1
|
Zhang Z, Shang L. Self-Assembled Hydroxypropyl Celluloses With Structural Colors for Biomedical Applications. SMART MEDICINE 2025; 4:e70004. [PMID: 40303870 PMCID: PMC12010047 DOI: 10.1002/smmd.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/28/2025] [Accepted: 03/16/2025] [Indexed: 05/02/2025]
Abstract
Hydroxypropyl cellulose (HPC), a cellulose derivative with biocompatibility, edibility, and exceptional solubility in many polar solvents, holds significant potential for biomedical applications. Within a specific concentration range, HPC undergoes self-assembly to form cholesteric liquid crystals, which display distinct structural colors. These colors result from the interaction between incident light and the periodic nano-architecture of HPC, providing long-lasting visual effects that can be dynamically adjusted by factors such as concentration, temperature, and functional additives. This review includes the mechanisms underlying the genesis of structural colors and the regulation of HPCs while summarizing advanced techniques for fabricating HPC-based materials with diverse configurations. Furthermore, through representative examples, we highlight the multifaceted applications of these materials in sensors, bionic skins, drug delivery, and anti-counterfeiting labels. We also propose strategies to address current research and application challenges with the goal of exploring the potential of structural color HPCs for scientific breakthroughs and societal well-being. We hope this review catalyzes HPC-based structural color materials' advancement and future biomedical applications.
Collapse
Affiliation(s)
- Zhuohao Zhang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Du Y, Yang L, Gong J, Hu J, Liu J, Zhang S, Qu S, Chen J, Lee HS, Xu W. A Monolithic Neuromorphic Device for In-Sensor Tactile Computing. J Phys Chem Lett 2025:5312-5320. [PMID: 40393949 DOI: 10.1021/acs.jpclett.5c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
To emulate the tactile perception of human skin, the integration of tactile sensors with neuromorphic devices has emerged as a promising approach to achieve near-sensor information processing. Here, we present a monolithic electronic device that seamlessly integrates tactile perception and neuromorphic computing functionalities within a single architecture, with synaptic plasticity directly tunable by tactile inputs. This unique capability stems from our engineered device structure employing SnO2 nanowires as the conductive channel coupled with a pressure-sensitive chitosan layer ionic gating layer. The device demonstrates pressure-dependent memory retention and learning behaviors, effectively mimicking the enhanced cognitive functions observed in humans under stressful conditions. Furthermore, the integrated design exhibits potential for implementing bioinspired electronic systems requiring adaptive tactile information processing.
Collapse
Affiliation(s)
- Yi Du
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin,College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, China
- Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Lu Yang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin,College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, China
- Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Jiangdong Gong
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin,College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, China
- Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Jiahe Hu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin,College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, China
- Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Jiaqi Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin,College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, China
- Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Song Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin,College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, China
- Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Shangda Qu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin,College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, China
- Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Jiaxin Chen
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin,College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, China
- Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Hwa Sung Lee
- Department of Materials Science and Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin,College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, China
- Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| |
Collapse
|
3
|
Wang X, Zhou Y, Li X, Zou M, Zhang Q, Xu W, Feng Y, Zhang Y, You R. Silk Fibroin-Based Antifreezing and Highly Conductive Hydrogel for Sensing at Ultralow Temperature. ACS Sens 2025; 10:2297-2308. [PMID: 40033681 DOI: 10.1021/acssensors.4c03642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Hydrogels with a combination of mechanical flexibility and good electrical conductivity hold significant potential for various applications. Nonetheless, it is inevitable that water-based conductive hydrogels lose their elasticity and conductivity at extremely low temperatures, severely limiting their utilization in ultralow temperature environments, such as those for Arctic/Antarctic exploration. In this study, we developed a conductive hydrogel based on a double network cross-linking strategy that incorporated silk fibroin (SF) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) within a lithium bromide (LiBr) solution, which shows exceptional antifreezing (-108 °C freezing point) and excellent conductivity (16.33 S m-1). The obtained SF/PEDOT:PSS/LiBr (SPL) hydrogel shows a stable and reliable response to a wide range of deformations (compression: 0.5-60%; tensile: 1.0-100%), with a short response/recovery time of approximately 70 ms. More importantly, the hydrogel displays well-maintained conductivity, robust mechanical properties, and dependable sensing capabilities, even under temperatures as low as -80 °C. For proof of concept, we demonstrated the applications of the SPL hydrogel in detecting body movements, monitoring climate conditions, and ensuring information security in ultralow temperature environments. The results indicate that the antifreezing hydrogel is a promising candidate for fabricating flexible sensors, particularly well-suited for use in challenging ultralow temperature scenarios.
Collapse
Affiliation(s)
- Xiaotian Wang
- State Key Laboratory of New Textile Materials and Advanced Processing, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yaoyao Zhou
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiufang Li
- State Key Laboratory of New Textile Materials and Advanced Processing, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Mei Zou
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yanfei Feng
- State Key Laboratory of New Textile Materials and Advanced Processing, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Renchuan You
- State Key Laboratory of New Textile Materials and Advanced Processing, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
4
|
Liu C, Zhao Q, Cao Y, Li X, Peng K, Fu F. Bioinspired Structural Color Hydrogel Skin from Nonclose-Packed Colloidal Crystal Arrays for Epidermal Sensing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16658-16667. [PMID: 40056106 DOI: 10.1021/acsami.5c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Developing multifunctional structural color hydrogel skin without sacrificing the unique periodic structure of photonic crystals is still a challenge due to the photonic bandgap limitation. Taking advantage of the synergistic effect of electrostatic repulsion and electronic conductivity, an intelligent structural color hydrogel skin with electrical and photonic sensing capabilities has been developed by doping MXene (Ti3C2Tx) nanosheets and adhesive functional groups (nucleobases) into colloidal particle solutions. The introduction of MXene nanosheets could improve both the stability and electrical conductivity of the colloidal particle solutions, resulting in a conductive hydrogel with bright structural colors. With the help of functional groups of nucleobases, the resulting structural color hydrogel was also endowed with high biocompatibility and strong adhesion to different substrates, including the wet surfaces of tissues. It was demonstrated that the structural color hydrogel can not only realize visual sensing of tiny limb movements but also provide stable electrical sensing signals. The intelligent structural color hydrogel can be integrated into a capacitor device as a hydrogel electronic skin to simulate the sensory function of human skin. The results showed that such hydrogel skin can simulate the touch of human skin and perceive tiny movements on the body surface with both electrical and photonic signals. These features of the multifunctional structural color hydrogels make them potentially excellent value in bioinspired hydrogel skin electronics.
Collapse
Affiliation(s)
- Changyi Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qingyu Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yucheng Cao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaohui Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kexin Peng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fanfan Fu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
5
|
Choi K, Lee G, Lee MG, Hwang HJ, Lee K, Lee Y. Bio-Inspired Ionic Sensors: Transforming Natural Mechanisms into Sensory Technologies. NANO-MICRO LETTERS 2025; 17:180. [PMID: 40072809 PMCID: PMC11904071 DOI: 10.1007/s40820-025-01692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Many natural organisms have evolved unique sensory systems over millions of years that have allowed them to detect various changes in their surrounding environments. Sensory systems feature numerous receptors-such as photoreceptors, mechanoreceptors, and chemoreceptors-that detect various types of external stimuli, including light, pressure, vibration, sound, and chemical substances. These stimuli are converted into electrochemical signals, which are transmitted to the brain to produce the sensations of sight, touch, hearing, taste, and smell. Inspired by the biological principles of sensory systems, recent advancements in electronics have led to a wide range of applications in artificial sensors. In the current review, we highlight recent developments in artificial sensors inspired by biological sensory systems utilizing soft ionic materials. The versatile characteristics of these ionic materials are introduced while focusing on their mechanical and electrical properties. The features and working principles of natural and artificial sensing systems are investigated in terms of six categories: vision, tactile, hearing, gustatory, olfactory, and proximity sensing. Lastly, we explore several challenges that must be overcome while outlining future research directions in the field of soft ionic sensors.
Collapse
Affiliation(s)
- Kyongtae Choi
- Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Gibeom Lee
- Department of Mechanical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Republic of Korea
| | - Min-Gyu Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Jae Hwang
- Department of Mechanical Design Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongsangbuk-do, 39177, Republic of Korea
| | - Kibeom Lee
- Department of Mechanical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
| | - Younghoon Lee
- Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
6
|
Shi M, Liang Y, Zhang C, Li N, Li Y, Shi X, Qin Z, Jiao T. Cellulose nanofibril enhanced ionic conductive hydrogels with high stretchability, high toughness and self-adhesive ability for flexible strain sensors. Int J Biol Macromol 2025; 293:139297. [PMID: 39736292 DOI: 10.1016/j.ijbiomac.2024.139297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Preparation of ion-conductive hydrogels with excellent mechanics, good conductivity and adhesiveness is promising for flexible sensors, but remains a challenge. Here, we prepare a self-adhesive and ion-conductive hydrogel by introducing cellulose nanofibers (CNF) and ZnSO4 into a covalently-crosslinked poly (acrylamide-co-2-acrylamide-2-methyl propane sulfonic acid) (P(AM-co-AMPS)) network. Owing to the hydrogen bonding and metal coordination interactions among P(AM-co-AMPS) chains, CNF, and Zn2+, the resulting P(AM-co-AMPS)/CNF/ZnSO4 hydrogel exhibits high stretchability (1092 %), high toughness (244 kJ m-3), and skin-like elasticity (3.53 kPa). Moreover, the hydrogel has strong adhesion with different substrates by multiple non-covalent interfacial interactions. The SO3- on AMPS and COO- on CNF largely promptes the ionic migration (Zn2+, SO42-) through electrostatic interaction and hydrogen bonding, thus the hydrogel has high ion conductivity (5.85 S m-1). Finally, this hydrogel has high strain-sensitivity in a wide strain range, exhibiting great potential applications in wearable sensors.
Collapse
Affiliation(s)
- Mengqian Shi
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Ya Liang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Chengyu Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Na Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Yunfeng Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Xiaojiao Shi
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Zhihui Qin
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
7
|
Zhang W, Dai S, Wu F, Pan S, Su J, Wu P, Cui L. Highly Efficient Color Tuning of Lithium Niobate Nanostructures on Flexible Substrate. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1006. [PMID: 40077232 PMCID: PMC11901165 DOI: 10.3390/ma18051006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
Nanostructures based on flexible material are essential for modulating reflected colors by actively changing the unit structure. However, current nanostructures face challenges in achieving active and efficient modulation across a broader spectral range. Here, we propose a stretchable color management method. The structure consists of a polydimethylsiloxane (PDMS) flexible substrate and cross-shaped lithium niobate (LiNbO3). This study achieves reflection color changes, continuous adjustment, and automatic switching of solar spectrum reflectance by optimizing the geometric structure. It shows that the spectral tuning range is larger, benefiting from the special nanostructures and the stretchability of PDMS, which result in a larger tunable period range and a maximum wavelength shift of nearly 180 nm. Moreover, this unique design has been effectively balanced and optimized to respond to different polarization waves. Finally, the sensing characteristics of the nanostructure are studied through its response to changes in the refractive index (RI). The results demonstrate a method with implications for flexible electronic devices, color generation, and biochemical sensing, contributing to progress in flexible wearable technology and green building.
