Renewable Energy and Chemical Transformation Cluster, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
- The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
35
|
Liu L, Kang L, Feng J, Hopkinson DG, Allen CS, Tan Y, Gu H, Mikulska I, Celorrio V, Gianolio D, Wang T, Zhang L, Li K, Zhang J, Zhu J, Held G, Ferrer P, Grinter D, Callison J, Wilding M, Chen S, Parkin I, He G. Atomically dispersed asymmetric cobalt electrocatalyst for efficient hydrogen peroxide production in neutral media. Nat Commun 2024; 15:4079. [PMID: 38744850 PMCID: PMC11093996 DOI: 10.1038/s41467-024-48209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Electrochemical hydrogen peroxide (H2O2) production (EHPP) via a two-electron oxygen reduction reaction (2e- ORR) provides a promising alternative to replace the energy-intensive anthraquinone process. M-N-C electrocatalysts, which consist of atomically dispersed transition metals and nitrogen-doped carbon, have demonstrated considerable EHPP efficiency. However, their full potential, particularly regarding the correlation between structural configurations and performances in neutral media, remains underexplored. Herein, a series of ultralow metal-loading M-N-C electrocatalysts are synthesized and investigated for the EHPP process in the neutral electrolyte. CoNCB material with the asymmetric Co-C/N/O configuration exhibits the highest EHPP activity and selectivity among various as-prepared M-N-C electrocatalyst, with an outstanding mass activity (6.1 × 105 A gCo-1 at 0.5 V vs. RHE), and a high practical H2O2 production rate (4.72 mol gcatalyst-1 h-1 cm-2). Compared with the popularly recognized square-planar symmetric Co-N4 configuration, the superiority of asymmetric Co-C/N/O configurations is elucidated by X-ray absorption fine structure spectroscopy analysis and computational studies.
Collapse
Affiliation(s)
- Longxiang Liu
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Liqun Kang
- Department of Inorganic Spectroscopy, Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Jianrui Feng
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - David G Hopkinson
- Electron Physical Science Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Christopher S Allen
- Electron Physical Science Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Yeshu Tan
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Hao Gu
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Iuliia Mikulska
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Veronica Celorrio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Diego Gianolio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Tianlei Wang
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Liquan Zhang
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Kaiqi Li
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Jichao Zhang
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Jiexin Zhu
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Georg Held
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Pilar Ferrer
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - David Grinter
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - June Callison
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Martin Wilding
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Sining Chen
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Ivan Parkin
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK.
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK.
| |
Collapse
|
36
|
Doering M, Trinkies LL, Kieninger J, Kraut M, Rupitsch SJ, Dittmeyer R, Urban GA, Weltin A. In Situ Performance Monitoring of Electrochemical Oxygen and Hydrogen Peroxide Sensors in an Additively Manufactured Modular Microreactor. ACS OMEGA 2024; 9:19700-19711. [PMID: 38708269 PMCID: PMC11064172 DOI: 10.1021/acsomega.4c02210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
Miniaturized and microstructured reactors in process engineering are essential for a more decentralized, flexible, sustainable, and resilient chemical production. Modern, additive manufacturing methods for metals enable complex reactor-geometries, increased functionality, and faster design iterations, a clear advantage over classical subtractive machining and polymer-based approaches. Integrated microsensors allow online, in situ process monitoring to optimize processes like the direct synthesis of hydrogen peroxide. We developed a modular tube-in-tube membrane reactor fabricated from stainless steel via 3D printing by laser powder bed fusion of metals (PBF-LB/M). The reactor concept enables the spatially separated dosage and resaturation of two gaseous reactants across a membrane into a liquid process medium. Uniquely, we integrated platinum-based electrochemical sensors for the online detection of analytes to reveal the dynamics inside the reactor. An advanced chronoamperometric protocol combined the simultaneous concentration measurement of hydrogen peroxide and oxygen with monitoring of the sensor performance and self-calibration in long-term use. We demonstrated the highly linear and sensitive monitoring of hydrogen peroxide and dissolved oxygen entering the liquid phase through the membrane. Our measurements delivered important real-time insights into the dynamics of the concentrations in the reactor, highlighting the power of electrochemical sensors applied in process engineering. We demonstrated the stable continuous measurement over 1 week and estimated the sensor lifetime for months in the acidic process medium. Our approach combines electrochemical sensors for process monitoring with advanced, additively manufactured stainless steel membrane microreactors, supporting the power of sensor-equipped microreactors as contributors to the paradigm change in process engineering and toward a greener chemistry.
