1
|
Rodriguez-Gomez DA, Garcia-Guaqueta DP, Charry-Sánchez JD, Sarquis-Buitrago E, Blanco M, Velez-van-Meerbeke A, Talero-Gutiérrez C. A systematic review of common genetic variation and biological pathways in autism spectrum disorder. BMC Neurosci 2021; 22:60. [PMID: 34627165 PMCID: PMC8501721 DOI: 10.1186/s12868-021-00662-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 01/21/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by persistent deficits in social communication and interaction. Common genetic variation appears to play a key role in the development of this condition. In this systematic review, we describe the relationship between genetic variations and autism. We created a gene dataset of the genes involved in the pathogenesis of autism and performed an over-representation analysis to evaluate the biological functions and molecular pathways that may explain the associations between these variants and the development of ASD. Results 177 studies and a gene set composed of 139 were included in this qualitative systematic review. Enriched pathways in the over-representation analysis using the KEGG pathway database were mostly associated with neurotransmitter receptors and their subunits. Major over-represented biological processes were social behavior, vocalization behavior, learning and memory. The enriched cellular component of the proteins encoded by the genes identified in this systematic review were the postsynaptic membrane and the cell junction. Conclusions Among the biological processes that were examined, genes involved in synaptic integrity, neurotransmitter metabolism, and cell adhesion molecules were significantly involved in the development of autism. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-021-00662-z.
Collapse
Affiliation(s)
- Diego Alejandro Rodriguez-Gomez
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Danna Paola Garcia-Guaqueta
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Jesús David Charry-Sánchez
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Elias Sarquis-Buitrago
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Mariana Blanco
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Alberto Velez-van-Meerbeke
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia.,NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Claudia Talero-Gutiérrez
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia. .,NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia.
| |
Collapse
|
2
|
Kawamoto A, Kajiume A, Yoshida H, Toshima T, Kobayashi M. Individual Differences in Autistic Traits are Associated with Serotonin Transporter Gene Polymorphism Through Medial Prefrontal Function: A Study Using NIRS. Neuroscience 2021; 458:43-53. [PMID: 33460729 DOI: 10.1016/j.neuroscience.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 11/17/2022]
Abstract
Autism spectrum disorder (ASD) is a heritable neurodevelopmental disorder that can vary considerably in severity. Autistic traits are distributed continuously across populations, even in sub-clinical individuals. Serotonin transporter-gene polymorphic region (5-HTTLPR) has been studied as a candidate genetic factor related to ASD, however results have been inconsistent. 5-HTTLPR is implicated in the function of medial prefrontal cortex (mPFC), a region associated with the social abnormalities found in ASD. Here we hypothesize that autistic traits are affected by the 5-HTTLPR genotype indirectly through mPFC mediation. Using near-infrared spectroscopy (NIRS), we first examined mPFC activation in people with ASD when they performed a facial affect-labeling task. Compared with a typical development group, the ASD group showed significantly lower mPFC activation during the task. Using the same task paradigm, we next investigated the relationship between autistic traits and 5-HTTLPR in sub-clinical participants, and whether associations were mediated by mPFC function. Correlation analyses indicated that participants with a large number of 5-HTTLPR L-alleles had high-level autistic traits related to social skills and low right mPFC activation. We also observed a significant negative correlation between autistic traits related to social skills and right mPFC activation. Structural equation analysis suggested a significant indirect effect of 5-HTTLPR on Autism-Spectrum Quotients, with right mPFC activation acting as a mediator. These results suggest that the diverse autistic traits related to social skills seen in the general population are associated with the 5-HTTLPR genotype, and that this association is mediated by right mPFC function.
Collapse
Affiliation(s)
- Akiko Kawamoto
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Aiko Kajiume
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Hiroshi Yoshida
- Faculty of Contemporary Culture, Hijiyama University, 4-1-1 Ushitashinmachi, Higashi-ku, Hiroshima 732-8509, Japan
| | - Tamotsu Toshima
- Department of Psychology, Graduate School of Education, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
3
|
Wongpaiboonwattana W, Plong-On O, Hnoonual A, Limprasert P. Significant associations between 5-hydroxytryptaminetransporter-linked promoter region polymorphisms of the serotonin transporter (solute carrier family 6 member 4) gene and Thai patients with autism spectrum disorder. Medicine (Baltimore) 2020; 99:e21946. [PMID: 32899028 PMCID: PMC7478716 DOI: 10.1097/md.0000000000021946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Autism spectrum disorder (ASD) is a form of pervasive developmental disorder manifested by impairment in social interactions and repetitive behaviors. Although genetic contribution is strongly suspected in autism, the specific genetic factors remain unidentified. Hyperserotoninemia has been reported in some autistic patients, and several studies have demonstrated an association between 5-hydroxytryptamine-transporter-linked promoter region (5-HTTLPR) polymorphisms and rs25531 single nucleotide polymorphism in the serotonin transporter gene (solute carrier family 6 member 4; SLC6A4) and ASD, indicating a possible involvement of the serotonin system in the etiology of ASD.To explore this situation further, a case-control association study of 5-HTTLPR and rs25531 polymorphisms on Thai ASD patients was conducted. A total of 188 ASD cases fulfilling the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) criteria (156 males and 32 females) and a total of 250 normal controls were recruited from the same ethnic backgrounds. 5-HTTLPR polymorphisms (Long, L; Short, S) and rs25531 (A/G) single nucleotide polymorphism were genotyped and compared between the patients and normal controls using chi-square statistics.The L/L genotype was more common in patients than in the controls (13.8% vs 5.2%, P = .006), and the LA haplotype was found in patients more than the controls (16.9% vs 12.2%, P = .048). When male patients were analyzed alone (156 individuals), the associations were also statistically significant with P = .017 for L/L genotype, and P = .019 for LA haplotype distribution.Our findings support previous reports suggesting an association between the 5-HTTLPR and rs25531 polymorphisms of SLC6A4 and patients with ASD.
Collapse
Affiliation(s)
| | - Oradawan Plong-On
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Areerat Hnoonual
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Pornprot Limprasert
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
4
|
Hosák L. Role of the COMT gene Val158Met polymorphism in mental disorders: A review. Eur Psychiatry 2020; 22:276-81. [PMID: 17419009 DOI: 10.1016/j.eurpsy.2007.02.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 02/07/2007] [Indexed: 01/17/2023] Open
Abstract
AbstractThe Val158Met polymorphism of the COMT gene is functional, easily detectable, and significantly related to metabolism of catecholamines, which underlie pathogenesis of a significant number of mental disorders. Evidence for the role of this polymorphism in schizophrenia, substance dependence, bipolar disorder, obsessive-compulsive disorder, anorexia nervosa and attention deficit hyperactivity disorder is summed up in this review article. The results make it unlikely that the COMT gene plays an important role in these mental disorders, although a minor effect can not be excluded. Future studies on the COMT gene in mentally ill subjects should be stratified by clinical subtypes of the disorder, gender and ethnicity. Studies of endophenotypes instead of the complex disorder seem to be another promising research strategy. Gene-gene and gene-environment interactions should also be considered. The COMT gene is probably not “a gene for” any mental disorder, but the Val158Met polymorphism appears to have pleiotropic effects on human behavior.
Collapse
Affiliation(s)
- Ladislav Hosák
- Department of Psychiatry, Charles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic.
| |
Collapse
|
5
|
Wegener Sleeswijk A, Heijungs R, Durston S. Tackling Missing Heritability by Use of an Optimum Curve: A Systematic Review and Meta-Analysis. Int J Mol Sci 2019; 20:ijms20205104. [PMID: 31618836 PMCID: PMC6829377 DOI: 10.3390/ijms20205104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 11/28/2022] Open
Abstract
Missing heritability is a common problem in psychiatry that impedes precision medicine approaches to autism and other heritable complex disorders. This proof-of-concept study uses a systematic review and meta-analysis of the association between variants of the serotonin transporter promoter (5-HTTLPR) and autism to explore the hypothesis that some missing heritability can be explained using an optimum curve. A systematic literature search was performed to identify transmission disequilibrium tests on the short/long (S/L) 5-HTTLPR polymorphism in relation to autism. We analysed five American, seven European, four Asian and two American/European samples. We found no transmission preference in the joint samples and in Europe, preferential transmission of S in America and preferential transmission of L in Asia. Heritability will be underestimated or missed in genetic association studies if two alternative genetic variants are associated with the same disorder in different subsets of a sample. An optimum curve, relating a multifactorial biological variable that incorporates genes and environment to a score for a human trait, such as social competence, can explain this. We suggest that variants of functionally related genes will sometimes appear in fixed combinations at both sides of an optimum curve and propose that future association studies should account for such combinations.
Collapse
Affiliation(s)
- Anneke Wegener Sleeswijk
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Reinout Heijungs
- Department of Econometrics and Operations Research, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands.
- Institute of Environmental Sciences, Department of Industrial Ecology, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands.
| | - Sarah Durston
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
6
|
Garbarino VR, Gilman TL, Daws LC, Gould GG. Extreme enhancement or depletion of serotonin transporter function and serotonin availability in autism spectrum disorder. Pharmacol Res 2019; 140:85-99. [PMID: 30009933 PMCID: PMC6345621 DOI: 10.1016/j.phrs.2018.07.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/22/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
Abstract
A variety of human and animal studies support the hypothesis that serotonin (5-hydroxytryptamine or 5-HT) system dysfunction is a contributing factor to the development of autism in some patients. However, many questions remain about how developmental manipulation of various components that influence 5-HT signaling (5-HT synthesis, transport, metabolism) persistently impair social behaviors. This review will summarize key aspects of central 5-HT function important for normal brain development, and review evidence implicating perinatal disruptions in 5-HT signaling in the pathophysiology of autism spectrum disorder. We discuss the importance, and relative dearth, of studies that explore the possible correlation to autism in the interactions between important intrinsic and extrinsic factors that may disrupt 5-HT homeostasis during development. In particular, we focus on exposure to 5-HT transport altering mechanisms such as selective serotonin-reuptake inhibitors or genetic polymorphisms in primary or auxiliary transporters of 5-HT, and how they relate to neurological stores of serotonin and its precursors. A deeper understanding of the many mechanisms by which 5-HT signaling can be disrupted, alone and in concert, may contribute to an improved understanding of the etiologies and heterogeneous nature of this disorder. We postulate that extreme bidirectional perturbations of these factors during development likely compound or synergize to facilitate enduring neurochemical changes resulting in insufficient or excessive 5-HT signaling, that could underlie the persistent behavioral characteristics of autism spectrum disorder.
