1
|
Suissa JS, Li FW, Moreau CS. Convergent evolution of fern nectaries facilitated independent recruitment of ant-bodyguards from flowering plants. Nat Commun 2024; 15:4392. [PMID: 38789437 PMCID: PMC11126701 DOI: 10.1038/s41467-024-48646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Plant-herbivore interactions reciprocally influence species' evolutionary trajectories. These interactions have led to many physical and chemical defenses across the plant kingdom. Some plants have even evolved indirect defense strategies to outsource their protection to ant bodyguards by bribing them with a sugary reward (nectar). Identifying the evolutionary processes underpinning these indirect defenses provide insight into the evolution of plant-animal interactions. Using a cross-kingdom, phylogenetic approach, we examined the convergent evolution of ant-guarding nectaries across ferns and flowering plants. Here, we discover that nectaries originated in ferns and flowering plants concurrently during the Cretaceous, coinciding with the rise of plant associations in ants. While nectaries in flowering plants evolved steadily through time, ferns showed a pronounced lag of nearly 100 My between their origin and subsequent diversification in the Cenozoic. Importantly, we find that as ferns transitioned from the forest floor into the canopy, they secondarily recruited ant bodyguards from existing ant-angiosperm relationships.
Collapse
Affiliation(s)
- Jacob S Suissa
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN, USA.
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Corrie S Moreau
- Department of Ecology and Evolutionary Biology Cornell University, Ithaca, NY, USA
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
2
|
Xue B, Huang E, Zhao G, Wei R, Song Z, Zhang X, Yao G. 'Out of Africa' origin of the pantropical staghorn fern genus Platycerium (Polypodiaceae) supported by plastid phylogenomics and biogeographical analysis. ANNALS OF BOTANY 2024; 133:697-710. [PMID: 38230804 PMCID: PMC11082476 DOI: 10.1093/aob/mcae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
BACKGROUND AND AIMS The staghorn fern genus Platycerium is one of the most commonly grown ornamental ferns, and it evolved to occupy a typical pantropical intercontinental disjunction. However, species-level relationships in the genus have not been well resolved, and the spatiotemporal evolutionary history of the genus also needs to be explored. METHODS Plastomes of all the 18 Platycerium species were newly sequenced. Using plastome data, we reconstructed the phylogenetic relationships among Polypodiaceae members with a focus on Platycerium species, and further conducted molecular dating and biogeographical analyses of the genus. KEY RESULTS The present analyses yielded a robustly supported phylogenetic hypothesis of Platycerium. Molecular dating results showed that Platycerium split from its sister genus Hovenkampia ~35.2 million years ago (Ma) near the Eocene-Oligocene boundary and began to diverge ~26.3 Ma during the late Oligocene, while multiple speciation events within Platycerium occurred during the middle to late Miocene. Biogeographical analysis suggested that Platycerium originated in tropical Africa and then dispersed eastward to southeast Asia-Australasia and westward to neotropical areas. CONCLUSIONS Our analyses using a plastid phylogenomic approach improved our understanding of the species-level relationships within Platycerium. The global climate changes of both the Late Oligocene Warming and the cooling following the mid-Miocene Climate Optimum may have promoted the speciation of Platycerium, and transoceanic long-distance dispersal is the most plausible explanation for the pantropical distribution of the genus today. Our study investigating the biogeographical history of Platycerium provides a case study not only for the formation of the pantropical intercontinental disjunction of this fern genus but also the 'out of Africa' origin of plant lineages.
Collapse
Affiliation(s)
- Bine Xue
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Erfeng Huang
- Guangxi Nanning Roy Garden Co., Ltd, Nanning 530227, China
| | - Guohua Zhao
- Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| | - Ran Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhuqiu Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xianchun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Gang Yao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Folk RA, Guralnick RP, LaFrance RT. FloraTraiter: Automated parsing of traits from descriptive biodiversity literature. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11563. [PMID: 38369975 PMCID: PMC10873814 DOI: 10.1002/aps3.11563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/13/2023] [Accepted: 10/01/2023] [Indexed: 02/20/2024]
Abstract
Premise Plant trait data are essential for quantifying biodiversity and function across Earth, but these data are challenging to acquire for large studies. Diverse strategies are needed, including the liberation of heritage data locked within specialist literature such as floras and taxonomic monographs. Here we report FloraTraiter, a novel approach using rule-based natural language processing (NLP) to parse computable trait data from biodiversity literature. Methods FloraTraiter was implemented through collaborative work between programmers and botanical experts and customized for both online floras and scanned literature. We report a strategy spanning optical character recognition, recognition of taxa, iterative building of traits, and establishing linkages among all of these, as well as curational tools and code for turning these results into standard morphological matrices. Results Over 95% of treatment content was successfully parsed for traits with <1% error. Data for more than 700 taxa are reported, including a demonstration of common downstream uses. Conclusions We identify strategies, applications, tips, and challenges that we hope will facilitate future similar efforts to produce large open-source trait data sets for broad community reuse. Largely automated tools like FloraTraiter will be an important addition to the toolkit for assembling trait data at scale.
