1
|
Bornstein E, Reiss S, Malinger G. Prenatal characterization of novel neurosonographic findings in a fetus with SOTOS syndrome. Prenat Diagn 2024; 44:360-363. [PMID: 38152001 DOI: 10.1002/pd.6504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
Sotos syndrome is a rare genetic disorder that occurs in less than 1 in 10,000 births. It is characterized by rapid growth during childhood (tall stature and unusually large head), typical facial dysmorphic features, neurodevelopmental delays of both mental and movement abilities, and learning disabilities. Prenatal diagnosis of Sotos syndrome is infrequent and sonographic findings are not well characterized as the condition is generally detected during childhood. We present a case in which routine third trimester ultrasound detected intracranial findings including ventriculomegaly, periventricular pseudocysts, and increased periventricular echogenicity. Although initially suspected to be the result of fetal infection with CMV, amniocentesis excluded fetal infection and microarray analysis detected a de novo 2.13 MB interstitial deletion of 5q35.2-35.3 involving several genes including the NSD1 gene, thus confirming the diagnosis of Sotos syndrome. This case provides novel characterization of the sonographic phenotype in a fetus with Sotos syndrome and discusses the differential diagnosis.
Collapse
Affiliation(s)
- Eran Bornstein
- Division of Maternal Fetal Medicine, Department of OBGYN, Lenox Hill Hospital, Northwell, New York, New York, USA
| | - Sarah Reiss
- Division of Maternal Fetal Medicine, Department of OBGYN, Lenox Hill Hospital, Northwell, New York, New York, USA
| | - Gustavo Malinger
- Division of OBGYN Ultrasound, Lis Women's and Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
2
|
Perrot A, Rickert-Sperling S. Human Genetics of Ventricular Septal Defect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:505-534. [PMID: 38884729 DOI: 10.1007/978-3-031-44087-8_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.
Collapse
Affiliation(s)
- Andreas Perrot
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
3
|
Zhu JY, Liu C, Huang X, van de Leemput J, Lee H, Han Z. H3K36 Di-Methylation Marks, Mediated by Ash1 in Complex with Caf1-55 and MRG15, Are Required during Drosophila Heart Development. J Cardiovasc Dev Dis 2023; 10:307. [PMID: 37504562 PMCID: PMC10380788 DOI: 10.3390/jcdd10070307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Methyltransferases regulate transcriptome dynamics during development and aging, as well as in disease. Various methyltransferases have been linked to heart disease, through disrupted expression and activity, and genetic variants associated with congenital heart disease. However, in vivo functional data for many of the methyltransferases in the context of the heart are limited. Here, we used the Drosophila model system to investigate different histone 3 lysine 36 (H3K36) methyltransferases for their role in heart development. The data show that Drosophila Ash1 is the functional homolog of human ASH1L in the heart. Both Ash1 and Set2 H3K36 methyltransferases are required for heart structure and function during development. Furthermore, Ash1-mediated H3K36 methylation (H3K36me2) is essential for healthy heart function, which depends on both Ash1-complex components, Caf1-55 and MRG15, together. These findings provide in vivo functional data for Ash1 and its complex, and Set2, in the context of H3K36 methylation in the heart, and support a role for their mammalian homologs, ASH1L with RBBP4 and MORF4L1, and SETD2, during heart development and disease.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chen Liu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiaohu Huang
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hangnoh Lee
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Zhu JY, van de Leemput J, Han Z. The Roles of Histone Lysine Methyltransferases in Heart Development and Disease. J Cardiovasc Dev Dis 2023; 10:305. [PMID: 37504561 PMCID: PMC10380575 DOI: 10.3390/jcdd10070305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Epigenetic marks regulate the transcriptomic landscape by facilitating the structural packing and unwinding of the genome, which is tightly folded inside the nucleus. Lysine-specific histone methylation is one such mark. It plays crucial roles during development, including in cell fate decisions, in tissue patterning, and in regulating cellular metabolic processes. It has also been associated with varying human developmental disorders. Heart disease has been linked to deregulated histone lysine methylation, and lysine-specific methyltransferases (KMTs) are overrepresented, i.e., more numerous than expected by chance, among the genes with variants associated with congenital heart disease. This review outlines the available evidence to support a role for individual KMTs in heart development and/or disease, including genetic associations in patients and supporting cell culture and animal model studies. It concludes with new advances in the field and new opportunities for treatment.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Lourdes VH, Mario SC, Didac CA, Mercè B, Loreto M, Leticia P, Lucia FA, Martínez-Monseny AF, Mercedes S. Beyond the known phenotype of sotos syndrome: a 31-individuals cohort study. Front Pediatr 2023; 11:1184529. [PMID: 37384309 PMCID: PMC10298147 DOI: 10.3389/fped.2023.1184529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Sotos Syndrome (SS, OMIM#117550) is a heterogeneous genetic condition, recognized by three main clinical features present in most cases: overgrowth with macrocephaly, typical facial appearance and different degrees of intellectual disability. Three different types are described caused by variants or deletions/duplications in NSD1, NFIX and APC2 genes. We aimed to describe a cohort of pediatric patients reporting the typical and unexpected findings in order to expand the phenotype of this syndrome and trying to find genotype-phenotype correlations. Methods In our referral center, we collected and analyzed clinical and genetic data of 31-patients cohort diagnosed with SS. Results All of them presented with overgrowth, typical dysmorphic features and different degree of developmental delay. Although structural cardiac defects have been reported in SS, non-structural diseases such as pericarditis were outstanding in our cohort. Moreover, we described here novel oncological malignancies not previously linked to SS such as splenic hamartoma, retinal melanocytoma and acute lymphocytic leukemia. Finally, five patients suffered from recurrent onychocryptosis that required surgical procedures, as an unreported prevalent medical condition. Discussion This is the first study focusing on multiple atypical symptoms in SS at the time that revisits the spectrum of clinical and molecular basis of this heterogeneous entity trying to unravel a genotype-phenotype correlation.
Collapse
Affiliation(s)
- Vega-Hanna Lourdes
- Department of Pediatrics, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Sanz-Cuesta Mario
- Department of Pediatrics, Hospital de Sant Boi, Parc Sanitari Sant Joan de Déu, Barcelona, Spain
| | - Casas-Alba Didac
- Department of Genetic and Molecular Medicine/IPER, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Bolasell Mercè
- Department of Genetic and Molecular Medicine/IPER, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Martorell Loreto
- Department of Genetic and Molecular Medicine/IPER, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Pías Leticia
- Department of Genetic and Molecular Medicine/IPER, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Feller Ana Lucia
- Departamen of Pediatrics, Hospital J P Garrahan, Buenos Aires, Argentine
| | | | - Serrano Mercedes
- Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
6
|
Segreti A, Piccirillo F, Crispino SP, Cocchia F, Martucciello A, Calabrese V, Gurrieri F, Grigioni F. Simultaneous presence of Brugada and overgrowth syndromes. Monaldi Arch Chest Dis 2023; 94. [PMID: 37114354 DOI: 10.4081/monaldi.2023.2521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
In the present article, we describe the case of a 21-year-old male presenting to the emergency department following a syncopal episode. Physical examination revealed a distinctive facial appearance in the context of an overgrowth syndrome. Also, an ajmaline test was performed because of the evidence of an incomplete right bundle branch block with ST-T segment elevation in the right precordial derivations, revealing a type-1 Brugada electrocardiographic pattern. Considering the high cardiovascular risk phenotype, the patient underwent subcutaneous cardiac defibrillator implantation. The subsequent comprehensive genomic testing analysis led to the diagnosis of a variant of uncertain significance of the nuclear receptor binding SET domain protein 1 (NSD1) gene and a heterozygous mutation of the calsequestrin 2 (CASQ2) gene. NSD1 gene alterations are usually responsible for the Sotos syndrome, characterized by distinctive facial appearance, learning disability, and overgrowth, in addition to cardiac anomalies ranging from single self-limiting alterations to more severe, complex cardiac abnormalities. On the contrary, a compound heterozygous or homozygous alteration of the CASQ2 gene is usually associated with catecholaminergic polymorphic ventricular tachycardia; however, the significance of a merely heterozygous alteration in the CASQ2 gene, as in the present case report, is not yet clear. In conclusion, to the best of our knowledge, this is the first description of the coexisting presence of Brugada and overgrowth syndromes in a single patient.