Collapse
Affiliation(s)
- Moritz Doering
- Laboratory
for Sensors, IMTEK − Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
- Laboratory
for Electrical Instrumentation and Embedded Systems, IMTEK −
Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Laura L. Trinkies
- Institute
of Micro Process Engineering (IMVT), Karlsruhe
Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jochen Kieninger
- Laboratory
for Sensors, IMTEK − Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
- Laboratory
for Electrical Instrumentation and Embedded Systems, IMTEK −
Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Manfred Kraut
- Institute
of Micro Process Engineering (IMVT), Karlsruhe
Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan J. Rupitsch
- Laboratory
for Electrical Instrumentation and Embedded Systems, IMTEK −
Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Roland Dittmeyer
- Institute
of Micro Process Engineering (IMVT), Karlsruhe
Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Gerald A. Urban
- Laboratory
for Sensors, IMTEK − Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Andreas Weltin
- Laboratory
for Sensors, IMTEK − Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
- Laboratory
for Electrical Instrumentation and Embedded Systems, IMTEK −
Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
37
|
Sun L, Jin X, Su T, Fisher AC, Wang X. Conjugated Nickel Phthalocyanine Derivatives for Heterogeneous Electrocatalytic H 2O 2 Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306336. [PMID: 37560974 DOI: 10.1002/adma.202306336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Electrocatalytic hydrogen peroxide (H2O2) production has emerged as a promising alternative to the chemical method currently used in industry, due to its environmentally friendly conditions and potential for higher activity and selectivity. Heterogeneous molecular catalysts are promising in this regard, as their active site configurations can be judiciously designed, modified, and tailored with diverse functional groups, thereby tuning the activity and selectivity of the active sites. In this work, nickel phthalocyanine derivatives with various conjugation degrees are synthesized and identified as effective pH-universal electrocatalysts for H2O2 production after heterogenized on nitrogen-decorated carbon, with increased conjugation degrees leading to boosted selectivity. This is explained by the regulated d-band center, which optimized the binding energy of the reaction intermediate, reducing the energy barrier for oxygen reduction and leading to optimized H2O2 selectivity. The best catalyst, NiPyCN/CN, exhibits a high H2O2 electrosynthesis activity with ≈95% of H2O2 faradic efficiency in an alkaline medium, demonstrating its potential for H2O2 production.
Collapse
Affiliation(s)
- Libo Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Cambridge CARES, CREATE Tower, Singapore, 138602, Singapore
| | - Xindie Jin
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Tan Su
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Adrian C Fisher
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
38
|
Baidoun R, Liu G, Kim D. Recent advances in the role of interfacial liquids in electrochemical reactions. NANOSCALE 2024; 16:5903-5925. [PMID: 38440946 DOI: 10.1039/d3nr06092f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The interfacial liquid, situated in proximity to an electrode or catalyst, plays a vital role in determining the activity and selectivity of crucial electrochemical reactions, including hydrogen evolution, oxygen evolution/reduction, and carbon dioxide reduction. Thus, there has been a growing interest in better understanding the behavior and the catalytic effect of its constituents. This minireview examines the impact of interfacial liquids on electrocatalysis, specifically the effects of water molecules and ionic species present at the interface. How the structure of interfacial water, distinct from the bulk, can affect charge transfer kinetics and transport of species is presented. Furthermore, how cations and anions (de)stabilize intermediates and transition states, compete for adsorption with reaction species, and act as local environment modifiers including pH and the surrounding solvent structure are described in detail. These effects can promote or inhibit reactions in various ways. This comprehensive exploration provides valuable insights for tailoring interfacial liquids to optimize electrochemical reactions.