Collapse
Affiliation(s)
- Ryan A. Folk
- Department of Biological SciencesMississippi State UniversityMississippi StateMississippiUSA
| | - Robert P. Guralnick
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFloridaUSA
- Biodiversity InstituteUniversity of FloridaGainesvilleFloridaUSA
| | | |
Collapse
|
4
|
Wan X, Zhang L, Lehtonen S, Tuomisto H, Zhang DW, Gao XF, Zhang LB. Five long-distance dispersals shaped the major intercontinental disjunctions in Tectariaceae s.l. (Polypodiales, Polypodiopsida). Mol Phylogenet Evol 2023:107845. [PMID: 37301485 DOI: 10.1016/j.ympev.2023.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Intercontinental disjunct distributions can arise either from vicariance, from long-distance dispersal, or through extinction of an ancestral population with a broader distribution. Tectariaceae s.l., a clade of ferns in Polypodiales with ca. 300 species mainly distributed in the tropics and subtropics, provide an excellent opportunity to investigate global distribution patterns. Here, we assembled a dataset of eight plastid markers and one nuclear marker of 636 (92% increase of the earlier largest sampling) accessions representing ca. 210 species of all eight genera in Tectariaceae s.l. (Arthropteridaceae, Pteridryaceae, and Tectariaceae s.s.) and 35 species of other families of eupolypods Ⅰ. A new phylogeny is reconstructed to study the biogeography and trait-associated diversification. Our major results include: (1) a distinct lineage of Tectaria sister to the rest of the American Tectaria is identified; (2) Tectariaceae s.l., and the three families: Arthropteridaceae (Arthropteris), Pteridryaceae (Draconopteris, Malaifilix, Polydictyum, Pteridrys), and Tectariaceae s.s. (Hypoderris, Tectaria, and Triplophyllum), might have all originated in late Cretaceous; (3) only five intercontinental dispersals occurred in Pteridryaceae and Tectariaceae s.s. giving rise to their current intercontinental disjunction; (4) we provide the second evidence in ferns that a long-distance dispersal between Malesia and Americas during the Paleocene to Eocene led to the establishment/origin of a new genus (Draconopteris); and (5) diversification rate of each state of leaf dissection is different, and the lowest is in the simple-leaved taxa.
Collapse
Affiliation(s)
- Xia Wan
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China; University of Chinese Academy of Sciences, Beijing 100049, China; Missouri Botanical Garden, St. Louis, Missouri 63110, USA
| | - Liang Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Missouri Botanical Garden, St. Louis, Missouri 63110, USA
| | - Samuli Lehtonen
- Biodiversity Unit, University of Turku, FI-20014 Turku, Finland
| | - Hanna Tuomisto
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Da-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Xin-Fen Gao
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Li-Bing Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Missouri Botanical Garden, St. Louis, Missouri 63110, USA.
| |
Collapse
|
5
|
Martín-Hernanz S, Albaladejo RG, Lavergne S, Rubio E, Marín-Rodulfo M, Arroyo J, Aparicio A. Strong conservatism of floral morphology during the rapid diversification of the genus Helianthemum. AMERICAN JOURNAL OF BOTANY 2023; 110:e16155. [PMID: 36912727 DOI: 10.1002/ajb2.16155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 05/16/2023]
Abstract
PREMISE Divergence of floral morphology and breeding systems are often expected to be linked to angiosperm diversification and environmental niche divergence. However, available evidence for such relationships is not generalizable due to different taxonomic, geographical and time scales. The Palearctic genus Helianthemum shows the highest diversity of the family Cistaceae in terms of breeding systems, floral traits, and environmental conditions as a result of three recent evolutionary radiations since the Late Miocene. Here, we investigated the tempo and mode of evolution of floral morphology in the genus and its link with species diversification and environmental niche divergence. METHODS We quantified 18 floral traits from 83 taxa and applied phylogenetic comparative methods using a robust phylogenetic framework based on genotyping-by-sequencing data. RESULTS We found three different floral morphologies, putatively related to three different breeding systems: type I, characterized by small flowers without herkogamy and low pollen to ovule ratio; type II, represented by large flowers with approach herkogamy and intermediate pollen to ovule ratio; and type III, featured by small flowers with reverse herkogamy and the highest pollen to ovule ratio. Each morphology has been highly conserved across each radiation and has evolved independently of species diversification and ecological niche divergence. CONCLUSIONS The combined results of trait, niche, and species diversification ultimately recovered a pattern of potentially non-adaptive radiations in Helianthemum and highlight the idea that evolutionary radiations can be decoupled from floral morphology evolution even in lineages that diversified in heterogeneous environments as the Mediterranean Basin.