Collapse
Affiliation(s)
- Valentina R Garbarino
- Department of Cellular and Integrative Physiology, United States; The Sam and Ann Barshop Institute for Longevity and Aging Studies, United States.
| | - T Lee Gilman
- Department of Cellular and Integrative Physiology, United States; Addiction Research, Treatment & Training Center of Excellence, United States.
| | - Lynette C Daws
- Department of Cellular and Integrative Physiology, United States; Addiction Research, Treatment & Training Center of Excellence, United States; Department of Pharmacology, United States.
| | - Georgianna G Gould
- Department of Cellular and Integrative Physiology, United States; Center for Biomedical Neuroscience, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
7
|
Hicks SD, Uhlig R, Afshari P, Williams J, Chroneos M, Tierney-Aves C, Wagner K, Middleton FA. Oral microbiome activity in children with autism spectrum disorder. Autism Res 2018; 11:1286-1299. [PMID: 30107083 PMCID: PMC7775619 DOI: 10.1002/aur.1972] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/06/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorder (ASD) is associated with several oropharyngeal abnormalities, including buccal sensory sensitivity, taste and texture aversions, speech apraxia, and salivary transcriptome alterations. Furthermore, the oropharynx represents the sole entry point to the gastrointestinal (GI) tract. GI disturbances and alterations in the GI microbiome are established features of ASD, and may impact behavior through the "microbial-gut-brain axis." Most studies of the ASD microbiome have used fecal samples. Here, we identified changes in the salivary microbiome of children aged 2-6 years across three developmental profiles: ASD (n = 180), nonautistic developmental delay (DD; n = 60), and typically developing (TD; n = 106) children. After RNA extraction and shotgun sequencing, actively transcribing taxa were quantified and tested for differences between groups and within ASD endophenotypes. A total of 12 taxa were altered between the developmental groups and 28 taxa were identified that distinguished ASD patients with and without GI disturbance, providing further evidence for the role of the gut-brain axis in ASD. Group classification accuracy was visualized with receiver operating characteristic curves and validated using a 50/50 hold-out procedure. Five microbial ratios distinguished ASD from TD participants (79.5% accuracy), three distinguished ASD from DD (76.5%), and three distinguished ASD children with/without GI disturbance (85.7%). Taxonomic pathways were assessed using the Kyoto Encyclopedia of Genes and Genomes microbial database and compared with one-way analysis of variance, revealing significant differences within energy metabolism and lysine degradation. Together, these results indicate that GI microbiome disruption in ASD extends to the oropharynx, and suggests oral microbiome profiling as a potential tool to evaluate ASD status. Autism Res 2018, 11: 1286-1299. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Previous research suggests that the bacteria living in the human gut may influence autistic behavior. This study examined genetic activity of microbes living in the mouth of over 300 children. The microbes with differences in children with autism were involved in energy processing and showed potential for identifying autism status.
Collapse
Affiliation(s)
- Steven D. Hicks
- Penn State College of Medicine, Division of Academic General Pediatrics, Department of Pediatrics, Hershey, PA
| | | | - Parisa Afshari
- State University of New York Upstate Medical University, Departments of Neuroscience and Physiology, Syracuse, NY
| | | | - Maria Chroneos
- Penn State College of Medicine, Division of Academic General Pediatrics, Department of Pediatrics, Hershey, PA
| | - Cheryl Tierney-Aves
- Penn State College of Medicine, Division of Rehabilitation and Development, Department of Pediatrics, Hershey, PA
| | - Kayla Wagner
- State University of New York Upstate Medical University, Departments of Neuroscience and Physiology, Syracuse, NY
| | - Frank A. Middleton
- State University of New York Upstate Medical University, Departments of Neuroscience and Physiology, Syracuse, NY,State University of New York Upstate Medical University, Department of Pediatrics, Syracuse, NY
| |
Collapse
|
8
|
Sjaarda CP, Hecht P, McNaughton AJM, Zhou A, Hudson ML, Will MJ, Smith G, Ayub M, Liang P, Chen N, Beversdorf D, Liu X. Interplay between maternal Slc6a4 mutation and prenatal stress: a possible mechanism for autistic behavior development. Sci Rep 2017; 7:8735. [PMID: 28821725 PMCID: PMC5562880 DOI: 10.1038/s41598-017-07405-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/23/2017] [Indexed: 02/05/2023] Open
Abstract
The low activity allele of the maternal polymorphism, 5HTTLPR, in the serotonin transporter, SLC6A4, coupled with prenatal stress is reported to increase the risk for children to develop autism spectrum disorder (ASD). Similarly, maternal Slc6a4 knock-out and prenatal stress in rodents results in offspring demonstrating ASD-like characteristics. The present study uses an integrative genomics approach to explore mechanistic changes in early brain development in mouse embryos exposed to this maternal gene-environment phenomenon. Restraint stress was applied to pregnant Slc6a4 +/+ and Slc6a4 +/- mice and post-stress embryonic brains were assessed for whole genome level profiling of methylome, transcriptome and miRNA using Next Generation Sequencing. Embryos of stressed Slc6a4 +/+ dams exhibited significantly altered methylation profiles and differential expression of 157 miRNAs and 1009 genes affecting neuron development and cellular adhesion pathways, which may function as a coping mechanism to prenatal stress. In striking contrast, the response of embryos of stressed Slc6a4 +/- dams was found to be attenuated, shown by significantly reduced numbers of differentially expressed genes (458) and miRNA (0) and genome hypermethylation. This attenuated response may pose increased risks on typical brain development resulting in development of ASD-like characteristics in offspring of mothers with deficits in serotonin related pathways during stressful pregnancies.
Collapse
Affiliation(s)
- Calvin P Sjaarda
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada.,Queen's Genomics Lab at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario, Canada
| | - Patrick Hecht
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri, USA
| | - Amy J M McNaughton
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada.,Queen's Genomics Lab at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario, Canada
| | - Audrina Zhou
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada.,Queen's Genomics Lab at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario, Canada
| | - Melissa L Hudson
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada.,Queen's Genomics Lab at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario, Canada
| | - Matt J Will
- Psychological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Garth Smith
- Department of Pediatrics, Queen's University, Kingston, Ontario, Canada.,Child Development Centre, Hotel Dieu Hospital, Kingston, Ontario, Canada
| | - Muhammad Ayub
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Nansheng Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - David Beversdorf
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri, USA.,Departments of Radiology, Neurology, and Psychological Sciences, and the Thompson Center for Autism and Neurodevelopmental Disorders, and William and Nancy Thompson Endowed Chair in Radiology, University of Missouri, Columbia, Missouri, USA
| | - Xudong Liu
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada. .,Queen's Genomics Lab at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario, Canada.
| |
Collapse
|
9
|
Yang PY, Menga YJ, Li T, Huang Y. Associations of endocrine stress-related gene polymorphisms with risk of autism spectrum disorders: Evidence from an integrated meta-analysis. Autism Res 2017; 10:1722-1736. [PMID: 28656683 DOI: 10.1002/aur.1822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/12/2017] [Accepted: 05/23/2017] [Indexed: 02/05/2023]
Abstract
Autism spectrum disorders (ASD) are related to serotonin transporter (5-HTT) and catechol-O-methyl transferase (COMT) as two most monoaminergic polymorphic variations. However, multiple studies assessing rs4680 and 5-HTTLPR variants in ASD have reported inconsistent results. Therefore, we conducted an integrated meta-analysis to combine case-control and transmission/disequilibrium test (TDT) studies to determine whether COMT and 5-HTT are associated with ASD. We searched multiple electronic databases (PubMed, EmBase and Web of Science) to identify studies assessing the rs4680 and 5-HTTLPR variants in ASD from Jan 1997 to Dec 2016. Then allelic data from case-control and TDT studies were analyzed by the Catmap package in the R software. A total of 5 studies were eligible for the meta-analysis of rs4680, including 3 case-control, 1 TDT and 1 TDT & case-control studies. Meanwhile, 22 studies of 5-HTTLPR were available, including 16 TDT, 4 case-control and 2 TDT & case-control studies. The current meta-analysis included 814 ASD cases, 741 controls and 311 families related to rs4680; 749 ASD cases, 1,118 controls and 1,861 families relevant to 5-HTTLPR were also evaluated. For rs4680, the pooled OR was 1.18 (95% CI = 0.87-1.59, P = 0.29, Pheterogeneity < 0.00001). There was no significant association of rs4680 with risk of ASD between the two subgroups. For 5-HTTLPR, the pooled OR was 1.05 (95% CI = 0.92-1.20, P = 0.4652, Pheterogeneity < 0.00001). Meanwhile, we found no significant risk in individual case-control or TDT studies. The above findings indicated that neither COMT rs4680 nor 5-HTT 5-HTTLPR polymorphism significantly affects ASD risk. Autism Res 2017, 10: 1722-1736. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Our results showed no evidence of significant association of either COMT rs4680 or 5-HTT 5-HTTLPR variants with ASD, showing that these two genes may not be major susceptible genetic factors in ASD occurrence, and may have a reciprocal action with each other in combination with environmental factors. These findings further provide evidence that a single gene variant may not dictate autism occurrence, but possibly contributes to a specific phenotype or subtype of ASD.