Collapse
Affiliation(s)
- Weiming Zhang
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University, Quanzhou 362000, China; (W.Z.); (S.D.); (F.W.); (S.P.); (J.S.)
| | - Shifeng Dai
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University, Quanzhou 362000, China; (W.Z.); (S.D.); (F.W.); (S.P.); (J.S.)
| | - Fengji Wu
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University, Quanzhou 362000, China; (W.Z.); (S.D.); (F.W.); (S.P.); (J.S.)
| | - Shifa Pan
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University, Quanzhou 362000, China; (W.Z.); (S.D.); (F.W.); (S.P.); (J.S.)
| | - Jianzhi Su
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University, Quanzhou 362000, China; (W.Z.); (S.D.); (F.W.); (S.P.); (J.S.)
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University, Quanzhou 362000, China; (W.Z.); (S.D.); (F.W.); (S.P.); (J.S.)
| | - Lina Cui
- College of Textiles and Apparel, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
8
|
Lu D, Fang Z, Qiao Z. Mechanochromic and Conductive Gels Based on Cellulose Nanocrystals for Bioinspired Sensing. NANO LETTERS 2025; 25:2850-2857. [PMID: 39917857 DOI: 10.1021/acs.nanolett.4c06047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Soft mechanochromatic materials hold great promise for wearable sensing technologies. Bioinspired photonic crystal structures assembled from cellulose nanocrystals (CNCs) enable dynamic light modulation, providing a vibrant and easily controlled optical platform for real-time detection. This study constructed a CNC-based mechanochromic and conductive gel with a dual-signal response featuring interactive optical and electrical feedback. The mechanical response is achieved through the integration of encapsulating, interpenetration, and crystallization of a soft biocompatible poly(vinyl alcohol) (PVA) sandwich matrix, which propels the deformation of the encased CNC photonic crystal core, leading to dynamic changes in conductivity and color. The material exhibits the capability of detecting dynamic tensile/compressive strains (up to 130%/49% along with a visually discernible color shifting from red to blue) and recognizing finger bending and specific spoken words, which showcases its potential in pliable dual-signal sensing in human health monitoring and strain detection.
Collapse
Affiliation(s)
- Di Lu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
| | - Zhen Fang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
| | - Zhuhui Qiao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| |
Collapse
|
9
|
Zhan J, Kong Y, Zhou X, Gong H, Chen Q, Zhang X, Zhang J, Wang Y, Huang W. 3D printing of wearable sensors with strong stretchability for myoelectric rehabilitation. Biomater Sci 2025; 13:1021-1032. [PMID: 39815832 DOI: 10.1039/d4bm01434k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Myoelectric biofeedback (EMG-BF) is a widely recognized and effective method for treating movement disorders caused by impaired nerve function. However, existing EMG-feedback devices are almost entirely located in large medical centers, which greatly limits patient accessibility. To address this critical limitation, there is an urgent need to develop a portable, cost-effective, and real-time monitoring device that can transcend the existing barriers to the treatment of EMG-BF. Our proposed solution leverages polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) as core materials, ingeniously incorporating wood pulp nano celluloses (CNF-P)-Na+ to enhance the structural integrity. Additionally, the inclusion of nano-silica particles further augments the sensor's capabilities, enabling the creation of a stress-sensitive mineral ionization hydrogel sensor. This innovative approach not only capitalizes on the superior rheological properties of the materials but also, through advanced 3D printing technology, facilitates the production of a micro-scale structural hydrogel sensor with unparalleled sensitivity, stability, and durability. The potential of this sensor in the realm of human motion detection is nothing short of extraordinary. This development can potentially improve the treatment landscape for EMG-BF offering patients more convenient and efficient therapeutic options.
Collapse
Affiliation(s)
- Jianan Zhan
- Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China.
| | - Yueying Kong
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001, Hengyang, China
| | - Xi Zhou
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Haihuan Gong
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Qiwei Chen
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Xianlin Zhang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Jiankai Zhang
- Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China.
| | - Yilin Wang
- Department of Human Anatomy, College of Basic Medical Science, China Medical University, 110122, Shenyang, China.
| | - Wenhua Huang
- Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001, Hengyang, China
| |
Collapse
|
10
|
Lv Q, Li Q, Cao P, Wei C, Li Y, Wang Z, Wang L. Designing Silk Biomaterials toward Better Future Healthcare: The Development and Application of Silk-Based Implantable Electronic Devices in Clinical Diagnosis and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411946. [PMID: 39686818 DOI: 10.1002/adma.202411946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/26/2024] [Indexed: 12/18/2024]
Abstract
Implantable medical electronic devices (IMEDs) have attracted great attention and shown versatility for solving clinical problems ranging from real-time monitoring of physiological/ pathological states to electrical stimulation therapy and from monitoring brain cell activity to deep brain stimulation. The ongoing challenge is to select appropriate materials in target device configuration for biomedical applications. Currently, silk-based biomaterials have been developed for the design of diagnostic and therapeutic electronic devices due to their excellent properties and abundant active sites in the structure. Herein, the aim is to summarize the structural characteristics, physicochemical properties, and bioactivities of natural silk biomaterials as well as their derived materials, with a particular focus on the silk-based implantable biomedical electronic devices, such as implantable devices for invasive brain-computer interfaces, neural recording, and in vivo electrostimulation. In addition, future opportunities and challenges are also envisioned, hoping to spark the interests of researchers in interdisciplinary fields such as biomaterials, clinical medicine, and electronics.
Collapse
Affiliation(s)
- Qiying Lv
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qilin Li
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Cao
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chunyu Wei
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuyu Li
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
11
|
Jeon MJ, Randhawa A, Kim H, Dutta SD, Ganguly K, Patil TV, Lee J, Acharya R, Park H, Seol Y, Lim KT. Electroconductive Nanocellulose, a Versatile Hydrogel Platform: From Preparation to Biomedical Engineering Applications. Adv Healthc Mater 2025; 14:e2403983. [PMID: 39668476 DOI: 10.1002/adhm.202403983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/18/2024] [Indexed: 12/14/2024]
Abstract
Nanocelluloses have garnered significant attention recently in the attempt to create sustainable, improved functional materials. Nanocellulose possesses wide varieties, including rod-shaped crystalline cellulose nanocrystals and elongated cellulose nanofibers, also known as microfibrillated cellulose. In recent times, nanocellulose has sparked research into a wide range of biomedical applications, which vary from developing 3D printed hydrogel to preparing structures with tunable characteristics. Owing to its multifunctional properties, different categories of nanocellulose, such as cellulose nanocrystals, cellulose nanofibers, and bacterial nanocellulose, as well as their unique properties are discussed here. Here, different methods of nanocellulose-based hydrogel preparation are covered, which include 3D printing and crosslinking methods. Subsequently, advanced nanocellulose-hydrogels addressing conductivity, shape memory, adhesion, and structural color are highlighted. Finally, the application of nanocellulose-based hydrogel in biomedical applications is explored here. In summary, numerous perspectives on novel approaches based on nanocellulose-based research are presented here.
Collapse
Affiliation(s)
- Myoung Joon Jeon
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Youjin Seol
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
12
|
Borah R, O'Sullivan J, Suku M, Spurling D, Diez Clarke D, Nicolosi V, Caldwell MA, Monaghan MG. Electrically Conductive Injectable Silk/PEDOT: PSS Hydrogel for Enhanced Neural Network Formation. J Biomed Mater Res A 2025; 113:e37859. [PMID: 39719872 DOI: 10.1002/jbm.a.37859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
With no effective treatments for functional recovery after injury, spinal cord injury (SCI) remains one of the unresolved healthcare challenges. Human induced pluripotent stem cell (hiPSC) transplantation is a versatile patient-specific regenerative approach for functional recovery after SCI. Injectable electroconductive hydrogel (ECH) can further enhance the cell transplantation efficacy through a minimally invasive manner as well as recapitulate the native bioelectrical microenvironment of neural tissue. Given these considerations, we report a novel ECH prepared through self-assembly facilitated in situ gelation of natural silk fibroin (SF) derived from mulberry Bombyx mori silk and electrically conductive PEDOT:PSS. PEDOT:PSS was pre-stabilized to prevent the potential delamination of its hydrophilic PSS chain under aqueous environment using 3% (v/v) (3-glycidyloxypropyl)trimethoxysilane (GoPS) and 3% (w/v) poly(ethylene glycol)diglycidyl ether (PeGDE). The resultant ECH formulations are easily injectable with standard hand force with flow point below 100 Pa and good shear-thinning properties. The ECH formulations with unmodified and GoPS-modified PEDOT:PSS, that is, SF/PEDOT and SF/PEDOTGoP maintain comparable elastic modulus to spinal cord (~10-60 kPa) under physiological condition, indicating their flexibility. The GoPS-modified ECHs also display improved structural recoverability (~70%-90%) as compared to the unmodified versions of the ECHs (~30%-80%), as indicated by the three interval time thixotropy (3ITT) test. Additionally, these ECHs possess electrical conductivity in the range of ~0.2-1.2 S/m comparable to spinal cord (1-10 S/m), indicating their ability to mimic native bioelectrical environment. Approximately 80% or more cell survival was observed when hiPSC-derived cortical neurons and astrocytes were encapsulated within these ECHs. These ECHs support the maturation of cortical neurons when embedded for 7 days, fostering the development of a complex, interconnected network of long axonal processes and promoting synaptogenesis. These results underline the potential of silk ECHs in cell transplantation therapy for spinal cord regeneration.
Collapse
Affiliation(s)
- Rajiv Borah
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bio-Engineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Julia O'Sullivan
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Meenakshi Suku
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Dahnan Spurling
- Advanced Materials and Bio-Engineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Daniel Diez Clarke
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Valeria Nicolosi
- Advanced Materials and Bio-Engineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Maeve A Caldwell
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Michael G Monaghan
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bio-Engineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| |
Collapse
|
13
|
Ye C, Zhang H, Yang Y, Shan Y, Fu J, Gao W, Ren J, Cao L, Ling S. Sustainable Silk Fibroin Ionic Touch Screens for Flexible Biodegradable Electronics with Integrated AI and IoT Functionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412972. [PMID: 39648667 DOI: 10.1002/adma.202412972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/23/2024] [Indexed: 12/10/2024]
Abstract
The increasing prevalence of electronic devices has led to a significant rise in electronic waste (e-waste), necessitating the development of sustainable materials for flexible electronics. In this study, silk fibroin ionic touch screen (SFITS) is introduced, a new platform integrating natural silk fibroin (SF) with ionic conductors to create highly elastic, environmentally stable, and multifunctional touch interfaces. Through a humidity-induced crystallization strategy, the molecular structure of SF is precisely controlled to achieve a balanced combination of mechanical strength, electrical conductivity, and biodegradability. The assembly and operational reliability of SFITS are demonstrated under various environmental conditions, along with their reusability through green recycling methods. Additionally, the intelligent design and application of SFITS are explored by incorporating Internet of Things (IoT) and artificial intelligence (AI) technologies. This integration enables real-time touch sensing, handwriting recognition, and advanced human-computer interactions. The versatility of SFITS is further exemplified through applications in remote control systems, molecular model generation, and virtual reality interfaces. The findings highlight the potential of sustainable ionic conductors in next-generation flexible electronics, offering a path toward greener and more intelligent device designs.