Collapse
Affiliation(s)
- Sara Martín-Hernanz
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Rafael G Albaladejo
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Sébastien Lavergne
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Laboratoire d'Ecologie Alpine (LECA), FR-38000, Grenoble, France
| | - Encarnación Rubio
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Macarena Marín-Rodulfo
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Juan Arroyo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Abelardo Aparicio
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
6
|
Decoupling in Diversification and Body Size Rates During the Radiation of Phyllodactylus: Evidence Suggests Minor Role of Ecology in Shaping Phenotypes. Evol Biol 2022. [DOI: 10.1007/s11692-022-09575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Suissa JS, Friedman WE. Rapid diversification of vascular architecture underlies the Carboniferous fern radiation. Proc Biol Sci 2022; 289:20212209. [PMID: 35473384 PMCID: PMC9043699 DOI: 10.1098/rspb.2021.2209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vascular plants account for 93% of Earth's terrestrial flora. Xylem and phloem, vital for transporting water and nutrients through the plant, unite this diverse clade. Three-dimensional arrangements of these tissues (vascular architecture) are manifold across living and extinct species. However, the evolutionary processes underlying this variation remain elusive. Using ferns, a diverse clade with multiple radiations over their ca 400-million-year history, we synthesized data across 3339 species to explore the tempo and mode of vascular evolution and to contextualize dynamics of phenotypic innovation during major fern diversification events. Our results reveal three paradigm shifts in our understanding of fern vascular evolution. (i) The canonical theory on the stepwise and unidirectional evolution of vascular architecture does not capture the complexities of character evolution among ferns. Rather, a new model permitting additional transitions, rate heterogeneity and multiple reversions is more likely. (ii) Major shifts in vascular architecture correspond to developmental changes in body size, not regional water availability. (iii) The early Carboniferous radiation of crown-group ferns was characterized by an explosion of phenotypic innovation. By contrast, during the Cretaceous and Cenozoic rise of eupolypods, rates of vascular evolution were dramatically low and seemingly decoupled from lineage diversification.
Collapse
Affiliation(s)
- Jacob S Suissa
- The Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.,The Arnold Arboretum of Harvard University Boston, Boston, MA 02131, USA
| | - William E Friedman
- The Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.,The Arnold Arboretum of Harvard University Boston, Boston, MA 02131, USA
| |
Collapse
|
8
|
Arbour JH, Stanchak KE. The little fishes that could: smaller fishes demonstrate slow body size evolution but faster speciation in the family Percidae. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Body size affects numerous aspects of organismal biology and many factors have been invoked to explain body size distributions in a macroecological and macroevolutionary context. Body size in the freshwater fish family Percidae is strongly right-skewed (i.e. dominated by small sizes), with small body size potentially being associated with fast water habitats. We constructed a new species-level, multi-locus, time-calibrated phylogeny of Percidae, and used it to test for changes in the rate and pattern of maximum body size evolution. We also tested whether speciation rates varied as a function of body size. We found that Etheostomatinae evolved towards a smaller adaptive optimum in body size compared to the other subfamilies of Percidae, and that this shift was associated with a reduction in the rate of body size evolution. Speciation rates were associated with body size across percids, showing a peak around small to medium body size. Small body size appears to partially, but not fully, explain the diversity of small percids, as many darters fall well below the “optimum” body size. Reinforcement of selection for small body size via selection for novel morphologies or via sexual selection may help to fully explain the remarkable diversity of darter radiation.