Collapse
Affiliation(s)
- Andrea Segreti
- Unit of Cardiovascular Science, Campus Bio-Medico University Hospital Foundation, Rome; Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome.
| | - Francesco Piccirillo
- Unit of Cardiovascular Science, Campus Bio-Medico University Hospital Foundation, Rome.
| | | | - Francesca Cocchia
- Unit of Cardiovascular Science, Campus Bio-Medico University Hospital Foundation, Rome.
| | - Arianna Martucciello
- Unit of Cardiovascular Science, Campus Bio-Medico University Hospital Foundation, Rome.
| | - Vito Calabrese
- Unit of Cardiovascular Science, Campus Bio-Medico University Hospital Foundation, Rome.
| | - Fiorella Gurrieri
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Campus Bio-Medico University of Rome; Operative Research Unit of Medical Genetics, Campus Bio-Medico University Hospital Foundation, Rome.
| | - Francesco Grigioni
- Unit of Cardiovascular Science, Campus Bio-Medico University Hospital Foundation, Rome.
| |
Collapse
|
7
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
8
|
Molecular Analysis and Reclassification of NSD1 Gene Variants in a Cohort of Patients with Clinical Suspicion of Sotos Syndrome. Genes (Basel) 2023; 14:genes14020295. [PMID: 36833222 PMCID: PMC9956575 DOI: 10.3390/genes14020295] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Sotos syndrome is a rare genetic disorder caused by haploinsufficiency of the NSD1 (nuclear receptor binding SET domain containing protein 1) gene. No clinical diagnostic consensus criteria are published yet, and molecular analysis reduces the clinical diagnostic uncertainty. We screened 1530 unrelated patients enrolled from 2003 to 2021 at Galliera Hospital and Gaslini Institute in Genoa. NSD1 variants were identified in 292 patients including nine partial gene deletions, 13 microdeletions of the entire NSD1 gene, and 115 novel intragenic variants never previously described. Thirty-two variants of uncertain significance (VUS) out of 115 identified were re-classified. Twenty-five missense NSD1 VUS (25/32, 78.1%) changed class to likely pathogenic or likely benign, showing a highly significant shift in class (p < 0.01). Apart from NSD1, we identified variants in additional genes (NFIX, PTEN, EZH2, TCF20, BRWD3, PPP2R5D) in nine patients analyzed by the NGS custom panel. We describe the evolution of diagnostic techniques in our laboratory to ascertain molecular diagnosis, the identification of 115 new variants, and the re-classification of 25 VUS in NSD1. We underline the utility of sharing variant classification and the need to improve communication between the laboratory staff and the referring physician.
Collapse
|
9
|
Abstract
STUDY DESIGN A retrospective comparative study. OBJECTIVE The aim of this study was to examine the NSD1 abnormalities in patients diagnosed with Sotos syndrome and its correlation with the presence, severity, and progression of associated scoliosis. SUMMARY OF BACKGROUND DATA Scoliosis has been reported in approximately 30% of patients diagnosed with Sotos syndrome, a genetic disorder characterized by a distinctive facial appearance, learning disability, and overgrowth. Sotos syndrome is mainly attributed to NSD1 haploinsufficiency, but with ethnical differences in genetic profile: NSD1 microdeletions are frequently identified in Japanese Sotos patients whereas intragenic mutations are more frequently found in non-Japanese patients. Although possible genotype-phenotype correlations have been proposed, the genotype of Sotos syndrome patients suffering from scoliosis has not been examined. METHODS The medical records and spinal radiographs of 63 consecutive Sotos syndrome patients at a single center were reviewed. Fluorescent in situ hybridization or microarray comparative genomic hybridization and DNA sequencing or multiplex ligation-dependent probe amplification were performed to detect 5q35 microdeletion involving the NSD1 gene and intragenic mutations of the NSD1 gene, respectively. The phenotypes of all cases and radiological assessments for the presence and progression of scoliosis were studied. RESULTS NSD1 abnormalities were identified in 55 patients (87%): microdeletion in 34 patients (54%) and intragenic mutation in 22 patients (33%). Scoliosis was observed in 26 patients (41%), with a significantly higher ratio of microdeletions than mutations. The 10 patients with progressive scoliosis all had NSD1 microdeletions. CONCLUSION Scoliosis was a common phenotypical trait in children with Sotos syndrome and its presence as well as progression were higher in cases with NSD1 microdeletions. Although all Sotos syndrome patients should be monitored for scoliosis, clinicians should be made aware that patients with NSD1 microdeletions have a higher probability of scoliosis development and progression that may require early intervention.Level of Evidence: 3.
Collapse
|
10
|
Gravino R, Limongelli G, Petraio A, Masarone D, Russo MG, Maiello C, Verrengia M, De Paulis D, Pacileo G. Berlin Heart EXCOR® pediatric ventricular assist device in a patient with Sotos syndrome: a case report. J Med Case Rep 2019; 13:286. [PMID: 31470900 PMCID: PMC6717362 DOI: 10.1186/s13256-019-2190-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/04/2019] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Berlin Heart EXCOR® pediatric ventricular assist device is a mechanical circulatory support device currently used in pediatric patients. Sotos syndrome is a well-described multiple anomaly syndrome characterized by overgrowth, distinctive craniofacial appearance, cardiac abnormalities, and variable learning disabilities. CASE PRESENTATION We describe a 7-year-old female Caucasian child with classic Sotos syndrome features subjected to implantation of Berlin Heart EXCOR® pediatric biventricular assist device mechanical support. A heart transplant was carried out after a support time of 459 days. After 5 years of follow-up, our patient is clinically stable and the performance of the transplanted heart is excellent. CONCLUSION This case confirms that Berlin Heart EXCOR® pediatric ventricular assist device can provide satisfactory and safe circulatory support for children with end-stage heart diseases, even in those with Sotos syndrome. The syndrome is not a contraindication to implantation, since the complications are the same as those observed in patients without the syndrome and the prognosis is not affected by the disease.