Collapse
Affiliation(s)
- Chao Ye
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Hao Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Yunhao Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Yicheng Shan
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Junhao Fu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Wenli Gao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Leitao Cao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
14
|
Hu Z, Liang Y, Fan S, Niu Q, Geng J, Huang Q, Hsiao BS, Chen H, Yao X, Zhang Y. Flexible Neural Interface From Non-Transient Silk Fibroin With Outstanding Conformality, Biocompatibility, and Bioelectric Conductivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410007. [PMID: 39308235 DOI: 10.1002/adma.202410007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Indexed: 11/16/2024]
Abstract
Silk fibroin (SF) with good biocompatibility can enable an efficient and safe implementation of neural interfaces. However, it has been difficult to achieve a robust integration of patterned conducting materials (multichannel electrodes) on flexible SF film substrates due to the absence of some enduring interactions. In this study, a thermo-assisted pattern-transfer technique is demonstrated that can facilely transfer a layer of pre-set poly(3,4-ethylenedioxythiophene) (PEDOT) onto the flexible SF substrate through an interpenetrating network of 2 polymer chains, achieving a desired substrate/conductor intertwined interface with good flexibility (≈33 MPa), conductivity (386 S cm-1) and stability in liquid state over 4 months simultaneously. Importantly, this technique can be combined with ink-jet printing to prepare a multichannel SF-based neural interface for the electrocorticogram (ECoG) recording and inflammation remission in rat models. The SF-based neural interface with satisfied tissue conformability, biocompatibility, and bioelectric conductivity is a promising ECoG acquisition tool, where the demonstrated approach can also be useful to develop other SF-based flexible bioelectronics.
Collapse
Affiliation(s)
- Zhanao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuqing Liang
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qianqian Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jingjing Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qimei Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA
| | - Hao Chen
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
15
|
Zhao W, Li Y, Tian J, Cui Q, Tang C, Yin F, Xu L, Cheng S, Fei X. Highly Stretchable Sensitive Multiscale Hydrogel Inspired by Biological Muscles for Wearing Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58313-58325. [PMID: 39422652 DOI: 10.1021/acsami.4c12118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Hydrogels have attracted substantial research interest for application in wearable electronics due to their stretchability, elasticity, and compliance. However, most hydrogels could not satisfy the application requirements for high-performance wearable sensors due to their poor sensitivity, low mechanical properties, and sensing detection range until this day. Inspired by the fascia in biological muscles, we propose a strategy to form entangled "clusters" through the dense entanglement between highly cross-linked elastic hydrogel microspheres and polymer segments, and prepared a multiscale hydrogel with high sensitivity and mechanical toughness. This strategy embedded highly swollen hydrogel microspheres (with different pore sizes) to act as the microregions of dense entanglement in the soft matrix to adjust the microstructure of multiscale gel. When pressure was applied, this structure could provide a fast response due to the stack layer formed by microspheres and soft matrix produced effective stress distribution, resulting in the outstanding sensitivity of the multiscale hydrogel (S = 1.1 kPa-1) in the pressure range of 0-50 kPa. The distinct microspheres functioning as microscale joint areas significantly augment energy dissipation, culminating in exceptional mechanical stability, ultrastretchability (≈1050%), and high strength of the multiscale hydrogel. The most notable progress was that the synthesized multiscale hydrogel not only combined the above advantages but also simultaneously solved multiple dilemmas of tedious synthesis steps, high cost, and poor durability. Besides, the multiscale hydrogel also had excellent antibacterial properties and biocompatibility, which enabled them to have large-scale application potential in wearable and implantable electronic devices. Our research could provide a universal approach to the creation of robust, flexible, wearable, and sensitive sensors, significantly increasing the uses of stress sensors in wearable technology.
Collapse
Affiliation(s)
- Wenhui Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, China
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qinqin Cui
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chenyang Tang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fawen Yin
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, China
| | - Longquan Xu
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, China
| | - Sheng Cheng
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, China
| | - Xu Fei
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, Liaoning Province 116034, China
| |
Collapse
|
16
|
Wen X, Zong S, Zhao Q, Wu J, Liu L, Wang K, Jiang J, Duan J. Environmentally stable and rapidly polymerized tin-tannin catalytic system hydroxyethyl cellulose hydrogel for wireless wearable sensing. Int J Biol Macromol 2024; 278:134696. [PMID: 39147350 DOI: 10.1016/j.ijbiomac.2024.134696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
In recent years, flexible sensors constructed mainly from hydrogels have played an indispensable role in several fields. However, the traditional hydrogel preparation process involves complex and time-consuming steps and the freezing or volatilization of water in the water gel in extreme environments greatly limits the further use of the sensor. Therefore, an ionic conductive hydrogel (SnHTD) was designed, which was composed of tannic acid (TA), metal ions Sn2+, hydroxyethyl cellulose (HEC), and acrylamide (AM) in a deep eutectic solvent (DES) and water binary solvent. It is worth noting that the gel time is shortened to less than 3 min by introducing the Sn-TA redox system. The addition of DES makes the hydrogel have a wide temperature tolerance range (-20 to 60 °C) and the ability to store for a long time (30 days). The introduction of HEC increased the tensile stress of hydrogel from 140.17 kPa to 219.89 kPa. Additionally, the hydrogel also has high conductivity, repeatable adhesion and UV shielding properties. In general, this research opens up a new way for room temperature polymerization of environmentally resistant hydrogel materials and effectively meets the growing demand for wireless wearable sensing.
Collapse
Affiliation(s)
- Xiaolu Wen
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Shiyu Zong
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Qian Zhao
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jingyu Wu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Liujun Liu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Kun Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jianxin Jiang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jiufang Duan
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
17
|
Asl ZR, Rezaee K, Ansari M, Zare F, Roknabadi MHA. A review of biopolymer-based hydrogels and IoT integration for enhanced diabetes diagnosis, management, and treatment. Int J Biol Macromol 2024; 280:135988. [PMID: 39322132 DOI: 10.1016/j.ijbiomac.2024.135988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/10/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
The prevalence of diabetes has been increasing globally, necessitating innovative approaches beyond conventional blood sugar monitoring and insulin control. Diabetes is associated with complex health complications, including cardiovascular diseases. Continuous Glucose Monitoring (CGM) devices, though automated, have limitations such as irreversibility and interference with bodily fluids. Hydrogel technologies provide non-invasive alternatives to traditional methods, addressing the limitations of current approaches. This review explores hydrogels as macromolecular biopolymeric materials capable of absorbing and retaining a substantial amount of water within their structure. Due to their high-water absorption properties, these macromolecules are utilized as coating materials for wound care and diabetes management. The study emphasizes the need for early diagnosis and monitoring, especially during the COVID-19 pandemic, where heightened attention to diabetic patients is crucial. Additionally, the article examines the role of the Internet of Things (IoT) and machine learning-based systems in enhancing diabetes management effectiveness. By leveraging these technologies, there is potential to revolutionize diabetes care, providing more personalized and proactive solutions. This review explores cutting-edge hydrogel-based systems as a promising avenue for diabetes diagnosis, management, and treatment, highlighting key biopolymers and technological integrations.
Collapse
Affiliation(s)
- Zahra Rahmani Asl
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Khosro Rezaee
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Fatemeh Zare
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
18
|
Shi X, Lee A, Yang B, Ning H, Liu H, An K, Liao H, Huang K, Wen J, Luo X, Zhang L, Gu B, Hu N. Machine Learning Assisted Electronic/Ionic Skin Recognition of Thermal Stimuli and Mechanical Deformation for Soft Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401123. [PMID: 38864344 PMCID: PMC11321626 DOI: 10.1002/advs.202401123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/16/2024] [Indexed: 06/13/2024]
Abstract
Soft robots have the advantage of adaptability and flexibility in various scenarios and tasks due to their inherent flexibility and mouldability, which makes them highly promising for real-world applications. The development of electronic skin (E-skin) perception systems is crucial for the advancement of soft robots. However, achieving both exteroceptive and proprioceptive capabilities in E-skins, particularly in terms of decoupling and classifying sensing signals, remains a challenge. This study presents an E-skin with mixed electronic and ionic conductivity that can simultaneously achieve exteroceptive and proprioceptive, based on the resistance response of conductive hydrogels. It is integrated with soft robots to enable state perception, with the sensed signals further decoded using the machine learning model of decision trees and random forest algorithms. The results demonstrate that the newly developed hydrogel sensing system can accurately predict attitude changes in soft robots when subjected to varying degrees of pressing, hot pressing, bending, twisting, and stretching. These findings that multifunctional hydrogels combine with machine learning to decode signals may serve as a basis for improving the sensing capabilities of intelligent soft robots in future advancements.
Collapse
Affiliation(s)
- Xuewei Shi
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401China
| | - Alamusi Lee
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401China
| | - Bo Yang
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401China
| | - Huiming Ning
- College of Aerospace EngineeringChongqing UniversityChongqing400044China
| | - Haowen Liu
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401China
| | - Kexu An
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401China
| | - Hansheng Liao
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401China
| | - Kaiyan Huang
- School of Manufacturing Science and EngineeringSouthwest University of Science and Technology59 Qinglong RoadMianyang621010China
| | - Jie Wen
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401China
| | - Xiaolin Luo
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300381China
| | - Lidan Zhang
- School of Basic MedicineChongqing Medical UniversityChongqing400042China
| | - Bin Gu
- School of Manufacturing Science and EngineeringSouthwest University of Science and Technology59 Qinglong RoadMianyang621010China
| | - Ning Hu
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401China
- State Key Laboratory of Reliability and Intelligence Electrical EquipmentHebei University of TechnologyTianjin300130China
- Key Laboratory of Advanced Intelligent Protective Equipment TechnologyMinistry of EducationHebei University of TechnologyTianjin300401China
| |
Collapse
|
19
|
Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402542. [PMID: 38754914 DOI: 10.1002/adma.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.
Collapse
Affiliation(s)
- Xichen Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Wenzheng Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Qunfu Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Jing Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Yujie Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Feili Lai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Hezhou Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
- Collaborative Innovation Center for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
20
|
Wu P, Guo Q, Liu J, Wang J. Water-Writing Pattern on PEDOT:PSS Inverse Opal Films through the Synergistic Effect of Morphology/Conformation Transition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39876-39885. [PMID: 39031057 DOI: 10.1021/acsami.4c08230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has received tremendous attention in the energy field owing to its high conductivity, ease of processing, biocompatibility, and low cost-effectiveness. Combining PEDOT:PSS and photonic crystals (PCs) is expected to promote the development of high-performance optoelectronic devices. The conductivity of PEDOT:PSS at present can only be measured through specific equipment, and the visualization of optoelectronic integration still remains a challenge. In this study, various patterned PEDOT:PSS inverse opal (PEDOT:PSS-IO) films are constructed by associating the conductivity of PEDOT:PSS with the structural color of PCs based on the synergistic effect of morphology/conformation transition, which achieves the visualization of optoelectronic integration. Morphology transition of the PEDOT:PSS-IO film alters from the interconnected to gradual closure pore structure, accompanied by an unusual blueshift of the stopband, which can be attributed to the collapse/reconstruction of the frame of the PEDOT:PSS-IO film. Conformation transition of PEDOT chains converts from the benzene to quinone structure, accompanying an enhancement of conductivity, which resulted from PSS removal and secondary doping. Under the induction of a polar solvent, the PEDOT:PSS-IO film brings the changes in optical/electrical dual-signals based on the synergistic effect of morphology/conformation transition. This phenomenon can be developed for the creation of a conductive PC pattern by using a polar solvent (water) as an ink, which is beneficial for the visualization of optoelectronic integration. This work provides essential significance for the fabrication of functional optoelectronic devices.