Collapse
Affiliation(s)
- Jessica H Arbour
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | | |
Collapse
|
9
|
Folk RA, Siniscalchi CM, Soltis DE. Angiosperms at the edge: Extremity, diversity, and phylogeny. PLANT, CELL & ENVIRONMENT 2020; 43:2871-2893. [PMID: 32926444 DOI: 10.1111/pce.13887] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/21/2020] [Accepted: 08/13/2020] [Indexed: 05/26/2023]
Abstract
A hallmark of flowering plants is their ability to invade some of the most extreme and dynamic habitats, including cold and dry biomes, to a far greater extent than other land plants. Recent work has provided insight to the phylogenetic distribution and evolutionary mechanisms which have enabled this success, yet needed is a synthesis of evolutionary perspectives with plant physiological traits, morphology, and genomic diversity. Linking these disparate components will not only lead to better understand the evolutionary parallelism and diversification of plants with these two strategies, but also to provide the framework needed for directing future research. We summarize the primary physiological and structural traits involved in response to cold- and drought stress, outline the phylogenetic distribution of these adaptations, and describe the recurring association of these changes with rapid diversification events that occurred in multiple lineages over the past 15 million years. Across these threefold facets of dry-cold correlation (traits, phylogeny, and time) we stress the contrast between (a) the amazing diversity of solutions flowering plants have developed in the face of extreme environments and (b) a broad correlation between cold and dry adaptations that in some cases may hint at deep common origins.
Collapse
Affiliation(s)
- Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Carolina M Siniscalchi
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Nitta JH, Watkins JE, Davis CC. Life in the canopy: community trait assessments reveal substantial functional diversity among fern epiphytes. THE NEW PHYTOLOGIST 2020; 227:1885-1899. [PMID: 32285944 DOI: 10.1111/nph.16607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The expansion of angiosperm-dominated forests in the Cretaceous and early Cenozoic had a profound effect on terrestrial biota by creating novel ecological niches. The majority of modern fern lineages are hypothesized to have arisen in response to this expansion, particularly fern epiphytes that radiated into the canopy. Recent evidence, however, suggests that epiphytism does not correlate with increased diversification rates in ferns, calling into question the role of the canopy habitat in fern evolution. To understand the role of the canopy in structuring fern community diversity, we investigated functional traits of fern sporophytes and gametophytes across a broad phylogenetic sampling on the island of Moorea, French Polynesia, including > 120 species and representatives of multiple epiphytic radiations. While epiphytes showed convergence in small size and a higher frequency of noncordate gametophytes, they showed greater functional diversity at the community level relative to terrestrial ferns. These results suggest previously overlooked functional diversity among fern epiphytes, and raise the hypothesis that while the angiosperm canopy acted as a complex filter that restricted plant size, it also facilitated diversification into finely partitioned niches. Characterizing these niche axes and adaptations of epiphytic ferns occupying them should be a priority for future pteridological research.
Collapse
Affiliation(s)
- Joel H Nitta
- Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA
| | - James E Watkins
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA
| |
Collapse
|
11
|
Loiseau O, Weigand A, Noben S, Rolland J, Silvestro D, Kessler M, Lehnert M, Salamin N. Slowly but surely: gradual diversification and phenotypic evolution in the hyper-diverse tree fern family Cyatheaceae. ANNALS OF BOTANY 2020; 125:93-103. [PMID: 31562744 PMCID: PMC6948215 DOI: 10.1093/aob/mcz145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 09/26/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS The tremendously unbalanced distribution of species richness across clades in the tree of life is often interpreted as the result of variation in the rates of diversification, which may themselves respond to trait evolution. Even though this is likely a widespread pattern, not all diverse groups of organisms exhibit heterogeneity in their dynamics of diversification. Testing and characterizing the processes driving the evolution of clades with steady rates of diversification over long periods of time are of importance in order to have a full understanding of the build-up of biodiversity through time. METHODS We studied the macroevolutionary history of the species-rich tree fern family Cyatheaceae and inferred a time-calibrated phylogeny of the family including extinct and extant species using the recently developed fossilized birth-death method. We tested whether the high diversity of Cyatheaceae is the result of episodes of rapid diversification associated with phenotypic and ecological differentiation or driven by stable but low rates of diversification. We compared the rates of diversification across clades, modelled the evolution of body size and climatic preferences and tested for trait-dependent diversification. KEY RESULTS This ancient group diversified at a low and constant rate during its long evolutionary history. Morphological and climatic niche evolution were found to be overall highly conserved, although we detected several shifts in the rates of evolution of climatic preferences, linked to changes in elevation. The diversification of the family occurred gradually, within limited phenotypic and ecological boundaries, and yet resulted in a remarkable species richness. CONCLUSIONS Our study indicates that Cyatheaceae is a diverse clade which slowly accumulated morphological, ecological and taxonomic diversity over a long evolutionary period and provides a compelling example of the tropics as a museum of biodiversity.
