1
|
Bendixen C, Brosens E, Chung WK. Genetic Diagnostic Strategies and Counseling for Families Affected by Congenital Diaphragmatic Hernia. Eur J Pediatr Surg 2021; 31:472-481. [PMID: 34911129 DOI: 10.1055/s-0041-1740337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common and severe birth defect with variable clinical outcome and associated malformations in up to 60% of patients. Mortality and morbidity remain high despite advances in pre-, intra-, and postnatal management. We review the current literature and give an overview about the genetics of CDH to provide guidelines for clinicians with respect to genetic diagnostics and counseling for families. Until recently, the common practice was (molecular) karyotyping or chromosome microarray if the CDH diagnosis is made prenatally with a 10% diagnostic yield. Undiagnosed patients can be reflexed to trio exome/genome sequencing with an additional diagnostic yield of 10 to 20%. Even with a genetic diagnosis, there can be a range of clinical outcomes. All families with a child with CDH with or without additional malformations should be offered genetic counseling and testing in a family-based trio approach.
Collapse
Affiliation(s)
- Charlotte Bendixen
- Department of General, Visceral, Vascular and Thoracic Surgery, Unit of Pediatric Surgery, Universitätsklinikum Bonn, Bonn, Germany
| | - Erwin Brosens
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Wendy Kay Chung
- Department of Medicine, Columbia University Irving Medical Center, New York, United States.,Department of Pediatrics, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
2
|
Cannata G, Caporilli C, Grassi F, Perrone S, Esposito S. Management of Congenital Diaphragmatic Hernia (CDH): Role of Molecular Genetics. Int J Mol Sci 2021; 22:ijms22126353. [PMID: 34198563 PMCID: PMC8231903 DOI: 10.3390/ijms22126353] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common major life-threatening birth defect that results in significant mortality and morbidity depending primarily on lung hypoplasia, persistent pulmonary hypertension, and cardiac dysfunction. Despite its clinical relevance, CDH multifactorial etiology is still not completely understood. We reviewed current knowledge on normal diaphragm development and summarized genetic mutations and related pathways as well as cellular mechanisms involved in CDH. Our literature analysis showed that the discovery of harmful de novo variants in the fetus could constitute an important tool for the medical team during pregnancy, counselling, and childbirth. A better insight into the mechanisms regulating diaphragm development and genetic causes leading to CDH appeared essential to the development of new therapeutic strategies and evidence-based genetic counselling to parents. Integrated sequencing, development, and bioinformatics strategies could direct future functional studies on CDH; could be applied to cohorts and consortia for CDH and other birth defects; and could pave the way for potential therapies by providing molecular targets for drug discovery.
Collapse
Affiliation(s)
- Giulia Cannata
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Chiara Caporilli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Federica Grassi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
- Correspondence: ; Tel.: +39-0521-7047
| |
Collapse
|
3
|
Callaway DA, Campbell IM, Stover SR, Hernandez-Garcia A, Jhangiani SN, Punetha J, Paine IS, Posey JE, Muzny D, Lally KP, Lupski JR, Shaw CA, Fernandes CJ, Scott DA. Prioritization of Candidate Genes for Congenital Diaphragmatic Hernia in a Critical Region on Chromosome 4p16 using a Machine-Learning Algorithm. J Pediatr Genet 2018; 7:164-173. [PMID: 30430034 PMCID: PMC6234038 DOI: 10.1055/s-0038-1655755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
Wolf-Hirschhorn syndrome (WHS) is caused by partial deletion of the short arm of chromosome 4 and is characterized by dysmorphic facies, congenital heart defects, intellectual/developmental disability, and increased risk for congenital diaphragmatic hernia (CDH). In this report, we describe a stillborn girl with WHS and a large CDH. A literature review revealed 15 cases of WHS with CDH, which overlap a 2.3-Mb CDH critical region. We applied a machine-learning algorithm that integrates large-scale genomic knowledge to genes within the 4p16.3 CDH critical region and identified FGFRL1 , CTBP1 , NSD2 , FGFR3 , CPLX1 , MAEA , CTBP1-AS2 , and ZNF141 as genes whose haploinsufficiency may contribute to the development of CDH.