Collapse
Affiliation(s)
- Pingping Wu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qilin Guo
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junchao Liu
- School of Sciences, Xi'an University of Technology, Xi'an 710048, China
| | - Jingxia Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
21
|
Ghosh A, Kumar S, Singh PP, Nandi S, Mandal M, Pradhan D, Khatua BB, Das RK. Dynamic Metal-Coordinated Adhesive and Self-Healable Antifreezing Hydrogels for Strain Sensing, Flexible Supercapacitors, and EMI Shielding Applications. ACS OMEGA 2024; 9:33204-33223. [PMID: 39100348 PMCID: PMC11292641 DOI: 10.1021/acsomega.4c04851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024]
Abstract
Dynamic metal-coordinated adhesive and self-healable hydrogel materials have garnered significant attention in recent years due to their potential applications in various fields. These hydrogels can form reversible metal-ligand bonds, resulting in a network structure that can be easily broken and reformed, leading to self-healing capabilities. In addition, these hydrogels possess excellent mechanical strength and flexibility, making them suitable for strain-sensing applications. In this work, we have developed a mechanically robust, highly stretchable, self-healing, and adhesive hydrogel by incorporating Ca2+-dicarboxylate dynamic metal-ligand cross-links in combination with low density chemical cross-links into a poly(acrylamide-co-maleic acid) copolymer structure. Utilizing the reversible nature of the Ca2+-dicarboxylate bond, the hydrogel exhibited a tensile strength of up to ∼250 kPa and was able to stretch to 15-16 times its original length. The hydrogel exhibited a high fracture energy of ∼1500 J m-2, similar to that of cartilage. Furthermore, the hydrogel showed good recovery, fatigue resistance, and fast self-healing properties due to the reversible Ca2+-dicarboxylate cross-links. The presence of Ca2+ resulted in a highly conductive hydrogel, which was utilized to design a flexible resistive strain sensor. This hydrogel can strongly adhere to different substrates, making it advantageous for applications in flexible electronic devices. When adhered to human body parts, the hydrogel can efficiently detect limb movements. The hydrogel also exhibited excellent performance as a solid electrolyte for flexible supercapacitors, with a capacitance of ∼260 F/g at 0.5 A/g current density. Due to its antifreezing and antidehydration properties, this hydrogel retains its flexibility at subzero temperatures for an extended period. Additionally, the porous network and high water content of the hydrogel impart remarkable electromagnetic attenuation properties, with a value of ∼38 dB in the 14.5-20.5 GHz frequency range, which is higher than any other hydrogel without conducting fillers. Overall, the hydrogel reported in this study exhibits diverse applications as a strain sensor, solid electrolyte for flexible supercapacitors, and efficient material for electromagnetic attenuation. Its multifunctional properties make it a promising candidate for use in various fields as a state-of-the-art material.
Collapse
Affiliation(s)
- Ashis Ghosh
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Sudhir Kumar
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Prem Pal Singh
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Suvendu Nandi
- School
of Medical Science and Technology, Indian
Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahitosh Mandal
- School
of Medical Science and Technology, Indian
Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Debabrata Pradhan
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Bhanu Bhusan Khatua
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Rajat Kumar Das
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| |
Collapse
|
22
|
Du B, Yin M, Yang K, Wang S, Pei Y, Luo R, Zhou S, Li H. Ultrafast Polymerization of a Self-Adhesive and Strain Sensitive Hydrogel-Based Flexible Sensor for Human Motion Monitoring and Handwriting Recognition. Polymers (Basel) 2024; 16:1595. [PMID: 38891541 PMCID: PMC11175077 DOI: 10.3390/polym16111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Hydrogel-based flexible electronic devices have great potential in human motion monitoring, electronic skins, and human-computer interaction applications; hence, the efficient preparation of highly sensitive hydrogel-based flexible sensors is important. In the present work, the ultrafast polymerization of a hydrogel (1-3 min) was achieved by constructing a tannic acid (TA)-Fe3+ dynamic redox system, which endowed the hydrogel with good adhesion performance (the adhesion strength in wood was 17.646 kPa). In addition, the uniform dispersal ensured by incorporating polydopamine-decorated polypyrrole (PPy@PDA) into the hydrogel matrix significantly improved the hydrogel's stretching ability (575.082%). The as-prepared PAM/CS/PPy@PDA/TA hydrogel-based flexible sensor had a high-fidelity low detection limit (strain = 1%), high sensitivity at small strains (GF = 5.311 at strain = 0-8%), and fast response time (0.33 s) and recovery time (0.25 s), and it was reliably applied to accurate human motion monitoring and handwriting recognition. The PAM/CS/PPy@PDA/TA hydrogel opens new horizons for wearable electronic devices, electronic skins, and human-computer interaction applications.
Collapse
Affiliation(s)
- Bin Du
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China; (B.D.); (M.Y.); (S.W.); (Y.P.); (S.Z.); (H.L.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710054, China;
| | - Mengwei Yin
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China; (B.D.); (M.Y.); (S.W.); (Y.P.); (S.Z.); (H.L.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710054, China;
| | - Kenan Yang
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710054, China;
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710054, China
| | - Sainan Wang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China; (B.D.); (M.Y.); (S.W.); (Y.P.); (S.Z.); (H.L.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710054, China;
| | - Yiting Pei
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China; (B.D.); (M.Y.); (S.W.); (Y.P.); (S.Z.); (H.L.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710054, China;
| | - Rubai Luo
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China; (B.D.); (M.Y.); (S.W.); (Y.P.); (S.Z.); (H.L.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710054, China;
| | - Shisheng Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China; (B.D.); (M.Y.); (S.W.); (Y.P.); (S.Z.); (H.L.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710054, China;
| | - Huailin Li
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China; (B.D.); (M.Y.); (S.W.); (Y.P.); (S.Z.); (H.L.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710054, China;
| |
Collapse
|
23
|
Tang Y, Lu C, Xiong R. Biomimetic Mechanically Robust Chiroptical Hydrogel Enabled by Hierarchical Bouligand Structure Engineering. ACS NANO 2024; 18:14629-14639. [PMID: 38776427 DOI: 10.1021/acsnano.4c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Natural bouligand structures enable crustacean exoskeletons and fruits to strike a combination of exceptional mechanical robustness and brilliant chiroptical properties owing to multiscale structural hierarchy. However, integrating such a high strength-stiffness-toughness combination and photonic functionalities into synthetic hydrogels still remains a grand challenge. In this work, we report a simple yet general biomimetic strategy to construct an ultrarobust chiroptical hydrogel by closely mimicking the natural bouligand structure at multilength scale. The hierarchical structural engineering of long-range ordered cellulose nanocrystals' bouligand structure, well-defined poly(vinyl alcohol) nanocrystalline domains, and dynamic interfacial interaction synergistically contributes to the integration of high strength (23.3 MPa), superior modulus (264 MPa), and high toughness (54.7 MJ m-3), as well as extraordinary impact resistance, which far exceed their natural counterparts and synthetic photonic hydrogels. More importantly, seamless chiroptical and solvent-responsive patterns with high resolution can also be scalably integrated into the hydrogel by localized manipulation of the photonic band, while maintaining good ionic conductivity. Such exceptional mechanical-photonic combination holds tremendous potential for applications in wearable sensors, encryption, displays, and soft robotics.
Collapse
Affiliation(s)
- Yulu Tang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Rui Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
24
|
Liu C, Zhang X, Liu X, Yang Q. Mechanical Field Guiding Structure Design Strategy for Meta-Fiber Reinforced Hydrogel Composites by Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310141. [PMID: 38520708 PMCID: PMC11165469 DOI: 10.1002/advs.202310141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/28/2024] [Indexed: 03/25/2024]
Abstract
Fiber-reinforced hydrogel composites are widely employed in many engineering applications, such as drug release, and flexible electronics, with more flexible mechanical properties than pure hydrogel materials. Comparing to the hydrogel strengthened by continuous fiber, the meta-fiber reinforced hydrogel provides stronger individualized design ability of deformation patterns and tunable stiffness, especially for the elaborate applications in joint, cartilage, and organ. In this paper, a novel structure design strategy based on deep learning algorithm is proposed for hydrogel reinforced by meta-fiber to achieve targeted mechanical properties, such as stress and displacement fields. A solid mechanic model for meta-fiber reinforced hydrogel is first developed to construct the dataset of fiber distribution and the corresponding mechanical properties of the composite. Generative adversarial network (GAN) is then trained to characterize the relationship between stress or displacement field, and meta-fiber distribution. The well-trained GAN is implemented to design meta-fiber reinforced hydrogel composite structure under specific operation conditions. The results show that the deep learning method may efficiently predict the structure of the hydrogel composite with satisfied confidence, and has great potential for applications in drug delivery and flexible electronics.
Collapse
Affiliation(s)
- Chuanzhi Liu
- School of Mathematics Statistics and MechanicsBeijing University of TechnologyBeijing100124China
| | - Xingyu Zhang
- School of Mathematics Statistics and MechanicsBeijing University of TechnologyBeijing100124China
| | - Xia Liu
- School of Mathematics Statistics and MechanicsBeijing University of TechnologyBeijing100124China
| | - Qingsheng Yang
- School of Mathematics Statistics and MechanicsBeijing University of TechnologyBeijing100124China
| |
Collapse
|
25
|
Niu Q, Huang L, Fan S, Yao X, Zhang Y. 3D Printing Silk Fibroin/Polyacrylamide Triple-Network Composite Hydrogels with Stretchability, Conductivity, and Strain-Sensing Ability as Bionic Electronic Skins. ACS Biomater Sci Eng 2024; 10:3489-3499. [PMID: 38661561 DOI: 10.1021/acsbiomaterials.4c00201] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Electronic skins have received increasing attention due to their great application potential in wearable electronics. Meanwhile, tremendous efforts are still needed for the fabrication of multifunctional composite hydrogels with complex structures for electronic skins via simple methods. In this work, a novel three-dimensional (3D) printing composite hydrogel with stretchability, conductivity, and strain-sensing ability is produced using a one-step photocuring method to achieve a dual-signal response of the electronic skin. The composite hydrogel exhibits a triple-network structure composed of silk microfibers (SMF), regenerated silk fibroin (RSF), and polyacrylamide (PAM). The establishment of triple networks is based on the electrostatic interaction between SMF and RSF, as well as the chemically cross-linked RSF and PAM. Thanks to its specific structure and components, the composite hydrogel possesses enhanced mechanical properties (elastic modulus of 140 kPa, compressive stress of 21 MPa, and compression modulus of 600 kPa) and 3D printability while retaining stretchability and flexibility. The interaction between negatively charged SMF and cations in phosphate-buffered saline endows the composite hydrogel with good conductivity and strain-sensing ability after immersion in a low-concentration (10 mM) salt solution. Moreover, the 3D printing composite hydrogel scaffold successfully realizes real-time monitoring. Therefore, the proposed hydrogel-based ionic sensor is promising for skin tissue engineering, real-time monitoring, soft robotics, and human-machine interfaces.