Collapse
Affiliation(s)
- Ping-Yuan Yang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ya-Jing Menga
- Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Huang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Abstract
Computational modeling has been useful for understanding processes of encoding and consolidation in cortical structures. In particular, this work suggests a role of neuromodulators in setting dynamics for consolidation processes during different stages of waking and sleep. Because autistic individuals show symptoms of a cognitive nature coupled with a high prevalence of comorbid conditions such as epileptiform discharge during sleep and sleep disorders, it is possible that autism could involve a breakdown in consolidation processes, which are essential to build effective cognitive representations of the environment on the basis of individual experiences. In this article, theories of consolidation during different stages of waking and sleep and the role of different neuromodulators in these consolidation processes are reviewed in conjunction with different features of autism, which may be understood in the context of these theories.
Collapse
|
11
|
Hecht PM, Hudson M, Connors SL, Tilley MR, Liu X, Beversdorf DQ. Maternal serotonin transporter genotype affects risk for ASD with exposure to prenatal stress. Autism Res 2016; 9:1151-1160. [DOI: 10.1002/aur.1629] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 03/14/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Patrick M. Hecht
- Interdisciplinary Neuroscience Program, University of Missouri; Columbia Missouri
- Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri; Columbia Missouri
- Center for Translational Neuroscience, University of Missouri; Columbia Missouri
| | - Melissa Hudson
- Department of Psychiatry; Queen's University; Ontario Canada
| | - Susan L. Connors
- Lurie Center for Autism, Departments of Medicine and Pediatrics, Massachusetts General Hospital, Harvard Medical School; Lexington Massachusetts
| | - Michael R. Tilley
- Department of Biological Sciences; Central Methodist University; Fulton Missouri
| | - Xudong Liu
- Department of Psychiatry; Queen's University; Ontario Canada
| | - David Q. Beversdorf
- Interdisciplinary Neuroscience Program, University of Missouri; Columbia Missouri
- Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri; Columbia Missouri
- Center for Translational Neuroscience, University of Missouri; Columbia Missouri
- Departments of Psychological Sciences, Radiology, and Neurology; University of Missouri; Columbia Missouri
| |
Collapse
|
12
|
Serotonin abnormalities in Engrailed-2 knockout mice: New insight relevant for a model of Autism Spectrum Disorder. Neurochem Int 2015; 87:34-42. [DOI: 10.1016/j.neuint.2015.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/02/2015] [Accepted: 05/14/2015] [Indexed: 12/14/2022]
|
13
|
Jaiswal P, Mohanakumar KP, Rajamma U. Serotonin mediated immunoregulation and neural functions: Complicity in the aetiology of autism spectrum disorders. Neurosci Biobehav Rev 2015; 55:413-31. [PMID: 26021727 DOI: 10.1016/j.neubiorev.2015.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/19/2022]
Abstract
Serotonergic system has long been implicated in the aetiology of autism spectrum disorders (ASD), since platelet hyperserotonemia is consistently observed in a subset of autistic patients, who respond well to selective serotonin reuptake inhibitors. Apart from being a neurotransmitter, serotonin functions as a neurotrophic factor directing brain development and as an immunoregulator modulating immune responses. Serotonin transporter (SERT) regulates serotonin level in lymphoid tissues to ensure its proper functioning in innate and adaptive responses. Immunological molecules such as cytokines in turn regulate the transcription and activity of SERT. Dysregulation of serotonergic system could trigger signalling cascades that affect normal neural-immune interactions culminating in neurodevelopmental and neural connectivity defects precipitating behavioural abnormalities, or the disease phenotypes. Therefore, we suggest that a better understanding of the cross talk between serotonergic genes, immune systems and serotonergic neurotransmission will open wider avenues to develop pharmacological leads for addressing the core ASD behavioural deficits.
Collapse
Affiliation(s)
- Preeti Jaiswal
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata 700 107, India
| | - Kochupurackal P Mohanakumar
- Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Usha Rajamma
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata 700 107, India.
| |
Collapse
|
14
|
No association of Val158Met variant in the COMT gene with autism spectrum disorder in Thai children. Psychiatr Genet 2015; 24:230-1. [PMID: 24912046 DOI: 10.1097/ypg.0000000000000046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Meguid NA, Gebril OH, Khalil RO. A study of blood serotonin and serotonin transporter promoter variant (5-HTTLPR) polymorphism in Egyptian autistic children. Adv Biomed Res 2015; 4:94. [PMID: 26015920 PMCID: PMC4434456 DOI: 10.4103/2277-9175.156658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 01/27/2015] [Indexed: 12/02/2022] Open
Abstract
Background: Autism spectrum disorder (ASD) is a complex, heterogeneous neurodevelopmental disorder with onset during early childhood. Most studies have reported an elevation in platelet serotonin in persons with autism. The serotonin (5-hydroxytryptamine; 5-HT) transporter in the brain uptakes 5-HT from extracellular spaces. It is also present in platelets, where it takes up 5-HT from plasma. Polymorphisms in serotonin transporter gene (SLC6A4) were frequently studied in many neuropsychiatric disorders. Materials and Methods: We have measured the plasma 5-HT levels in 20 autistic male children and 20 control male children by the enzyme-linked immunosorbent assay (ELISA) method. In addition, the SLC6A4 promoter region (5-HTTLPR) insertion/deletion (I/D) polymorphism was studied, using whole genomic DNA. Results: Plasma serotonin was significantly low in autistic children compared to control (P = 0.001), although correlation to severity of autism was not significant. The frequency of short (S) allele in autism cases was 10% and in the control group it was absent. Conclusion: Our study demonstrated an increased prevalence of 5-HTTLPR S allele in autism subjects. Significantly decreased plasma serotonin was detected in autism subjects, with no significant relationship between 5-HTTLPR genotype and plasma 5-HT being evident.
Collapse
Affiliation(s)
- Nagwa A Meguid
- Department of Research on Children with Special Needs, Medical Division National Research Centre, Cairo, Egypt
| | - Ola H Gebril
- Department of Research on Children with Special Needs, Medical Division National Research Centre, Cairo, Egypt
| | - Rehab O Khalil
- Department of Research on Children with Special Needs, Medical Division National Research Centre, Cairo, Egypt
| |
Collapse
|
16
|
Jaiswal P, Guhathakurta S, Singh AS, Verma D, Pandey M, Varghese M, Sinha S, Ghosh S, Mohanakumar KP, Rajamma U. SLC6A4 markers modulate platelet 5-HT level and specific behaviors of autism: a study from an Indian population. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:196-206. [PMID: 25261775 DOI: 10.1016/j.pnpbp.2014.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
Abstract
Presence of platelet hyperserotonemia and effective amelioration of behavioral dysfunctions by selective serotonin reuptake inhibitors (SSRI) in autism spectrum disorders (ASD) indicate that irregularities in serotonin (5-HT) reuptake and its homeostasis could be the basis of behavioral impairments in ASD patients. SLC6A4, the gene encoding serotonin transporter (SERT) is considered as a potential susceptibility gene for ASD, since it is a quantitative trait locus for blood 5-HT levels. Three functional polymorphisms, 5-HTTLPR, STin2 and 3'UTR-SNP of SLC6A4 are extensively studied for possible association with the disorder, with inconclusive outcome. In the present study, we investigated association of these polymorphisms with platelet 5-HT content and symptoms severity as revealed by childhood autism rating scale in ASD children from an Indian population. Higher 5-HT level observed in ASD was highly significant in children with heterozygous and homozygous genotypes comprising of minor alleles of the markers. Quantitative transmission disequilibrium test demonstrated significant genetic effect of STin2 allele as well as STin2/3'UTR-SNP and 5-HTTLPR/3'UTR-SNP haplotypes on 5-HT levels, but no direct association with overall CARS score and ASD phenotype. Significant genetic effect of the markers on specific behavioral phenotypes was observed for various sub-phenotypes of CARS in quantitative trait analysis. Even though the 5-HT level was not associated with severity of behavioral CARS score, a significant negative relationship was observed for 5-HT levels and level and consistency of intellectual response and general impression in ASD children. Population-based study revealed higher distribution of the haplotype 10/G of STin2/3'UTR-SNP in male controls, suggesting protective effect of this haplotype in male cases. Overall results of the study suggest that SLC6A4 markers have specific genetic effect on individual ASD behavioral attributes, might be through the modulation of 5-HT content.