Collapse
Affiliation(s)
- Danielle A. Callaway
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Ian M. Campbell
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Samantha R. Stover
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Andres Hernandez-Garcia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Shalini N. Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Ingrid S. Paine
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Donna Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Kevin P. Lally
- Department of Pediatric Surgery, McGovern Medical School at UT Health, Houston, Texas, United States
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Caraciolo J. Fernandes
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
4
|
Slavotinek AM. The genetics of common disorders - congenital diaphragmatic hernia. Eur J Med Genet 2014; 57:418-23. [PMID: 24793812 DOI: 10.1016/j.ejmg.2014.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/20/2014] [Indexed: 12/18/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a common birth defect with a high mortality and morbidity. Although numerous chromosomal aberrations and gene mutations have been associated with CDH, the etiology of the diaphragmatic defect is identified in less than 50% of patients. This review discusses the some of the more frequent, recurrent karyotypic abnormalities in which CDH is a feature, including 15q26, 8p23.1 and 4p16.3 deletions and tetrasomy 12p (Pallister-Killian syndrome), together with some of the syndromes in which CDH is a relatively common feature, including Fryns syndrome, Matthew-Wood syndrome, overgrowth syndromes and Donnai-Barrow syndrome. In the era of genomic technologies, our knowledge of the genes and chromosome regions involved in pathogenesis of CDH is likely to advance significantly.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, MSC 2711, Rock Hall Room RH384D, 1550 4th St, San Francisco, CA 94143-2711, USA.
| |
Collapse
|
5
|
Longoni M, Lage K, Russell MK, Loscertales M, Abdul-Rahman OA, Baynam G, Bleyl SB, Brady PD, Breckpot J, Chen CP, Devriendt K, Gillessen-Kaesbach G, Grix AW, Rope AF, Shimokawa O, Strauss B, Wieczorek D, Zackai EH, Coletti CM, Maalouf FI, Noonan KM, Park JH, Tracy AA, Lee C, Donahoe PK, Pober BR. Congenital diaphragmatic hernia interval on chromosome 8p23.1 characterized by genetics and protein interaction networks. Am J Med Genet A 2012; 158A:3148-58. [PMID: 23165946 DOI: 10.1002/ajmg.a.35665] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/20/2012] [Indexed: 01/09/2023]
Abstract
Chromosome 8p23.1 is a common hotspot associated with major congenital malformations, including congenital diaphragmatic hernia (CDH) and cardiac defects. We present findings from high-resolution arrays in patients who carry a loss (n = 18) or a gain (n = 1) of sub-band 8p23.1. We confirm a region involved in both diaphragmatic and heart malformations. Results from a novel CNVConnect algorithm, prioritizing protein-protein interactions between products of genes in the 8p23.1 hotspot and products of previously known CDH causing genes, implicated GATA4, NEIL2, and SOX7 in diaphragmatic defects. Sequence analysis of these genes in 226 chromosomally normal CDH patients, as well as in a small number of deletion 8p23.1 patients, showed rare unreported variants in the coding region; these may be contributing to the diaphragmatic phenotype. We also demonstrated that two of these three genes were expressed in the E11.5-12.5 primordial mouse diaphragm, the developmental stage at which CDH is thought to occur. This combination of bioinformatics and expression studies can be applied to other chromosomal hotspots, as well as private microdeletions or microduplications, to identify causative genes and their interaction networks.
Collapse
Affiliation(s)
- Mauro Longoni
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Congenital Diaphragmatic Hernia (CDH) is defined by the presence of an orifice in the diaphragm, more often left and posterolateral that permits the herniation of abdominal contents into the thorax. The lungs are hypoplastic and have abnormal vessels that cause respiratory insufficiency and persistent pulmonary hypertension with high mortality. About one third of cases have cardiovascular malformations and lesser proportions have skeletal, neural, genitourinary, gastrointestinal or other defects. CDH can be a component of Pallister-Killian, Fryns, Ghersoni-Baruch, WAGR, Denys-Drash, Brachman-De Lange, Donnai-Barrow or Wolf-Hirschhorn syndromes. Some chromosomal anomalies involve CDH as well. The incidence is < 5 in 10,000 live-births. The etiology is unknown although clinical, genetic and experimental evidence points to disturbances in the retinoid-signaling pathway during organogenesis. Antenatal diagnosis is often made and this allows prenatal management (open correction of the hernia in the past and reversible fetoscopic tracheal obstruction nowadays) that may be indicated in cases with severe lung hypoplasia and grim prognosis. Treatment after birth requires all the refinements of critical care including extracorporeal membrane oxygenation prior to surgical correction. The best hospital series report 80% survival but it remains around 50% in population-based studies. Chronic respiratory tract disease, neurodevelopmental problems, neurosensorial hearing loss and gastroesophageal reflux are common problems in survivors. Much more research on several aspects of this severe condition is warranted.