Collapse
Affiliation(s)
- Qianqian Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Li Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
26
|
Hao Z, Li X, Zhang R, Zhang L. Stimuli‐Responsive Hydrogels for Antibacterial Applications. Adv Healthc Mater 2024:e2400513. [PMID: 38723248 DOI: 10.1002/adhm.202400513] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Hydrogels have emerged as promising candidates for biomedical applications, especially in the field of antibacterial therapeutics, due to their unique structural properties, highly tunable physicochemical properties, and excellent biocompatibility. The integration of stimuli-responsive functions into antibacterial hydrogels holds the potential to enhance their antibacterial properties and therapeutic efficacy, dynamically responding to different external or internal stimuli, such as pH, temperature, enzymes, and light. Therefore, this review describes the applications of hydrogel dressings responsive to different stimuli in antibacterial therapy. The collaborative interaction between stimuli-responsive hydrogels and antibacterial materials is discussed. This synergistic approach, in contrast to conventional antibacterial materials, not only amplifies the antibacterial effect but also alleviates adverse side effects and diminishes the incidence of multiple infections and drug resistance. The review provides a comprehensive overview of the current challenges and outlines future research directions for stimuli-responsive antibacterial hydrogels. It underscores the imperative for ongoing interdisciplinary research aimed at unraveling the mechanisms of wound healing. This understanding is crucial for optimizing the design and implementation of stimuli-responsive antibacterial hydrogels. Ultimately, this review aims to offer scientific guidance for the development and practical clinical application of stimuli-responsive antibacterial hydrogel dressings.
Collapse
Affiliation(s)
- Zhe Hao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
27
|
Gao H, Cai W, Li A, Du Y, Zhu JL, Ye Z. Ultrasensitive Biomimetic Skin with Multimodal and Photoelectric Dual-Signal Sensing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38593088 DOI: 10.1021/acsami.4c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Mimicking biological skin enabling direct, intelligent interaction between users and devices, multimodal sensing with optical/electrical (OE) output signals is urgently required. Owing to this, this work aims to logically design a stretchable OE biomimetic skin (OE skin), which can sensitively sense complex external stimuli of pressure, strain, temperature, and localization. The OE skin consists of elastic thin polymer-stabilized cholesteric liquid crystal films, an ion-conductive hydrogel layer, and an elastic protective membrane formed with thin polydimethylsiloxane. The as-designed OE skin exhibits customizable structural color on demand, good thermochromism, and excellent mechanochromism, with the ability to extend the full visible spectrum, a good linearity of over 0.99, fast response speed of 93 ms, and wide temperature range of 119 °C. In addition, the conduction resistance variation of ion-conductive hydrogel exhibits excellent sensing capabilities under pressure, stretch, and temperature, endowing a good linearity of 0.99998 (stretching from 0 to 150%) and high thermal sensitivity of 0.86% per °C. Such an outstanding OE skin provides design concepts for the development of multifunctional biomimetic skin used in human-machine interaction and can find wide applications in intelligent wearable devices and human-machine interactions.
Collapse
Affiliation(s)
- Han Gao
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China
| | - Wenshan Cai
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China
| | - Aotian Li
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China
| | - Yike Du
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China
| | - Ji-Liang Zhu
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| | - Zhicheng Ye
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| |
Collapse
|
28
|
Meng X, Zhou J, Jin X, Xia C, Ma S, Hong S, Aladejana JT, Dong A, Luo Y, Li J, Zhan X, Yang R. High-Strength, High-Swelling-Resistant, High-Sensitivity Hydrogel Sensor Prepared with Wood That Retains Lignin. Biomacromolecules 2024; 25:1696-1708. [PMID: 38381837 DOI: 10.1021/acs.biomac.3c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Wood-derived hydrogels possess satisfactory longitudinal strength but lack excellent swelling resistance and dry shrinkage resistance when achieving high anisotropy. In this study, we displayed the preparation of highly dimensional stable wood/polyacrylamide hydrogels (wood/PAM-Al3+). The alkali-treated wood retains lignin as the skeleton of the hydrogel. Second, Al ions were added to the metal coordination with lignin. Finally, by employing free radical polymerization, we construct a conductive electronic network using polyaniline within the wood/PAM-Al3+ matrix to create the flexible sensor. This approach leverages lignin's integrated structure within the middle lamella to provide enhanced swelling resistance and stronger binding strength in the transverse direction. Furthermore, coordination between lignin and Al ions improves the mechanical strength of the wood hydrogel. Polyaniline provides stable linear pressure and temperature responses. The wood/PAM-Al3+ exhibits a transverse swelling ratio of 3.90% while achieving a longitudinal tensile strength of 20.5 MPa. This high-strength and high-stability sensor is capable of monitoring macroscale human behavior. Therefore, this study presents a simple yet innovative strategy for constructing tough hydrogels while also establishing an alternative pathway for exploring lignin networks in new functional materials development.
Collapse
Affiliation(s)
- Xiangzhen Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- China Jiangsu Key Open Laboratory of Wood Processing and Wood-Based Panel Technology, Nanjing, Jiangsu 210037, China
| | - Shanyu Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shu Hong
- Hollingsworth & Vose (Suzhou) Co., Ltd., Suzhou Industrial Park, Suzhou 215126, China
| | - John Tosin Aladejana
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Anran Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yujia Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianzhang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xianxu Zhan
- Dehua Tubaobao New Decoration Material Co., Ltd., Huzhou 313200, China
| | - Rui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- China Jiangsu Key Open Laboratory of Wood Processing and Wood-Based Panel Technology, Nanjing, Jiangsu 210037, China
- Dehua Tubaobao New Decoration Material Co., Ltd., Huzhou 313200, China
| |
Collapse
|
29
|
Lee DH, Lim S, Kwak SS, Kim J. Advancements in Skin-Mediated Drug Delivery: Mechanisms, Techniques, and Applications. Adv Healthc Mater 2024; 13:e2302375. [PMID: 38009520 PMCID: PMC11468599 DOI: 10.1002/adhm.202302375] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Indexed: 11/29/2023]
Abstract
Skin-mediated drug delivery methods currently are receiving significant attention as a promising approach for the enhanced delivery of drugs through the skin. Skin-mediated drug delivery offers the potential to overcome the limitations of traditional drug delivery methods, including oral administration and intravenous injection. The challenges associated with drug permeation through layers of skin, which act as a major barrier, are explored, and strategies to overcome these limitations are discussed in detail. This review categorizes skin-mediated drug delivery methods based on the means of increasing drug permeation, and it provides a comprehensive overview of the mechanisms and techniques associated with these methods. In addition, recent advancements in the application of skin-mediated drug delivery are presented. The review also outlines the limitations of ongoing research and suggests future perspectives of studies regarding the skin-mediated delivery of drugs.
Collapse
Affiliation(s)
- Dong Ha Lee
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sunyoung Lim
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Sung Soo Kwak
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Joohee Kim
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
30
|
Dong B, Yu D, Lu P, Song Z, Chen W, Zhang F, Li B, Wang H, Liu W. TEMPO bacterial cellulose and MXene nanosheets synergistically promote tough hydrogels for intelligent wearable human-machine interaction. Carbohydr Polym 2024; 326:121621. [PMID: 38142077 DOI: 10.1016/j.carbpol.2023.121621] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 12/25/2023]
Abstract
Conductive hydrogels have received increasing attention in the field of wearable electronics, but they also face many challenges such as temperature tolerance, biocompatibility, and stability of mechanical properties. In this paper, a double network hydrogel of MXene/TEMPO bacterial cellulose (TOBC) system is proposed. Through solvent replacement, the hydrogel exhibits wide temperature tolerance (-20-60 °C) and stable mechanical properties. A large number of hydrogen bonds, MXene/TOBC dynamic three-dimensional network system, and micellar interactions endow the hydrogel with excellent mechanical properties (elongation at break ~2800 %, strength at break ~420 kPa) and self-healing ability. The introduction of tannic acid prevents the oxidation of MXene and the loss of electrical properties of the hydrogel. In addition, the sensor can also quickly (74 ms) and sensitive (gauge factor = 15.65) wirelessly monitor human motion, and the biocompatibility can well avoid the stimulation when it comes into contact with the human body. This series of research work reveals the fabrication of MXene-like flexible wearable electronic devices based on self-healing, good cell compatibility, high sensitivity, wide temperature tolerance and durability, which can be used in smart wearable, wireless monitoring, human-machine Interaction and other aspects show great application potential.
Collapse
Affiliation(s)
- Baoting Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China.
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhaoping Song
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wei Chen
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China
| | - Bin Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Huili Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| |
Collapse
|
31
|
Xu J, Huang H, Sun C, Yu J, Wang M, Dong T, Wang S, Chen X, Cui T, Li J. Flexible Accelerated-Wound-Healing Antibacterial Hydrogel-Nanofiber Scaffold for Intelligent Wearable Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5438-5450. [PMID: 38112719 DOI: 10.1021/acsami.3c14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Flexible epidermal sensors hold significant potential in personalized healthcare and multifunctional electronic skins. Nonetheless, achieving both robust sensing performance and efficient antibacterial protection, especially in medical paradigms involving electrophysiological signals for wound healing and intelligent health monitoring, remains a substantial challenge. Herein, we introduce a novel flexible accelerated-wound-healing biomaterial based on a hydrogel-nanofiber scaffold (HNFS) via electrostatic spinning and gel cross-linking. We effectively engineer a multifunctional tissue nanoengineered skin scaffold for wound treatment and health monitoring. Key features of HNFS include high tensile strength (24.06 MPa) and elasticity (214.67%), flexibility, biodegradability, and antibacterial properties, enabling assembly into versatile sensors for monitoring human motion and electrophysiological signals. Moreover, in vitro and in vivo experiments demonstrate that HNFS significantly enhances cell proliferation and skin wound healing, provide a comprehensive therapeutic strategy for smart sensing and tissue repair, and guide the development of high-performance "wound healing-health monitoring" bioelectronic skin scaffolds. Therefore, this study provides insights into crafting flexible and repairable skin sensors, holding potential for multifunctional health diagnostics and intelligent medical applications in intelligent wearable health monitoring and next-generation artificial skin fields.
Collapse
Affiliation(s)
- Jieyan Xu
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Hui Huang
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Cheng Sun
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Jiafei Yu
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Mingming Wang
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Ting Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, Jiangsu 210009, P.R. China
| | - Shiheng Wang
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Xinhao Chen
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Tingting Cui
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, Jiangsu 210009, P.R. China
| | - Jun Li
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| |
Collapse
|
32
|
Koshy J, Sangeetha D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int J Biol Macromol 2024; 257:128594. [PMID: 38056744 DOI: 10.1016/j.ijbiomac.2023.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Natural polymers and its mixtures in the form of films, sponges and hydrogels are playing a major role in tissue engineering and regenerative medicine. Hydrogels have been extensively investigated as standalone materials for drug delivery purposes as they enable effective encapsulation and sustained release of drugs. Biopolymers are widely utilised in the fabrication of hydrogels due to their safety, biocompatibility, low toxicity, and regulated breakdown by human enzymes. Among all the biopolymers, polysaccharide-based polymer is well suited to overcome the limitations of traditional wound dressing materials. Pectin is a polysaccharide which can be extracted from different plant sources and is used in various pharmaceutical and biomedical applications including cartilage regeneration. Pectin itself cannot be employed as scaffolds for tissue engineering since it decomposes quickly. This article discusses recent research and developments on pectin polysaccharide, including its types, origins, applications, and potential demands for use in AI-mediated scaffolds. It also covers the materials-design process, strategy for implementation to material selection and fabrication methods for evaluation. Finally, we discuss unmet requirements and current obstacles in the development of optimal materials for wound healing and bone-tissue regeneration, as well as emerging strategies in the field.