Collapse
Affiliation(s)
- Preeti Jaiswal
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, India
| | - Subhrangshu Guhathakurta
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, India
| | - Asem Surindro Singh
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, India
| | - Deepak Verma
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, India
| | - Mritunjay Pandey
- Lab of Clinical & Experimental Neurosciences, Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Jadavpur, Kolkata, India
| | - Merina Varghese
- Lab of Clinical & Experimental Neurosciences, Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Jadavpur, Kolkata, India
| | - Swagata Sinha
- Out-Patients Department, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, India
| | - Saurabh Ghosh
- Human Genetics Unit, Indian Statistical Institute, 203 BT Road, Kolkata, India
| | - Kochupurackal P Mohanakumar
- Lab of Clinical & Experimental Neurosciences, Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Jadavpur, Kolkata, India
| | - Usha Rajamma
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, India.
| |
Collapse
|
17
|
Chmielewski WX, Beste C. Action control processes in autism spectrum disorder – Insights from a neurobiological and neuroanatomical perspective. Prog Neurobiol 2015; 124:49-83. [DOI: 10.1016/j.pneurobio.2014.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 12/22/2022]
|
18
|
Nyffeler J, Walitza S, Bobrowski E, Gundelfinger R, Grünblatt E. Association study in siblings and case-controls of serotonin- and oxytocin-related genes with high functioning autism. J Mol Psychiatry 2014; 2:1. [PMID: 25408912 PMCID: PMC4223888 DOI: 10.1186/2049-9256-2-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 12/31/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is heritable and neurodevelopmental with unknown causes. The serotonergic and oxytocinergic systems are of interest in autism for several reasons: (i) Both systems are implicated in social behavior, and abnormal levels of serotonin and oxytocin have been found in people with ASD; (ii) treatment with selective serotonin reuptake inhibitors and oxytocin can yield improvements; and (iii) previous association studies have linked the serotonin transporter (SERT; SLC6A4), serotonin receptor 2A (HTR2A), and oxytocin receptor (OXTR) genes with ASD. We examined their association with high functioning autism (HFA) including siblings and their interaction. Methods In this association study with HFA children (IQ > 80), siblings, and controls, participants were genotyped for four single nucleotide polymorphisms (SNPs) in OXTR (rs2301261, rs53576, rs2254298, rs2268494) and one in HTR2A (rs6311) as well as the triallelic HTTLPR (SERT polymorphism). Results We identified a nominal significant association with HFA for the HTTLPR s allele (consisting of S and LG alleles) (p = .040; odds ratio (OR) = 1.697, 95% CI 1.191–2.204)). Four polymorphisms (HTTLPR, HTR2A rs6311, OXTR rs2254298 and rs53576) in combination conferred nominal significant risk for HFA with a genetic score of ≥4 (OR = 2.09, 95% CI 1.05–4.18, p = .037). The resulting area under the receiver operating characteristic curve was 0.595 (p = .033). Conclusions Our findings, combined with those of previous reports, indicate that ASD, in particular HFA, is polygenetic rather than monogenetic and involves the serotonergic and oxytocin pathways, probably in combination with other factors. Electronic supplementary material The online version of this article (doi:10.1186/2049-9256-2-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johanna Nyffeler
- University Clinics of Child and Adolescent Psychiatry (UCCAP), University of Zurich, Thurgauerstr. 39, CH-8050 Zurich, Switzerland
| | - Susanne Walitza
- University Clinics of Child and Adolescent Psychiatry (UCCAP), University of Zurich, Thurgauerstr. 39, CH-8050 Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Elise Bobrowski
- University Clinics of Child and Adolescent Psychiatry (UCCAP), University of Zurich, Thurgauerstr. 39, CH-8050 Zurich, Switzerland ; Department of Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Ronnie Gundelfinger
- University Clinics of Child and Adolescent Psychiatry (UCCAP), University of Zurich, Thurgauerstr. 39, CH-8050 Zurich, Switzerland
| | - Edna Grünblatt
- University Clinics of Child and Adolescent Psychiatry (UCCAP), University of Zurich, Thurgauerstr. 39, CH-8050 Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Rose'meyer R. A review of the serotonin transporter and prenatal cortisol in the development of autism spectrum disorders. Mol Autism 2013; 4:37. [PMID: 24103554 PMCID: PMC3852299 DOI: 10.1186/2040-2392-4-37] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 09/13/2013] [Indexed: 01/28/2023] Open
Abstract
The diagnosis of autism spectrum disorder (ASD) during early childhood has a profound effect not only on young children but on their families. Aside from the physical and behavioural issues that need to be dealt with, there are significant emotional and financial costs associated with living with someone diagnosed with ASD. Understanding how autism occurs will assist in preparing families to deal with ASD, if not preventing or lessening its occurrence. Serotonin plays a vital role in the development of the brain during the prenatal and postnatal periods, yet very little is known about the serotonergic systems that affect children with ASD. This review seeks to provide an understanding of the biochemistry and physiological actions of serotonin and its termination of action through the serotonin reuptake transporter (SERT). Epidemiological studies investigating prenatal conditions that can increase the risk of ASD describe a number of factors which elevate plasma cortisol levels causing such symptoms during pregnancy such as hypertension, gestational diabetes and depression. Because cortisol plays an important role in driving dysregulation of serotonergic signalling through elevating SERT production in the developing brain, it is also necessary to investigate the physiological functions of cortisol, its action during gestation and metabolic syndromes.
Collapse
Affiliation(s)
- Roselyn Rose'meyer
- School of Medical Sciences, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia.
| |
Collapse
|
20
|
Fu X, Mei Z, Sun L. Association between the g.296596G > A genetic variant of RELN gene and susceptibility to autism in a Chinese Han population. Genet Mol Biol 2013; 36:486-9. [PMID: 24385848 PMCID: PMC3873176 DOI: 10.1590/s1415-47572013005000037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/20/2013] [Indexed: 11/25/2022] Open
Abstract
Autism is a childhood neuro-developmental disorder, and Reelin (RELN) is an important candidate gene for influencing autism. This study aimed at investigating the influence of genetic variants of the RELN gene on autism susceptibility. In this study, 205 autism patients and 210 healthy controls were recruited and the genetic variants of the RELN gene were genotyped by the created restriction site-polymerase chain reaction (CRS-PCR) method. The influence of genetic variants on autism susceptibility was analyzed by association analysis, and the g.296596G > A genetic variant in exon10 of the RELN gene was detected. The frequencies of allele/genotype in autistic patients were significantly different from those in healthy controls, and a statistically significant association was detected between this genetic variant and autism susceptibility. Our data lead to the inference that the g.296596G > A genetic variant in the RELN gene has a potential influence on autism susceptibility in the Chinese Han population.
Collapse
Affiliation(s)
- Xiaoyan Fu
- Department of Pediatrics, Tongji Hospital of Tongji University, Shanghai, People's Republic of China
| | - Zhu Mei
- Department of Pediatrics, Tongji Hospital of Tongji University, Shanghai, People's Republic of China
| | - Lixin Sun
- Department of Pediatrics, Tongji Hospital of Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Yoo HJ, Cho IH, Park M, Yang SY, Kim SA. Association of the catechol-o-methyltransferase gene polymorphisms with Korean autism spectrum disorders. J Korean Med Sci 2013; 28:1403-6. [PMID: 24015051 PMCID: PMC3763120 DOI: 10.3346/jkms.2013.28.9.1403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/16/2013] [Indexed: 12/02/2022] Open
Abstract
This study evaluated the family-based genetic association between autism spectrum disorders (ASDs) and 5 single-nucleotide polymorphisms (SNPs) in the catechol-o-methyltransferase gene (COMT), which was found among 151 Korean ASDs family trios (dominant model Z = 2.598, P = 0.009, P FDR = 0.045). We found a statistically significant allele transmission or association in terms of the rs6269 SNP in the ASDs trios. Moreover, in the haplotype analysis, the haplotypes with rs6269 demonstrated significant evidence of an association with ASDs (additive model rs6269-rs4818-rs4680-rs769224 haplotype P = 0.004, P FDR = 0.040). Thus, an association may exist between the variants of the COMT gene and the occurrence of ASDs in Koreans.
Collapse
Affiliation(s)
- Hee Jeong Yoo
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - In Hee Cho
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Korea
| | - Mira Park
- Department of Preventive Medicine, School of Medicine, Eulji University, Daejeon, Korea
| | - So Young Yang
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Korea
| |
Collapse
|
22
|
Karam RA, Rezk NA, Abdelrahman HM, Hassan TH, Mohammad D, Hashim HM, Fattah NRAA. Catechol-O-methyltransferase Val158Met polymorphism and hyperactivity symptoms in Egyptian children with autism spectrum disorder. RESEARCH IN DEVELOPMENTAL DISABILITIES 2013; 34:2092-2097. [PMID: 23643763 DOI: 10.1016/j.ridd.2013.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/30/2013] [Accepted: 04/01/2013] [Indexed: 06/02/2023]
Abstract
Catechol-O-methyltransferase (COMT) plays an important role in the catabolism of brain dopamine and norepinephrine, which have been implicated in the pathogenesis of Autism spectrum disorder (ASD) as well as in other neuropsychatric disorders. We aimed to investigate the association of COMT Val158Met gene polymorphism with ASD and to examine the influence of such genotypes on hyperactivity symptoms in ASD patients. Eighty ASD patients (mean age 9 ± 1.9 years) and 100 control children (mean age 8.9 ± 1.9 years) were examined. COMT Val58Met polymorphism was genotyped using Tetra-primer ARMS-PCR method. The clinical diagnosis of ASD and ADHD were confirmed according to the DSM-IV criteria for research. We found no significant difference in genotypes or alleles' frequencies of COMT Val158Met polymorphism between ASD patients and control group. There was a significant association between COMT (Val/Val) genotype and both increasing CARS (p=0.001) and hyperactivity scores (p=0.006). Regarding Conner's Score, the DSM-IV hyperactive impulsive were significantly higher in Val/Val genotype than both Met/Val and Met/Met genotypes (p=0.03). Our data suggested an association between COMT Val58Met polymorphism and hyperactivity symptoms in Egyptian children with ASD.
Collapse
Affiliation(s)
- Rehab A Karam
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The amounts of at least three biochemical factors are more often abnormal in autistic people than neurologically normal ones. They include insulin-like growth factor, anti-myelin basic protein, and serotonin. This may explain why processes initiated in utero which hinder normal neurogenesis, especially myelination, continue after delivery. Quantitation of these parameters may make possible the calculation of an autism index, anticipating at birth which children will ultimately develop overt autism.