Collapse
Affiliation(s)
- Rani Baidoun
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Gexu Liu
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dohyung Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Jiang Q, Ji Y, Zheng T, Li X, Xia C. The Nexus of Innovation: Electrochemically Synthesizing H 2O 2 and Its Integration with Downstream Reactions. ACS MATERIALS AU 2024; 4:133-147. [PMID: 38496047 PMCID: PMC10941294 DOI: 10.1021/acsmaterialsau.3c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 03/19/2024]
Abstract
Hydrogen peroxide (H2O2) represents a chemically significant oxidant that is prized for its diverse applicability across various industrial domains. Recent innovations have shed light on the electrosynthesis of H2O2 through two-electron oxygen reduction reactions (2e- ORR) or two-electron water oxidation reactions (2e- WOR), processes that underscore the attractive possibility for the on-site production of this indispensable oxidizing agent. However, the translation of these methods into practical utilization within chemical manufacturing industries remains an aspiration rather than a realized goal. This Perspective intends to furnish a comprehensive overview of the latest advancements in the domain of coupled chemical reactions with H2O2, critically examining emergent strategies that may pave the way for the development of new reaction pathways. These pathways could enable applications that hinge on the availability and reactivity of H2O2, including, but not limited to the chemical synthesis coupled with H2O2 and waste water treatment byFenton-like reactions. Concurrently, the Perspective acknowledges and elucidates some of the salient challenges and opportunities inherent in the coupling of electrochemically generated H2O2, thereby providing a scholarly analysis that might guide future research.
Collapse
Affiliation(s)
- Qiu Jiang
- School
of Materials and Energy, University of Electronic
Science and Technology of China, Chengdu 611731, People’s Republic of China
- Yangtze
Delta Region Institute (Huzhou), University
of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, People’s
Republic of China
| | - Yuan Ji
- School
of Materials and Energy, University of Electronic
Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Tingting Zheng
- School
of Materials and Energy, University of Electronic
Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Xu Li
- School
of Materials and Energy, University of Electronic
Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Chuan Xia
- School
of Materials and Energy, University of Electronic
Science and Technology of China, Chengdu 611731, People’s Republic of China
- Yangtze
Delta Region Institute (Huzhou), University
of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, People’s
Republic of China
| |
Collapse
|
40
|
Hu H, Ma K, Yang Y, Jin N, Zhang L, Qian J, Han L. Ni clusters immobilized on oxygen-rich siloxene nanosheets for efficient electrocatalytic oxygen reduction toward H 2O 2 synthesis. Dalton Trans 2024; 53:4823-4832. [PMID: 38372568 DOI: 10.1039/d3dt04389d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Hydrogen peroxide (H2O2) electrosynthesis via the two-electron oxygen reduction reaction (2e- ORR) represents a green alternative to the energy-intensive anthraquinone process. However, the practical application of this method is limited by the lack of cost-effective and high-performance electrocatalysts. Reported here is a hybrid catalyst composed of nickel (Ni) clusters immobilized onto the surface of two-dimensional siloxene nanosheets (Ni/siloxene), which exhibits excellent efficiency and selectivity in electrocatalytic oxygen reduction to H2O2 in an alkaline medium, demonstrating a standard 2e- pathway with >95% H2O2 selectivity across a wide potential range. Experimental results disclose that the high performance of Ni/siloxene can be traced to a synergy of the Ni clusters and the oxygen-rich surface of siloxene. Density functional theory (DFT) calculations further reveal a weakened interaction between Ni/siloxene and *OOH and the consequently reduced energy barrier for the *OOH protonation toward H2O2 desorption, thus leading to a high 2e- ORR reactivity and selectivity. This work provides a valuable and practical guidance for designing high-performance 2e- ORR electrocatalysts based on the rational engineering of the metal-support interaction.