Collapse
Affiliation(s)
- Rita Gravino
- Department of Heart Failure Unit, Monaldi Hospital, via Leonardo Bianchi, 80131 Naples, Italy
| | - Giuseppe Limongelli
- Department of Pediatric Cardiology Unit, Second University of Naples, Monaldi Hospital, Naples, Italy
| | - Andrea Petraio
- Department of Cardiac Transplant Unit, Monaldi Hospital, Naples, Italy
| | - Daniele Masarone
- Department of Heart Failure Unit, Monaldi Hospital, via Leonardo Bianchi, 80131 Naples, Italy
| | - Maria Giovanna Russo
- Department of Pediatric Cardiology Unit, Second University of Naples, Monaldi Hospital, Naples, Italy
| | - Ciro Maiello
- Department of Cardiac Transplant Unit, Monaldi Hospital, Naples, Italy
| | - Marina Verrengia
- Department of Heart Failure Unit, Monaldi Hospital, via Leonardo Bianchi, 80131 Naples, Italy
| | - Danilo De Paulis
- Department of Neurosurgery, San Anna & San Sebastiano City Hospital Caserta, Caserta, Italy
| | - Giuseppe Pacileo
- Department of Heart Failure Unit, Monaldi Hospital, via Leonardo Bianchi, 80131 Naples, Italy
| |
Collapse
|
11
|
Multiple genetic variations confer risks for obesity and type 2 diabetes mellitus in arab descendants from UAE. Int J Obes (Lond) 2018; 42:1345-1353. [PMID: 29717269 DOI: 10.1038/s41366-018-0057-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 01/24/2018] [Accepted: 02/07/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND The United Arab Emirates (UAE) is one of the countries most threatened with obesity. Here we investigated associations between hundreds of single-nucleotide polymorphisms (SNPs) and the following obesity indicators: body mass index (BMI), waist circumference (WC), and height. We also investigated the associations between obesity-related genes with type 2 diabetes mellitus (T2DM). METHODS We tested 87, 58, and 586 SNPs in a previous genome-wide significance level for associations with BMI (n = 880), WC (n = 455), and height (n = 897), respectively. For each trait, we used normally transformed Z scores and tested them with SNPs using linear regression models that incorporated age and gender as covariates. The weighted polygenic risk scores for significant SNPs for each trait were tested with the corresponding Z scores using linear regression models with the same covariates. We further tested 145 obesity loci with T2DM (464 cases, 415 controls) using a logistic regression model including age, gender, and BMI Z scores as covariates. RESULTS The Mean BMI was 29.39 kg/m2, and mean WC was 103.66 cm. Hypertension and dyslipidemia were common obesity comorbidities (>60%). The best associations for BMI was in FTO, LOC284260 and USP37, and for WC in RFX7 and MYEOV. For height, the best association was in NSD1 followed by MFAP2 and seven other loci. The polygenic scores revealed stronger associations for each trait than individual SNPs; although they could only explain <1% of the traits' Z scores variations. For T2DM, the strongest associations were with the TCF7L2 and MC4R loci (P < 0.01, OR ~1.70), with novel associations detected with KCNK3 and RARB. CONCLUSIONS In this first study of Arab descendants, we confirmed several known obesity (FTO, USP37, and RFX7), height (NSD1, MFAP2), and T2DM (TCF7L2, MC4R) associations; and report novel associations, like KCNK3 and RARB for T2DM.
Collapse
|
12
|
Jeong Y, Kim T, Kim S, Hong YK, Cho KS, Lee IS. Overexpression of histone methyltransferase NSD in Drosophila induces apoptotic cell death via the Jun-N-terminal kinase pathway. Biochem Biophys Res Commun 2018; 496:1134-1140. [DOI: 10.1016/j.bbrc.2018.01.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/25/2018] [Indexed: 12/29/2022]
|
13
|
Kamien B, Ronan A, Poke G, Sinnerbrink I, Baynam G, Ward M, Gibson WT, Dudding-Byth T, Scott RJ. A Clinical Review of Generalized Overgrowth Syndromes in the Era of Massively Parallel Sequencing. Mol Syndromol 2018; 9:70-82. [PMID: 29593474 DOI: 10.1159/000484532] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
The overgrowth syndromes are important to diagnose, not just for accurate genetic counseling, but also for knowledge surrounding cancer surveillance and prognosis. There has been a recent expansion in the number of genes associated with a mendelian overgrowth phenotype, so this review updates previous classifications of overgrowth syndromes. We also describe a clinical and molecular approach to the investigation of individuals presenting with overgrowth. This review aims to assist the clinical diagnosis of generalized overgrowth syndromes by outlining the salient features of well-known overgrowth syndromes alongside the many syndromes that have been discovered and classified more recently. We provide key clinical "handles" to aid clinical diagnosis and a list of genes to aid with panel design when using next generation sequencing, which we believe is frequently needed due to the overlapping phenotypic features seen between overgrowth syndromes.
Collapse
Affiliation(s)
- Benjamin Kamien
- Hunter Genetics, Perth, WA, Australia.,School of Medicine and Public Health, The University of Newcastle, Perth, WA, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
| | - Anne Ronan
- Hunter Genetics, Perth, WA, Australia.,School of Medicine and Public Health, The University of Newcastle, Perth, WA, Australia
| | - Gemma Poke
- Department of Clinical Genetics, Capital & Coast District Health Board, Wellington, New Zealand
| | - Ingrid Sinnerbrink
- Department of Clinical Genetics, Nepean Hospital, Perth, WA, Australia.,Nepean Clinical School, University of Sydney, Penrith, NSW, Australia
| | - Gareth Baynam
- Genetic Services of Western Australia, Newcastle, NSW, Australia.,Western Australian Register of Developmental Anomalies, Perth, WA, Australia.,Office of Population Health Genomics, Public Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Spatial Sciences, Department of Science and Engineering, Curtin University, Perth, WA, Australia
| | - Michelle Ward
- Genetic Services of Western Australia, Newcastle, NSW, Australia
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Tracy Dudding-Byth
- Hunter Genetics, Perth, WA, Australia.,GrowUpWell Priority Research Center, Perth, WA, Australia.,School of Medicine and Public Health, The University of Newcastle, Perth, WA, Australia.,Hunter Medical Research Institute, Perth, WA, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Molecular Pathology, Hunter Area Pathology Service, Perth, WA, Australia
| |
Collapse
|
14
|
Esposito S, Cerutti M, Milani D, Menni F, Principi N. Vaccination coverage of children with rare genetic diseases and attitudes of their parents toward vaccines. Hum Vaccin Immunother 2017; 12:801-5. [PMID: 26337545 DOI: 10.1080/21645515.2015.1086046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Despite the fact that the achievement of appropriate immunization coverage for routine vaccines is a priority for health authorities worldwide, vaccination delays or missed opportunities for immunization are common in children with chronic diseases. The main aim of this cross-sectional study was to evaluate immunization coverage and the timeliness of vaccination in children suffering from 3 different rare genetic diseases: Rubinstein-Taybi syndrome (RSTS), Sotos syndrome (SS), and Beckwith-Wiedemann syndrome (BWS). A total of 57 children with genetic diseases (15 with RSTS, 14 children with SS, and 28 with BWS) and 57 healthy controls with similar characteristics were enrolled. The coverage of all the recommended vaccines in children with genetic syndromes was significantly lower than that observed in healthy controls (p < 0.05 for all the comparisons). However, when vaccinated, all of the patients, independent of the genetic syndrome from which they suffer, were administered the primary series and the booster doses at a similar time to healthy controls. In comparison with parents of healthy controls, parents of children with genetic diseases were found to more frequently have negative attitudes toward vaccination (p < 0.05 for all the comparisons), mainly for fear of the emergence of adverse events or deterioration of the underlying disease. This study shows that vaccination coverage is poor in pediatric patients with RSTS, BWS, and SS and significantly lower than that observed in healthy children. These results highlight the need for educational programs specifically aimed at both parents and pediatricians to increase immunization coverage in children with these rare genetic diseases.