Collapse
Affiliation(s)
- Oriane Loiseau
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Anna Weigand
- Institute for Systematic and Evolutionary Botany, University of Zurich, 8008 Zurich, Switzerland
- Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Sarah Noben
- Institute for Systematic and Evolutionary Botany, University of Zurich, 8008 Zurich, Switzerland
- Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Jonathan Rolland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
- Department of Zoology, University of British Columbia, #4200-6270 University Blvd, Vancouver, B.C., Canada
| | - Daniele Silvestro
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Global Gothenburg Biodiversity Center, Gothenburg, Sweden
| | - Michael Kessler
- Institute for Systematic and Evolutionary Botany, University of Zurich, 8008 Zurich, Switzerland
| | - Marcus Lehnert
- Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
- Department of Geobotany and Botanical Garden, Herbarium, Martin-Luther-University Halle-Wittenberg, Neuwerk 21, 06108 Halle, Germany
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proc Natl Acad Sci U S A 2019; 116:10874-10882. [PMID: 31085636 PMCID: PMC6561174 DOI: 10.1073/pnas.1817999116] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alternative models of evolutionary processes suggest different associations between species diversification and trait evolution, but limited empirical evidence is available to test these models across large clades at global extents. Here we investigate the relative timing of species diversification and niche and phenotypic evolution across a global plant radiation (Saxifragales) with enormous phenotypic and habitat variation. We demonstrate strong temporal lags among rates, with increased diversification occurring first, followed by niche and phenotype. Accelerated diversification rates are coincident with mid-Miocene expansion of temperate biomes. Later increases in niche and phenotypic evolutionary rates argue against density-dependent diversification alone, indicating a major role for ecological opportunity. These results have broad implications for understanding diversification processes and the origin of present-day temperate biotas. Environmental change can create opportunities for increased rates of lineage diversification, but continued species accumulation has been hypothesized to lead to slowdowns via competitive exclusion and niche partitioning. Such density-dependent models imply tight linkages between diversification and trait evolution, but there are plausible alternative models. Little is known about the association between diversification and key ecological and phenotypic traits at broad phylogenetic and spatial scales. Do trait evolutionary rates coincide with rates of diversification, are there lags among these rates, or is diversification niche-neutral? To address these questions, we combine a deeply sampled phylogeny for a major flowering plant clade—Saxifragales—with phenotype and niche data to examine temporal patterns of evolutionary rates. The considerable phenotypic and habitat diversity of Saxifragales is greatest in temperate biomes. Global expansion of these habitats since the mid-Miocene provided ecological opportunities that, with density-dependent adaptive radiation, should result in simultaneous rate increases for diversification, niche, and phenotype, followed by decreases with habitat saturation. Instead, we find that these rates have significantly different timings, with increases in diversification occurring at the mid-Miocene Climatic Optimum (∼15 Mya), followed by increases in niche and phenotypic evolutionary rates by ∼5 Mya; all rates increase exponentially to the present. We attribute this surprising lack of temporal coincidence to initial niche-neutral diversification followed by ecological and phenotypic divergence coincident with more extreme cold and dry habitats that proliferated into the Pleistocene. A lack of density-dependence contrasts with investigations of other cosmopolitan lineages, suggesting alternative patterns may be common in the diversification of temperate lineages.
Collapse
|
13
|
Soltis DE, Moore MJ, Sessa EB, Smith SA, Soltis PS. Using and navigating the plant tree of life. AMERICAN JOURNAL OF BOTANY 2018; 105:287-290. [PMID: 29702724 DOI: 10.1002/ajb2.1071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 05/24/2023]
Affiliation(s)
- Douglas E Soltis
- Florida Museum of Natural History, University of Florida, P. O. Box 117800, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, P. O. Box 118525, Gainesville, FL, 32611, USA
| | - Michael J Moore
- Department of Biology, Oberlin College, 119 Woodland Street, Oberlin, OH, 44074, USA
| | - Emily B Sessa
- Department of Biology, University of Florida, P. O. Box 118525, Gainesville, FL, 32611, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI, 48109, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, P. O. Box 117800, Gainesville, FL, 32611, USA
| |
Collapse
|