Collapse
Affiliation(s)
- Haihui Hu
- College of Chemistry, Fuzhou University, Fujian 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ke Ma
- College of Chemistry, Fuzhou University, Fujian 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yuandong Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- College of Life and Environmental Science & College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Na Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Linjie Zhang
- College of Chemistry, Fuzhou University, Fujian 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jinjie Qian
- College of Life and Environmental Science & College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Lili Han
- College of Chemistry, Fuzhou University, Fujian 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
41
|
Qian J, Liu W, Jiang Y, Ye L, Wei X, Xi S, Shi L, Zeng L. Defect Engineering of 2D Copper Tin Composite Nanosheets Realizing Promoted Electrosynthesis Performance of Hydrogen Peroxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306485. [PMID: 37941515 DOI: 10.1002/smll.202306485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/09/2023] [Indexed: 11/10/2023]
Abstract
The transformation of the two-electron oxygen reduction reaction (2e-ORR) to produce hydrogen peroxide (H2 O2 ) is a promising green synthesis approach that can replace the high-energy consumption anthraquinone process. However, designing and fabricating low-cost, non-precious metal electrocatalysts for 2e-ORR remains a challenge. In this study, a method of combining complexation precipitation and thermal treatment to synthesize 2D copper-tin composite nanosheets to serve as the 2e-ORR electrocatalysts is utilized, achieving a high H2 O2 selectivity of 92.8% in 0.1 m KOH, and a bulk H2 O2 electrosynthesis yield of 1436 mmol·gcat -1 ·h-1 using a flow cell device. Remarkably, the H2 O2 selectivity of this catalyst decreases by only 0.5% after 10,000 cyclic voltammetry (CV) cycles. In addition, it demonstrates that the same catalyst can achieve 97% removal of the organic pollutant methyl blue in an aqueous system solution within 1 h using the on-site degradation technology. A reasonable control of defect concentration on the 2D copper-tin composite nanosheets that can effectively improve the electrocatalytic performance is found. Density functional theory calculations confirm that the surface of the 2D copper-tin composite nanosheets is conducive to the adsorption of the key intermediate OOH* , highlighting its excellent electrocatalytic performance for ORR with high H2 O2 selectivity.
Collapse
Affiliation(s)
- Junning Qian
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuting Jiang
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ling Ye
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xianbin Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Le Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lin Zeng
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
42
|
Li K, Sun Y, Zhao Z, Zhu T. Encapsulation of Co nanoparticles with single-atomic Co sites into nitrogen-doped carbon for electrosynthesis of hydrogen peroxide. Phys Chem Chem Phys 2024; 26:3044-3050. [PMID: 38180238 DOI: 10.1039/d3cp05492f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The electrosynthesis of hydrogen peroxide (H2O2) offers a sustainable and viable option for generating H2O2 directly, as an alternative to the anthraquinone oxidation method. This study focuses on the comparative study of Co nanoparticles and single-atomic Co sites (Co SACs) that were encapsulated into nitrogen-doped carbon for the electrosynthesis of H2O2, which has been synthesized by direct pyrolysis of Zn/Co-ZIF or Co-based zeolitic imidazolate frameworks (ZIF-67). The electrochemical measurement results demonstrate that the coexistence of Co nanoparticles and single-atomic Co sites in the CoNC catalyst is more conducive for H2O2 production compared to Co SACs only, possessing better H2O2 selectivity of 73.3% and higher faradaic efficiency of 87%. The improved performance of CoNC with SACs can be attributed to the presence of additional Co nanoparticles in the nitrogen-doped carbon layers.
Collapse
Affiliation(s)
- Kun Li
- School of Materials Science and Engineering, Central South University, 932 Lushan Road South, Changsha 410083, Hunan, China.
| | - Yanyan Sun
- School of Materials Science and Engineering, Central South University, 932 Lushan Road South, Changsha 410083, Hunan, China.
| | - Ziwei Zhao
- School of Physics and Electronic Information, Yunnan Normal University, 768 Juxian Street, Kunming 650500, Yunnan, China.
| | - Ting Zhu
- School of Physics and Electronic Information, Yunnan Normal University, 768 Juxian Street, Kunming 650500, Yunnan, China.