Collapse
Affiliation(s)
- Susanna Esposito
- a Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation , Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Marta Cerutti
- a Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation , Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Donatella Milani
- a Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation , Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Francesca Menni
- a Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation , Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Nicola Principi
- a Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation , Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| |
Collapse
|
15
|
Abdalla E, Bartsch O, Galetzka D, Zechner U. Novel clinical findings in the first Egyptian case of Sotos syndrome caused by complete deletion of the NSD1 gene. Am J Med Genet A 2017; 173:1090-1093. [PMID: 28328121 DOI: 10.1002/ajmg.a.38107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 12/05/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Ebtesam Abdalla
- Faculty of Medicine, Department of Genetic Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Oliver Bartsch
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Danuta Galetzka
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
16
|
Mastrototaro G, Zaghi M, Sessa A. Epigenetic Mistakes in Neurodevelopmental Disorders. J Mol Neurosci 2017; 61:590-602. [DOI: 10.1007/s12031-017-0900-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/15/2017] [Indexed: 12/28/2022]
|
17
|
Steric Clash in the SET Domain of Histone Methyltransferase NSD1 as a Cause of Sotos Syndrome and Its Genetic Heterogeneity in a Brazilian Cohort. Genes (Basel) 2016; 7:genes7110096. [PMID: 27834868 PMCID: PMC5126782 DOI: 10.3390/genes7110096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/08/2016] [Accepted: 10/21/2016] [Indexed: 12/26/2022] Open
Abstract
Most histone methyltransferases (HMTase) harbor a predicted Su(var)3–9, Enhancer-of-zeste, Trithorax (SET) domain, which transfers a methyl group to a lysine residue in their substrates. Mutations of the SET domains were reported to cause intellectual disability syndromes such as Sotos, Weaver, or Kabuki syndromes. Sotos syndrome is an overgrowth syndrome with intellectual disability caused by haploinsufficiency of the nuclear receptor binding SET domain protein 1 (NSD1) gene, an HMTase at 5q35.2–35.3. Here, we analyzed NSD1 in 34 Brazilian Sotos patients and identified three novel and eight known mutations. Using protein modeling and bioinformatic approaches, we evaluated the effects of one novel (I2007F) and 21 previously reported missense mutations in the SET domain. For the I2007F mutation, we observed conformational change and loss of structural stability in Molecular Dynamics (MD) simulations which may lead to loss-of-function of the SET domain. For six mutations near the ligand-binding site we observed in simulations steric clashes with neighboring side chains near the substrate S-Adenosyl methionine (SAM) binding site, which may disrupt the enzymatic activity of NSD1. These results point to a structural mechanism underlying the pathology of the NSD1 missense mutations in the SET domain in Sotos syndrome. NSD1 mutations were identified in only 32% of the Brazilian Sotos patients in our study cohort suggesting other genes (including unknown disease genes) underlie the molecular etiology for the majority of these patients. Our studies also found NSD1 expression to be profound in human fetal brain and cerebellum, accounting for prenatal onset and hypoplasia of cerebellar vermis seen in Sotos syndrome.
Collapse
|
18
|
Werner P, Latney B, Deardorff MA, Goldmuntz E. MESP1 Mutations in Patients with Congenital Heart Defects. Hum Mutat 2016; 37:308-14. [PMID: 26694203 DOI: 10.1002/humu.22947] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/15/2015] [Indexed: 11/10/2022]
Abstract
Identifying the genetic etiology of congenital heart disease (CHD) has been challenging despite being one of the most common congenital malformations in humans. We previously identified a microdeletion in a patient with a ventricular septal defect containing over 40 genes including MESP1 (mesoderm posterior basic helix-loop-helix transcription factor 1). Because of the importance of MESP1 as an early regulator of cardiac development in both in vivo and in vitro studies, we tested for MESP1 mutations in 647 patients with congenital conotruncal and related heart defects. We identified six rare, nonsynonymous variants not seen in ethnically matched controls and one likely race-specific nonsynonymous variant. Functional analyses revealed that three of these variants altered activation of transcription by MESP1. Two of the deleterious variants are located within the conserved HLH domain and thus impair the protein-protein interaction of MESP1 and E47. The third deleterious variant was a loss-of-function frameshift mutation. Our results suggest that pathologic variants in MESP1 may contribute to the development of CHD and that additional protein partners and downstream targets could likewise contribute to the wide range of causes for CHD.
Collapse
Affiliation(s)
- Petra Werner
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104
| | - Brande Latney
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104
| | - Matthew A Deardorff
- Division of Genetics, Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, 19104
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
19
|
McClelland J, Burgess B, Crock P, Goel H. Sotos syndrome: An unusual presentation with intrauterine growth restriction, generalized lymphedema, and intention tremor. Am J Med Genet A 2016; 170A:1064-9. [PMID: 26738611 DOI: 10.1002/ajmg.a.37535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/06/2015] [Indexed: 01/25/2023]
Abstract
Sotos syndrome is a childhood overgrowth syndrome characterized clinically by a distinctive facial gestalt, advanced bone age, childhood overgrowth, and non-progressive developmental delay; and genetically by haploinsufficiency of the Nuclear receptor binding SET Domain 1 (NSD1) gene. Generalized lymphedema has not previously been associated with Sotos syndrome. Generalized lymphedema has been associated with mutations in several genes including FLT4. This gene is involved in the regulation of VEGFR3, a key governor of lymphatic-endothelial cell development and function. We report on a 28-year-old Caucasian female with a de novo NSD1 intragenic mutation, c.5841_5848dup: p.Leu1950Serfs*22, who presented with characteristic clinical features of Sotos syndrome. Unusually this case includes atypical features of intrauterine growth retardation and post-pubertal onset of primary lymphedema. To our knowledge, no link between Sotos syndrome and generalized lymphedema has previously been described in the literature. We propose a mechanism by which disruptions in NSD1 gene may lead to generalized lymphedema. Aberrations of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)-signaling pathway has been identified in both Sotos syndrome and lymphedema. This finding extends the known phenotype of Sotos syndrome through the inclusion of lymphedema. This case also indicates that presence of low birth weight does not exclude the possibility of Sotos syndrome.