Collapse
Affiliation(s)
- Gary Steinman
- Department of Biochemistry, Touro College of Osteopathic Medicine, 230 West 125th Street, NY 10027, USA.
| |
Collapse
|
24
|
Ebstein RP, Knafo A, Mankuta D, Chew SH, Lai PS. The contributions of oxytocin and vasopressin pathway genes to human behavior. Horm Behav 2012; 61:359-79. [PMID: 22245314 DOI: 10.1016/j.yhbeh.2011.12.014] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 01/23/2023]
Abstract
Arginine vasopressin (AVP) and oxytocin (OXT) are social hormones and mediate affiliative behaviors in mammals and as recently demonstrated, also in humans. There is intense interest in how these simple nonapeptides mediate normal and abnormal behavior, especially regarding disorders of the social brain such as autism that are characterized by deficits in social communication and social skills. The current review examines in detail the behavioral genetics of the first level of human AVP-OXT pathway genes including arginine vasopressin 1a receptor (AVPR1a), oxytocin receptor (OXTR), AVP (AVP-neurophysin II [NPII]) and OXT (OXT neurophysin I [NPI]), oxytocinase/vasopressinase (LNPEP), ADP-ribosyl cyclase (CD38) and arginine vasopressin 1b receptor (AVPR1b). Wherever possible we discuss evidence from a variety of research tracks including molecular genetics, imaging genomics, pharmacology and endocrinology that support the conclusions drawn from association studies of social phenotypes and detail how common polymorphisms in AVP-OXT pathway genes contribute to the behavioral hard wiring that enables individual Homo sapiens to interact successfully with conspecifics. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- Richard P Ebstein
- Department of Psychology, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
25
|
Matsuzaki H, Iwata K, Manabe T, Mori N. Triggers for autism: genetic and environmental factors. J Cent Nerv Syst Dis 2012; 4:27-36. [PMID: 23650465 PMCID: PMC3619552 DOI: 10.4137/jcnsd.s9058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This report reviews the research on the factors that cause autism. In several studies, these factors have been verified by reproducing them in autistic animal models. Clinical research has demonstrated that genetic and environmental factors play a major role in the development of autism. However, most cases are idiopathic, and no single factor can explain the trends in the pathology and prevalence of autism. At the time of this writing, autism is viewed more as a multi-factorial disorder. However, the existence of an unknown factor that may be common in all autistic cases cannot be ruled out. It is hoped that future biological studies of autism will help construct a new theory that can interpret the pathology of autism in a coherent manner. To achieve this, large-scale epidemiological research is essential.
Collapse
Affiliation(s)
- Hideo Matsuzaki
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | |
Collapse
|
26
|
Lackner C, Sabbagh MA, Hallinan E, Liu X, Holden JJA. Dopamine receptor D4 gene variation predicts preschoolers' developing theory of mind. Dev Sci 2011; 15:272-80. [PMID: 22356182 DOI: 10.1111/j.1467-7687.2011.01124.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Individual differences in preschoolers' understanding that human action is caused by internal mental states, or representational theory of mind (RTM), are heritable, as are developmental disorders such as autism in which RTM is particularly impaired. We investigated whether polymorphisms of genes affecting dopamine (DA) utilization and metabolism constitute part of the molecular basis of this heritability. Seventy-three 42- to 54-month-olds were given a battery of RTM tasks along with other task batteries that measured executive functioning and representational understanding more generally. Polymorphisms of the dopamine D4 receptor gene (DRD4) were associated with RTM performance such that preschoolers with shorter alleles outperformed those with one or more longer alleles. However, polymorphisms of the catechol-O-methyl transferase gene (COMT) and the dopamine transporter gene (DAT1) genes were not associated with children's RTM performance. Further tests showed that the association between DRD4 allele length and RTM performance was not attributable to a common association with executive functioning or representational understanding more generally. We conclude that DRD4 receptors, likely via their effects on frontal lobe development and functioning, may represent a neuromaturational constraint governing the stereotypical and universal trajectory of RTM development.
Collapse
|
27
|
Margoob MA, Mushtaq D. Serotonin transporter gene polymorphism and psychiatric disorders: is there a link? Indian J Psychiatry 2011; 53:289-99. [PMID: 22303036 PMCID: PMC3267339 DOI: 10.4103/0019-5545.91901] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Though still in infancy, the field of psychiatric genetics holds great potential to contribute to the development of new diagnostic and therapeutic options to treat these disorders. Among a large number of existing neurotransmitter systems, the serotonin system dysfunction has been implicated in many psychiatric disorders and therapeutic efficacy of many drugs is also thought to be based on modulation of serotonin. Serotonin transporter gene polymorphism is one of the most extensively studied polymorphisms in psychiatric behavioral genetics. In this article, we review the status of evidence for association between the serotonin gene polymorphism and some common mental disorders like affective disorders, post-traumatic stress disorder, obsessive-compulsive disorder, suicide, autism, and other anxiety and personality disorders. Going beyond traditional association studies, gene-environment interaction, currently gaining momentum, is also discussed in the review. While the existing information of psychiatric genetics is inadequate for putting into practice genetic testing in the diagnostic work-up of the psychiatric patient, if consistent in future research attempts, such results can be of great help to improve the clinical care of a vast majority of patients suffering from such disorders.
Collapse
Affiliation(s)
- Mushtaq A Margoob
- Department of Psychiatry, Institute of Mental Health and Neurosciences-Kashmir, Kashmir, India.
| | | |
Collapse
|
28
|
Tassone F, Qi L, Zhang W, Hansen RL, Pessah IN, Hertz-Picciotto I. MAOA, DBH, and SLC6A4 variants in CHARGE: a case-control study of autism spectrum disorders. Autism Res 2011; 4:250-61. [PMID: 21538940 PMCID: PMC3151322 DOI: 10.1002/aur.196] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 03/13/2011] [Indexed: 12/28/2022]
Abstract
Genetic factors are established to contribute to the development of autism. We examined three loci, serotonin transporter (SLC6A4), dopamine β-hydroxylase (DBH), and the variable number of tandem repeat promoter of the monoamine oxidase A (MAOA) for association with autism in participants from the Childhood Autism Risks from Genetics and the Environment (CHARGE ) Study, the first large-scale population-based case-control investigation of both environmental and genetic contributions to autism risk. Among male children enrolled in the CHARGE study we tested associations between each of the three polymorphisms and autism (AU) (n = 119), or a combined group of autism and other autism spectrum disorders (AU+ASD, which includes an additional n = 53) as compared with typically developing controls (TD, n = 137). The case-control association analysis showed neither SLC6A4 nor DBH to be statistically significantly associated with AU or ASD. However, the male children carrying 4 tandem repeats in the promoter region of the MAOA gene showed a two-fold higher risk of AU (or AU+ASD) than those carrying allele 3, adjusted for confounders (OR = 2.02, 95% CI = 1.12, 3.65, P = 0.02 for AU vs. TD, and OR = 2.05, 95% CI = 1.19, 3.53, P = 0.01 for ASD vs. TD). In addition, children of mothers homozygous for the 4 tandem repeat allele showed at least a three-fold higher risk of AU (or AU+ASD) than those with mothers homozygous for allele 3 (OR = 3.07, 95% CI = 1.19, 7.91, P = 0.02 for AU vs. TD, and OR = 3.26, 95% CI = 1.35, 7.89, P = 0.009 for AU+ASD vs. TD). These results suggest a potential role of the functional MAOA promoter alleles in the male child, the mother, or both in ASD.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|
29
|
A lack of association between hyperserotonemia and the increased frequency of serum anti-myelin basic protein auto-antibodies in autistic children. J Neuroinflammation 2011; 8:71. [PMID: 21696608 PMCID: PMC3142225 DOI: 10.1186/1742-2094-8-71] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 06/22/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One of the most consistent biological findings in autism is the elevated blood serotonin levels. Immune abnormalities, including autoimmunity with production of brain specific auto-antibodies, are also commonly observed in this disorder. Hyperserotonemia may be one of the contributing factors to autoimmunity in some patients with autism through the reduction of T-helper (Th) 1-type cytokines. We are the first to investigate the possible role of hyperserotonemia in the induction of autoimmunity, as indicated by serum anti-myelin-basic protein (anti-MBP) auto-antibodies, in autism. METHODS Serum levels of serotonin and anti-MBP auto-antibodies were measured, by ELISA, in 50 autistic patients, aged between 5 and 12 years, and 30 healthy-matched children. RESULTS Autistic children had significantly higher serum levels of serotonin and anti-MBP auto-antibodies than healthy children (P < 0.001 and P < 0.001, respectively). Increased serum levels of serotonin and anti-MBP auto-antibodies were found in 92% and 80%, respectively of autistic patients. Patients with severe autism had significantly higher serum serotonin levels than children with mild to moderate autism (P < 0.001). Serum serotonin levels had no significant correlations with serum levels of anti-MBP auto-antibodies in autistic patients (P = 0.39). CONCLUSIONS Hyperserotonemia may not be one of the contributing factors to the increased frequency of serum anti-MBP auto-antibodies in some autistic children. These data should be treated with caution until further investigations are performed. However, inclusion of serum serotonin levels as a correlate may be useful in other future immune studies in autism to help unravel the long-standing mystery of hyperserotonemia and its possible role in the pathophysiology of this disorder.
Collapse
|
30
|
Nakamura K, Iwata Y, Anitha A, Miyachi T, Toyota T, Yamada S, Tsujii M, Tsuchiya KJ, Iwayama Y, Yamada K, Hattori E, Matsuzaki H, Matsumoto K, Suzuki K, Suda S, Takebayashi K, Takei N, Ichikawa H, Sugiyama T, Yoshikawa T, Mori N. Replication study of Japanese cohorts supports the role of STX1A in autism susceptibility. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:454-8. [PMID: 21118708 DOI: 10.1016/j.pnpbp.2010.11.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
Autism is a pervasive developmental disorder diagnosed in early childhood. Abnormalities of serotonergic neurotransmission have been reported in autism. Serotonin transporter (5-HTT), which modulates serotonin levels, is a major therapeutic target in autism. Therefore, factors that regulate 5-HTT expression might be implicated in autism. One candidate 5-HTT-regulatory protein is the presynaptic protein, syntaxin 1A (STX1A). We examined the association of STX1A with autism in a trio association study using DNA samples from Japanese trios with autistic probands. In TDT analysis, rs69510130 (p=0.027) showed nominal associations with autism; modest haplotype association was also observed. We further compared STX1A mRNA expression between the autistic and control groups in the postmortem brain. In the anterior cingulate gyrus region, STX1A expression in the autism group was found to be significantly lower than that of the control group. Thus, we suggest a possible role of STX1A in the pathogenesis of autism.