- Yunnan Key Laboratory of Optoelectronic Information Technology, Yunnan Normal University, Kunming 650500, Yunnan, China
| |
Collapse
|
43
|
Zhi Q, Jiang R, Yang X, Jin Y, Qi D, Wang K, Liu Y, Jiang J. Dithiine-linked metalphthalocyanine framework with undulated layers for highly efficient and stable H 2O 2 electroproduction. Nat Commun 2024; 15:678. [PMID: 38263147 PMCID: PMC10805717 DOI: 10.1038/s41467-024-44899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
Realization of stable and industrial-level H2O2 electroproduction still faces great challenge due large partly to the easy decomposition of H2O2. Herein, a two-dimensional dithiine-linked phthalocyaninato cobalt (CoPc)-based covalent organic framework (COF), CoPc-S-COF, was afforded from the reaction of hexadecafluorophthalocyaninato cobalt (II) with 1,2,4,5-benzenetetrathiol. Introduction of the sulfur atoms with large atomic radius and two lone-pairs of electrons in the C-S-C linking unit leads to an undulated layered structure and an increased electron density of the Co center for CoPc-S-COF according to a series of experiments in combination with theoretical calculations. The former structural effect allows the exposition of more Co sites to enhance the COF catalytic performance, while the latter electronic effect activates the 2e- oxygen reduction reaction (2e- ORR) but deactivates the H2O2 decomposition capability of the same Co center, as a total result enabling CoPc-S-COF to display good electrocatalytic H2O2 production performance with a remarkable H2O2 selectivity of >95% and a stable H2O2 production with a concentration of 0.48 wt% under a high current density of 125 mA cm-2 at an applied potential of ca. 0.67 V versus RHE for 20 h in a flow cell, representing the thus far reported best H2O2 synthesis COFs electrocatalysts.
Collapse
Affiliation(s)
- Qianjun Zhi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rong Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yunpeng Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, China.
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
44
|
Li X, Yang S, Xu Q. Metal-Free Covalent Organic Frameworks for the Oxygen Reduction Reaction. Chemistry 2024; 30:e202302997. [PMID: 37823329 DOI: 10.1002/chem.202302997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
The oxygen reduction reaction (ORR) is the key reaction in metal air and fuel cells. Among the catalysts that promote ORR, carbon-based metal-free catalysts are getting more attention because of their maximum atom utilization, effective active sites and satisfactory catalytic activity and stability. However, the pyrolysis synthesis of these carbons resulted in disordered porosities and uncontrolled catalytic sites, which hindered us in realizing the catalysts' design, the optimization of catalyst performance and the elucidation of structure-property relationship at the molecular level. Covalent organic frameworks (COFs) constructed with designable building blocks have been employed as metal-free electrocatalysts for the ORR due to their controlled skeletons, tailored pores size and environments, as well as well-defined location and kinds of catalytic sites. In this Concept article, the development of metal-free COFs for the ORR is summarized, and different strategies including skeletons regulation, linkages engineering and edge-sites modulation to improve the catalytic selectivity and activity are discussed. Furthermore, this Concept provides prospectives for designing and constructing powerful electrocatalysts based on the catalytic COFs.
Collapse
Affiliation(s)
- Xuewen Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China
| | - Shuai Yang
- School of Physical Science and Technology, Shanghai Tech University, 201210, Shanghai, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China
| |
Collapse
|
45
|
Li ZM, Zhang CQ, Liu C, Zhang HW, Song H, Zhang ZQ, Wei GF, Bao XJ, Yu CZ, Yuan P. High-efficiency Electroreduction of O 2 into H 2 O 2 over ZnCo Bimetallic Triazole Frameworks Promoted by Ligand Activation. Angew Chem Int Ed Engl 2024; 63:e202314266. [PMID: 37940614 DOI: 10.1002/anie.202314266] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Co-based metal-organic frameworks (MOFs) as electrocatalysts for two-electron oxygen reduction reaction (2e- ORR) are highly promising for H2 O2 production, but suffer from the intrinsic activity-selectivity trade-off. Herein, we report a ZnCo bimetal-triazole framework (ZnCo-MTF) as high-efficiency 2e- ORR electrocatalysts. The experimental and theoretical results demonstrate that the coordination between 1,2,3-triazole and Co increases the antibonding-orbital occupancy on the Co-N bond, promoting the activation of Co center. Besides, the adjacent Zn-Co sites on 1,2,3-triazole enable an asymmetric "side-on" adsorption mode of O2 , favoring the reduction of O2 molecules and desorption of OOH* intermediate. By virtue of the unique ligand effect, the ZnCo-MTF exhibits a 2e- ORR selectivity of ≈100 %, onset potential of 0.614 V and H2 O2 production rate of 5.55 mol gcat -1 h-1 , superior to the state-of-the-art zeolite imidazole frameworks. Our work paves the way for the design of 2e- ORR electrocatalysts with desirable coordination and electronic structure.