Collapse
|
7
|
Tautz J, Veenma D, Eussen B, Joosen L, Poddighe P, Tibboel D, de Klein A, Schaible T. Congenital diaphragmatic hernia and a complex heart defect in association with Wolf-Hirschhorn syndrome. Am J Med Genet A 2011; 152A:2891-4. [PMID: 20830802 DOI: 10.1002/ajmg.a.33660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Juliane Tautz
- Universitatsklinikum Mannheim, Paediatric Intensive Care Unit, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Byeon SJ, Myung JK, Park SH. The Wolf-Hirschhorn Syndrome in Fetal Autopsy - A Case Report -. KOREAN JOURNAL OF PATHOLOGY 2011. [DOI: 10.4132/koreanjpathol.2011.45.s1.s15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sun-ju Byeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Kyung Myung
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Examination of FGFRL1 as a candidate gene for diaphragmatic defects at chromosome 4p16.3 shows that Fgfrl1 null mice have reduced expression of Tpm3, sarcomere genes and Lrtm1 in the diaphragm. Hum Genet 2009; 127:325-36. [PMID: 20024584 DOI: 10.1007/s00439-009-0777-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
Fgfrl1 (also known as Fgfr5; OMIM 605830) homozygous null mice have thin, amuscular diaphragms and die at birth because of diaphragm hypoplasia. FGFRL1 is located at 4p16.3, and this chromosome region can be deleted in patients with congenital diaphragmatic hernia (CDH). We examined FGFRL1 as a candidate gene for the diaphragmatic defects associated with 4p16.3 deletions and re-sequenced this gene in 54 patients with CDH. We confirmed six known coding single nucleotide polymorphisms (SNPs): c.209G > A (p.Pro20Pro), c.977G > A (p.Pro276Pro), c.1040T > C (p.Asp297Asp), c.1234C > A (p.Pro362Gln), c.1420G > T (p.Arg424Leu), and c.1540C > T (p.Pro464Leu), but we did not identify any gene mutations. We genotyped additional CDH patients for four of these six SNPs, including the three non-synonymous SNPs, to make a total of 200 chromosomes, and found that the allele frequency for the four SNPs, did not differ significantly between patients and normal controls (p > or = 0.05). We then used Affymetrix Genechip Mouse Gene 1.0 ST arrays and found eight genes with significantly reduced expression levels in the diaphragms of Fgfrl1 homozygous null mice when compared with wildtype mice-Tpm3, Fgfrl1 (p = 0.004), Myl2, Lrtm1, Myh4, Myl3, Myh7 and Hephl1. Lrtm1 is closely related to Slit3, a protein associated with herniation of the central tendon of the diaphragm in mice. The Slit proteins are known to regulate axon branching and cell migration, and inhibition of Slit3 reduces cell motility and decreases the expression of Rac and Cdc42, two genes that are essential for myoblast fusion. Further studies to determine if Lrtm1 has a similar function to Slit3 and if reduced Fgfrl1 expression can cause diaphragm hypoplasia through a mechanism involving decreased myoblast motility and/or myoblast fusion, seem indicated.
Collapse
|
10
|
Catela C, Bilbao-Cortes D, Slonimsky E, Kratsios P, Rosenthal N, Te Welscher P. Multiple congenital malformations of Wolf-Hirschhorn syndrome are recapitulated in Fgfrl1 null mice. Dis Model Mech 2009; 2:283-94. [PMID: 19383940 DOI: 10.1242/dmm.002287] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Wolf-Hirschhorn syndrome (WHS) is caused by deletions in the short arm of chromosome 4 (4p) and occurs in about one per 20,000 births. Patients with WHS display a set of highly variable characteristics including craniofacial dysgenesis, mental retardation, speech problems, congenital heart defects, short stature and a variety of skeletal anomalies. Analysis of patients with 4p deletions has identified two WHS critical regions (WHSCRs); however, deletions targeting mouse WHSCRs do not recapitulate the classical WHS defects, and the genes contributing to WHS have not been conclusively established. Recently, the human FGFRL1 gene, encoding a putative fibroblast growth factor (FGF) decoy receptor, has been implicated in the craniofacial phenotype of a WHS patient. Here, we report that targeted deletion of the mouse Fgfrl1 gene recapitulates a broad array of WHS phenotypes, including abnormal craniofacial development, axial and appendicular skeletal anomalies, and congenital heart defects. Fgfrl1 null mutants also display a transient foetal anaemia and a fully penetrant diaphragm defect, causing prenatal and perinatal lethality. Together, these data support a wider role for Fgfrl1 in development, implicate FGFRL1 insufficiency in WHS, and provide a novel animal model to dissect the complex aetiology of this human disease.
