1
|
Donadio V, Incensi A, Vacchiano V, Infante R, Magnani M, Liguori R. The autonomic innervation of hairy skin in humans: an in vivo confocal study. Sci Rep 2019; 9:16982. [PMID: 31740757 PMCID: PMC6861237 DOI: 10.1038/s41598-019-53684-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
The autonomic innervation of the skin includes different subsets of adrenergic and cholinergic fibers both in humans and animals. The corresponding chemical code is complex and often difficult to ascertain. Accordingly, a detailed histochemical description of skin autonomic fiber subtypes is lacking in humans. To characterize skin autonomic nerve subtypes may help to better understand the selective damage of specific skin autonomic fibers affecting human diseases such as the adrenergic fibers directed to skin vessels in Parkinson’s disease or the cholinergic sudomotor fibers in Ross Syndrome. The present study aimed at characterizing subtypes of autonomic fibers in relation to their target organs by means of an immunofluorescent technique and confocal microscopy. We studied 8 healthy subjects (5 males and 3 females) aged 45 ± 2 (mean ± SE) years without predisposing causes for peripheral neuropathy or autonomic disorders. They underwent skin biopsy from proximal (thigh) and distal (leg) hairy skin. A combination of adrenergic (i.e. tyrosine-hydroxylase- TH and dopamine beta-hydroxylase- DbH) and cholinergic (vesicular acetylcholine transporter- VACHT) autonomic markers and neuropeptidergic (i.e. neuropeptide Y- NPY, calcitonin gene-related peptide- CGRP, substance P- SP, and vasoactive intestinal peptide- VIP) markers were used to characterize skin autonomic fibers. The analysed skin autonomic structures included: 58 sweat glands, 91 skin arterioles and 47 arrector pili muscles. Our results showed that all skin structures presented a sympathetic adrenergic but also cholinergic innervation although in different proportions. Sympathetic adrenergic fibers were particularly abundant around arterioles and arrector pili muscles whereas sympathetic cholinergic fibers were mainly found around sweat glands. Neuropeptides were differently expressed in sympathetic fibers: NPY were found in sympathetic adrenergic fibers around skin arterioles and very seldom sweat glands but not in adrenergic fibers of arrector pili muscles. By contrast CGRP, SP and VIP were expressed in sympathetic cholinergic fibers. Cholinergic fibers expressing CGRP, SP or VIP without TH or DbH staining were found in arterioles and arrector pili muscles and they likely represent parasympathetic fibers. In addition, all skin structures contained a small subset of neuropeptidergic fibers devoid of adrenergic and cholinergic markers with a likely sensory function. No major differences were found between males and females and proximal and distal sites. In summary hairy skin contains sympathetic adrenergic and cholinergic fibers differently distributed around skin structures with a specific distribution of neuropeptides. The autonomic skin innervation also contains a small amount of fibers, likely to be parasympathetic and sensory.
Collapse
Affiliation(s)
- Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.
| | - Alex Incensi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Veria Vacchiano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Rossella Infante
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Martina Magnani
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Kozłowska A, Mikołajczyk A, Majewski M. Detailed Characterization of Sympathetic Chain Ganglia (SChG) Neurons Supplying the Skin of the Porcine Hindlimb. Int J Mol Sci 2017; 18:ijms18071463. [PMID: 28686209 PMCID: PMC5535954 DOI: 10.3390/ijms18071463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 11/16/2022] Open
Abstract
It is generally known that in the skin sympathetic fibers innervate various dermal structures, including sweat glands, blood vessels, arrectores pilorum muscles and hair follicles. However, there is a lack of data about the distribution and chemical phenotyping of the sympathetic chain ganglia (SChG) neurons projecting to the skin of the pig, a model that is physiologically and anatomically very representative for humans. Thus, the present study was designed to establish the origin of the sympathetic fibers supplying the porcine skin of the hind leg, and the pattern(s) of putative co-incidence of dopamine-β-hydroxylase (DβH) with pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin (SOM), neuronal nitric oxide synthase, substance P, vasoactive intestinal peptide, neuropeptide Y (NPY), leu5-enkephalin and galanin (GAL) using combined retrograde tracing and double-labeling immunohistochemistry. The Fast Blue-positive neurons were found in the L₂-S₂ ganglia. Most of them were small-sized and contained DβH with PACAP, SOM, NPY or GAL. The findings of the present study provide a detailed description of the distribution and chemical coding of the SChG neurons projecting to the skin of the porcine hind leg. Such data may be the basis for further studies concerning the plasticity of these ganglia under experimental or pathological conditions.
Collapse
Affiliation(s)
- Anna Kozłowska
- Department of Human Physiology, Faculty of Medical Sciences, University of Warmia and Mazury Olsztyn, Olsztyn 10-082, Poland.
| | - Anita Mikołajczyk
- Department of Public Health, Epidemiology and Microbiology, Faculty of Medical Sciences, University of Warmia and Mazury Olsztyn, Olsztyn 10-082, Poland.
| | - Mariusz Majewski
- Department of Human Physiology, Faculty of Medical Sciences, University of Warmia and Mazury Olsztyn, Olsztyn 10-082, Poland.
| |
Collapse
|
3
|
Sebastian A, Volk SW, Halai P, Colthurst J, Paus R, Bayat A. Enhanced Neurogenic Biomarker Expression and Reinnervation in Human Acute Skin Wounds Treated by Electrical Stimulation. J Invest Dermatol 2016; 137:737-747. [PMID: 27856290 DOI: 10.1016/j.jid.2016.09.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/20/2016] [Accepted: 09/19/2016] [Indexed: 11/27/2022]
Abstract
Electrical stimulation (ES) is known to promote cutaneous healing; however, its ability to regulate reinnervation remains unclear. First, we show that ES treatment of human acute cutaneous wounds (n = 40) increased reinnervation. Next, to define neurophysiologic mechanisms through which ES affects repair, microarray analysis of wound biopsy samples was performed on days 3, 7, 10, and 14 after wounding. This identified neural differentiation biomarkers TUBB3 (melanocyte development and neuronal marker) and its upstream molecule FIG4 (phosphatidylinositol (3,5)-bisphosphate 5-phosphatase) as significantly up-regulated after ES treatment. To demonstrate a functional ES-TUBB3 axis in cutaneous healing, we showed increased TUBB3+ melanocytes and melanogenesis plus FIG4 and nerve growth factor expression, suggesting higher cellular differentiation. In support of this role of ES to regulate neural crest-derived cell fate and differentiation in vivo, knockdown of FIG4 in neuroblastoma cells resulted in vacuologenesis and cell degeneration, whereas ES treatment after FIG4-small interfering RNA transfection enhanced neural differentiation, survival, and integrity. Further characterization showed increased TUBB3+ and protein gene product 9.5+ Merkel cells during in vivo repair, after ES. We demonstrate that ES contributes to increased expression of neural differentiation biomarkers, reinnervation, and expansion of melanocyte and Merkel cell pool during repair. Targeted ES-assisted acceleration of healing has significant clinical implications.
Collapse
Affiliation(s)
- Anil Sebastian
- Plastic Surgery Research Group, Dermatology Research Centre, Institute of Inflammation & Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Susan W Volk
- Section of Surgery, Department of Clinical Studies-Philadelphia, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Poonam Halai
- Plastic Surgery Research Group, Dermatology Research Centre, Institute of Inflammation & Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | | | - Ralf Paus
- Hair Follicle Biology Research Group, Dermatology Research Centre, Institute of Inflammation & Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Department of Dermatology, University of Muenster, Muenster, Germany
| | - Ardeshir Bayat
- Plastic Surgery Research Group, Dermatology Research Centre, Institute of Inflammation & Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Molligan J, Barr C, Mitchell R, Schon L, Zhang Z. Pathological role of fibroblast-like synoviocytes in charcot neuroarthropathy. J Orthop Res 2016. [PMID: 26212797 DOI: 10.1002/jor.22989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study was designed to characterize the synovium in the joints of Charcot neuroarthropathy (CNA) and investigate the potential role of fibroblast-like synoviocytes (FLS) in the pathology of CNA. Synovial samples were collected from CNA patients (n = 7) and non-CNA patients (n = 7), for control, during orthopaedic procedures and used for histology and isolation of FLS. Histological characterization of synovium included innervation and FLS localization. The isolated FLS from the CNA and non-CNA synovium were cultured, with or without tumor necrosis factor-α (TNF-α), for evaluation of invasiveness, gene expression, and cartilage degradation. Vasoactive intestinal peptide (VIP), a neuropeptide, was supplemented into the co-cultures of FLS and cartilage explants. Compared with the non-CNA synovium, CNA synovium was highly inflammatory, with reduced innervation and intense expression of cadherin-11. The FLS isolated from CNA synovium, particularly when activated with TNF-α, were more invasive, increased the expression of ADAMTS4, IL-6, and RANKL, and depleted proteoglycans from cartilage explants when they were co-cultured. Addition of VIP into the culture medium neutralized the catabolic effect of the CNA FLS on cartilage explants. In conclusion, FLS plays an important role in the pathology of CNA. Therapies targeting synovium and FLS may prevent or treat the joint destruction in CNA.
Collapse
Affiliation(s)
- Jeremy Molligan
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, 201 E. University Parkway, Baltimore, Maryland, 21218
| | - Cameron Barr
- Department of Orthopaedic Surgery, MedStar Union Memorial Hospital, Baltimore, Maryland
| | - Reed Mitchell
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, 201 E. University Parkway, Baltimore, Maryland, 21218
| | - Lew Schon
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, 201 E. University Parkway, Baltimore, Maryland, 21218.,Department of Orthopaedic Surgery, MedStar Union Memorial Hospital, Baltimore, Maryland
| | - Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, 201 E. University Parkway, Baltimore, Maryland, 21218
| |
Collapse
|
5
|
Genç B, Lagrimas AKB, Kuru P, Hess R, Tu MW, Menichella DM, Miller RJ, Paller AS, Özdinler PH. Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line. PLoS One 2015. [PMID: 26222784 PMCID: PMC4519325 DOI: 10.1371/journal.pone.0132815] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.