Collapse
Affiliation(s)
- Zi-Meng Li
- College of Chemical Engineering, National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, China
| | - Chao-Qi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Hong-Wei Zhang
- College of Chemical Engineering, National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Zhi-Qiang Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guang-Feng Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiao-Jun Bao
- College of Chemical Engineering, National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Cheng-Zhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Pei Yuan
- College of Chemical Engineering, National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| |
Collapse
|
46
|
Zhang P, Liu Y, Liu S, Zhou L, Wu X, Han G, Liu T, Sun K, Li B, Jiang J. Precise Design and Modification Engineering of Single-Atom Catalytic Materials for Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305782. [PMID: 37718497 DOI: 10.1002/smll.202305782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Indexed: 09/19/2023]
Abstract
Due to their unique electronic and structural properties, single-atom catalytic materials (SACMs) hold great promise for the oxygen reduction reaction (ORR). Coordinating environmental and engineering strategies is the key to improving the ORR performance of SACMs. This review summarizes the latest research progress and breakthroughs of SACMs in the field of ORR catalysis. First, the research progress on the catalytic mechanism of SACMs acting on ORR is reviewed, including the latest research results on the origin of SACMs activity and the analysis of pre-adsorption mechanism. The study of the pre-adsorption mechanism is an important breakthrough direction to explore the origin of the high activity of SACMs and the practical and theoretical understanding of the catalytic process. Precise coordination environment modification, including in-plane, axial, and adjacent site modifications, can enhance the intrinsic catalytic activity of SACMs and promote the ORR process. Additionally, several engineering strategies are discussed, including multiple SACMs, high loading, and atomic site confinement. Multiple SACMs synergistically enhance catalytic activity and selectivity, while high loading can provide more active sites for catalytic reactions. Overall, this review provides important insights into the design of advanced catalysts for ORR.
Collapse
Affiliation(s)
- Pengxiang Zhang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Limin Zhou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Guosheng Han
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| |
Collapse
|
47
|
Wang N, Ma S, Zhang R, Wang L, Wang Y, Yang L, Li J, Guan F, Duan J, Hou B. Regulating N Species in N-Doped Carbon Electro-Catalysts for High-Efficiency Synthesis of Hydrogen Peroxide in Simulated Seawater. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302446. [PMID: 37767950 PMCID: PMC10625060 DOI: 10.1002/advs.202302446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Electrochemical oxygen reduction reaction (ORR) is an attractive and alternative route for the on-site production of hydrogen peroxide (H2 O2 ). The electrochemical synthesis of H2 O2 in neutral electrolyte is in early studying stage and promising in ocean-energy application. Herein, N-doped carbon materials (N-Cx ) with different N types are prepared through the pyrolysis of zeolitic imidazolate frameworks. The N-Cx catalysts, especially N-C800 , exhibit an attracting 2e- ORR catalytic activity, corresponding to a high H2 O2 selectivity (≈95%) and preferable stability in 0.5 m NaCl solution. Additionally, the N-C800 possesses an attractive H2 O2 production amount up to 631.2 mmol g-1 h-1 and high Faraday efficiency (79.8%) in H-type cell. The remarkable 2e- ORR electrocatalytic performance of N-Cx catalysts is associated with the N species and N content in the materials. Density functional theory calculations suggest carbon atoms adjacent to graphitic N are the main catalytic sites and exhibit a smaller activation energy, which are more responsible than those in pyridinic N and pyrrolic N doped carbon materials. Furthermore, the N-C800 catalyst demonstrates an effective antibacterial performance for marine bacteria in simulated seawater. This work provides a new insight for electro-generation of H2 O2 in neutral electrolyte and triggers a great promise in ocean-energy application.