Collapse
Affiliation(s)
- Kazuhiko Nakamura
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hooton H, Dubern B, Henegar C, Paternoster L, Nohr EA, Alili R, Rousseau F, Pelloux V, Galan P, Hercberg S, Arner P, Sørensen TIA, Clément K. Association between CST3 rs2424577 polymorphism and corpulence related phenotypes during lifetime in populations of European ancestry. Obes Facts 2011; 4:131-44. [PMID: 21577020 PMCID: PMC6444514 DOI: 10.1159/000327797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Cystatin C, a protein coded by CST3 gene, is implicated in adipose tissue biology. Our hypothesis is that common variants in CST3 gene could play a role in the development of corpulence during lifetime. METHODS Two tag SNPs were selected to capture all SNPs in the CST3 region. We first investigated the association of the two tag SNPs individually and combined into haplotypes with corpulence related phenotypes in 4,288 French subjects (BMI = 24.31 ( 3.74 kg/m²). Significant findings were replicated in five independent populations--790 Danish lean men (BMI = 24.63 ( 2.30 kg/m²), 672 Danish obese men (BMI = 33.23 ( 2.34 kg/m²), 763 Swedish women (BMI = 21.73 ( 2.87 kg/m²), 1,848 Danish lean women (BMI = 22.66 ( 2.85 kg/m²) and 2,061 Danish obese women (BMI = 37.01 ( 3.59 kg/m²). RESULTS Rs2424577 was associated with BMI in three independent populations--G/G carriers were less corpulent than A/A carriers in the French individuals (p = 0.045) and in the Danish lean men (p = 0.021), and they were more corpulent in the group of Swedish women (p = 0.004). This phenomenon has been described as a flip-flop phenomenon, probably caused by a multilocus effect. CONCLUSION CST3 rs2424577 is associated with BMI in a complex fashion. This association is probably caused by the interaction between several functional variants.
Collapse
Affiliation(s)
- Henri Hooton
- INSERM U872 Equipe 7, Centre de Recherche des Cordeliers 15 Rue de l’Ecole de Medecine, 75006 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nijmeijer JS, Hartman CA, Rommelse NN, Altink ME, Buschgens CJ, Fliers EA, Franke B, Minderaa RB, Ormel J, Sergeant JA, Verhulst FC, Buitelaar JK, Hoekstra PJ. Perinatal risk factors interacting with catechol O-methyltransferase and the serotonin transporter gene predict ASD symptoms in children with ADHD. J Child Psychol Psychiatry 2010; 51:1242-50. [PMID: 20868372 PMCID: PMC2970704 DOI: 10.1111/j.1469-7610.2010.02277.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Symptoms of autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) often co-occur. Given the previously found familiality of ASD symptoms in children with ADHD, addressing these symptoms may be useful for genetic association studies, especially for candidate gene findings that have not been consistently replicated for ADHD. METHODS We studied the association of the catechol O-methyltransferase (COMT) Val158Met polymorphism and the serotonin transporter (SLC6A4/SERT/5-HTT) 5-HTTLPR insertion/deletion polymorphism with ASD symptoms in children with ADHD, and whether these polymorphisms would interact with pre- and perinatal risk factors, i.e., maternal smoking during pregnancy and low birth weight. Analyses were performed using linear regression in 207 Dutch participants with combined type ADHD of the International Multicenter ADHD Genetics (IMAGE) study, and repeated in an independent ADHD sample (n =439) selected from the TRracking Adolescents' Individual Lives Survey (TRAILS). Dependent variables were the total and subscale scores of the Children's Social Behavior Questionnaire (CSBQ). RESULTS No significant main effects of COMT Val158Met, 5-HTTLPR, maternal smoking during pregnancy and low birth weight on ASD symptoms were found. However, the COMT Val/Val genotype interacted with maternal smoking during pregnancy in increasing stereotyped behavior in the IMAGE sample (p =.008); this interaction reached significance in the TRAILS sample after correction for confounders (p =.02). In the IMAGE sample, the 5-HTTLPR S/S genotype interacted with maternal smoking during pregnancy, increasing problems in social interaction (p =.02), and also interacted with low birth weight, increasing rigid behavior (p =.03). Findings for 5-HTTLPR in the TRAILS sample were similar, albeit for related CSBQ subscales. CONCLUSIONS These findings suggest gene-environment interaction effects on ASD symptoms in children with ADHD.
Collapse
Affiliation(s)
- Judith S. Nijmeijer
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Catharina A. Hartman
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nanda N.J. Rommelse
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marieke E. Altink
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Karakter, Child and Adolescent Psychiatry University Center Nijmegen, Nijmegen, The Netherlands
| | - Cathelijne J.M. Buschgens
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Ellen A. Fliers
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Youth Department, Lucertis, Parnassia-Bavo-Group, Rotterdam, The Netherlands
| | - Barbara Franke
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Ruud B. Minderaa
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan Ormel
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joseph A. Sergeant
- Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Frank C. Verhulst
- Department of Child and Adolescent Psychiatry, Erasmus-MC Sophia, Rotterdam, The Netherlands
| | - Jan K. Buitelaar
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Karakter, Child and Adolescent Psychiatry University Center Nijmegen, Nijmegen, The Netherlands
| | - Pieter J. Hoekstra
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Gadow KD, DeVincent CJ, Olvet DM, Pisarevskaya V, Hatchwell E. Association of DRD4 polymorphism with severity of oppositional defiant disorder, separation anxiety disorder and repetitive behaviors in children with autism spectrum disorder. Eur J Neurosci 2010; 32:1058-65. [DOI: 10.1111/j.1460-9568.2010.07382.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
34
|
Clarke GM, Cardon LR. Aspects of observing and claiming allele flips in association studies. Genet Epidemiol 2010; 34:266-74. [PMID: 20013941 DOI: 10.1002/gepi.20458] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Significant allele flipping, where associations for the same disease occur at opposite alleles of the same bi-allelic locus, is increasing. But when is a significant allele flip genuine? We address the statistical issues of claiming and observing genuine allele flips in actual samples. We show that unless an allele flip is genuine, the probability of observing a significant allele flip in samples ascertained similarly from a common population is negligible. We derive expressions for the expected values of commonly used measures of association, which confirm previous findings that the underlying mechanism of a genuine allele flip is variation in the haplotype frequencies and show further how this variation interacts with variation in the genetic effects to impact allele flipping. We show that for association testing at proxy SNPs, common in genome-wide association studies, variation in haplotype frequencies must coincide with a reversal in the sign of linkage disequilibrium (LD) to trigger genuine allele flips. Using HapMap data and r, rather than r(2), to highlight previously unobserved effects, we show that unless genetic effects are large, variation in LD is unlikely to cause genuine allele flips in samples drawn from the same population. However, as populations diverge, it is an increasingly viable cause of a genuine allele flip for sufficiently large genetic effect and/or sample sizes. We conclude that evidence of variation in local patterns of LD, ancestral composition of study samples, and environmental exposures between study populations can provide compelling practical evidence in defense of a genuine allele flip.
Collapse
Affiliation(s)
- Geraldine M Clarke
- Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom.
| | | |
Collapse
|
35
|
Arieff Z, Kaur M, Gameeldien H, van der Merwe L, Bajic VB. 5-HTTLPR Polymorphism: Analysis in South African Autistic Individuals. Hum Biol 2010; 82:291-300. [DOI: 10.3378/027.082.0303] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Hollander E, Wang AT, Braun A, Marsh L. Neurological considerations: autism and Parkinson's disease. Psychiatry Res 2009; 170:43-51. [PMID: 19815296 DOI: 10.1016/j.psychres.2008.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 01/02/2008] [Accepted: 07/26/2008] [Indexed: 11/18/2022]
Abstract
Within the spectrum of disorders that manifest obsessive-compulsive (OC) features lies a sub-cluster of neurological conditions. Autism and Parkinson's disease (PD) are examples of two such neurological disorders that seem quite dissimilar on the surface. Yet, both conditions can include repetitive behaviors of a compulsive-impulsive nature. Furthermore, while autism and PD differ in other associated symptom domains that shape the course of each disorder, both disorders share some phenomenology in the core domain of repetitive behaviors and involve basal ganglia and frontal lobe dysfunction, similar to OC disorder (OCD). Accordingly, examination of the similarities and differences between autism and PD may provide insight into the pathophysiology and treatment of OC spectrum disorders. The current review focuses on the phenomenology, comorbidity, course of illness, family history, brain circuitry, and treatment of autism and PD, as they relate to OCD and OC spectrum disturbances.