Collapse
Affiliation(s)
- Barış Genç
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Amiko Krisa Bunag Lagrimas
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Pınar Kuru
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Robert Hess
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Michael William Tu
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Daniela Maria Menichella
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Richard J. Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Amy S. Paller
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
- Departments of Dermatology and Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
- Skin Disease Research Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
- Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - P. Hande Özdinler
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
Neuropeptides (NPs) and neurotransmitters are a heterogeneous group of soluble factors that make connections within the neuroendocrine and immune systems. NPs, including substance P (SP), vasoactive intestinal peptide (VIP), α melanocyte-stimulating hormone (α-MSH), and calcitonin gene-related peptide (CGRP), released by nerves that innervate the skin, can modulate the action of innate and adaptive skin immunity as well as the skin cells functions. Their role in several inflammatory skin diseases, such as atopic dermatitis, psoriasis, and vitiligo, and in the isotopic response has been reported. Further progress in understanding the various processes that modulate the interactions of the nervous and the skin immune system is essential to develop effective treatment for inflammatory skin conditions with neurogenic components and for understanding signs and symptoms in the isotopic response and, in general, in the control of global and regional immunity.
Collapse
Affiliation(s)
- Torello Lotti
- Chair of Department of Dermatology and Venereology, University of Rome "G. Marconi," Rome, Italy
| | - Angelo Massimiliano D'Erme
- Division of Dermatology, Department of Surgery and Translational Medicine, University of Florence, Italy.
| | - Jana Hercogová
- Department of Dermatology and Venereology, Second Faculty of Medicine, Charles University in Prague and Bulovka University Hospital, Prague, Czech Republic
| |
Collapse
|
7
|
Schober J, Aardsma N, Mayoglou L, Pfaff D, Martín-Alguacil N. Terminal innervation of female genitalia, cutaneous sensory receptors of the epithelium of the labia minora. Clin Anat 2015; 28:392-8. [DOI: 10.1002/ca.22502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/11/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Justine Schober
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
- UPMC Hamot; Erie Pennsylvania
| | - Nathan Aardsma
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
- Lake Erie College of Osteopathic Medicine; Erie Pennsylvania
| | - Lazarus Mayoglou
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
- UPMC Hamot; Erie Pennsylvania
| | - Donald Pfaff
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
| | - Nieves Martín-Alguacil
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
- Department of Anatomy and Embryology; School of Veterinary Medicine, Universidad Complutense de Madrid; Madrid Spain
| |
Collapse
|
8
|
Martín-Alguacil N, Cooper RS, Aardsma N, Mayoglou L, Pfaff D, Schober J. Terminal innervation of the male genitalia, cutaneous sensory receptors of the male foreskin. Clin Anat 2015; 28:385-91. [DOI: 10.1002/ca.22501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/05/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Nieves Martín-Alguacil
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
- Department of Anatomy and Embryology; School of Veterinary Medicine, Universidad Complutense de Madrid; Madrid Spain
| | - R. Scott Cooper
- UPMC Hamot; Erie Pennsylvania
- Lake Erie College of Osteopathic Medicine; Erie Pennsylvania
| | - Nathan Aardsma
- UPMC Hamot; Erie Pennsylvania
- Lake Erie College of Osteopathic Medicine; Erie Pennsylvania
| | - Lazarus Mayoglou
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
- UPMC Hamot; Erie Pennsylvania
| | - Donald Pfaff
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
| | - Justine Schober
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
- UPMC Hamot; Erie Pennsylvania
| |
Collapse
|
9
|
Peppin JF, Albrecht PJ, Argoff C, Gustorff B, Pappagallo M, Rice FL, Wallace MS. Skin Matters: A Review of Topical Treatments for Chronic Pain. Part One: Skin Physiology and Delivery Systems. Pain Ther 2015; 4:17-32. [PMID: 25627665 PMCID: PMC4470967 DOI: 10.1007/s40122-015-0031-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is a complex disorder with multiple etiologies for which the pathologic mechanisms are still largely unknown, making effective treatment a difficult clinical task. Achieving pain relief along with improved function and quality of life is the primary goal of pain clinicians; however, most patients and healthcare professionals consider 30% pain improvement to be clinically significant—a success level that would be unacceptable in other areas of medicine. Furthermore, patients with chronic pain frequently have multiple comorbidities, including depression and sleep apnea, and most have seen several physicians prior to being seen by a pain specialist, have more than three specific pain generators, and are taking multiple medications. The addition of further oral medications to control pain increases the risk of drug–drug interactions and side effects. However, topical analgesics have the advantage of local application with limited systemic levels of drug. Topical therapies benefit from reduced side effects, lower risk of drug–drug interactions, better patient acceptability/compliance, and improved tolerability. This two-part paper is a review of topical analgesics and their potential role in the treatment of chronic pain.
Collapse
Affiliation(s)
- John F Peppin
- Center for Bioethics Pain Management and Medicine, St. Louis, MO, USA,
| | | | | | | | | | | | | |
Collapse
|
10
|
Silberberg A, Moeller-Bertram T, Wallace MS. A randomized, double-blind, crossover study to evaluate the depth response relationship of intradermal capsaicin-induced pain and hyperalgesia in healthy adult volunteers. PAIN MEDICINE 2014; 16:745-52. [PMID: 25530160 DOI: 10.1111/pme.12639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate pain and hyperalgesia in response to different depths of intradermal (ID) capsaicin injections in healthy volunteers. DESIGN Double-blind, cross-over study. SETTING Clinical Research Laboratory. SUBJECTS Fifteen healthy male subjects received ID capsaicin injections into the volar aspect of each forearm at depths of 1 mm, 3 mm, 5 mm, and 7 mm. After injection, spontaneous pain, elicited pain, flare response, heat thresholds, and area of hyperalgesia were measured at various time points. OUTCOMES MEASURE Spontaneous pain, elicited pain (pinprick, stroking, and hot pain), hyperalgesia area, and allodynia area. RESULTS No significant difference was found between any depths in spontaneous pain, elicited pain (pinprick, stroking, hot pain), hyperalgesia area, or allodynia area. A significant difference was found in the change in heat threshold between 5 mm and 1 mm, 7 mm and 1 mm, 5 mm and 3 mm, 7 mm and 3 mm depths. A significant difference was found in flare area between 5 mm and 3 mm depths. A significant difference was found in systolic blood pressure area under the curve (AUC) between 7 mm and 1 mm depths, and for both systolic and diastolic pressures for 5 mm and 1 mm depths, and 5 mm and 3 mm depths. A significant difference was found in pulse AUC between 5 mm and 1 mm depths and 5 mm and 3 mm depths. CONCLUSIONS Injection of capsaicin at different depths in the skin had different effects on heart rate and blood pressure but no effect on pain. These results may have implications on the pharmacology and analgesic predictive value of the model of ID capsaicin.
Collapse
Affiliation(s)
- Alan Silberberg
- Department of Anesthesiology, University of California San Diego, San Diego, California, USA
| | | | | |
Collapse
|
11
|
Chartier SR, Thompson ML, Longo G, Fealk MN, Majuta LA, Mantyh PW. Exuberant sprouting of sensory and sympathetic nerve fibers in nonhealed bone fractures and the generation and maintenance of chronic skeletal pain. Pain 2014; 155:2323-36. [PMID: 25196264 PMCID: PMC4254205 DOI: 10.1016/j.pain.2014.08.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/17/2014] [Accepted: 08/12/2014] [Indexed: 01/14/2023]
Abstract
Skeletal injury is a leading cause of chronic pain and long-term disability worldwide. While most acute skeletal pain can be effectively managed with nonsteroidal anti-inflammatory drugs and opiates, chronic skeletal pain is more difficult to control using these same therapy regimens. One possibility as to why chronic skeletal pain is more difficult to manage over time is that there may be nerve sprouting in nonhealed areas of the skeleton that normally receive little (mineralized bone) to no (articular cartilage) innervation. If such ectopic sprouting did occur, it could result in normally nonnoxious loading of the skeleton being perceived as noxious and/or the generation of a neuropathic pain state. To explore this possibility, a mouse model of skeletal pain was generated by inducing a closed fracture of the femur. Examined animals had comminuted fractures and did not fully heal even at 90+days post fracture. In all mice with nonhealed fractures, exuberant sensory and sympathetic nerve sprouting, an increase in the density of nerve fibers, and the formation of neuroma-like structures near the fracture site were observed. Additionally, all of these animals exhibited significant pain behaviors upon palpation of the nonhealed fracture site. In contrast, sprouting of sensory and sympathetic nerve fibers or significant palpation-induced pain behaviors was never observed in naïve animals. Understanding what drives this ectopic nerve sprouting and the role it plays in skeletal pain may allow a better understanding and treatment of this currently difficult-to-control pain state.