Collapse
Affiliation(s)
- Catarina Catela
- European Molecular Biology Laboratory, Mouse Biology Unit, Monterotondo, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Hanprasertpong T, Hanaoka U, Zhang X, Mori N, Inubashiri E, Kanenishi K, Yamashiro C, Tanaka H, Shiota A, Yanagihara T, Hata T. Three-dimensional sonographic features of a fetus with Wolf-Hirschhorn syndrome. J Med Ultrason (2001) 2008; 35:197-9. [PMID: 27278992 DOI: 10.1007/s10396-008-0182-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 05/08/2008] [Indexed: 10/21/2022]
Abstract
We present a case of fetal Wolf-Hirschhorn syndrome diagnosed by conventional two-dimensional and three-dimensional ultrasonography. Conventional two-dimensional ultrasonography revealed a diaphragmatic hernia, nuchal edema, and suspected hypospadias. Three-dimensional ultrasonography clearly showed a flattening of the face, a high forehead, a broad nasal bridge continuing to the forehead, exophthalmos, and micrognathia (resembling the appearance of a Greek warrior helmet), but conventional two-dimensional ultrasonography did not depict these findings. Prenatal chromosomal analysis confirmed the diagnosis of Wolf-Hirschhorn syndrome [46XY, del(4)(p15.2)]. Here we demonstrate how three-dimensional ultrasonography provided a novel visual depiction of the facial dysmorphism, which helped substantially in prenatal counseling.
Collapse
Affiliation(s)
- Tharangrut Hanprasertpong
- Department of Perinatology and Gynecology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Uiko Hanaoka
- Department of Perinatology and Gynecology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Xia Zhang
- Department of Perinatology and Gynecology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Nobuhiro Mori
- Department of Perinatology and Gynecology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Eisuke Inubashiri
- Department of Perinatology and Gynecology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Kenji Kanenishi
- Department of Perinatology and Gynecology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Chizu Yamashiro
- Department of Perinatology and Gynecology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Hirokazu Tanaka
- Department of Perinatology and Gynecology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Atsuko Shiota
- Department of Perinatology and Gynecology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Toshihiro Yanagihara
- Department of Perinatology and Gynecology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Toshiyuki Hata
- Department of Perinatology and Gynecology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan.
| |
Collapse
|
12
|
Abstract
Congenital diaphragmatic hernia (CDH) is a common major malformation affecting 1/3000-1/4000 births, which continues to be associated with significant perinatal mortality. Much current research is focused on elucidating the genetics and pathophysiology contributing to CDH to develop more effective therapies. The latest data suggest that many cases of CDH are genetically determined and also indicate that CDH is etiologically heterogeneous. The present review will provide a brief summary of diaphragm development and model organism work most relevant to human CDH and will primarily describe important human phenotypes associated with CDH and also provide recommendations for diagnostic evaluation of a fetus or infant with CDH.
Collapse
Affiliation(s)
- B R Pober
- Center for Human Genetics, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
13
|
Abstract
AIM This review highlights the relevance of the neural crest (NC) as a developmental control mechanism involved in several pediatric surgical conditions and the investigative interest of following some of its known signaling pathways. METHODS The participation of the NC in facial clefts, ear defects, branchial fistulae and cysts, heart outflow tract and aortic arch anomalies, pigmentary disorders, abnormal enteric innervation, neural tumors, hemangiomas, and vascular anomalies is briefly reviewed. Then, the literature on clinical and experimental esophageal atresia-tracheoesophageal fistula (EA-TEF) and congenital diaphragmatic hernia (CDH) is reviewed for the presence of associated NC defects. Finally, some of the molecular signaling pathways involved in both conditions (sonic hedgehog, Hox genes, and retinoids) are summarized. RESULTS The association of facial, cardiovascular, thymic, parathyroid, and C-cell defects together with anomalies of extrinsic and intrinsic esophageal innervation in babies and/or animals with both EA-TEF and CDH strongly supports the hypothesis that NC is involved in the pathogenesis of these malformative clusters. On the other hand, both EA-TEF and CDH are observed in mice mutant for genes involved in the previously mentioned signaling pathways. CONCLUSIONS The investigation of NC-related molecular pathogenic pathways involved in malformative associations like EA-TEF and CDH that are induced by chromosomal anomalies, chemical teratogens, and engineered mutations is a promising way of clarifying why and how some pediatric surgical conditions occur. Pediatric surgeons should be actively involved in these investigations.