Collapse
Affiliation(s)
| | | | - Patricia Crock
- University of Newcastle, Callaghan, New South Wales, Australia.,Pediatric Endocrinology, John Hunter Children's Hospital, New Lambton Height, New South Wales, Australia
| | - Himanshu Goel
- University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Genetics, Waratah, New South Wales, Australia
| |
Collapse
|
20
|
Vieira GH, Cook MM, Ferreira De Lima RL, Frigério Domingues CE, de Carvalho DR, Soares de Paiva I, Moretti-Ferreira D, Srivastava AK. Clinical and molecular heterogeneity in brazilian patients with sotos syndrome. Mol Syndromol 2015; 6:32-8. [PMID: 25852445 DOI: 10.1159/000370169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2014] [Indexed: 11/19/2022] Open
Abstract
Sotos syndrome (SoS) is a multiple anomaly, congenital disorder characterized by overgrowth, macrocephaly, distinctive facial features and variable degree of intellectual disability. Haploinsufficiency of the NSD1 gene at 5q35.3, arising from 5q35 microdeletions, point mutations, and partial gene deletions, accounts for a majority of patients with SoS. Recently, mutations and possible pathogenetic rare CNVs, both affecting a few candidate genes for overgrowth, have been reported in patients with Sotos-like overgrowth features. To estimate the frequency of NSD1 defects in the Brazilian SoS population and possibly reveal other genes implicated in the etiopathogenesis of this syndrome, we collected a cohort of 21 Brazilian patients, who fulfilled the diagnostic criteria for SoS, and analyzed the NSD1 and PTEN genes by means of multiplex ligation-dependent probe amplification and mutational screening analyses. We identified a classical NSD1 microdeletion, a novel missense mutation (p.C1593W), and 2 previously reported truncating mutations: p.R1984X and p.V1760Gfs*2. In addition, we identified a novel de novo PTEN gene mutation (p.D312Rfs*2) in a patient with a less severe presentation of SoS phenotype, which did not include pre- and postnatal overgrowth. For the first time, our study implies PTEN in the pathogenesis of SoS and further emphasizes the existence of ethno-geographical differences in NSD1 molecular alterations between patients with SoS from Europe/North America (70-93%) and those from South America (10-19%).
Collapse
Affiliation(s)
- Gustavo H Vieira
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, S.C., USA ; Department of Genetics, São Paulo State University, Botucatu, Rio de Janeiro, Brazil
| | - Melissa M Cook
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, S.C., USA
| | | | | | - Daniel R de Carvalho
- Department of Genetics, São Paulo State University, Botucatu, Rio de Janeiro, Brazil
| | - Isaias Soares de Paiva
- Department of Pediatrics, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Anand K Srivastava
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, S.C., USA ; Department of Genetics and Biochemistry, Clemson University, Clemson, S.C., USA
| |
Collapse
|
21
|
Almuriekhi M, Shintani T, Fahiminiya S, Fujikawa A, Kuboyama K, Takeuchi Y, Nawaz Z, Nadaf J, Kamel H, Kitam AK, Samiha Z, Mahmoud L, Ben-Omran T, Majewski J, Noda M. Loss-of-Function Mutation in APC2 Causes Sotos Syndrome Features. Cell Rep 2015; 10:1585-1598. [PMID: 25753423 DOI: 10.1016/j.celrep.2015.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/14/2015] [Accepted: 01/31/2015] [Indexed: 01/24/2023] Open
Abstract
Sotos syndrome, characterized by intellectual disability and characteristic facial features, is caused by haploinsufficiency in the NSD1 gene. We conducted an etiological study on two siblings with Sotos features without mutations in NSD1 and detected a homozygous frameshift mutation in the APC2 gene by whole-exome sequencing, which resulted in the loss of function of cytoskeletal regulation in neurons. Apc2-deficient (Apc2-/-) mice exhibited impaired learning and memory abilities along with an abnormal head shape. Endogenous Apc2 expression was downregulated by the knockdown of Nsd1, indicating that APC2 is a downstream effector of NSD1 in neurons. Nsd1 knockdown in embryonic mouse brains impaired the migration and laminar positioning of cortical neurons, as observed in Apc2-/- mice, and this defect was rescued by the forced expression of Apc2. Thus, APC2 is a crucial target of NSD1, which provides an explanation for the intellectual disability associated with Sotos syndrome.
Collapse
Affiliation(s)
- Mariam Almuriekhi
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Takafumi Shintani
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki 444-8787, Japan; School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan
| | - Somayyeh Fahiminiya
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Génome Québec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Akihiro Fujikawa
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Kazuya Kuboyama
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Yasushi Takeuchi
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Zafar Nawaz
- Cytogenetic and Molecular Cytogenetic Laboratory, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Javad Nadaf
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Génome Québec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Hussein Kamel
- Department of Radiology, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Abu Khadija Kitam
- Cytogenetic and Molecular Cytogenetic Laboratory, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Zaineddin Samiha
- Cytogenetic and Molecular Cytogenetic Laboratory, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Laila Mahmoud
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Tawfeg Ben-Omran
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Jacek Majewski
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Génome Québec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki 444-8787, Japan; School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan.
| |
Collapse
|
22
|
Chen CP, Lin CJ, Chern SR, Liu YP, Kuo YL, Chen YN, Wu PS, Town DD, Chen LF, Yang CW, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of a 1.07-Mb microdeletion at 5q35.2-q35.3 associated with NSD1 haploinsufficiency and Sotos syndrome. Taiwan J Obstet Gynecol 2014; 53:583-7. [PMID: 25510705 DOI: 10.1016/j.tjog.2014.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2014] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To present prenatal diagnosis and molecular cytogenetic characterization of a de novo 5q35 microdeletion associated with Sotos syndrome. METHODS This was the first pregnancy of a 29-year-old woman. The pregnancy was uneventful until 27 weeks of gestation when left ventriculomegaly was first noted. At 31 weeks of gestation, polyhydramnios, macrocephaly, and ventriculomegaly were prominent on ultrasound, and left pyelectasis and bilateral ventriculomegaly were diagnosed on magnetic resonance imaging. The woman underwent amniocentesis and cordocentesis at 32 weeks of gestation. Conventional cytogenetic analysis was performed using cultured amniocytes and cord blood lymphocytes. Array comparative genomic hybridization (aCGH) was performed on uncultured amniocytes and parental blood. Metaphase fluorescence in situ hybridization (FISH) was performed on cultured lymphocytes. RESULTS Conventional cytogenetics revealed a karyotype of 46,XX. aCGH on uncultured amniocytes revealed a de novo 1.07-Mb microdeletion at 5q35.2-q35.3 encompassing NSD1. Metaphase FISH analysis on the cord blood lymphocytes confirmed the deletion at 5q35.2. The postnatal phenotype was consistent with Sotos syndrome. CONCLUSION Fetuses with Sotos syndrome may present macrocephaly, polyhydramnios, ventriculomegaly, and pyelectasis in the third trimester. aCGH and metaphase FISH are useful for rapid diagnosis of 5q35 microdeletion associated with Sotos syndrome.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chen-Ju Lin
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Peng Liu
- Department of Radiology, Mackay Memorial Hospital Hsinchu Branch, Hsinchu, Taiwan; Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Yu-Ling Kuo
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ni Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | | | - Dai-Dyi Town
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Li-Feng Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chien-Wen Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
23
|
Novara F, Stanzial F, Rossi E, Benedicenti F, Inzana F, Di Gregorio E, Brusco A, Graakjaer J, Fagerberg C, Belligni E, Silengo M, Zuffardi O, Ciccone R. Defining the phenotype associated with microduplication reciprocal to Sotos syndrome microdeletion. Am J Med Genet A 2014; 164A:2084-90. [PMID: 24819041 DOI: 10.1002/ajmg.a.36591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 03/31/2014] [Indexed: 11/08/2022]
Abstract
NSD1 point mutations, submicroscopic deletions and intragenic deletions are the major cause of Sotos syndrome, characterized by pre-postnatal generalized overgrowth with advanced bone age, learning disability, seizures, distinctive facial phenotype. Reverse clinical phenotype due to 5q35 microduplication encompassing NSD1 gene has been reported so far in 27 cases presenting with delayed bone age, microcephaly, failure to thrive and seizures in some cases, further supporting a gene dosage effect of NSD1 on growth regulation and neurological functions. Here we depict the clinical presentation of three new cases with 5q35 microduplication outlining a novel syndrome characterized by microcephaly, short stature, developmental delay and in some cases delayed bone maturation, without any typical facial or osseous anomalies.