Collapse
Affiliation(s)
| | | | - Geraldine Longo
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Michelle N Fealk
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Lisa A Majuta
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Patrick W Mantyh
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA; Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
12
|
Kwak IS, Choi YH, Jang YC, Lee YK. Immunohistochemical analysis of neuropeptides (protein gene product 9.5, substance P and calcitonin gene-related peptide) in hypertrophic burn scar with pain and itching. Burns 2014; 40:1661-7. [PMID: 24908181 DOI: 10.1016/j.burns.2014.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 04/02/2014] [Accepted: 04/06/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Neuropeptides have been recently reported as having an important role in wound repair, and relief from pain and itching sensation. The aim of this study was to evaluate the effect of neuropeptides on the wound healing process in hypertrophic scar formation that accompanies severe pain and itching sensation. METHODS We collected forty-three hypertrophic scar specimens from hypertrophic scar release and skin graft under general anesthesia. Immunohistochemical stains for protein gene product (PGP) 9.5, substance P (SP), and calcitonin gene-related peptide (CGRP) were performed. Pain and itching over the scar were recorded using verbal numerical rating scale (VNRS). RESULTS In the epidermis, PGP 9.5, SP, and CGRP were significantly increased in hypertrophic scars compared with matched unburned skin. In the reticular dermis, SP and CGRP were significantly increased in hypertrophic scars compared with control. The pain and itching verbal numerical rating scale in scar group were significantly higher compared to control. In the papillary dermis, the PGP represented significant correlation with Itching P (correlation coefficient 0.698) and the SP represented significant correlation with pain N (correlation coefficient -0.671). In the reticular dermis, the SP represented significant correlation with pain N (correlation coefficient -0.614) and CGRP represented significant correlation with pain P/Itching P (correlation coefficient 0.801/0.611). CONCLUSIONS Neuropeptides such as PGP 9.5, SP, and CGRP seem to affect scarring via sensory neurotransmission, it have a regulatory role for pain and itching sensation in hypertrophic scars.
Collapse
Affiliation(s)
- In Suk Kwak
- Department of Anesthesiology and Pain Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Young Hee Choi
- Department of Pathology, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, Korea
| | - Young Chul Jang
- Department of Plastic and Reconstructive Surgery, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Yoon Kyung Lee
- Department of Anesthesiology and Pain Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Gigliuto C, De Gregori M, Malafoglia V, Raffaeli W, Compagnone C, Visai L, Petrini P, Avanzini MA, Muscoli C, Viganò J, Calabrese F, Dominioni T, Allegri M, Cobianchi L. Pain assessment in animal models: do we need further studies? J Pain Res 2014; 7:227-36. [PMID: 24855386 PMCID: PMC4020878 DOI: 10.2147/jpr.s59161] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In the last two decades, animal models have become important tools in understanding and treating pain, and in predicting analgesic efficacy. Although rodent models retain a dominant role in the study of pain mechanisms, large animal models may predict human biology and pharmacology in certain pain conditions more accurately. Taking into consideration the anatomical and physiological characteristics common to man and pigs (median body size, digestive apparatus, number, size, distribution and communication of vessels in dermal skin, epidermal-dermal junctions, the immunoreactivity of peptide nerve fibers, distribution of nociceptive and non-nociceptive fiber classes, and changes in axonal excitability), swines seem to provide the most suitable animal model for pain assessment. Locomotor function, clinical signs, and measurements (respiratory rate, heart rate, blood pressure, temperature, electromyography), behavior (bright/quiet, alert, responsive, depressed, unresponsive), plasma concentration of substance P and cortisol, vocalization, lameness, and axon reflex vasodilatation by laser Doppler imaging have been used to assess pain, but none of these evaluations have proved entirely satisfactory. It is necessary to identify new methods for evaluating pain in large animals (particularly pigs), because of their similarities to humans. This could lead to improved assessment of pain and improved analgesic treatment for both humans and laboratory animals.
Collapse
Affiliation(s)
- Carmelo Gigliuto
- Anaesthesia and Intensive Care, University of Pavia, Pavia, Italy
| | | | | | - William Raffaeli
- ISAL Foundation, Institute for Research on Pain, Torre Pedrera, Rimini, Italy
| | - Christian Compagnone
- Department of Anaesthesia, Intensive Care and Pain Therapy, Azienda Ospedaliera Universitaria Parma, University of Parma, Parma, Italy
| | - Livia Visai
- Department of Molecular Medicine, Center for Tissue Engineering (CIT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy ; Department of Occupational Medicine, Ergonomy and Disability, Laboratory of Nanotechnology, Salvatore Maugeri Foundation, IRCCS, Veruno, Italy
| | - Paola Petrini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica 'G Natta' and Unità di Ricerca Consorzio INSTM, Politecnico di Milano, Milan, Italy
| | - Maria Antonietta Avanzini
- Laboratory of Transplant Immunology/Cell Factory, Fondazione IRCCS Policlinico "San Matteo", Pavia, Italy
| | - Carolina Muscoli
- Department of Health Science, University Magna Grecia of Catanzaro and Centro del Farmaco, IRCCS San Raffaele Pisana, Roma, Italy
| | - Jacopo Viganò
- University of Pavia, Department of Surgical, Clinical, Paediatric and Diagnostic Science, General Surgery 1, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Francesco Calabrese
- University of Pavia, Department of Surgical, Clinical, Paediatric and Diagnostic Science, General Surgery 1, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Tommaso Dominioni
- University of Pavia, Department of Surgical, Clinical, Paediatric and Diagnostic Science, General Surgery 1, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Massimo Allegri
- Pain Therapy Service, Fondazione IRCCS Policlinico San Matteo, Pavia ; Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Lorenzo Cobianchi
- University of Pavia, Department of Surgical, Clinical, Paediatric and Diagnostic Science, General Surgery 1, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
14
|
Mantyh PW. The neurobiology of skeletal pain. Eur J Neurosci 2014; 39:508-19. [PMID: 24494689 PMCID: PMC4453827 DOI: 10.1111/ejn.12462] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 12/13/2022]
Abstract
Disorders of the skeleton are one of the most common causes of chronic pain and long-term physical disability in the world. Chronic skeletal pain is caused by a remarkably diverse group of conditions including trauma-induced fracture, osteoarthritis, osteoporosis, low back pain, orthopedic procedures, celiac disease, sickle cell disease and bone cancer. While these disorders are diverse, what they share in common is that when chronic skeletal pain occurs in these disorders, there are currently few therapies that can fully control the pain without significant unwanted side effects. In this review we focus on recent advances in our knowledge concerning the unique population of primary afferent sensory nerve fibers that innervate the skeleton, the nociceptive and neuropathic mechanisms that are involved in driving skeletal pain, and the neurochemical and structural changes that can occur in sensory and sympathetic nerve fibers and the CNS in chronic skeletal pain. We also discuss therapies targeting nerve growth factor or sclerostin for treating skeletal pain. These therapies have provided unique insight into the factors that drive skeletal pain and the structural decline that occurs in the aging skeleton. We conclude by discussing how these advances have changed our understanding and potentially the therapeutic options for treating and/or preventing chronic pain in the injured, diseased and aged skeleton.
Collapse
Affiliation(s)
- Patrick W Mantyh
- Department of Pharmacology and Arizona Cancer Center, University of Arizona, Tucson, AZ, 85716, USA
| |
Collapse
|
15
|
Kou ZZ, Li CY, Hu JC, Yin JB, Zhang DL, Liao YH, Wu ZY, Ding T, Qu J, Li H, Li YQ. Alterations in the neural circuits from peripheral afferents to the spinal cord: possible implications for diabetic polyneuropathy in streptozotocin-induced type 1 diabetic rats. Front Neural Circuits 2014; 8:6. [PMID: 24523675 PMCID: PMC3905201 DOI: 10.3389/fncir.2014.00006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/14/2013] [Indexed: 12/22/2022] Open
Abstract
Diabetic polyneuropathy (DPN) presents as a wide variety of sensorimotor symptoms and affects approximately 50% of diabetic patients. Changes in the neural circuits may occur in the early stages in diabetes and are implicated in the development of DPN. Therefore, we aimed to detect changes in the expression of isolectin B4 (IB4, the marker for nonpeptidergic unmyelinated fibers and their cell bodies) and calcitonin gene-related peptide (CGRP, the marker for peptidergic fibers and their cell bodies) in the dorsal root ganglion (DRG) and spinal cord of streptozotocin (STZ)-induced type 1 diabetic rats showing alterations in sensory and motor function. We also used cholera toxin B subunit (CTB) to show the morphological changes of the myelinated fibers and motor neurons. STZ-induced diabetic rats exhibited hyperglycemia, decreased body weight gain, mechanical allodynia and impaired locomotor activity. In the DRG and spinal dorsal horn, IB4-labeled structures decreased, but both CGRP immunostaining and CTB labeling increased from day 14 to day 28 in diabetic rats. In spinal ventral horn, CTB labeling decreased in motor neurons in diabetic rats. Treatment with intrathecal injection of insulin at the early stages of DPN could alleviate mechanical allodynia and impaired locomotor activity in diabetic rats. The results suggest that the alterations of the neural circuits between spinal nerve and spinal cord via the DRG and ventral root might be involved in DPN.
Collapse
Affiliation(s)
- Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Chun-Yu Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Jia-Chen Hu
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Jun-Bin Yin
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Dong-Liang Zhang
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Yong-Hui Liao
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Zhen-Yu Wu
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Tan Ding
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Juan Qu
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| |
Collapse
|
16
|
Dhaliwal CA, MacKenzie AI, Biswas A. Perineural inflammation in morphea (localized scleroderma): systematic characterization of a poorly recognized but potentially useful histopathological feature. J Cutan Pathol 2013; 41:28-35. [DOI: 10.1111/cup.12242] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/08/2013] [Accepted: 04/28/2013] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Asok Biswas
- Department of Pathology; Western General Hospital; Edinburgh UK
| |
Collapse
|
17
|
Abstract
AIMS/HYPOTHESIS Protein gene product 9.5 (PGP 9.5) is a marker for neuroendocrine cells but has not been used for pancreatic islet cells and pancreatic endocrine tumors (PETs). Antibodies for PGP 9.5 are now commercially available for immunocytochemical study, with which immunostaining may be able to differentiate between benign and malignant PETs. RESULTS All 4 kinds of normal islet cells were positively immunostained for PGP 9.5-moderately positive for β-cells and strongly positive for δ-cells, whereas ganglion cells were immunostained more strongly than islet cells. Nine of 12 insulinomas were moderately to strongly positive for PGP 9.5. Two glucagonomas, 3 of 6 pancreatic polypeptidomas (PPomas), 3 of 9 gastrinomas, and 2 of 4 non-functioning PETs were negative for PGP 9.5. MATERIALS AND METHODS Thirty-four PETs were immunocytochemically stained for PGP 9.5 using a rabbit polyclonal antibody together with immunostaining for 4 pancreatic hormones, chromogranin A (CgA), and gastrin. PETs consisted of 12 insulinomas, 2 glucagonomas, 1 somatostatinoma (SRIFoma), 6 PPomas, 9 gastrinomas, and 4 non-functioning PETs. CONCLUSION/INTERPRETATION PGP 9.5 immunostaining was universally positive for 4 kinds of islet cells and was moderately to strongly positive for 9 of 12 (75%) insulinomas. All 22 non-β-cell PETs were negative or weakly positive for PGP 9.5, and thus negative or weakly positive PGP 9.5 immunostaining may be used as a marker for potential malignancy and poor prognosis for non-β-cell PETs.