Collapse
Affiliation(s)
- Nan Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
| | - Shaobo Ma
- Science Center for Material Creation and Energy ConversionInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237China
| | - Ruiyong Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
| | - Lifei Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
| | - Yanan Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
| | - Lihui Yang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
| | - Jianhua Li
- CAS Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
| | - Fang Guan
- CAS Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
| | - Jizhou Duan
- CAS Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
| | - Baorong Hou
- CAS Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
| |
Collapse
|
48
|
Ali R, Patra T, Wirth T. Alkene reactions with superoxide radical anions in flow electrochemistry. Faraday Discuss 2023; 247:297-301. [PMID: 37475579 DOI: 10.1039/d3fd00050h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Alkenes were cleaved to ketones by using dioxygen in an electrochemical flow set-up. The pressurised system allowed efficient gas-liquid mixing with a stabilised flow. This mild and straightforward approach avoids the use of transition metals and harsh oxidants.
Collapse
Affiliation(s)
- Rojan Ali
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK.
| | - Tuhin Patra
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK.
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK.
| |
Collapse
|
49
|
Zhang L, Jin N, Yang Y, Miao XY, Wang H, Luo J, Han L. Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review. NANO-MICRO LETTERS 2023; 15:228. [PMID: 37831204 PMCID: PMC10575848 DOI: 10.1007/s40820-023-01196-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023]
Abstract
Single-atom catalysts (SACs) have garnered increasingly growing attention in renewable energy scenarios, especially in electrocatalysis due to their unique high efficiency of atom utilization and flexible electronic structure adjustability. The intensive efforts towards the rational design and synthesis of SACs with versatile local configurations have significantly accelerated the development of efficient and sustainable electrocatalysts for a wide range of electrochemical applications. As an emergent coordination avenue, intentionally breaking the planar symmetry of SACs by adding ligands in the axial direction of metal single atoms offers a novel approach for the tuning of both geometric and electronic structures, thereby enhancing electrocatalytic performance at active sites. In this review, we briefly outline the burgeoning research topic of axially coordinated SACs and provide a comprehensive summary of the recent advances in their synthetic strategies and electrocatalytic applications. Besides, the challenges and outlooks in this research field have also been emphasized. The present review provides an in-depth and comprehensive understanding of the axial coordination design of SACs, which could bring new perspectives and solutions for fine regulation of the electronic structures of SACs catering to high-performing energy electrocatalysis.
Collapse
Affiliation(s)
- Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Na Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Yibing Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Xiao-Yong Miao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hua Wang
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China.
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
50
|
Huang S, Zhang B, Sun H, Hu H, Wang J, Duan F, Zhu H, Du M, Lu S. Constructing single atom sites on bipyridine covalent organic frameworks for selective electrochemical production of H 2O 2. Chem Commun (Camb) 2023; 59:10424-10427. [PMID: 37555232 DOI: 10.1039/d3cc02948d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
We developed a series of single atom catalysts (SACs) anchored on bipyridine-rich COFs. By tuning the active metal center, the optimal Py-Bpy-COF-Zn shows the highest selectivity of 99.1% and excellent stability toward H2O2 production via oxygen reduction, which can be attributed to the high *OOH dissociation barrier indicated by the theoretical calculations. As a proof of concept, it acts as a cathodic catalyst in a homemade Zn-air battery, together with efficient wastewater treatment.
Collapse
Affiliation(s)
- Shaoda Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Materials Science and Engineering, Natural Sciences and Science Education in National Institute of Education, Nanyang Technological University, Singapore, 637616, Singapore
| | - Bingyan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Huimin Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Hongyin Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Jinyan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| |
Collapse
|