Collapse
Affiliation(s)
- Jijo Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - D Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
33
|
Guan X, Zheng S, Zhang B, Sun X, Meng K, Elafify MS, Zhu Y, El-Gowily AH, An M, Li D, Han Q. Masking Strategy Constructed Metal Coordination Hydrogels with Improved Mechanical Properties for Flexible Electronic Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5168-5182. [PMID: 38234121 DOI: 10.1021/acsami.3c18077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Metal coordination hydrogels (MC-HGs) that introduce dynamically coordinate bonds together with metal ionic conduction have attracted considerable attention in flexible electronics. However, the traditional soaking method alleged to have technical scalability faces the challenge of forming MC-HGs with a "core-shell" structure, which undoubtedly reduces the whole mechanical properties and ionic stimulation responsiveness required for flexible electronics materials. Herein, a novel strategy referred to as "masking" has been proposed based on the theory of the valence bond and coordination chemistry. By regulating the masking agents and their concentrations as well as pairing mode with the metal ions, the whole mechanical properties of the resulting composites (MC-HGsMasking) show nearly double the values of their traditional soaking samples (MC-HGsSoaking). For example, the fracture stress and toughness of Fe-HGsMasking(SA, 5.0 g/L) are 1.55 MPa and 2.14 MJ/m3, almost twice those of Fe-HGsSoaking (0.83 MPa and 0.93 MJ/m3, respectively). Microstructure characterization combined with finite element analysis, molecular dynamics, and first-principles simulations demonstrates that the masking strategy first facilitating interfacial permeation of metal complexes and then effective coordination with functional ligands (carboxylates) of the hydrogels is the mechanism to strengthen the mechanical properties of composites MC-HGsMasking, which has the potential to break through the limitations of current MC-HGs in flexible electronic sensor applications.
Collapse
Affiliation(s)
- Xiaoyu Guan
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
| | - Sai Zheng
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Bingyuan Zhang
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xuhui Sun
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Kai Meng
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Mohamed S Elafify
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Menoufia University, Gamal Abdel El-Nasr Street, Shebin El-Kom, Menoufia 32511, Egypt
| | - Yanxia Zhu
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Afnan H El-Gowily
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Meng An
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Dongping Li
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Qingxin Han
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
34
|
Ma J, Yang Y, Zhang X, Xue P, Valenzuela C, Liu Y, Wang L, Feng W. Mechanochromic and ionic conductive cholesteric liquid crystal elastomers for biomechanical monitoring and human-machine interaction. MATERIALS HORIZONS 2024; 11:217-226. [PMID: 37901959 DOI: 10.1039/d3mh01386c] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Cholesteric liquid crystal elastomers (CLCEs) that combine rubbery elasticity with structural colour from self-assembled helical nanostructures are of paramount importance for diverse applications such as biomimetic skins, adaptive optics and soft robotics. Despite great advances, it is challenging to integrate electrical sensing and colour-changing characteristics in a single CLCE system. Here, we report the design and synthesis of an ionic conductive cholesteric liquid crystal elastomer (iCLCE) through in situ Michael addition and free-radical photopolymerization of CLCE precursors on silane-functionalized polymer ionic liquid networks, in which robust covalent chemical bonding was formed at the interface. Thanks to superior mechanochromism and ionic conductivity, the resulting iCLCEs exhibit dynamic colour-changing and electrical sensing functions in a wide range upon mechanical stretching, and can be used for biomechanical monitoring during joint bending. Importantly, a capacitive elastomeric sensor can be constructed through facilely stacking iCLCEs, where the optical and electrical dual-signal reporting performance allows intuitive visual localization of pressure intensity and distribution. Moreover, proof-of-concept application of the iCLCEs has been demonstrated with human-interactive systems. The research disclosed herein can provide new insights into the development of bioinspired somatosensory materials for emerging applications in diverse fields such as human-machine interaction, prostheses and intelligent robots.
Collapse
Affiliation(s)
- Jiazhe Ma
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Yanzhao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Pan Xue
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Yuan Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
- Binhai Industrial Research Institute, Tianjin University, Tianjin 300452, China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
35
|
Li W, Li SM, Kang MC, Xiong X, Wang P, Tao LQ. Multi-characteristic tannic acid-reinforced polyacrylamide/sodium carboxymethyl cellulose ionic hydrogel strain sensor for human-machine interaction. Int J Biol Macromol 2024; 254:127434. [PMID: 37838111 DOI: 10.1016/j.ijbiomac.2023.127434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Big data and cloud computing are propelling research in human-computer interface within academia. However, the potential of wearable human-machine interaction (HMI) devices utilizing multiperformance ionic hydrogels remains largely unexplored. Here, we present a motion recognition-based HMI system that enhances movement training. We engineered dual-network PAM/CMC/TA (PCT) hydrogels by reinforcing polyacrylamide (PAM) and sodium carboxymethyl cellulose (CMC) polymers with tannic acid (TA). These hydrogels possess exceptional transparency, adhesion, and remodelling features. By combining an elastic PAM backbone with tunable amounts of CMC and TA, the PCT hydrogels achieve optimal electromechanical performance. As strain sensors, they demonstrate higher sensitivity (GF = 4.03), low detection limit (0.5 %), and good linearity (0.997). Furthermore, we developed a highly accurate (97.85 %) motion recognition system using machine learning and hydrogel-based wearable sensors. This system enables contactless real-time training monitoring and wireless control of trolley operations. Our research underscores the effectiveness of PCT hydrogels for real-time HMI, thus advancing next-generation HMI systems.
Collapse
Affiliation(s)
- Wen Li
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Si-Mou Li
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Mei-Cun Kang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Xiong Xiong
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Ping Wang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Lu-Qi Tao
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China; Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
36
|
Liu C, Peng K, Wu Y, Fu F. Functional adhesive hydrogels for biological interfaces. SMART MEDICINE 2023; 2:e20230024. [PMID: 39188302 PMCID: PMC11235964 DOI: 10.1002/smmd.20230024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/09/2023] [Indexed: 08/28/2024]
Abstract
Hydrogel adhesives are extensively employed in biological interfaces such as epidermal flexible electronics, tissue engineering, and implanted device. The development of functional hydrogel adhesives is a critical, yet challenging task since combining two or more attributes that seem incompatible into one adhesive hydrogel without sacrificing the hydrogel's pristine capabilities. In this Review, we highlight current developments in the fabrication of functional adhesive hydrogels, which are suitable for a variety of application scenarios, particularly those that occur underwater or on tissue/organ surface conditions. The design strategies for a multifunctional adhesive hydrogel with desirable properties including underwater adhesion, self-healing, good biocompatibility, electrical conductivity, and anti-swelling are discussed comprehensively. We then discuss the challenges faced by adhesive hydrogels, as well as their potential applications in biological interfaces. Adhesive hydrogels are the star building blocks of bio-interface materials for individualized healthcare and other bioengineering areas.
Collapse
Affiliation(s)
- Changyi Liu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Kexin Peng
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Yilun Wu
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Fanfan Fu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
37
|
Kang J, Zhang X, Yang X, Yang X, Wang S, Song W. Mucosa-Inspired Electro-Responsive Lubricating Supramolecular-Covalent Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307705. [PMID: 37742109 DOI: 10.1002/adma.202307705] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/22/2023] [Indexed: 09/25/2023]
Abstract
Enabling the living capability of secreting liquids dynamically triggered by external stimuli while maintaining the bulk frame is a significant challenge for mucosa-inspired hydrogels. A mucosa-inspired electro-responsive hydrogel is developed in this study using the synergy between electro-responsive silk fibroin supramolecular non-covalent networks and covalent polyacrylamide and polyvinyl alcohol polymer networks. The formed supramolecular-covalent hydrogel exhibits a partial gel-sol transition upon the application of an electric field, and the liquid layer on the hydrogel surface near the cathode is used to mimic the mucus-secreting capability to regulate lubrication. The electro-responsive lubricating process can operate under a safe voltage and exhibits good reversibility. It is also a universal strategy to construct an electro-responsive hydrogel by introducing an electro-responsive supramolecular network into the polymer network. This mucosa-inspired electro-responsive supramolecular-covalent hydrogel offers a promising method for designing soft actuators or robots that can regulate lubrication using an electric strategy.
Collapse
Affiliation(s)
- Jianye Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuewei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xinyu Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
38
|
Wang G, Wang X, Liu W, Liu X, Song Z, Yu D, Li G, Ge S, Wang H. Establishing a Corrugated Carbon Network with a Crack Structure in a Hydrogel for Improving Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48462-48474. [PMID: 37812139 DOI: 10.1021/acsami.3c10949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Electronic conductive hydrogels have prompted immense research interest as flexible sensing materials. However, establishing a continuous electronic conductive network within a hydrogel is still highly challenging. Herein, we develop a new strategy to establish a continuous corrugated carbon network within a hydrogel by embedding carbonized crepe paper into the hydrogel with its corrugations perpendicular to the stretching direction using a casting technique. The corrugated carbon network within the as-prepared composite hydrogel serves as a rigid conductive network to simultaneously improve the tensile strength and conductivity of the composite hydrogel. The composite hydrogel also generates a crack structure when it is stretched, enabling the composite hydrogel to show ultrahigh sensitivity (gauge factor = 59.7 and 114 at strain ranges of 0-60 and 60-100%, respectively). The composite hydrogel also shows an ultralow detection limit of 0.1%, an ultrafast response/recovery time of 75/95 ms, and good stability and durability (5000 cycles at 10% strain) when used as a resistive strain sensing material. Moreover, the good stretchability, adhesiveness, and self-healing ability of the hydrogel were also effectively retained after the corrugated carbon network was introduced into the hydrogel. Because of its outstanding sensing performance, the composite hydrogel has potential applications in sensing various human activities, including accurately recording subtle variations in wrist pulse waves and small-/large-scale complex human activities. Our work provides a new approach to develop economical, environmentally friendly, and reliable electronic conductive hydrogels with ultrahigh sensing performance for the future development of electronic skin and wearable devices.
Collapse
Affiliation(s)
- Guixing Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Xueyan Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Xiaona Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Zhaoping Song
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Guodong Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Huili Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| |
Collapse
|
39
|
Wang Y, Jiang X, Li X, Ding K, Liu X, Huang B, Ding J, Qu K, Sun W, Xue Z, Xu W. Bionic ordered structured hydrogels: structure types, design strategies, optimization mechanism of mechanical properties and applications. MATERIALS HORIZONS 2023; 10:4033-4058. [PMID: 37522298 DOI: 10.1039/d3mh00326d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Natural organisms, such as lobsters, lotus, and humans, exhibit exceptional mechanical properties due to their ordered structures. However, traditional hydrogels have limitations in their mechanical and physical properties due to their disordered molecular structures when compared with natural organisms. Therefore, inspired by nature and the properties of hydrogels similar to those of biological soft tissues, researchers are increasingly focusing on how to investigate bionic ordered structured hydrogels and render them as bioengineering soft materials with unique mechanical properties. In this paper, we systematically introduce the various structure types, design strategies, and optimization mechanisms used to enhance the strength, toughness, and anti-fatigue properties of bionic ordered structured hydrogels in recent years. We further review the potential applications of bionic ordered structured hydrogels in various fields, including sensors, bioremediation materials, actuators, and impact-resistant materials. Finally, we summarize the challenges and future development prospects of bionic ordered structured hydrogels in preparation and applications.