Collapse
|
18
|
Holub B, Kloepper J, Tóth B, Bíro T, Kofler B, Paus R. The neuropeptide galanin is a novel inhibitor of human hair growth. Br J Dermatol 2012; 167:10-6. [DOI: 10.1111/j.1365-2133.2012.10890.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Localization of nerve fibers in colonic polyps, adenomas, and adenocarcinomas by immunocytochemical staining for PGP 9.5. Dig Dis Sci 2012; 57:364-70. [PMID: 21928069 DOI: 10.1007/s10620-011-1876-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 08/12/2011] [Indexed: 12/09/2022]
Abstract
BACKGROUND PGP 9.5 is a cytoplasmic protein and is a specific marker for neurites and neurons. AIMS Using anti-PGP 9.5, this study aimed to localize nerve fibers in normal colons, polyps, adenomas and adenocarcinomas. METHODS Colonic polyps, adenomas and T(1) to T(3) adenocarcinomas with adjacent normal colon were immunostained for PGP 9.5 using rabbit anti-PGP 9.5. RESULTS In normal colon, numerous nerve fibers were localized in inner and outer muscles, from which submucosa and lamina propria were innervated. In hyperplastic polyps and tubular adenomas, the stalk revealed Meissner's plexus and large-diameter nerve fibers, and fine nerve fibers innervated abundantly in lamina propria of hyperplastic polyps and small tubular adenomas. In villous adenomas, large-diameter nerve fibers and Meissner's plexus were localized in the stalk whereas a few or no fine nerve fibers were localized in fine stroma. In adenocarcinomas, more fine fibers were localized in submucosal stroma adjacent to the invading carcinoma in T(1) carcinomas but there were no nerve fibers in the midst of tumors in T(2) and T(3) carcinomas. There were focally and sporadically increased nerve fibers adjacent to invading cancer nests in 5 of 8 T(2) cases. In T(3) carcinomas, fragmented Auerbach's plexus were noted in cancer-invaded colonic muscles and there were no increased fine nerve fibers in the cancer-invaded subserosa in the majority of cases. PGP 9.5 immunostaining revealed tumor-associated neurogenesis in submucosa but no obviously increased nerve fibers within cancer-invaded muscles. CONCLUSIONS This lack of tumor-associated neurogenesis supports insidious and often silent clinical presentation of colonic carcinomas until invading through the colonic wall to adjacent organs.
Collapse
|
20
|
Alstonia scholaris R. Br. Significantly Inhibits Retinoid-Induced Skin Irritation In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:190370. [PMID: 21912567 PMCID: PMC3170789 DOI: 10.1155/2012/190370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 07/05/2011] [Indexed: 11/17/2022]
Abstract
Topical retinoids inhibit matrix metalloproteinases and accelerate collagen synthesis, thereby triggering antiaging effects in the skin. However, topical retinoids can cause severe skin reactions, including scaling, erythema, papules, and inflammation. The present study demonstrates that the ethanolic bark extract of Alstonia scholaris R. Br. can significantly inhibit all-trans retinoic acid-induced inflammation in human HaCat keratinocyte cells. Furthermore, two representative retinoid-induced proinflammatory cytokines, monocyte chemoattractant protein-1 and interleukin-8, were significantly suppressed by A. scholaris extract (by 82.1% and 26.3% at 100 ppm, and dose-dependently across the tested concentrations) in vitro. In a cumulative irritation patch test, A. scholaris extract decreased retinol-induced skin irritation, while strengthening the ability of retinoids to inhibit matrix metalloproteinase-1 expression, which is strongly associated with aging effects. These results suggest that A. scholaris is a promising compound that may increase the antiaging function of retinoids while reducing their ability to cause skin irritation.
Collapse
|
21
|
Cheng HT, Dauch JR, Hayes JM, Yanik BM, Feldman EL. Nerve growth factor/p38 signaling increases intraepidermal nerve fiber densities in painful neuropathy of type 2 diabetes. Neurobiol Dis 2011; 45:280-7. [PMID: 21872660 DOI: 10.1016/j.nbd.2011.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/26/2011] [Accepted: 08/03/2011] [Indexed: 10/17/2022] Open
Abstract
Painful diabetic neuropathy (PDN) is a common, yet devastating complication of type 2 diabetes. At this time, there is no objective test for diagnosing PDN. In the current study, we measured the peptidergic intraepidermal nerve fiber densities (IENFD) from hind paws of the db/db mouse, an animal model for type 2 diabetes, during the period of mechanical allodynia from 6 to 12 weeks of age. Intraepidermal nerve fibers (IENF) of the hind footpads were identified by protein gene product (PGP) 9.5 immunohistochemistry. The peptidergic IENF were determined by double immunofluorescence using anti-PGP9.5 and antibodies against tropomyosin-receptor-kinase (Trk) A. We observed a significant increase in PGP9.5-positive IENFD at 8 and 10 weeks of age. Similarly, Trk A-positive peptidergic IENF, which also express substance P and calcitonin gene related peptide in db/db mice, were observed to be elevated from 1.5 to 2 fold over controls. This upregulation ended at 16 weeks of age, in accordance with the reduction of mechanical allodynia. Anti-NGF treatment significantly inhibited the upregulation of peptidergic IENFD during the period of mechanical allodynia, suggesting that increased neurotrophism may mediate this phenomenon. In addition, SB203580, an inhibitor of p38, blocked the increase in peptidergic IENFD in db/db mice. The current results suggest that peptidergic IENFD could be a potential diagnostic indicator for PDN in type 2 diabetes. Furthermore, the inhibition of NGF-p38 signaling could be a potential therapeutic strategy for treating this painful condition.
Collapse
Affiliation(s)
- Hsinlin T Cheng
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
22
|
Amatya B, El-Nour H, Holst M, Theodorsson E, Nordlind K. Expression of tachykinins and their receptors in plaque psoriasis with pruritus. Br J Dermatol 2011; 164:1023-9. [PMID: 21299544 DOI: 10.1111/j.1365-2133.2011.10241.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED BACKGROUND Various mediators of pruritus have been suggested that might be responsible for the mechanism of pruritus in psoriasis. OBJECTIVES To study the expression levels of members of the tachykinin family, substance P and neurokinin (NK) A and their receptors, NK-1 and NK-2, in psoriasis and to correlate their expression with the intensity of pruritus. A possible correlation with chronic stress and depression was also evaluated. METHODS Biopsies were obtained from 28 patients with chronic plaque psoriasis; the majority had pruritus. The samples were taken from lesional and nonlesional areas on the back and also from 10 healthy controls, for immunohistochemistry staining, and from lesional skin for radioimmunoassay. Prior to biopsy, the clinical severity of the psoriasis of each patient was assessed by the Psoriasis Area and Severity Index (PASI) and the intensity of pruritus was measured by using a visual analogue scale (VAS). Levels of depression and stress were measured using Beck's Depression Inventory (BDI) and the salivary cortisol test, respectively. RESULTS Substance P-, NKA- and NK-2 receptor-immunoreactive nerves, and non-neuronal inflammatory cells positive for substance P and NKA and their respective receptors, NK-1 and NK-2, were numerous in psoriasis compared with healthy controls. The numbers of substance P-positive nerves and NK-2 receptor-positive cells in lesional skin were significantly correlated to pruritus intensity. The cortisol ratio was inversely correlated with the number of NK-1 receptor-immunoreactive inflammatory cells in lesional and nonlesional psoriasis skin. There was also a positive correlation between the BDI score and the number of substance P-positive cells in nonlesional skin and with NK-1 receptor-positive cells in lesional and nonlesional skin. CONCLUSIONS Tachykinins may play a role in psoriasis per se, in addition to pruritus in this disease. Targeting the combined NK-1 and NK-2 receptors might be a possible treatment.