Collapse
MESH Headings
- Abnormalities, Multiple/embryology
- Abnormalities, Multiple/physiopathology
- Abnormalities, Multiple/surgery
- Blood Vessels/abnormalities
- Branchial Region/abnormalities
- Cardiovascular Abnormalities/embryology
- Cardiovascular Abnormalities/physiopathology
- Cell Lineage
- Cell Movement
- Child
- Child, Preschool
- Enteric Nervous System/abnormalities
- Esophageal Atresia/embryology
- Esophageal Atresia/physiopathology
- Esophageal Atresia/surgery
- Face/abnormalities
- Genes, Homeobox
- Hedgehog Proteins/physiology
- Hernia, Diaphragmatic/embryology
- Hernia, Diaphragmatic/physiopathology
- Hernia, Diaphragmatic/surgery
- Hernias, Diaphragmatic, Congenital
- Homeodomain Proteins/physiology
- Humans
- Infant
- Infant, Newborn
- Neoplasms/etiology
- Neural Crest/physiopathology
- Patched Receptors
- Pigmentation Disorders/etiology
- Receptors, Cell Surface/physiology
- Receptors, G-Protein-Coupled/physiology
- Receptors, Retinoic Acid/physiology
- Signal Transduction
- Smoothened Receptor
- Syndrome
- Transcription Factors/physiology
- Tretinoin/physiology
- Zinc Finger Protein GLI1
Collapse
Affiliation(s)
- Juan A Tovar
- Departamento de Cirugía Pediátrica, Hospital Universitario La Paz, 28046 Madrid, Spain.
| |
Collapse
|
14
|
Pober BR. Overview of epidemiology, genetics, birth defects, and chromosome abnormalities associated with CDH. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2007; 145C:158-71. [PMID: 17436298 PMCID: PMC2891729 DOI: 10.1002/ajmg.c.30126] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a common and well-studied birth defect. The etiology of most cases remains unknown but increasing evidence points to genetic causation. The data supporting genetic etiologies which are detailed below include the association of CDH with recurring chromosome abnormalities, the existence of CDH-multiplex families, and the co-occurrence of CDH with additional congenital malformations.
Collapse
Affiliation(s)
- Barbara R Pober
- Department of Surgery, Children's Hospital of Boston, Boston, MA, USA.
| |
Collapse
|
15
|
Holder AM, Klaassens M, Tibboel D, de Klein A, Lee B, Scott DA. Genetic factors in congenital diaphragmatic hernia. Am J Hum Genet 2007; 80:825-45. [PMID: 17436238 PMCID: PMC1852742 DOI: 10.1086/513442] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 02/01/2007] [Indexed: 02/03/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common birth defect associated with high mortality and morbidity. Although the exact etiology of most cases of CDH remains unknown, there is a growing body of evidence that genetic factors play an important role in the development of CDH. In this review, we examine key findings that are likely to form the basis for future research in this field. Specific topics include a short overview of normal and abnormal diaphragm development, a discussion of syndromic forms of CDH, a detailed review of chromosomal regions recurrently altered in CDH, a description of the retinoid hypothesis of CDH, and evidence of the roles of specific genes in the development of CDH.