Collapse
Affiliation(s)
- Yanyan Wang
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Xinyu Jiang
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Xusheng Li
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Kexin Ding
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Xianrui Liu
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Bin Huang
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Junjie Ding
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Keyu Qu
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Wenzhi Sun
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Zhongxin Xue
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Wenlong Xu
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| |
Collapse
|
40
|
Niu M, Zhu Y, Ding X, Zu Y, Zhao Y, Wang Y. Biomimetic Alveoli System with Vivid Mechanical Response and Cell-Cell Interface. Adv Healthc Mater 2023; 12:e2300850. [PMID: 37288987 DOI: 10.1002/adhm.202300850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/05/2023] [Indexed: 06/09/2023]
Abstract
Alveolar microenvironmental models are important for studying the basic biology of the alveolus, therapeutic trials, and drug testing. However, a few systems can fully reproduce the in vivo alveolar microenvironment including dynamic stretching and the cell-cell interface. Here, a novel biomimetic alveolus-on-a-chip microsystem is presented suitable for visualizing physiological breathing for simulating the 3D architecture and function of human pulmonary alveoli. This biomimetic microsystem contains an inverse opal structured polyurethane membrane that achieves real-time observation of mechanical stretching. In this microsystem, the alveolar-capillary barrier is created by alveolar type 2 (ATII) cells cocultured with vascular endothelial cells (ECs) on this membrane. Based on this microsystem, the phenomena of flattening and the tendency of differentiation in ATII cells are observed. The synergistic effects of mechanical stretching and ECs on the proliferation of ATII cells are also observed during the repair process following lung injury. These features indicate the potential of this novel biomimetic microsystem for exploring the mechanisms of lung diseases, which can provide future guidance concerning drug targets for clinical therapies.
Collapse
Affiliation(s)
- Mengying Niu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yujuan Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Xiaoya Ding
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yan Zu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuanjin Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yongan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|
41
|
Lin X, Fan L, Wang L, Filppula AM, Yu Y, Zhang H. Fabricating biomimetic materials with ice-templating for biomedical applications. SMART MEDICINE 2023; 2:e20230017. [PMID: 39188345 PMCID: PMC11236069 DOI: 10.1002/smmd.20230017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 08/28/2024]
Abstract
The proper organization of cells and tissues is essential for their functionalization in living organisms. To create materials that mimic natural structures, researchers have developed techniques such as patterning, templating, and printing. Although these techniques own several advantages, these processes still involve complexity, are time-consuming, and have high cost. To better simulate natural materials with micro/nanostructures that have evolved for millions of years, the use of ice templates has emerged as a promising method for producing biomimetic materials more efficiently. This article explores the historical approaches taken to produce traditional biomimetic structural biomaterials and delves into the principles underlying the ice-template method and their various applications in the creation of biomimetic materials. It also discusses the most recent biomedical uses of biomimetic materials created via ice templates, including porous microcarriers, tissue engineering scaffolds, and smart materials. Finally, the challenges and potential of current ice-template technology are analyzed.
Collapse
Affiliation(s)
- Xiang Lin
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Lu Fan
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Li Wang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Anne M. Filppula
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Yunru Yu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
42
|
Zhao B, Yan J, Long F, Qiu W, Meng G, Zeng Z, Huang H, Wang H, Lin N, Liu X. Bioinspired Conductive Enhanced Polyurethane Ionic Skin as Reliable Multifunctional Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300857. [PMID: 37092565 PMCID: PMC10323669 DOI: 10.1002/advs.202300857] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Ionogels prepared from ionic liquid (IL) have the characteristics of nonevaporation and stable performance relative to traditional hydrogels. However, the conductivities of commonly used ionogels are at very low relative to traditional hydrogels because the large sizes of the cation and anion in an IL impedes ion migration in polymer networks. In this study, ultradurable ionogels with suitable mechanical properties and high conductivities are prepared by impregnating IL into a safe, environmentally friendly water-based polyurethane (WPU) network by mimicking the ion transport channels in the phospholipid bilayer of the cell membrane. The increase in electrical conductivity is attributed to the introduction of carboxylic acid in the hard segment of WPU; this phenomenon regularly arranges hard segment structural domains by hydrogen bonding, forming ionic conduction channels. The conductivities of their ionogels are >28-39 mS cm-1 . These ionogels have adjustable mechanical properties that make the Young's modulus value (0.1-0.6 MPa) similar to that of natural skin. The strain sensor has an ultrahigh sensitivity that ranges from 0.99 to 1.35, with a wide sensing range of 0.1%-200%. The findings are promising for various ionotronics requiring environmental stability and high conductivity characteristics.
Collapse
Affiliation(s)
- Bicheng Zhao
- Research Institution for Biomimetics and Soft MatterThe Higher Educational Key Laboratory for Biomedical Engineering of Fujian ProvinceResearch Center of Biomedical Engineering of XiamenDepartment of BiomaterialsCollege of MaterialsThe State Key Laboratory of Marine Environmental Science (MEL)College of Ocean and Earth SciencesShenzhen Research Institute of Xiamen UniversityXiamen University422 Siming Nan RoadXiamen361005People's Republic of China
| | - Jiaqi Yan
- Research Institution for Biomimetics and Soft MatterThe Higher Educational Key Laboratory for Biomedical Engineering of Fujian ProvinceResearch Center of Biomedical Engineering of XiamenDepartment of BiomaterialsCollege of MaterialsThe State Key Laboratory of Marine Environmental Science (MEL)College of Ocean and Earth SciencesShenzhen Research Institute of Xiamen UniversityXiamen University422 Siming Nan RoadXiamen361005People's Republic of China
| | - Fen Long
- Research Institution for Biomimetics and Soft MatterThe Higher Educational Key Laboratory for Biomedical Engineering of Fujian ProvinceResearch Center of Biomedical Engineering of XiamenDepartment of BiomaterialsCollege of MaterialsThe State Key Laboratory of Marine Environmental Science (MEL)College of Ocean and Earth SciencesShenzhen Research Institute of Xiamen UniversityXiamen University422 Siming Nan RoadXiamen361005People's Republic of China
| | - Wu Qiu
- Research Institution for Biomimetics and Soft MatterThe Higher Educational Key Laboratory for Biomedical Engineering of Fujian ProvinceResearch Center of Biomedical Engineering of XiamenDepartment of BiomaterialsCollege of MaterialsThe State Key Laboratory of Marine Environmental Science (MEL)College of Ocean and Earth SciencesShenzhen Research Institute of Xiamen UniversityXiamen University422 Siming Nan RoadXiamen361005People's Republic of China
| | - Guoqing Meng
- Research Institution for Biomimetics and Soft MatterThe Higher Educational Key Laboratory for Biomedical Engineering of Fujian ProvinceResearch Center of Biomedical Engineering of XiamenDepartment of BiomaterialsCollege of MaterialsThe State Key Laboratory of Marine Environmental Science (MEL)College of Ocean and Earth SciencesShenzhen Research Institute of Xiamen UniversityXiamen University422 Siming Nan RoadXiamen361005People's Republic of China
| | - Zhicheng Zeng
- Research Institution for Biomimetics and Soft MatterThe Higher Educational Key Laboratory for Biomedical Engineering of Fujian ProvinceResearch Center of Biomedical Engineering of XiamenDepartment of BiomaterialsCollege of MaterialsThe State Key Laboratory of Marine Environmental Science (MEL)College of Ocean and Earth SciencesShenzhen Research Institute of Xiamen UniversityXiamen University422 Siming Nan RoadXiamen361005People's Republic of China
| | - Hui Huang
- Printed Intelligent Device GroupSingapore Institute of Manufacturing Technology (SIMTech)Agency for ScienceTechnology and Research (A*STAR)Singapore636732Republic of Singapore
| | - Han Wang
- SelangorSepang A1‐476Xiamen University MalaysiaJalan Sunsuria43900Federation of Malaysia
| | - Naibo Lin
- Research Institution for Biomimetics and Soft MatterThe Higher Educational Key Laboratory for Biomedical Engineering of Fujian ProvinceResearch Center of Biomedical Engineering of XiamenDepartment of BiomaterialsCollege of MaterialsThe State Key Laboratory of Marine Environmental Science (MEL)College of Ocean and Earth SciencesShenzhen Research Institute of Xiamen UniversityXiamen University422 Siming Nan RoadXiamen361005People's Republic of China
| | - Xiang‐Yang Liu
- Research Institution for Biomimetics and Soft MatterThe Higher Educational Key Laboratory for Biomedical Engineering of Fujian ProvinceResearch Center of Biomedical Engineering of XiamenDepartment of BiomaterialsCollege of MaterialsThe State Key Laboratory of Marine Environmental Science (MEL)College of Ocean and Earth SciencesShenzhen Research Institute of Xiamen UniversityXiamen University422 Siming Nan RoadXiamen361005People's Republic of China
| |
Collapse
|
43
|
Li X, Yang Y, Valenzuela C, Zhang X, Xue P, Liu Y, Liu C, Wang L. Mechanochromic and Conductive Chiral Nematic Nanostructured Film for Bioinspired Ionic Skins. ACS NANO 2023. [PMID: 37338401 DOI: 10.1021/acsnano.3c04199] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Chameleon skin is naturally adaptive and can sense environmental changes and transform sensing into bioelectrical and optical signals by manipulating ion transduction and photonic nanostructures. The increasing interest in mimicking biological skins has considerably promoted the development of advanced photonic materials with an increasing ionic conductivity. Herein, we report the judicious design and fabrication of a bioinspired mechanochromic chiral nematic nanostructured film with good ionic conductivity by infiltrating fluorine-rich ionic liquids (FILs) into a swollen self-assembled cellulose nanocrystal (CNC) film with helical nanoarchitectures. Notably, the introduction of 2-hydroxyethyl acrylate considerably enhances the compatibility of hydrophobic FILs and hydrophilic CNCs. The resulting FIL-CNC nanostructured films exhibited excellent mechanochromism, good ionic conductivity, and outstanding optical/electrical dual-signal sensing performance when used as a bioinspired ionic skin for real-time monitoring of human motions. Owing to the integration of FILs, the underwater stability of the chiral liquid crystal nanostructures of CNCs was significantly enhanced. Notably, underwater contact/contactless sensing modes and encrypted information transmission have been achieved with the FIL-CNC nanostructured film. This study can offer great insights for the advancement of biomimetic multifunctional artificial skins and emerging interactive devices, which can find important applications in wearable iontronics, human-machine interactions, and intelligent robots.