Collapse
Affiliation(s)
- B Amatya
- Department of Medicine, Dermatology and Venereology Unit, Karolinska University Hospital, Solna, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
23
|
Guest M, Parmar J, Bunker C, Rowe A, Davies A. Confirmation of peripheral neuropathy in patients withvenous ulceration through immunohistochemistry. Int J Angiol 2011. [DOI: 10.1007/s00547-004-1069-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
24
|
Castañeda-Corral G, Jimenez-Andrade JM, Bloom AP, Taylor RN, Mantyh WG, Kaczmarska MJ, Ghilardi JR, Mantyh PW. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience 2011; 178:196-207. [PMID: 21277945 PMCID: PMC3078085 DOI: 10.1016/j.neuroscience.2011.01.039] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/16/2011] [Accepted: 01/20/2011] [Indexed: 12/13/2022]
Abstract
Although skeletal pain is a leading cause of chronic pain and disability, relatively little is known about the specific populations of nerve fibers that innervate the skeleton. Recent studies have reported that therapies blocking nerve growth factor (NGF) or its cognate receptor, tropomyosin receptor kinase A (TrkA) are efficacious in attenuating skeletal pain. A potential factor to consider when assessing the analgesic efficacy of targeting NGF-TrkA signaling in a pain state is the fraction of NGF-responsive TrkA+ nociceptors that innervate the tissue from which the pain is arising, as this innervation and the analgesic efficacy of targeting NGF-TrkA signaling may vary considerably from tissue to tissue. To explore this in the skeleton, tissue slices and whole mount preparations of the normal, adult mouse femur were analyzed using immunohistochemistry and confocal microscopy. Analysis of these preparations revealed that 80% of the unmyelinated/thinly myelinated sensory nerve fibers that express calcitonin gene-related peptide (CGRP) and innervate the periosteum, mineralized bone and bone marrow also express TrkA. Similarly, the majority of myelinated sensory nerve fibers that express neurofilament 200 kDa (NF200) which innervate the periosteum, mineralized bone and bone marrow also co-express TrkA. In the normal femur, the relative density of CGRP+, NF200+ and TrkA+ sensory nerve fibers per unit volume is: periosteum>bone marrow>mineralized bone>cartilage with the respective relative densities being 100:2:0.1:0. The observation that the majority of sensory nerve fibers innervating the skeleton express TrkA+, may in part explain why therapies that block NGF/TrkA pathway are highly efficacious in attenuating skeletal pain.
Collapse
Affiliation(s)
- G Castañeda-Corral
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Rukwied R, Schley M, Forsch E, Obreja O, Dusch M, Schmelz M. Nerve growth factor-evoked nociceptor sensitization in pig skin in vivo. J Neurosci Res 2010; 88:2066-72. [PMID: 20143422 DOI: 10.1002/jnr.22351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Peripheral sensitization of skin nociceptors by nerve growth factor (NGF) was explored in pig skin in vivo. As an objective output measure, the area of axon-reflex-mediated erythema was assessed upon mechanical, thermal, chemical, and electrical stimuli delivered at 1, 3, and 7 days after i.d. injection of 1 microg NGF into the pig's back skin (n = 8). Pretreatment with NGF provoked a sensitization to mechanical (600 mN), thermal (10 sec 49 degrees C) and chemical (15 microl, pH 3) stimuli that lasted for 7 days. No sensitization, however, was found in response to weak mechanical (100 mN), weak thermal (10 sec 45 degrees C), or electrical stimuli. Irrespective of the skin pretreatment (NGF or PBS vehicle control), the area of electrically induced erythema decreased upon repetition (days 1-7) by 70% (P < 0.05). Sensitization of sensory endings by NGF upon mechanical, heat, and chemical stimuli suggests recruitment of sensory transducer molecules [e.g., TRPV1, acid-sensing ion channels (ASICs)]. In contrast, the gradual decrease in electrically induced erythema over 7 days might be attributable to axonal desensitization and possibly activity-dependent down-regulation of sodium channels. Thus, long-lasting sensitization processes of nociceptor endings or axonal sodium channel desensitization mechanisms can be explored in the pig as a translational experimental animal model.
Collapse
Affiliation(s)
- Roman Rukwied
- University Clinics of Anaesthesiology and Intensive Care Medicine, University Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Tamura K, Mager VA, Burnett LA, Olson JH, Brower JB, Casano AR, Baluch DP, Targovnik JH, Windhorst RA, Herman RM. A semi-automated analysis method of small sensory nerve fibers in human skin-biopsies. J Neurosci Methods 2009; 185:325-37. [PMID: 19852982 DOI: 10.1016/j.jneumeth.2009.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 02/02/2023]
Abstract
Computerized detection method (CDM) software programs have been extensively developed in the field of astronomy to process and analyze images from nearby bright stars to tiny galaxies at the edge of the Universe. These object-recognition algorithms have potentially broader applications, including the detection and quantification of cutaneous small sensory nerve fibers (SSNFs) found in the dermal and epidermal layers, and in the intervening basement membrane of a skin punch biopsy. Here, we report the use of astronomical software adapted as a semi-automated method to perform density measurements of SSNFs in skin-biopsies imaged by Laser Scanning Confocal Microscopy (LSCM). In the first half of the paper, we present a detailed description of how the CDM is applied to analyze the images of skin punch biopsies. We compare the CDM results to the visual classification results in the second half of the paper. Abbreviations used in the paper, description of each astronomical tools, and their basic settings and how-tos are described in the appendices. Comparison between the normalized CDM and the visual classification results on identical images demonstrates that the two density measurements are comparable. The CDM therefore can be used - at a relatively low cost - as a quick (a few hours for entire processing of a single biopsy with 8-10 scans) and reliable (high-repeatability with minimum user-dependence) method to determine the densities of SSNFs.
Collapse
Affiliation(s)
- Kazuyuki Tamura
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Alves de Medeiros M, Startin CM, Jeffery ND. Innervation of canine skin: an immunohistochemical study. Vet Rec 2009; 165:314-8. [DOI: 10.1136/vr.165.11.314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- M. Alves de Medeiros
- Department of Physiological Sciences; Universidade Federal Rural do Rio de Janeiro; BR 465 KM 7 23890 000 Rio de Janeiro Brazil
| | - C. M. Startin
- School of Biomedical Sciences; Institute of Neuroscience; University of Nottingham; Queen's Medical Centre; Nottingham NG7 2UH
| | - N. D. Jeffery
- Department of Veterinary Medicine; University of Cambridge; Madingley Road Cambridge CB3 0ES
| |
Collapse
|
28
|
Dusch M, Schley M, Obreja O, Forsch E, Schmelz M, Rukwied R. Comparison of electrically induced flare response patterns in human and pig skin. Inflamm Res 2009; 58:639-48. [DOI: 10.1007/s00011-009-0029-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 10/21/2022] Open
|
29
|
Shirai C, Ohtori S, Kishida S, Harada Y, Moriya H. The pattern of distribution of PGP 9.5 and TNF-alpha immunoreactive sensory nerve fibers in the labrum and synovium of the human hip joint. Neurosci Lett 2009; 450:18-22. [DOI: 10.1016/j.neulet.2008.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 10/05/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
|
30
|
Hendrix S, Picker B, Liezmann C, Peters EMJ. Skin and hair follicle innervation in experimental models: a guide for the exact and reproducible evaluation of neuronal plasticity. Exp Dermatol 2008; 17:214-27. [PMID: 18261087 DOI: 10.1111/j.1600-0625.2007.00653.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The remodelling of skin innervation is an instructive example of neuronal plasticity in the peripheral nervous system. Cutaneous innervation displays dramatic plasticity during morphogenesis, adult remodelling, skin diseases and after skin nerve lesions. To recognize even subtle changes or abnormalities of cutaneous innervation under different experimental conditions, it is critically important to use a quantitative approach. Here, we introduce a simple, fast and reproducible quantitative method based on immunofluorescence histochemistry for the exact quantification of peripheral nerve fibres. Computer-generated schematic representations of cutaneous innervation in defined skin compartments are presented with the aim of standardizing reports on gene and protein expression patterns. This guide should become a useful tool when screening new mouse mutants, disease models affecting innervation or mice treated with pharmaceuticals for discrete morphologic abnormalities of skin innervation in a highly reproducible and quantifiable manner. Moreover, this method can be easily transferred to other densely innervated peripheral organs.
Collapse
Affiliation(s)
- Sven Hendrix
- Institute for Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin, Berlin, Germany
| | | | | | | |
Collapse
|
31
|
Iijima J, Horie S, Hasegawa R, Yasui H, Takami S. Immunohistochemical and Morphologic Basis for Glutamate Signaling in the Rat Stomach. Biol Pharm Bull 2008; 31:1838-40. [DOI: 10.1248/bpb.31.1838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Junko Iijima
- Laboratory of Cytology, Department of Medical Technology, Faculty of Health Sciences, Kyorin University
| | - Sawa Horie
- Laboratory of Anatomy & Cellular Biology, Department of Medical Technology, Faculty of Health Sciences, Kyorin University
- Graduate School of Health Sciences, Kyorin University
| | - Rumi Hasegawa
- Laboratory of Anatomy & Cellular Biology, Department of Medical Technology, Faculty of Health Sciences, Kyorin University
| | - Hideaki Yasui
- Laboratory of Cytology, Department of Medical Technology, Faculty of Health Sciences, Kyorin University
- Graduate School of Health Sciences, Kyorin University
| | - Shigeru Takami
- Laboratory of Anatomy & Cellular Biology, Department of Medical Technology, Faculty of Health Sciences, Kyorin University
- Graduate School of Health Sciences, Kyorin University
| |
Collapse
|
32
|
Karlsen TV, Bletsa A, Gjerde EAB, Reed RK. Lowering of interstitial fluid pressure after neurogenic inflammation in mouse skin is partly dependent on mast cells. Am J Physiol Heart Circ Physiol 2007; 292:H1821-7. [PMID: 17158654 DOI: 10.1152/ajpheart.00365.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurogenic inflammation is known to induce lowering of interstitial fluid pressure (Pif) in mouse skin. This study examined the possible role of mast cell activation secondary to neuropeptide release in lowering of Pifby using KitW/ KitW-vmice, which are devoid of mast cells, including connective tissue mast cells (CTMCs). Pifwas measured in paw skin of anesthetized (fentanyl-fluanison and midazolam, 1:1) mice with glass capillaries connected to a servo-controlled counterpressure system. In contrast to wild-type mice, intravenous administration of mast cell-activating compound 48/80 induced no lowering of Pifin KitW/ KitW-vmice. Intravenous challenge with substance P (SP), calcitonin gene-related peptide (CGRP), or capsaicin induced a significant ( P < 0.05) lowering of Pifin wild-type mice to −2.16 ± 0.28, −1.96 ± 0.11, and −2.22 ± 0.19 mmHg, respectively, compared with vehicle (−0.49 ± 0.11 mmHg). In KitW/ KitW-vmice the Pifresponse to SP was completely abolished (−0.53 ± 0.32 mmHg) while the response to CGRP and capsaicin was attenuated (−1.33 ± 0.13 and −1.42 ± 0.13 mmHg, respectively) although significantly ( P < 0.05) lowered compared with vehicle. Immunohistochemical analysis revealed no difference in distribution or density of SP- and CGRP-immunoreactive fibers in paws of KitW/ KitW-vcompared with wild-type mice. We conclude that lowering of Pifnormally depends on mast cells. However, the sensory nerves can also elicit a lowering of Pifthat is independent of mast cells.