Collapse
Affiliation(s)
- Francesca Novara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gaudreau P, Zizak V, Gallagher TQ. The otolaryngologic manifestations of Sotos syndrome. Int J Pediatr Otorhinolaryngol 2013; 77:1861-3. [PMID: 24060089 DOI: 10.1016/j.ijporl.2013.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/23/2013] [Accepted: 08/25/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Soto's syndrome is a genetic disorder caused by mutations in the NSD1 gene. It is characterized by excessive growth in early life. It features craniofacial abnormalities, developmental delay, hypotonia and advanced bone age. A review of the current literature reveals only chronic otitis media and conductive hearing loss as otolaryngologic manifestations of Soto's syndrome. Our objective was to determine if there are additional manifestations relevant to the otolaryngologist. METHODS We performed a retrospective case series in which the Department of Defense electronic medical record was searched for ICD 9 code 253.0 (acromegaly/gigantism). Records were reviewed for genetic testing indicative of Soto's syndrome. These records were further analyzed for evidence of otolaryngologic problems. RESULTS Seventeen patients were identified with five having confirmed NSD1 mutations consistent with Soto's syndrome. Of these, 4/5 had otolaryngologic problems such as conductive hearing loss, aspiration, laryngomalacia, obstructive sleep apnea and sensorineural hearing loss. CONCLUSIONS Currently there is no description in the literature of these additional manifestations of Soto's syndrome. We present this case series to support the idea that an otolaryngologist should be involved in the multidisciplinary care required for these patients.
Collapse
|
25
|
Zafeiriou DI, Ververi A, Dafoulis V, Kalyva E, Vargiami E. Autism spectrum disorders: the quest for genetic syndromes. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:327-66. [PMID: 23650212 DOI: 10.1002/ajmg.b.32152] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 03/01/2013] [Indexed: 11/10/2022]
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disabilities with various etiologies, but with a heritability estimate of more than 90%. Although the strong correlation between autism and genetic factors has been long established, the exact genetic background of ASD remains unclear. A number of genetic syndromes manifest ASD at higher than expected frequencies compared to the general population. These syndromes account for more than 10% of all ASD cases and include tuberous sclerosis, fragile X, Down, neurofibromatosis, Angelman, Prader-Willi, Williams, Duchenne, etc. Clinicians are increasingly required to recognize genetic disorders in individuals with ASD, in terms of providing proper care and prognosis to the patient, as well as genetic counseling to the family. Vice versa, it is equally essential to identify ASD in patients with genetic syndromes, in order to ensure correct management and appropriate educational placement. During investigation of genetic syndromes, a number of issues emerge: impact of intellectual disability in ASD diagnoses, identification of autistic subphenotypes and differences from idiopathic autism, validity of assessment tools designed for idiopathic autism, possible mechanisms for the association with ASD, etc. Findings from the study of genetic syndromes are incorporated into the ongoing research on autism etiology and pathogenesis; different syndromes converge upon common biological backgrounds (such as disrupted molecular pathways and brain circuitries), which probably account for their comorbidity with autism. This review paper critically examines the prevalence and characteristics of the main genetic syndromes, as well as the possible mechanisms for their association with ASD.
Collapse
|
26
|
Tatton-Brown K, Rahman N. The NSD1 and EZH2 overgrowth genes, similarities and differences. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:86-91. [PMID: 23592277 DOI: 10.1002/ajmg.c.31359] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
NSD1 and EZH2 are SET domain-containing histone methyltransferases that play key roles in the regulation of transcription through histone modification and chromatin modeling: NSD1 preferentially methylates lysine residue 36 of histone 3 (H3K36) and is primarily associated with active transcription, while EZH2 shows specificity for lysine residue 27 (H3K27) and is associated with transcriptional repression. Somatic dysregulation of NSD1 and EZH2 have been associated with tumorigenesis. NSD1, as a fusion transcript with NUP98, plays a key role in leukemogenesis, particularly childhood acute myeloid leukemia. EZH2 is a major proto-oncogene and mono- and biallelic activating and inactivating somatic mutations occur as early events in the development of tumors, particularly poor prognosis hematopoietic malignancies. Constitutional NSD1 and EZH2 mutations cause Sotos and Weaver syndromes respectively, overgrowth syndromes with considerable phenotypic overlap. NSD1 mutations that cause Sotos syndrome are loss-of-function, primarily truncating mutations or missense mutations at key residues in functional domains. EZH2 mutations that cause Weaver syndrome are primarily missense variants and the rare truncating mutations reported to date are in the last exon, suggesting that simple haploinsufficiency is unlikely to be generating the overgrowth phenotype although the exact mechanism has not yet been determined. Many additional questions about the molecular and clinical features of NSD1 and EZH2 remain unanswered. However, studies are underway to address these and, as more cases are ascertained and technology improves, it is hoped that these will, in time, be answered.
Collapse
Affiliation(s)
- Katrina Tatton-Brown
- Institute of Cancer Research, St George's University of London and the Royal Marsden Hospital, London, UK.
| | | |
Collapse
|
27
|
Sohn YB, Lee CG, Ko JM, Yang JA, Yun JN, Jung EJ, Jin HS, Park SJ, Jeong SY. Clinical and genetic spectrum of 18 unrelated Korean patients with Sotos syndrome: frequent 5q35 microdeletion and identification of four novel NSD1 mutations. J Hum Genet 2012. [PMID: 23190751 DOI: 10.1038/jhg.2012.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sotos syndrome is an overgrowth syndrome with characteristic facial dysmorphism, variable severity of learning disabilities and macrocephaly with overgrowth. Haploinsufficiency of the nuclear receptor SET domain-containing protein 1 (NSD1) gene located on 5q35 has been implicated as the cause of Sotos syndrome. This study was performed to investigate the mutation spectrum of NSD1 abnormalities and meaningful genotype-phenotype correlations in Korean patients with Sotos syndrome. Eighteen unrelated Korean patients with Sotos syndrome were enrolled for clinical and molecular analyses. Cytogenetic studies were performed to confirm 5q35 microdeletion, and NSD1 sequencing analysis was performed to identify intragenic mutations. NSD1 abnormalities were identified in 15 (83%) patients. Among them, eight patients (53%) had 5q35 microdeletions and the other seven patients (47%) had seven different NSD1 intragenic mutations including four novel mutations. The mutation spectrum of Korean patients with Sotos syndrome was similar to that of previous studies for Japanese patients. Height was significantly shorter and age of walking alone was significantly older in the microdeletion group compared with those in the intragenic mutation group. No significant differences were observed for other clinical characteristics between the microdeletion and intragenic mutation groups. Further studies with a larger number of patients will be necessary to draw conclusive genotype-phenotype correlations.