Collapse
Affiliation(s)
- Eric Hollander
- Department of Psychiatry, Montefiore Medical Center, University Hospital of Albert Einstein College of Medicine, Bronx, NY 10467-2490, United States.
| | | | | | | |
Collapse
|
37
|
Stam AJ, Schothorst PF, Vorstman JA, Staal WG. The genetic overlap of attention deficit hyperactivity disorder and autistic spectrum disorder. APPLICATION OF CLINICAL GENETICS 2009; 2:7-13. [PMID: 23776346 PMCID: PMC3681037 DOI: 10.2147/tacg.s4683] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Autistic spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD) are classified as distinct disorders within the DSM-IV-TR (1994). The manual excludes simultaneous use of both diagnoses in case of overlap on a symptomatic level. However this does not always represent clinical observations and findings of previous studies. This review explores the genetic basis of the phenomenological overlap between ADHD and ASD. Based on an extensive review of twin-, linkage-, association studies, and reported structural genomic abnormalities associated with these disorders, we have identified seventeen regions on the human genome that can be related to both disorders. These regions of shared genetic association are: 2q35, 3p14, 4p16.1, 4p16.3, 5p15.31, 5p15.33, 7p12.3, 7p22, 7q21, 8q24.3, 14q12, 15q11–12, 16p13, 17q11, 18q21–23, 22q11.2, Xp22.3. The presented data are of interest for future genetic studies and appear to suggest the existence of a phenotype partition that may differ from the current classification of psychiatric disorders.
Collapse
Affiliation(s)
- Arie J Stam
- University Medical Center Utrecht (UMC Utrecht), Utrecht, The Netherlands
| | | | | | | |
Collapse
|
38
|
Ezaki N, Nakamura K, Sekine Y, Thanseem I, Anitha A, Iwata Y, Kawai M, Takebayashi K, Suzuki K, Takei N, Iyo M, Inada T, Iwata N, Harano M, Komiyama T, Yamada M, Sora I, Ujike H, Mori N. Short allele of 5-HTTLPR as a risk factor for the development of psychosis in Japanese methamphetamine abusers. Ann N Y Acad Sci 2008; 1139:49-56. [PMID: 18991848 DOI: 10.1196/annals.1432.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Accumulating evidence suggests that genetic factors contribute to the vulnerability to methamphetamine (MAP) abuse and associated psychiatric symptoms. Chronic MAP abuse leads to psychosis, which may be of a transient or a prolonged type. Serotonergic dysfunction has been proposed as one of the contributory factors in the development of MAP psychosis. Our PET studies revealed that the serotonin transporter (5-HTT) density in global brain regions is significantly lower in MAP abusers. In this study, we examined the role of a functional polymorphism in the 5' flanking region of the 5-HTT gene (5-HTTLPR) in the development of MAP psychosis in a Japanese population. We analyzed DNA samples from 166 MAP patients (95 with transient and 71 with prolonged psychosis) and 197 age-, sex-, and geographic-origin-matched healthy controls. Patients were also subdivided according to the presence (n= 119) or absence (n= 148) of spontaneous relapse. We observed significant genotypic association of the 5-HTTLPR polymorphism with MAP psychosis (P= 0.022), particularly in patients who show prolonged psychosis. The frequency of the S allele in patients with prolonged psychosis was significantly higher than that of the controls (P= 0.045); it was further higher in patients with prolonged psychosis with spontaneous relapse (P= 0.004). 5-HTTLPR has been suggested to regulate the transcriptional activity of 5-HTT, with S alleles showing lesser transcriptional efficiency and also lower 5-HT(1A) receptor-binding potential. Prolonged MAP use, combined with the high frequency of 5-HTTLPR S-alleles, may lead to reduced 5-HTT levels and 5-HT(1A) receptor-binding potential in the brain, resulting in the dysfunction of the serotonergic system. Thus, we suggest a possible role for the 5-HTTLPR polymorphism in MAP psychosis.
Collapse
Affiliation(s)
- Norikazu Ezaki
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Genetic and expression analyses reveal elevated expression of syntaxin 1A ( STX1A) in high functioning autism. Int J Neuropsychopharmacol 2008; 11:1073-84. [PMID: 18593506 DOI: 10.1017/s1461145708009036] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autism is a pervasive developmental disorder diagnosed in early childhood. Abnormalities of serotonergic neurotransmission have been reported in autism. Serotonin transporter (5-HTT), which modulates serotonin levels, is a major therapeutic target in autism. Therefore, factors that regulate 5-HTT expression might be implicated in autism. One candidate 5-HTT-regulatory protein is the presynaptic protein, syntaxin 1A (STX1A). We examined the association of STX1A with autism in a trio association study using DNA samples from 249 AGRE trios with autistic probands. Only male probands were selected, since autism is more prevalent among males. The probands of 102 trios had IQ>70, and were considered as high functioning autism (HFA). In transmission disequilibrium test (TDT) analysis, rs2293485 (p=0.034) and rs4717806 (p=0.033) showed nominal associations with HFA; modest haplotype association was also observed. The SNPs that showed associations were related to early developmental abnormalities (ADI-R_D). We further compared STX1A mRNA expression in the lymphocytes of drug-naive HFA patients (n=12) and age- and sex-matched controls (n=13). STX1A expression in the HFA group was significantly higher (p=0.001) than that of controls. Thus, we suggest a possible role of STX1A in the pathogenesis of HFA. During early childhood, there is a period of high brain serotonin synthesis that is disrupted in autistic children; STX1A might influence the serotonergic system during this stage of neurodevelopment, as implied by the association with ADI-R_D.
Collapse
|
40
|
Guhathakurta S, Sinha S, Ghosh S, Chatterjee A, Ahmed S, Gangopadhyay PK, Usha R. Population-based association study and contrasting linkage disequilibrium pattern reveal genetic association of SLC6A4 with autism in the Indian population from West Bengal. Brain Res 2008; 1240:12-21. [DOI: 10.1016/j.brainres.2008.08.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 06/23/2008] [Accepted: 08/24/2008] [Indexed: 12/11/2022]
|
41
|
Anitha A, Nakamura K, Yamada K, Suda S, Thanseem I, Tsujii M, Iwayama Y, Hattori E, Toyota T, Miyachi T, Iwata Y, Suzuki K, Matsuzaki H, Kawai M, Sekine Y, Tsuchiya K, Sugihara GI, Ouchi Y, Sugiyama T, Koizumi K, Higashida H, Takei N, Yoshikawa T, Mori N. Genetic analyses of roundabout (ROBO) axon guidance receptors in autism. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:1019-27. [PMID: 18270976 DOI: 10.1002/ajmg.b.30697] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Autism is a pervasive developmental disorder diagnosed in early childhood. Abnormalities of serotonergic neurotransmission have been reported in autism. Serotonin transporter (SERT) modulates serotonin levels, and is a major therapeutic target in autism. Factors that regulate SERT expression might be implicated in the pathophysiology of autism. One candidate SERT regulatory protein is the roundabout axon guidance molecule, ROBO. SerT expression in Drosophila is regulated by robo; it plays a vital role in mammalian neurodevelopment also. Here, we examined the associations of ROBO3 and ROBO4 with autism, in a trio association study using DNA from 252 families recruited to AGRE. Four SNPs of ROBO3 (rs3923890, P = 0.023; rs7925879, P = 0.017; rs4606490, P = 0.033; and rs3802905, P = 0.049) and a single SNP of ROBO4 (rs6590109, P = 0.009) showed associations with autism; the A/A genotype of rs3923890 showed lower ADI-R_A scores, which reflect social interaction. Significant haplotype associations were also observed for ROBO3 and ROBO4. We further compared the mRNA expressions of ROBO1, ROBO2, ROBO3, and ROBO4 in the lymphocytes of 19 drug-naïve autistic patients and 20 age- and sex-matched controls. Expressions of ROBO1 (P = 0.018) and ROBO2 (P = 0.023) were significantly reduced in the autistic group; the possibility of using the altered expressions of ROBO as peripheral markers for autism, may be explored. In conclusion, we suggest a possible role of ROBO in the pathogenesis of autism. Abnormalities of ROBO may lead to autism either by interfering with serotonergic system, or by disrupting neurodevelopment. To the best of our knowledge, this is the first report relating ROBO with autism.
Collapse
Affiliation(s)
- A Anitha
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Huang CH, Santangelo SL. Autism and serotonin transporter gene polymorphisms: a systematic review and meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:903-13. [PMID: 18286633 DOI: 10.1002/ajmg.b.30720] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The serotonin transporter gene (5-HTT) plays a crucial role in serotonergic neurotransmission and has been found to be associated, with varying degrees of significance, with many diseases, including autism. Prior association studies of autism have yielded conflicting results regarding the association between two common 5-HTT polymorphisms, the promoter insertion/deletion (5-HTTLPR) and the intron 2 VNTR (STin2 VNTR). We conducted a systematic review and meta-analysis to test the following hypotheses: (i) there is an association between autism and either or both of the 5-HTTLPR and STin2 VNTR polymorphisms, and (ii) the S allele of 5-HTTLPR and/or the STin2.12 allele of the VNTR are the specific risk alleles for autism. All published family-based and population based studies were examined to determine the overall strength of association between 5-HTT polymorphisms and autism. After exclusion of studies with overlapping samples and studies whose data did not allow for calculation of an odds ratio, 16 studies were included for final analyses, all but two of which used a family-based design. The meta-analysis failed to find a significant overall association between either of the 5-HTT polymorphisms examined and autism. Further, no allelic transmission distortion was found when studies of simplex (11 studies) and multiplex (3 studies) family samples were analyzed separately. However, there was significant heterogeneity by ethnicity; family based studies of US mixed population samples showed preferential transmission of the S allele of 5-HTTLPR (S allele:L allele = 247:183), while there was no allelic distortion among the family-based studies of European and Asian samples.
Collapse
Affiliation(s)
- Christine H Huang
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| | | |
Collapse
|
43
|
Losh M, Sullivan PF, Trembath D, Piven J. Current developments in the genetics of autism: from phenome to genome. J Neuropathol Exp Neurol 2008; 67:829-37. [PMID: 18716561 PMCID: PMC2649757 DOI: 10.1097/nen.0b013e318184482d] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Despite compelling evidence from twin and family studies indicating a strong genetic involvement in the etiology of autism, the unequivocal detection of autism susceptibility genes remains an elusive goal. The purpose of this review is to evaluate the current state of autism genetics research, with attention focused on new techniques and analytic approaches. We first present a brief overview of evidence for the genetic basis of autism, followed by an appraisal of linkage and candidate gene study findings and consideration of new analytic approaches to the study of complex psychiatric conditions, namely, genome-wide association studies, assessment of structural variation within the genome, and the incorporation of endophenotypes in genetic analysis.