Collapse
Affiliation(s)
- Tine V Karlsen
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | | | | | | |
Collapse
|
33
|
Jiang N, Rau KK, Johnson RD, Cooper BY. Proton sensitivity Ca2+ permeability and molecular basis of acid-sensing ion channels expressed in glabrous and hairy skin afferents. J Neurophysiol 2006; 95:2466-78. [PMID: 16407431 DOI: 10.1152/jn.00861.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We contrasted the physiology and peripheral targets of subclassified nociceptive and nonnociceptive afferents that express acid-sensing ion channel (ASIC)-like currents. The threshold for current activation was similar in eight distinct cell subclasses regardless of functional modality (pH 6.8). When potency was determined from concentration-response curves, nonnociceptors exhibited currents with significantly greater potency than that of all but one class of nociceptors (pH50 = 6.54 and 6.75 vs. 6.20-6.34). In nonnociceptive cells, acid transduction was also confined to a very narrow range (0.1-0.3 vs. 0.8-1.4 pH units for nociceptors). Simultaneous whole cell recording and ratiometric imaging of three peptidergic nociceptive classes were consistent with the expression of Ca2+ -permeable ASICs. Sensitivity to psalmotoxin and flurbiprofen indicated the presence of Ca2+ -permeable ASIC1a. Immunocytochemistry on these subclassified populations revealed a differential distribution of five ASIC proteins consistent with Ca2+ permeability and differential kinetics of proton-gated currents (type 5: ASIC1a, 1b, 2a, 2b, 3; type 8a: ASIC1a, 1b, 3; type 8b: ASIC1a, 1b, 2a, 2b, 3). Using DiI tracing, we found that nociceptive classes had discrete peripheral targets. ASIC-expressing types 8a and 9 projected to hairy skin, but only types 8a and 13 projected to glabrous skin. Non-ASIC-expressing types 2 and 4 were present only in hairy skin. We conclude that ASIC-expressing nociceptors differ from ASIC-expressing nonnociceptors mainly by range of proton reactivity. ASIC- as well as non-ASIC-expressing nociceptors have highly distinct cutaneous targets, and only one class was consistent with the existence of a generic C polymodal nociceptor (type 8a).
Collapse
Affiliation(s)
- N Jiang
- Department of Oral Surgery and Diagnostic Sciences, Division of Neuroscience, J.H. Miller Health Center, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
34
|
|
35
|
Shun CT, Chang YC, Wu HP, Hsieh SC, Lin WM, Lin YH, Tai TY, Hsieh ST. Skin denervation in type 2 diabetes: correlations with diabetic duration and functional impairments. ACTA ACUST UNITED AC 2004; 127:1593-605. [PMID: 15128619 DOI: 10.1093/brain/awh180] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sensory neuropathy is a prominent component of diabetic neuropathy. It is not entirely clear how diabetes influences skin innervation, and whether these changes are correlated with clinical signs and laboratory findings. To investigate these issues, we performed skin biopsies on the distal leg of 38 consecutive type 2 diabetic patients with sensory symptoms in lower limbs (25 males and 13 females, aged 56.2 +/- 9.4 years) and analysed the correlations of intraepidermal nerve fibre (IENF) densities in skin with glycaemic status (duration of diabetes, HbA1C, and fasting and post-prandial glucose levels), and functional parameters of small fibres (warm and cold thresholds) and large fibres (vibratory threshold and parameters of nerve conduction studies). Clinically, 23 patients (60.5%) had signs of small-fibre impairment, and 19 patients (50.0%) had signs of large-fibre impairment. IENF densities were much lower in diabetic patients than in age- and gender-matched controls (1.794 +/- 2.120 versus 9.359 +/- 3.466 fibres/mm, P < 0.0001), and 81.6% (31/38) of diabetic patients had reduced IENF densities. IENF densities were negatively associated with the duration of diabetes (standardized coefficient: -0.422, P = 0.015) by analysis with a multivariate linear regression model. Abnormal results of functional examinations were present in 81.6% (warm threshold), 57.9% (cold threshold), 63.2% (vibratory threshold) and 49% (amplitude of sural sensory action potential) of diabetic patients. Among the three sensory thresholds, the warm threshold temperature had the highest correlation with IENF densities (standardized coefficient: -0.773, P < 0.0001). On nerve conduction studies in lower-limb nerves, there were abnormal responses in 54.1% of sural nerves, and 50.0% of peroneal nerves. Of neurophysiological parameters, the amplitude of the sural sensory action potential had the highest correlation with IENF density (standardized coefficient: 0.739, P < 0.0001). On clinical examination, 15 patients showed no sign of small-fibre impairment, but seven of these patients had reduced IENF densities. In conclusion, small-fibre sensory neuropathy presenting with reduced IENF densities and correlated elevation of warm thresholds is a major manifestation of type 2 diabetes. In addition, the extent of skin denervation increases with diabetic duration.
Collapse
Affiliation(s)
- Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital, Taipei
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tympanidis P, Terenghi G, Dowd P. Increased innervation of the vulval vestibule in patients with vulvodynia. Br J Dermatol 2003; 148:1021-7. [PMID: 12786836 DOI: 10.1046/j.1365-2133.2003.05308.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Vulval vestibulitis is a condition characterized by the sudden onset of a painful burning sensation, hyperalgesia, mechanical allodynia, and occasionally pruritus, localized to the region of the vulval vestibulus. It is considered the commonest subset of vulvodynia. Pain precipitated in the absence of nociceptor stimuli might be triggered by previous peripheral nerve injury, or by the release of neuronal mediators, which set off inappropriate impulses in nonmyelinated pain fibres sensitizing the dorsal horn neurones. The pathophysiology of vulval vestibulitis is still unclear. OBJECTIVES The objective of this study was to evaluate the nerve fibre density and pattern, in specimens of vulval vestibulus, in normal subjects and in patients with vestibulitis, and provide objective diagnostic criteria for this condition. Methods Twelve patients with a history of the vestibulitis type of vulvodynia, and eight normal subjects underwent biopsy of the posterior wall of the vulval vestibule. Quantitative immunohistochemistry was performed, using antisera to the general neuronal marker protein gene product (PGP) 9.5, and to the neuropeptide calcitonin gene-related peptide (CGRP), on 15- microm sections. RESULTS There was a statistically significant increase of density and number of PGP 9.5 immunoreactive in the papillary dermis of patients with vulvodynia of the vestibulitis type, compared with those of controls. However, the distribution pattern of the innervation showed no significant change. There were no significant differences in CGRP staining between patients and controls. CONCLUSIONS It is concluded that the increase of PGP 9.5 immunoreactive nerve fibres, in patients with vulvodynia, may be either secondary to nerve sprouting, or may represent neural hyperplasia. Increased innervation may be applied as an objective diagnostic finding in vulval vestibulitis syndrome.
Collapse
Affiliation(s)
- P Tympanidis
- Department of Dermatology, UCL Hospitals Trust, The Royal Free and University College of London School of Medicine, London, UK.
| | | | | |
Collapse
|
37
|
Verzè L, Paraninfo A, Viglietti-Panzica C, Panzica GC, Ramieri G. Expression of neuropeptides and growth-associated protein 43 (GAP-43) in cutaneous and mucosal nerve structures of the adult rat lower lip after mental nerve section. Ann Anat 2003; 185:35-44. [PMID: 12597125 DOI: 10.1016/s0940-9602(03)80006-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The reinnervation of the adult rat lower lip has been investigated after unilateral section of the mental nerve. Rats were sacrificed at 4, 7, 9, 14, 30, and 90 days after the operation. A further group of animals with section of the mental nerve and block of the alveolar nerve regeneration, was sacrificed at 14 days. Specimens were processed for immunocytochemistry with antibodies against PGP 9.5, GAP-43 or neuropeptides (CGRP, SP and VIP). Four days after nerve section, axonal degeneration seems evident in the mental nerve branches and inside skin and mucosa. GAP-43 immunoreactivity is intense in the mental nerve 7 days after nerve section and it reaches its maximal expression and distribution in peripheral nerve fibres at 14 days. At 30 days, the decline in its expression is associated with the increase of PGP9.5-, SP-, and CGRP immunopositivity. VIP is observed only in perivascular fibres at all times observed. Present results suggest that, after sensory denervation of the rat lip, nerve fibres in skin and mucosa remain at lower density than normal. The different time courses in the expression of neuropeptides and GAP-43 suggest a possible early involvement of GAP-43 in peripheral nerve regeneration.