Collapse
Affiliation(s)
- A M Holder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
16
|
Slavotinek AM, Moshrefi A, Davis R, Leeth E, Schaeffer GB, Burchard GE, Shaw GM, James B, Ptacek L, Pennacchio LA. Array comparative genomic hybridization in patients with congenital diaphragmatic hernia: mapping of four CDH-critical regions and sequencing of candidate genes at 15q26.1–15q26.2. Eur J Hum Genet 2006; 14:999-1008. [PMID: 16736036 DOI: 10.1038/sj.ejhg.5201652] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a common birth defect with a high mortality and morbidity. There have been few studies that have assessed copy number changes in CDH. We present array comparative genomic hybridization data for 29 CDH patients to identify and map chromosome aberrations in this disease. Three patients with 15q26.1-15q26.2 deletions had heterogeneous breakpoints that overlapped with the critical 4 Mb region previously delineated for CDH, confirming 15q26.1-15q26.2 as a critical region for CDH. The three other most compelling CDH-critical regions for genomic deletions based on these data and a literature review are located at chromosomes 8p23.1, 4p16.3-4pter, and 1q41-1q42.1. Based on these recurrent deletions at 15q26.1-15q26.2, we hypothesized that loss-of-function mutations in a gene or genes from this region could cause CDH and sequenced six candidate genes from this region in more than 100 patients with CDH. For three of these genes (CHD2, ARRDC4, and RGMA), we identified missense changes and that were not identified in normal controls; however, none of these alterations appeared unambiguously causal with CDH. These data suggest that CDH caused by chromosome deletions at 15q26.2 may arise because of a contiguous gene deletion syndrome or may have a multifactorial etiology. In addition, there is evidence for substantial genetic heterogeneity in CDH and diaphragmatic hernias can be non-penetrant in patients who have deletions involving CDH-critical regions.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, Room U585P, 533 Parnassus St, San Francisco, CA 94143-0748, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Casaccia G, Mobili L, Braguglia A, Santoro F, Bagolan P. Distal 4p microdeletion in a case of Wolf-Hirschhorn syndrome with congenital diaphragmatic hernia. ACTA ACUST UNITED AC 2006; 76:210-3. [PMID: 16498629 DOI: 10.1002/bdra.20235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Wolf-Hirschhorn syndrome (WHS) is a well-known genetic condition characterized by typical facial anomalies, midline defects, skeletal anomalies, prenatal and postnatal growth retardation, hypotonia, mental retardation, and seizures. Affected patients with a microdeletion on distal 4p present a milder phenotype that lacks congenital malformations. WHS is rarely associated with congenital diaphragmatic hernia (CDH), and only 8 cases are reported in the literature. In almost all cases of CDH and WHS a large deletion of the short arm of chromosome 4 is present. CASE A microdeletion of 2.6 Mb on distal 4p associated with CDH and multiple congenital malformations (i.e., cleft palate) is reported for the first time. CONCLUSIONS Such a microdeletion should prompt a molecular study for WHS when in a fetus/newborn with CDH the association with cleft lip/palate and typical facial appearance (flat facial profile, hypertelorism) is found.
Collapse
Affiliation(s)
- Germana Casaccia
- Neonatal Surgery Unit, Department of Medical and Surgical Neonatology, Bambino Gesù Pediatric Hospital, Rome, Italy.
| | | | | | | | | |
Collapse
|
18
|
Pober BR, Lin A, Russell M, Ackerman KG, Chakravorty S, Strauss B, Westgate MN, Wilson J, Donahoe PK, Holmes LB. Infants with Bochdalek diaphragmatic hernia: sibling precurrence and monozygotic twin discordance in a hospital-based malformation surveillance program. Am J Med Genet A 2005; 138A:81-8. [PMID: 16094667 PMCID: PMC2891716 DOI: 10.1002/ajmg.a.30904] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a common and often devastating birth defect. In order to learn more about possible genetic causes, we reviewed and classified 203 cases of the Bochdalek hernia type identified through the Brigham and Women's Hospital (BWH) Active Malformation Surveillance Program over a 28-year period. Phenotypically, 55% of the cases had isolated CDH, and 45% had complex CDH defined as CDH in association with additional major malformations or as part of a syndrome. When classified according to likely etiology, 17% had a Recognized Genetic etiology for their CDH, while the remaining 83% had No Apparent Genetic etiology. Detailed analysis using this largest cohort of consecutively collected cases of CDH showed low precurrence among siblings. Additionally, there was no concordance for CDH among five monozygotic twin pairs. These findings, in conjunction with previous reports of de novo dominant mutations in patients with CDH, suggest that new mutations may be an important mechanism responsible for CDH. The twin data also raise the possibility that epigenetic abnormalities contribute to the development of CDH.
Collapse
Affiliation(s)
- Barbara R Pober
- Genetics and Teratology, MassGeneral Hospital for Children, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Congenital diaphragmatic hernia (CDH) is a common birth defect with a high mortality and morbidity. A clear understanding of the pathogenesis of CDH is critical for determining prognosis and planning treatment, but to date, information on the genetic etiology of both nonsyndromic and syndromic CDH is limited. This paper summarizes the current knowledge concerning the genes, syndromes, and chromosome aberrations associated with CDH in humans and in animal model systems. Mutations in several different genes have been described in syndromic CDH, but there is only one mutation that has been reported in non-syndromic CDH to date. However, animal models suggest that genes involved in cell migration, myogenesis, and connective tissue formation are critical to normal diaphragm formation, and these data provide a starting point for the search for other genes involved in the pathogenesis of CDH.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Department of Pediatrics, University of California, San Francisco, CA 94143-0748, USA.
| |
Collapse
|