Collapse
Affiliation(s)
- Young Bae Sohn
- Department of Medical Genetics, Ajou University School of Medicine, Ajou University Hospital, Suwon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pohjola P, Peippo M, Penttinen MT, Elenius K, Kääriäinen H. Translation of a research-based genetic test on a rare syndrome into clinical service testing, with sotos syndrome as an example. Genet Test Mol Biomarkers 2012; 16:1188-94. [PMID: 22924495 DOI: 10.1089/gtmb.2012.0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND AND AIMS It is often the case that the genetic background of a rare disease has been solved, but the testing of a clinical patient can be performed only through research projects. Translating a research-based test into diagnostic service may also appear laborious and costly. Based on our molecular research of the genetics of Sotos syndrome, we developed a clinical laboratory test that is both effective and relatively inexpensive. METHODS AND RESULTS Pilot testing was performed with samples of clinically diagnosed Sotos cases (n=13), and testing was continued with samples of patients who were suspected of having Sotos syndrome (n=161). The testing methods used were direct sequencing and multiplex ligation-dependent probe amplification. Sotos syndrome was a suitable example for test translation, because its genetic background was well established, and the demand for the test was expected to be fairly high. In the pilot phase, a mutation was detected in 12 out of 13 patients (92%), and in the second group, 49 out of 161 (30%) patients had a mutation in the NSD1 gene. CONCLUSIONS In Sotos syndrome, detecting the mutation is valuable for the patient/family, while the value of a negative result is less clear and other differential diagnostic diagnoses should be considered. For successful translation of the research-based test into routine diagnostics, intense collaboration between clinicians, researchers, and diagnostic laboratory personnel is essential.
Collapse
Affiliation(s)
- Pia Pohjola
- Department of Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland.
| | | | | | | | | |
Collapse
|
29
|
Chen CP. Prenatal findings and the genetic diagnosis of fetal overgrowth disorders: Simpson-Golabi-Behmel syndrome, Sotos syndrome, and Beckwith-Wiedemann syndrome. Taiwan J Obstet Gynecol 2012; 51:186-91. [DOI: 10.1016/j.tjog.2012.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2011] [Indexed: 01/24/2023] Open
|
30
|
Pasillas MP, Shah M, Kamps MP. NSD1 PHD domains bind methylated H3K4 and H3K9 using interactions disrupted by point mutations in human sotos syndrome. Hum Mutat 2012; 32:292-8. [PMID: 21972110 DOI: 10.1002/humu.21424] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sotos syndrome is a human developmental and cognitive disorder caused by happloinsufficiency of transcription factor NSD1. Similar phenotypes arise from NSD1 gene deletion or from point mutations in 9 of 13 NSD1 domains, including all 6 PHD domains, indicating that each NSD1 domain performs an essential role. To gain insight into the biochemical basis of Sotos syndrome, we tested the ability of each NSD1 PHD domain to bind histone H3 when methylated at regulatory sites Lys4, Lys9, Lys27, Lys36, and Lys79, and histone H4 at regulatory Lys20, and determined whether Sotos point mutations disrupted methylation site-specific binding. NSD1 PHD domains 1, 4, 5, and 6 bound histone H3 methylated at Lys4 or Lys9. Eleven of 12 Sotos mutations in PHD4, PHD5, and PHD6 disrupted binding to these methylated lysines, and 8 of 9 mutations in PHD4 and PHD6 severely compromised binding to transcription cofactor Nizp1. One mutation in PHD1 did not alter binding to specific methylated histone H3, and one mutation in PHD4 did not alter binding to either methylated histone or Nizp1. Our data suggests that Sotos point mutations in NSD1 PHD domains disrupt its transcriptional regulation by interfering with its ability to bind epigenetic marks and recruit cofactors.
Collapse
Affiliation(s)
- Martina P Pasillas
- Department of Pathology, University of California at San Diego School of Medicine, La Jolla, USA
| | | | | |
Collapse
|
31
|
Argente J, Sotos JF. [Overgrowth with and without obesity: clinical and molecular principles]. An Pediatr (Barc) 2011; 76:161.e1-28. [PMID: 22098786 DOI: 10.1016/j.anpedi.2011.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 12/26/2022] Open
Abstract
Somatic overgrowth is a complex and heterogeneous pathology that is only partially understood, although developments in molecular biology have allowed the discovery of the aetiological basis of some of these conditions. The differential diagnosis of a patient with a possible variant of normality, a chromosomopathy, a dysmorphic syndrome, a metabolic or an endocrine disease is essential. The initial clinical evaluation should include a correct anamnesis and physical examination, as well as complementary laboratory and image analyses that will help to orient the diagnosis. This should include a full blood counts and complete biochemical analysis, determinations of IGF-I, IGFBP-3, free T4, TSH and homocystinuria, as well as a karyotype and an X-ray of the left hand and wrist. These results should be very beneficial in orienting the diagnosis. Additional molecular studies should be performed when a monogenic disease is suspected. Cardiological, ophthalmological, skeletal, psychological and psychiatric studies should be performed if the clinical information and previously mentioned complementary studies so indicate. In this review, the aetiological basis and the diagnostic-therapeutic principles in the most common causes of overgrowth, will be analysed.
Collapse
Affiliation(s)
- J Argente
- Servicios de Pediatría y Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Departamento de Pediatría, Universidad Autónoma de Madrid, CIBER de fisiopatología de la Obesidad y Nutrición, España.
| | | |
Collapse
|
32
|
Chierichini A, Messina A, Vergari A, Santoprete S, Rassanito L. Regional anesthesia in a child with sotos syndrome. Int J Immunopathol Pharmacol 2011; 24:21-3. [PMID: 21669133 DOI: 10.1177/03946320110241s205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- A Chierichini
- Dept. of Anesthesiology, Catholic University of Sacred Heart, Rome, Italy.