Collapse
Affiliation(s)
- L Verzè
- Laboratory of Neuroendocrinology, Department of Anatomy, Pharmacology and Forensic Medicine, University of Torino, Corso Massimo D'Azeglio 52, I-10126 Torino, Italy.
| | | | | | | | | |
Collapse
|
38
|
Taira K, Narisawa Y, Nakafusa J, Misago N, Tanaka T. Spatial relationship between Merkel cells and Langerhans cells in human hair follicles. J Dermatol Sci 2002; 30:195-204. [PMID: 12443842 DOI: 10.1016/s0923-1811(02)00104-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The distributions of Merkel cells and Langerhans cells within human hair follicles have been reported. However, there has been no description of the relationship between Merkel cells and Langerhans cells, which were discovered by 19th century German pathologists. Merkel cells and Langerhans cells share some similar characteristics such as the localization of human hair follicles, a close association with peripheral nerves and the expression of several neuropeptides. Merkel cells were stained with CK20 or CAM5.2, while Langerhans cells were stained with CD1a or S-100 protein. We thus immunohistochemically confirmed the preferential localization of Merkel cells and Langerhans cells in normal human hair follicles. Using a double staining technique, two- and three-dimensional observations demonstrated that a small proportion of Merkel cells were closely contacted with Langerhans cells below the sebaceous gland level, presumably indicating the bulge area. Merkel cells and Langerhans cells connected directly or approached each dendrite within the basal layer of the outer root sheath. For the first time, we demonstrated a close anatomical relationship between Merkel cells and Langerhans cells within the bulge area of human hair follicles where follicular stem cells may be present. These morphological observations suggest a functional interaction between follicular Merkel cells and Langerhans cells. We herein hypothesize that Merkel cells communicate with Langerhans cells by characteristic dendrites in which some neuropeptides or cytokines may be stored.
Collapse
Affiliation(s)
- Kayo Taira
- Department of Internal Medicine, Saga Medical School, Nabeshima 5-1-1, Saga City 849-8501, Japan
| | | | | | | | | |
Collapse
|
39
|
Abstract
This article reviews the definition, epidemiology, pathology, clinical features, and treatment of postherpetic neuralgia (PHN). Much of this information is well established. However, there is some important new information about the pathology that may shed light on the pathogenesis of this disorder. The exciting prospect exists of the prevention of PHN by vaccination and by early, aggressive treatment of herpes zoster. This is important because current treatment approaches have significant limitations. We now have certain antidepressants, anticonvulsants, opioids, and the topical agent lidocaine that have been scientifically shown by randomized controlled trials to be effective in this disorder. However, all of these have a modest effect at best and newer treatments are necessary. Prevention may be very important for the 30% to 50% of the patients who either do not respond at all or do not respond well. Regional anesthetic procedures do not have a good scientific basis for either acute zoster or established PHN, but remain a reasonable alternative for some patients. This article addresses the issue of how effective the current treatments really are and gives practical guidelines for management.
Collapse
|
40
|
Peters EMJ, Botchkarev VA, Müller-Röver S, Moll I, Rice FL, Paus R. Developmental timing of hair follicle and dorsal skin innervation in mice. J Comp Neurol 2002; 448:28-52. [PMID: 12012374 DOI: 10.1002/cne.10212] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The innervation of hair follicles offers an intriguing, yet hardly studied model for the dissection of the stepwise innervation during cutaneous morphogenesis. We have used immunofluorescence and a panel of neuronal markers to characterize the developmental choreography of C57BL/6 mouse backskin innervation. The development of murine skin innervation occurs in successive waves. The first cutaneous nerve fibers appeared before any morphological evidence of hair follicle development at embryonic day 15 (E15). Stage 1 and 2 developing hair follicles were already associated with nerve fibers at E16. These fibers approached a location where later in development the follicular (neural) network A (FNA) is located on fully developed pelage hair follicles. Prior to birth (E18), some nerve fibers had penetrated the epidermis, and an additional set of perifollicular nerve fibers arranged itself around the isthmus and bulge region of stage 5 hair follicles, to develop into the follicular (neural) network B (FNB). By the day of birth (P1), the neuropeptides substance P and calcitonin gene-related peptide became detectable in subcutaneous and dermal nerve fibers first. Newly formed hair follicles on E18 and P1 displayed the same innervation pattern seen in the first wave of hair follicle development. Just prior to epidermal penetration of hair shafts (P5), peptide histidine methionine-IR nerve fibers became detectable and epidermal innervation peaked; such innervation decreased after penetration (P7- P17). Last, tyrosine hydroxylase-IR and neuropeptide Y-IR became readily detectable. This sequence of developing innervation consistently correlates with hair follicle development, indicating a close interdependence of neuronal and epithelial morphogenesis.
Collapse
Affiliation(s)
- Eva M J Peters
- Department of Dermatology, University Hospital Eppendorf, University of Hamburg, Hamburg D-20246, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Vilches JJ, Ceballos D, Verdú E, Navarro X. Changes in mouse sudomotor function and sweat gland innervation with ageing. Auton Neurosci 2002; 95:80-7. [PMID: 11871787 DOI: 10.1016/s1566-0702(01)00359-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Age-related changes in sudomotor neuroeffector function have been evaluated in mice aged 2 (young), 6, 12 (adult) and 18 (old) months. We evaluated sudomotor function by determining the number of sweat glands reactive to pilocarpine and the sweat output per gland on the plantar surface of the hindpaws with the impression mould technique. Protein gene product 9.5 (PGP) and vasoactive intestinal polypeptide (VIP) were immunohistochemically localised in footpads. A marked decrease (44%) in sweat output per gland was observed in old mice as well as a slight (17%), not significant decline in the number of secreting sweat glands. The sudomotor innervation, expressed as the area of sweat gland occupied by VIP and PGP immunoreactive nerve profiles, showed an initial increase from 2 to 6 months and a significant decline (35%) in 18- vs. 6-month-old mice. These results indicate that, in contrast to the number of secreting sweat glands, sweat output per gland does not reach the maximum in adult mouse until 6 months old and that sweating decreases in aged mice mainly due to a decline of sweat output per gland and to a lesser extent to a decrease in number of secreting glands. A reduction of sweat glands size in aged mice was also found, suggesting that the diminished sweat gland responsiveness with ageing may be attributed to sweat gland atrophy as well as to loss of innervation.
Collapse
Affiliation(s)
- Jorge J Vilches
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, Spain
| | | | | | | |
Collapse
|
42
|
Altun V, Hakvoort TE, van Zuijlen PP, van der Kwast TH, Prens EP. Nerve outgrowth and neuropeptide expression during the remodeling of human burn wound scars. A 7-month follow-up study of 22 patients. Burns 2001; 27:717-22. [PMID: 11600251 DOI: 10.1016/s0305-4179(01)00026-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UNLABELLED Increasing data suggest that the skin nerve system is involved in wound healing. The objective of this study was to investigate the outgrowth of nerve fibers during the burn wound remodeling process and to analyze possible differences between normotrophic and hypertrophic burn wounds. In a prospective study, biopsies were taken from 22 patients with spontaneously healed partial-thickness burns at 1, 4 and 7-month post-burn. Nerve outgrowth and the expression of the neuropeptides substance P, neurokinin A, calcitonin gene-related peptide, vasoactive intestinal peptide and neuropeptide Y was monitored using immunohistochemistry. Our results showed that the number of nerve fibers gradually increased in both the dermis and the epidermis, but that they did not reach the levels of expression present in matched unburned skin of the same patient. A significantly higher number of nerve fibers were observed in normotrophic scars compared with hypertrophic scars. The number of neuropeptides-containing nerves in normotrophic and hypertrophic scars were similar. IN CONCLUSION 7 months after wound closure, burn wound scars contain less nerve fibers than unburned skin. The significantly higher number of nerve fibers in normotrophic, compared with hypertrophic scars suggests a regulatory role for the skin nerve system in the outcome of burn wound healing.
Collapse
Affiliation(s)
- V Altun
- Department of Immunology, Erasmus University and University Hospital Rotterdam-Dijkzigt, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Abstract
Skin biopsies that are immunostained to identify nerve fibers provide a new tool for assessing the small caliber nociceptors that terminate in the epidermis, as well as other cutaneous nerve fibers. Skin biopsies can be performed in multiple sites and can be repeated over time, so that a spatiotemporal profile of epidermal innervation can be constructed. This approach may help assess the progression of fiber loss in disease and of regeneration and re-innervation with treatment.
Collapse
Affiliation(s)
- J W Griffin
- Johns Hopkins Hospital, Baltimore, Maryland 21187, USA.
| | | | | |
Collapse
|
44
|
Peters EM, Botchkarev VA, Botchkareva NV, Tobin DJ, Paus R. Hair-cycle-associated remodeling of the peptidergic innervation of murine skin, and hair growth modulation by neuropeptides. J Invest Dermatol 2001; 116:236-45. [PMID: 11179999 DOI: 10.1046/j.1523-1747.2001.01232.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As the neuropeptide substance P can manipulate murine hair growth in vivo, we here further studied the role of sensory neuropeptides in hair follicle biology by determining the distribution and hair-cycle-dependent remodeling of the sensory innervation in C57BL/6 mouse back skin. Calcitonin-gene-related peptide, substance P, and peptide histidine methionine (employed as vasoactive intestinal peptide marker) were identified by immunohistochemistry. All of these markers immunolocalized to bundles of nerve fibers and to single nerve fibers, with distinct distribution patterns and major hair-cycle-associated changes. In the epidermis and around the distal hair follicle and the arrector pili muscle, only calcitonin-gene-related peptide immunoreactive nerve fibers were visualized, whereas substance P and peptide histidine methionine immunoreactive nerve fibers were largely restricted to the dermis and subcutis. Compared to telogen skin, the number of calcitonin-gene-related peptide, substance P, and peptide histidine methionine immunoreactive single nerve fibers increased significantly (p < 0.01) during anagen, including around the bulge region (the seat of epithelial stem cells). Substance P significantly accelerated anagen progression in murine skin organ culture, whereas calcitonin-gene-related peptide and a substance-P-inhibitory peptide inhibited anagen (p < 0.05). The inhibitory effect of calcitonin-gene-related peptide could be antagonized by coadministrating substance P. In contrast to substance P, calcitonin-gene-related peptide failed to induce anagen when released from subcutaneous implants. This might reflect a differential functional assignment of the neuropeptides calcitonin-gene-related peptide and substance P in hair growth control, and invites the use of neuropeptide receptor agonists and antagonists as novel pharmacologic tools for therapeutic hair growth manipulation.