Collapse
Affiliation(s)
- Xiang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yanzhao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Pan Xue
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuan Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Changjun Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Binhai Industrial Research Institute, Tianjin University, Tianjin 300452, China
| |
Collapse
|
44
|
Li W, Gao N, Zhang W, Feng K, Zhou K, Zhao H, He G, Liu W, Li G. Visual demonstration and prediction of the Hofmeister series based on a poly(ionic liquid) photonic array. NANOSCALE 2023. [PMID: 37194393 DOI: 10.1039/d3nr01531a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Hofmeister effect and associated Hofmeister series (HS) are ubiquitous in physicochemical phenomena and have demonstrated fundamental importance in a myriad of fields ranging from chemistry to biology. Visualization of the HS not only helps to straightforwardly understand the underpinning mechanism, but also enables the prediction of new ion positions in the HS and directs the applications of the Hofmeister effect. Owing to the difficulties of sensing and reporting complete multiple and subtle inter- and intramolecular interactions involved in the Hofmeister effect, facile and accurate visual demonstration and prediction of the HS remain highly challenging. Herein, a poly(ionic liquid) (PIL)-based photonic array containing 6 inverse opal microspheres was rationally constructed to efficiently sense and report the ion effects of the HS. The PILs can not only directly conjugate with HS ions due to their ion-exchange properties, but also provide sufficient noncovalent binding diversity with these ions. Meanwhile, subtle PIL-ion interactions can be sensitively amplified to optical signals owing to their photonic structures. Therefore, synergistic integration of PILs and photonic structures gives rise to accurate visualization of the ion effect of the HS, as demonstrated by correctly ranking 7 common anions. More importantly, assisted by principal component analysis (PCA), the developed PIL photonic array can serve as a general platform to facilely, accurately, and robustly predict the HS positions of an unprecedented amount of important and useful anions and cations. These findings indicate that the PIL photonic platform is very promising for addressing challenges in the visual demonstration and prediction of HS and promoting a molecular-level understanding of the Hoffmeister effect.
Collapse
Affiliation(s)
- Wenyun Li
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Ning Gao
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Wanlin Zhang
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Kai Feng
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Kang Zhou
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Hongwei Zhao
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Guokang He
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Weigang Liu
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Guangtao Li
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
45
|
Fu F, Liu D, Wu Y. Silk-based conductive materials for smart biointerfaces. SMART MEDICINE 2023; 2:e20230004. [PMID: 39188283 PMCID: PMC11236014 DOI: 10.1002/smmd.20230004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 08/28/2024]
Abstract
Silk-based conductive materials are widely used in biointerface applications, such as artificial epidermal sensors, soft and implantable bioelectronics, and tissue/cell scaffolds. Such biointerface materials require coordinated physicochemical, biological, and mechanical properties to meet current practical needs and future sophisticated demands. However, it remains a challenge to formulate silk-based advanced materials with high electrical conductivity, good biocompatibility, mechanical robustness, and in some cases, tissue adhesion ability without compromising other physicochemical properties. In this review, we highlight recent progress in the development of functional conductive silk-based advanced materials with different morphologies. Then, we reviewed the advanced paradigms of these silk materials applied as wearable flexible sensors, implantable electronics, and tissue/cell engineering with perspectives on the application challenges. Silk-based conductive materials can serve as promising building blocks for biomedical devices in personalized healthcare and other fields of bioengineering.
Collapse
Affiliation(s)
- Fanfan Fu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Dongmei Liu
- School of Computer Science and EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Yilun Wu
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
46
|
Dual-crosslinked bioadhesive hydrogel as NIR/pH stimulus-responsiveness platform for effectively accelerating wound healing. J Colloid Interface Sci 2023; 637:20-32. [PMID: 36682115 DOI: 10.1016/j.jcis.2023.01.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Adhesive hydrogels have emerged as promising candidates to solve life-threatening infectious skin injuries. However, the inadequate mechanical characteristics and biological adherence limit the traditional wound dressing unable to adapt to high-frequency movement and real-time monitoring of wound healing, calling for the development of bioadhesive materials guided wound healing. In this work, a multifunctional bioadhesive hydrogel with double colorimetric-integrated of polyethylene glycol (PVA)-dextran (Dex)-borax-bromothymol blue (BTB)-fluorescein thiocyanate (FITC) and functionalization by tungsten disulfide-catechol nanozyme (CL/WS2) was created. Hydrogel is a perfect biological adhesive, which can achieve repeatable and strong tissue adhesion strength (8.3 ± 0.6 kPa), which is 1.66 times that of commercial dressings. Based on the strong biological adhesion of the hydrogel, a sensor is integrated into the hydrogel to collect visual image of bacterial infection from a smartphone and transform it into an on-site pH signal for remote evaluation of the wound's dynamic status in real time. Ultimately, the adhesiveness hydrogel has high worth in managing the burden related to wound healing and paving the way for intelligent wound management in the future.
Collapse
|
47
|
Peng L, Hou L, Wu P. Synergetic Lithium and Hydrogen Bonds Endow Liquid-Free Photonic Ionic Elastomer with Mechanical Robustness and Electrical/Optical Dual-Output. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211342. [PMID: 36878193 DOI: 10.1002/adma.202211342] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/28/2023] [Indexed: 05/19/2023]
Abstract
Photonic ionic elastomers (PIEs) capable of multiple signal outputs are intriguing in flexible interactive electronics. However, fabricating PIEs with simultaneous mechanical robustness, good ionic conductivity, and brilliant structure color still remains challenging. Here, the limitations are broken through introducing the synergistic effect of lithium and hydrogen bonds into an elastomer. In virtue of lithium bonding between lithium ions and carbonyl groups in the polymer matrix as well as hydrogen bonding between silanol on the surface of silica nanoparticles (SiNPs) and ether groups along polymer chains, the PIEs demonstrate mechanical strength up to 4.3 MPa and toughness up to 8.6 MJ m-3 . Meanwhile, the synchronous electrical and optical output under mechanical strains can be achieved in the PIEs with the presence of dissociated ions contributed by lithium bond and non-close-packed SiNPs stabilized by the hydrogen bond. Moreover, due to their liquid-free nature, the PIEs exhibit extraordinary stability and durability, which can withstand extreme conditions including both high and low temperatures as well as high humidity. This work provides a promising molecular engineering route to construct high-performance photonic ionic conductors toward advanced ionotronic applications.
Collapse
Affiliation(s)
- Lei Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Lei Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
- National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong, 271000, P. R. China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
48
|
Zhao R, He Y, He Y, Li Z, Chen M, Zhou N, Tao G, Hou C. Dual-Mode Fiber Strain Sensor Based on Mechanochromic Photonic Crystal and Transparent Conductive Elastomer for Human Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16063-16071. [PMID: 36917548 DOI: 10.1021/acsami.3c00419] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As an important component of wearable and stretchable strain sensors, dual-mode strain sensors can respond to deformation via optical/electrical dual-signal changes, which have important applications in human motion monitoring. However, realizing a fiber-shaped dual-mode strain sensor that can work stably in real life remains a challenge. Here, we design an interactive dual-mode fiber strain sensor with both mechanochromic and mechanoelectrical functions that can be applied to a variety of different environments. The dual-mode fiber is produced by coating a transparent elastic conductive layer onto photonic fiber composed of silica particles and elastic rubber. The sensor has visualized dynamic color change, a large strain range (0-80%), and a high sensitivity (1.90). Compared to other dual-mode strain sensors based on the photonic elastomer, our sensor exhibits a significant advantage in strain range. Most importantly, it can achieve reversible and stable optical/electrical dual-signal outputs in response to strain under various environmental conditions. As a wearable portable device, the dual-mode fiber strain sensor can be used for real-time monitoring of human motion, realizing the direct interaction between users and devices, and is expected to be used in fields such as smart wearable, human-machine interactions, and health monitoring.
Collapse
Affiliation(s)
- Ruolan Zhao
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue He
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu He
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhangcheng Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Chen
- Sport and Health Initiative, Optical Valley Laboratory and Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ning Zhou
- Sport and Health Initiative, Optical Valley Laboratory and Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangming Tao
- Sport and Health Initiative, Optical Valley Laboratory and Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- The State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chong Hou
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Sport and Health Initiative, Optical Valley Laboratory and Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China
| |
Collapse
|
49
|
Zhang H, Chen H, Lee JH, Kim E, Chan KY, Venkatesan H, Shen X, Yang J, Kim JK. Mechanochromic Optical/Electrical Skin for Ultrasensitive Dual-Signal Sensing. ACS NANO 2023; 17:5921-5934. [PMID: 36920071 DOI: 10.1021/acsnano.3c00015] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Following earlier research efforts dedicated to the realization of multifunctional sensing, recent developments of artificial skins endeavor to go beyond human sensory functions by integrating interactive visualization of strain and pressure stimuli. Inspired by the microcracked structure of spider slit organs and the mechanochromic mechanism of chameleons, this work aims to design a flexible optical/electrical skin (OE-skin) capable of responding to complex stimuli with interactive feedback of human-readable structural colors. The OE-skin consists of an ionic electrode combined with an elastomer dielectric layer, a chromotropic layer containing photonic crystals and a conductive carbon nanotube/MXene layer. The electrode/dielectric layers function as a capacitive pressure sensor. The mechanochromic photonic crystals of ferroferric oxide-carbon magnetic arrays embedded in the gelatin/polyacrylamide stretchable hydrogel film perceive strain and pressure stimuli with bright color switching outputs in the full visible spectrum. The underlying microcracked conductive layer is devoted to ultrasensitive strain sensing with a gauge factor of 191.8. The multilayered OE-skin delivers an ultrafast, accurate response for capacitive pressure sensing with a detection limit of 75 Pa and long-term stability of 5000 cycles, while visualizing complex deformations in the form of high-resolution spatial colors. These findings offer deep insights into the rational design of OE-skins as multifunctional sensing devices.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Haomin Chen
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jeng-Hun Lee
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Eunyoung Kim
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Kit-Ying Chan
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Harun Venkatesan
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Xi Shen
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Jinglei Yang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518048, China
| | - Jang-Kyo Kim
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
50
|
Qiao Y, Luo J, Cui T, Liu H, Tang H, Zeng Y, Liu C, Li Y, Jian J, Wu J, Tian H, Yang Y, Ren TL, Zhou J. Soft Electronics for Health Monitoring Assisted by Machine Learning. NANO-MICRO LETTERS 2023; 15:66. [PMID: 36918452 PMCID: PMC10014415 DOI: 10.1007/s40820-023-01029-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Due to the development of the novel materials, the past two decades have witnessed the rapid advances of soft electronics. The soft electronics have huge potential in the physical sign monitoring and health care. One of the important advantages of soft electronics is forming good interface with skin, which can increase the user scale and improve the signal quality. Therefore, it is easy to build the specific dataset, which is important to improve the performance of machine learning algorithm. At the same time, with the assistance of machine learning algorithm, the soft electronics have become more and more intelligent to realize real-time analysis and diagnosis. The soft electronics and machining learning algorithms complement each other very well. It is indubitable that the soft electronics will bring us to a healthier and more intelligent world in the near future. Therefore, in this review, we will give a careful introduction about the new soft material, physiological signal detected by soft devices, and the soft devices assisted by machine learning algorithm. Some soft materials will be discussed such as two-dimensional material, carbon nanotube, nanowire, nanomesh, and hydrogel. Then, soft sensors will be discussed according to the physiological signal types (pulse, respiration, human motion, intraocular pressure, phonation, etc.). After that, the soft electronics assisted by various algorithms will be reviewed, including some classical algorithms and powerful neural network algorithms. Especially, the soft device assisted by neural network will be introduced carefully. Finally, the outlook, challenge, and conclusion of soft system powered by machine learning algorithm will be discussed.
Collapse
Affiliation(s)
- Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Jinan Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Tianrui Cui
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Haidong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yingfen Zeng
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jinming Jian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jingzhi Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yi Yang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|