Collapse
Affiliation(s)
- Molly Losh
- Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7190, USA.
| | | | | | | |
Collapse
|
44
|
Iossifov I, Zheng T, Baron M, Gilliam TC, Rzhetsky A. Genetic-linkage mapping of complex hereditary disorders to a whole-genome molecular-interaction network. Genome Res 2008; 18:1150-62. [PMID: 18417725 DOI: 10.1101/gr.075622.107] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Common hereditary neurodevelopmental disorders such as autism, bipolar disorder, and schizophrenia are most likely both genetically multifactorial and heterogeneous. Because of these characteristics traditional methods for genetic analysis fail when applied to such diseases. To address the problem we propose a novel probabilistic framework that combines the standard genetic linkage formalism with whole-genome molecular-interaction data to predict pathways or networks of interacting genes that contribute to common heritable disorders. We apply the model to three large genotype-phenotype data sets, identify a small number of significant candidate genes for autism (24), bipolar disorder (21), and schizophrenia (25), and predict a number of gene targets likely to be shared among the disorders.
Collapse
Affiliation(s)
- Ivan Iossifov
- Department of Biomedical Informatics, Center for Computational Biology and Bioinformatics, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
The treatment of pervasive developmental disorders (PDDs) is a challenging task, which should include behavioral therapy modifications as well as pharmacologic therapy. There has been a lack of data on using medications in children with PDDs until recent years. Within the last 10 years, an increase in clinical research has attempted to provide efficacy and safety data to support the use of medications in children with PDDs. Double-blinded and open-label research of atypical antipsychotics has been of particular focus. Evidence shows that atypical antipsychotics (AAs) may be useful in treating certain symptoms associated with PDDs, such as aggression, irritability, and self-injurious behavior. This article reviews the literature regarding the use of AAs in children with PDDs. Of the AAs, risperidone has the largest amount of evidence with five published double-blinded, placebo-controlled trials and nine open-label trials. These risperidone trials have consistently shown improvements in aggression, irritability, self-injurious behavior, temper tantrums, and quickly changing moods associated with autistic disorder and other PDDs. Data for the other AAs are limited, but ziprasidone and aripiprazole appear to be promising treatment options. Based on clinical trials, olanzapine and quetiapine have shown minimal clinical benefit and a high incidence of weight gain and sedation. It should be noted that all AAs do have a risk of metabolic syndrome, and patients should be monitored appropriately while receiving these medications. Overall, AAs can be beneficial in alleviating behavioral symptoms, and should be considered an appropriate therapeutic option, as part of a comprehensive treatment strategy, for children with PDD.
Collapse
Affiliation(s)
- Benjamin Chavez
- Rutgers, State University of New Jersey, Piscataway, New Jersey, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
Autism, at its most extreme, is a severe neurodevelopmental disorder, and recent studies have indicated that autism spectrum disorders are considerably more common than previously supposed. However, although one of the most heritable neuropsychiatric syndromes, autism has so far eluded attempts to discover its genetic origins in the majority of cases. Several whole-genome scans for autism-susceptibility loci have identified specific chromosomal regions, but the results have been inconclusive and fine mapping and association studies have failed to identify the underlying genes. Recent advances in knowledge from the Human Genome and HapMap Projects, and progress in technology and bioinformatic resources, have aided study design and made data generation more efficient and cost-effective. Broadening horizons about the landscape of structural genetic variation and the field of epigenetics are indicating new possible mechanisms underlying autism aetiology, while endophenotypes are being used in an attempt to break down the complexity of the syndrome and refine genetic data. Although the genetic variants underlying idiopathic autism have proven elusive so far, the future for this field looks promising.
Collapse
Affiliation(s)
- Nuala H Sykes
- Wellcome Trust Centre for Human Genetics, University of Oxford, UK
| | | |
Collapse
|
47
|
Nicholas B, Rudrasingham V, Nash S, Kirov G, Owen MJ, Wimpory DC. Association of Per1 and Npas2 with autistic disorder: support for the clock genes/social timing hypothesis. Mol Psychiatry 2007; 12:581-92. [PMID: 17264841 DOI: 10.1038/sj.mp.4001953] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clock gene anomalies have been suggested as causative factors in autism. We screened eleven clock/clock-related genes in a predominantly high-functioning Autism Genetic Resource Exchange sample of strictly diagnosed autistic disorder progeny and their parents (110 trios) for association of clock gene variants with autistic disorder. We found significant association (P<0.05) for two single-nucleotide polymorphisms in per1 and two in npas2. Analysis of all possible combinations of two-marker haplotypes for each gene showed that in npas2 40 out of the 136 possible two-marker combinations were significant at the P<0.05 level, with the best result between markers rs1811399 and rs2117714, P=0.001. Haplotype analysis within per1 gave a single significant result: a global P=0.027 for the markers rs2253820-rs885747. No two-marker haplotype was significant in any of the other genes, despite the large number of tests performed. Our findings support the hypothesis that these epistatic clock genes may be involved in the etiology of autistic disorder. Problems in sleep, memory and timing are all characteristics of autistic disorder and aspects of sleep, memory and timing are each clock-gene-regulated in other species. We identify how our findings may be relevant to theories of autism that focus on the amygdala, cerebellum, memory and temporal deficits. We outline possible implications of these findings for developmental models of autism involving temporal synchrony/social timing.
Collapse
Affiliation(s)
- B Nicholas
- North West Cancer Research Fund Institute, University of Wales, Bangor, UK
| | | | | | | | | | | |
Collapse
|
48
|
Zafeiriou DI, Ververi A, Vargiami E. Childhood autism and associated comorbidities. Brain Dev 2007; 29:257-72. [PMID: 17084999 DOI: 10.1016/j.braindev.2006.09.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 08/25/2006] [Accepted: 09/06/2006] [Indexed: 12/11/2022]
Abstract
Autism is a heterogeneous neurodevelopmental disorder with a variety of different etiologies, but with a heritability estimate of more than 90%. Although the strong correlation between autism and genetic factors has been long established, the exact genetic background of autism is still unclear. This review refers to all the genetic syndromes that have been described in children with pervasive developmental disorders (tuberous sclerosis, fragile X, Down, neurofibromatosis, Angelman, Prader-Willi, Gilles de la Tourette, Williams, etc.). Issues covered include prevalence and main characteristics of each syndrome, as well as the possible base of its association with autism in terms of contribution to the current knowledge on the etiology and genetic base of pervasive developmental disorders.
Collapse
Affiliation(s)
- Dimitrios I Zafeiriou
- 1st Department of Pediatrics, Aristotle University of Thessaloniki, Egnatia St. 106, 54622 Thessaloniki, Greece.
| | | | | |
Collapse
|
49
|
Abstract
Solute carrier 6 (SLC6) is a gene family of ion-coupled plasma membrane cotransporters, including transporters of neurotransmitters, amino acids, and osmolytes that mediate the movement of their substrates into cells to facilitate or regulate synaptic transmission, neurotransmitter recycling, metabolic function, and fluid homeostasis. Polymorphisms in transporter genes may influence expression and activity of transporters and contribute to behavior, traits, and disease. Determining the relationship between the monoamine transporters and complex psychiatric disorders has been a particular challenge that is being met by evolving approaches. Elucidating the functional consequences of and interactions among polymorphic sites is advancing our understanding of this relationship. Examining the influence of environmental influences, especially early-life events, has helped bridge the gap between genotype and phenotype. Refining phenotypes, through assessment of endophenotypes, specific behavioral tasks, medication response, and brain network properties has also improved detection of the impact of genetic variation on complex behavior and disease.
Collapse
Affiliation(s)
- Maureen K Hahn
- Department of Pharmacology and Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|
50
|
Young KA, Holcomb LA, Bonkale WL, Hicks PB, Yazdani U, German DC. 5HTTLPR polymorphism and enlargement of the pulvinar: unlocking the backdoor to the limbic system. Biol Psychiatry 2007; 61:813-8. [PMID: 17083920 DOI: 10.1016/j.biopsych.2006.08.047] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 08/02/2006] [Accepted: 08/28/2006] [Indexed: 11/18/2022]
Abstract
BACKGROUND The 5HTTLPR genetic variant of the serotonin transporter (SERT), which consists of a long (SERT-l) and short (SERT-s) allele, has emerged as a major factor influencing emotional behavior and brain anatomy. The pulvinar nucleus of the thalamus projects to important limbic nuclei including the amygdala and cingulate cortex, is involved in the processing of stimuli with emotional content, and contains an abundance of SERT. METHODS Stereological methods were used to measure pulvinar neuron number in postmortem tissue from major depressive disorder (n = 11), bipolar disorder (n = 11), schizophrenia (n = 12), and control (n = 15) specimens from the Stanley Foundation Neuropathology Consortium. The effect of SERT genotype on pulvinar volume and neuron number was investigated by using analysis of covariance. RESULTS Analysis of covariance with diagnosis, SERT genotype, age, hemisphere, postmortem interval, and time-in-formalin covariates identified a 20% increase in pulvinar neuron number and volume in SERT-ss subjects. CONCLUSIONS The elevated number of pulvinar neurons in subjects with a SERT-ss genotype may serve to enhance subcortical input of emotionally relevant stimuli to the limbic system, providing a mechanism for the 5HTTLPR genetic variant to affect predisposition to conditions such as major depression.
Collapse
Affiliation(s)
- Keith A Young
- Neuropsychiatry Research Program, Central Texas Veterans Health Care System, Temple, Texas 76504, USA.
| | | | | | | | | | | |
Collapse
|