Collapse
Affiliation(s)
- E M Peters
- Department of Dermatology, University Hospital Eppendorf, University of Hamburg, Martinstr. 52, D-20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
45
|
Abstract
A total of 74 specimens was obtained from the normal human skin of patients from 3 to 90 years old. The specimens were roughly classified into 5 groups: 15 for the face group from the face; 15 for the abdomen group from the abdomen; 13 for the back group from the back; 14 for the arm group from the upper arm and forearm; and 17 for the leg group from the thigh and lower leg. They were all fixed in 4% paraformaldehyde and 14% saturated picric acid. Cryostat sections were examined by the immunoperoxidase method and indirect immunofluorescence (IF). Primary antibodies against neurofilament, neuron-specific enolase, protein gene product 9.5 (PGP 9.5) and S-100 protein were used. The most effective method was found to be the combination of IF with PGP 9.5; it visualized the intraepidermal nerve fibers easily and clearly. Of the 74 specimens, 32 (43%) had intraepidermal PGP 9.5-immunoreactive (or nerve) fibers (IPIF), and 42 (57%) did not have any. With reference to the different skin locations, the maximal rate of specimens having IPIF was 57% in the arm group, and the minimum was 23% in the back group. IPIF positive specimens had approximate surface lengths of 6 mm, in which the existence number of the IPIF was 1 to 75. Their distribution density per 1000 epidermal basal cells was highest at 9.63 in the arm group and lowest at 2.89 in the back group. Their thickness was 2.94 +/- 0.83 microns with no significant differences among the five groups. We concluded that intraepidermal nerve fibers may not be distributed evenly in the hairy portions of normal human skin, but they may be present focally. Physiologically, two-point discrimination of itch may be explained by the distribution mode of intraepidermal nerve fibers.
Collapse
Affiliation(s)
- T Kawakami
- Department of Dermatology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, 683-8504, Japan
| | | | | |
Collapse
|
46
|
|
47
|
Johnson EW. Immunocytochemical characteristics of cells and fibers in the nasal mucosa of young and adult macaques. THE ANATOMICAL RECORD 2000; 259:215-28. [PMID: 10820323 DOI: 10.1002/(sici)1097-0185(20000601)259:2<215::aid-ar11>3.0.co;2-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mammalian nasal cavity is lined by an olfactory mucosa (OM) and a respiratory mucosa (RM). The principal OM cell type is the olfactory receptor neuron (ORN). However, little is known about ORNs in the life histories of primates. The RM, similar to the RM in the tracheobronchial tract (TBT), is dominated by ciliated columnar cells. Neuroendocrine cells (NECs) are essential in the TBT; little is known about nasal NECs. This study examined the immunolabeling characteristics of primate OM and RM for three important proteins-calretinin (CR), olfactory marker protein (OMP), and protein gene product 9.5 (PGP). Tissues from newborn to 15-year-old macaques were analyzed to determine the expression of these proteins during various stages of development. Standard immunocytochemistry on aldehyde-fixed tissues was applied, utilizing the avidin-biotin peroxidase (ABC) method. Immuno-electron microscopy confirmed the immunoreactive cell types. ORNs were immunoreactive for CR, OMP, and PGP at all ages studied. Immunoreactivity for PGP also was displayed in a subset of ciliated, columnar epithelial cells in the RM and in an extensive network of subepithelial fibers spread throughout both mucosae. The results suggest that macaque ORNs express three important proteins over a wide life history, and that the macaque may be a reliable model for studying primate/human olfaction during aging. The PGP-labeling results also suggest that the macaque nasal peptidergic fibers express PGP and that the respiratory epithelium contains NECs with labeling characteristics similar to those in the TBT.
Collapse
Affiliation(s)
- E W Johnson
- Department of Biological Sciences, Idaho State University, Pocatello, 83209, USA.
| |
Collapse
|
48
|
Gangi S, Johansson O. A theoretical model based upon mast cells and histamine to explain the recently proclaimed sensitivity to electric and/or magnetic fields in humans. Med Hypotheses 2000; 54:663-71. [PMID: 10859662 DOI: 10.1054/mehy.1999.0923] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The relationship between exposure to electromagnetic fields (EMFs) and human health is more and more in focus. This is mainly because of the rapid increasing use of such EMFs within our modern society. Exposure to EMFs has been linked to different cancer forms, e.g. leukemia, brain tumors, neurological diseases, such as Alzheimer's disease, asthma and allergy, and recently to the phenomena of 'electrosupersensitivity' and 'screen dermatitis'. There is an increasing number of reports about cutaneous problems as well as symptoms from internal organs, such as the heart, in people exposed to video display terminals (VDTs). These people suffer from subjective and objective skin and mucosa-related symptoms, such as itch, heat sensation, pain, erythema, papules and pustules. In severe cases, people can not, for instance, use VDTs or artificial light at all, or be close to mobile telephones. Mast cells (MCs), when activated, release a spectrum of mediators, among them histamine, which is involved in a variety of biological effects with clinical relevance, e.g. allergic hypersensitivity, itch, edema, local erythema and many types of dermatoses. From the results of recent studies, it is clear that EMFs affect the MC, and also the dendritic cell, population and may degranulate these cells. The release of inflammatory substances, such as histamine, from MCs in the skin results in a local erythema, edema and sensation of itch and pain, and the release of somatostatin from the dendritic cells may give rise to subjective sensations of on-going inflammation and sensitivity to ordinary light. These are, as mentioned, the common symptoms reported from patients suffering from 'electrosupersensitivity'/'screen dermatitis'. MCs are also present in the heart tissue and their localization is of particular relevance to their function. Data from studies made on interactions of EMFs with the cardiac function have demonstrated that highly interesting changes are present in the heart after exposure to EMFs. One could speculate that the cardiac MCs are responsible for these changes due to degranulation after exposure to EMFs. However, it is still not known how, and through which mechanisms, all these different cells are affected by EMFs. In this article, we present a theoretical model, based upon observations on EMFs and their cellular effects, to explain the proclaimed sensitivity to electric and/or magnetic fields in humans.
Collapse
Affiliation(s)
- S Gangi
- Experimental Dermatology Unit, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
49
|
Abstract
The innervation of the digits on the raccoon forepaw was examined by using immunochemistry for protein gene product 9.5, calcitonin-gene related peptide, substance P, neuropeptide-Y, tyrosine hydroxylase, and neurofilament protein. The larger-caliber axons in the ventral glabrous skin terminate as Pacinian corpuscles deep in the dermis, small corpuscles and Merkel endings around the base of dermal papillae, and Merkel endings on rete pegs in dermal papillae. Extensive fine-caliber innervation terminates in the epidermis and on the microvasculature. The innervation is more dense in the distal than in the proximal volar pads. Pacinian endings are also concentrated in the transverse crease separating the distal and proximal pads. In the dorsal hairy skin, hair follicles are well innervated with piloneural complexes. Merkel innervation is located under slight epidermal elevations and in some large Merkel rete pegs located at the apex of transverse skin folds just proximal to the claw. No cutaneous Ruffini corpuscles were found anywhere on the digit. The claw is affiliated with dense medial and lateral beds of Pacinian endings, bouquets of highly branched Ruffini-like endings at the transition from the distal phalanx and unmyelinated innervation in the skin around the perimeter. Encapsulated endings are located at the lateral edge of the articular surface of the distal phalanx. Extensive fine-caliber innervation is affiliated with sweat glands and with the vasculature and is especially dense at presumptive arteriovenous sphincters. Virtually all of the sweat gland and vascular innervation is peptidergic, whereas most of the unmyelinated epidermal innervation is nonpeptidergic.
Collapse
Affiliation(s)
- F L Rice
- Center for Neuropharmacology and Neuroscience, Albany Medical College, New York 12208, USA.
| | | |
Collapse
|
50
|
Guinard D, Usson Y, Guillermet C, Saxod R. PS-100 and NF 70-200 double immunolabeling for human digital skin meissner corpuscle 3D imaging. J Histochem Cytochem 2000; 48:295-302. [PMID: 10639496 DOI: 10.1177/002215540004800215] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
For detailed study of complex structures such as corpuscular mechanoreceptors, confocal microscopy can be used with multiple immunolabeling that identifies specifically different subcomponents. In addition, anatomic interpretation is enhanced by three-dimensional reconstruction. Confocal laser micrographs, reconstructed from serial images 1 microm thick of human skin Meissner corpuscles simultaneously immunostained for neurofilaments (NF 70-200) and protein S-100 (PS-100), clearly reveal the complex 3D relationship between Schwann-related lamellar cells immunoreactive for PS-100 and the nerve fibers marked by NF 70-200. The nerve fiber, after branching into the corpuscle, divides into several ramifications, presenting discoidal expansions and flattened fringed sections. The mean nerve diameter was 4 microm +/- 1 (2-5 microm) and the mean size of the discoidal expansions was 15 microm +/- 1 (7-30 microm). Corpuscle size varied from 30-140 +/- 1 microm in length and from 20-60 +/- 1 microm in diameter. This study confirms the presence of neural discoidal areas in Meissner's corpuscles, which are probably involved to some extent with the transduction process. Despite the accuracy of immunolabeling and imaging, an extracorpuscular neural network was never observed in the vicinity of corpuscles, thus giving doubt as to their existence. (J Histochem Cytochem 48:295-302, 2000)
Collapse
Affiliation(s)
- D Guinard
- Equipe de Neurobiologie du Développement LAPSEN-U Inserm 318, Université Joseph Fourier, Grenoble, France
| | | | | | | |
Collapse
|