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Martinez HR, Belmont JW, Craigen WJ, Taylor MD, Jefferies JL. Left ventricular noncompaction in Sotos syndrome. Am J Med Genet A 2011; 155A:1115-8. [PMID: 21484993 DOI: 10.1002/ajmg.a.33838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/16/2010] [Indexed: 11/06/2022]
Abstract
Sotos syndrome is an autosomal dominant condition characterized by pre- and postnatal overgrowth (tall stature and macrocephaly), a typical facial appearance, advanced bone age, and developmental delay. The syndrome is caused by mutations or deletions of the nuclear receptor binding SET domain protein 1 (NSD1) gene, which encodes a histone methyltransferase implicated in the regulation of chromatin. Left ventricular noncompaction (LVNC), also called left ventricular (LV) hypertrabeculation, is a rare disorder classified as a primary genetic cardiomyopathy by the American Heart Association. This condition is characterized by an altered myocardial wall due to arrest of embryonic compaction of the loose interwoven meshwork that makes up the fetal myocardial primordium. The cardiac manifestations of this cardiomyopathy are variable, ranging from an absence of symptoms to a progressive deterioration in cardiac function, with heart failure, arrhythmias, and systemic thromboemboli. We describe two unrelated patients who had LVNC, as based on echocardiographic findings, and Sotos syndrome, as based on physical features and molecular analysis. To our knowledge, the literature contains no previous reports of concomitant LVNC and Sotos syndrome. In the light of these two cases, we suggest that patients with Sotos syndrome be evaluated for LVNC cardiomyopathy when being screened for heart defects.
Collapse
Affiliation(s)
- Hugo R Martinez
- Section of Pediatric Cardiology, Texas Children's Hospital, Houston, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Weaver syndrome comprises pre- and postnatal overgrowth, accelerated osseous maturation, characteristic craniofacial appearance and developmental delay; it is a generally sporadic disorder, although autosomal dominant inheritance has been reported. Some of the manifestations characterize both the Weaver and Sotos syndrome, and distinction between the two is mainly by clinical examination and molecular testing. Most of the patients with Sotos syndrome have NSD1 gene deletions or mutations; however, the molecular basis of most of the Weaver syndrome patients is unknown. Patients with overgrowth syndromes have an increased frequency of tumors; the risk in Sotos syndrome patients has been estimated to be about 2-3%, with leukemia and lymphoma accounting for 44% of the malignancies. We report on a 4(1/2)-year-old girl with typical Weaver syndrome who developed acute lymphoblastic leukemia, an association not previously reported, and review the reported cases of Weaver syndrome patients who developed malignancies. Malignancy in Weaver syndrome has been reported previously in six patients. While searching the literature for all reported cases with Weaver syndrome and counting the cases with malignancy, we found that the frequency of tumors or hematologic malignancy was 10.9%. This is likely to be an overestimate, biased by failure to report cases without tumors and by over-reporting cases with this rare association. While the presence of acute lymphoblastic leukemia in our patient might be incidental, we cannot exclude a possible causative association between Weaver syndrome and hematologic malignancy.
Collapse
Affiliation(s)
- Lina Basel-Vanagaite
- Schneider Children's Medical Center of Israel and Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel.
| |
Collapse
|
36
|
A clinical study of Sotos syndrome patients with review of the literature. Pediatr Neurol 2009; 40:357-64. [PMID: 19380072 DOI: 10.1016/j.pediatrneurol.2008.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 11/19/2008] [Accepted: 11/25/2008] [Indexed: 11/20/2022]
Abstract
Sotos syndrome is characterized by tall stature, advanced bone age, typical facial abnormalities, and developmental delay. The associated gene is NSD1. The study involved 22 patients who fulfilled the clinical criteria. Phenotypic characteristics, central nervous system findings, and cardiovascular and urinary tract abnormalities were evaluated. Meta-analysis on the incidence of cardinal clinical manifestations from the literature was also performed. Macrocephaly was present in all patients. Advanced bone age was noted in 14 of 22 patients (63%), and its incidence presented significant statistical difference in the meta-analysis of previous studies. Some patients had serious clinical manifestations, such as congenital heart defects, dysplastic kidneys, psychosis, and leukemia. Clinical and laboratory examinations should be performed to prevent and manage any unusual medical aspect of the syndrome. Facial gestalt and macrocephaly, rather than advanced bone age, are the strongest indications for clinical diagnosis.
Collapse
|
37
|
Gombojav B, Park H, Kim JI, Ju YS, Sung J, Cho SI, Lee MK, Ohrr H, Radnaabazar J, Seo JS. Heritability and linkage study on heart rates in a Mongolian population. Exp Mol Med 2009; 40:558-64. [PMID: 18985014 DOI: 10.3858/emm.2008.40.5.558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Elevated heart rate has been proposed as an independent risk factor for cardiovascular diseases, but their interrelationships are not well understood. In this study, we performed a genome-wide linkage scan in 1,026 individuals (mean age 30.6 years, 54.5% women) from 73 extended families of Mongolia and determined quantitative trait loci that influence heart rate. The DNA samples were genotyped using deCODE 1,039 microsatellite markers for 3 cM density genome-wide linkage scan. Correlation analysis was carried out to evaluate the correlation of the covariates and the heart rate. T-tests of the heart rate were also performed on sex, smoking and alcohol intake. Consequently, this model was used in a nonparametric genome-wide linkage analysis using variance component model to create a multipoint logarithm of odds (LOD) score and a corresponding P value. In the adjusted model, the heritability of heart rate was estimated as 0.32 (P<.0001) and a maximum multipoint LOD score of 2.03 was observed in 77 cM region at chromosome 18. The second largest LOD score of 1.52 was seen on chromosome 5 at 216 cM. Genes located on the specified locations in chromosomes 5 and 18 may be involved in the regulation of heart rate.
Collapse
Affiliation(s)
- Bayasgalan Gombojav
- Department of Public Health, The Graduate School, Yonsei University, Seoul 120-752, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Williams CA, Dagli A, Battaglia A. Genetic disorders associated with macrocephaly. Am J Med Genet A 2008; 146A:2023-37. [PMID: 18629877 DOI: 10.1002/ajmg.a.32434] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Macrocephaly is associated with many genetic disorders and is a frequent cause of referral to the clinical geneticist. In this review we classify the commonly encountered macrocephaly disorders into useful categories and summarize recent genetic advances. Conditions where macrocephaly is a predominant aspect of the clinical presentation are discussed and a diagnostic approach to the common macrocephaly disorders is provided. Some emphasis is placed on familial macrocephaly (sometimes referred to as benign external hydrocephalus) and on the macrocephaly associated with autism spectrum disorders. The more recent conditions associated with the leukodystrophies and the organic acidurias are reviewed, but the well known conditions involving storage disorders and bone dysplasias are mentioned but not discussed. The genetic macrocephaly conditions cover a broad spectrum of gene disorders and their related proteins have diverse biological functions. As of yet it is not clear what precise biological pathways lead to generalized brain overgrowth.
Collapse
Affiliation(s)
- Charles A Williams
- Raymond C. Philips Research and Education Unit, Division of Genetics, Department of Pediatrics, University of Florida, Gainesville, Florida 32610, USA.
| | | | | |
Collapse
|
39
|
|
40
|
Buxbaum JD, Cai G, Nygren G, Chaste P, Delorme R, Goldsmith J, Råstam M, Silverman JM, Hollander E, Gillberg C, Leboyer M, Betancur C. Mutation analysis of the NSD1 gene in patients with autism spectrum disorders and macrocephaly. BMC MEDICAL GENETICS 2007; 8:68. [PMID: 18001468 PMCID: PMC2248565 DOI: 10.1186/1471-2350-8-68] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 11/14/2007] [Indexed: 11/10/2022]
Abstract
Background Sotos syndrome is an overgrowth syndrome characterized by macrocephaly, advanced bone age, characteristic facial features, and learning disabilities, caused by mutations or deletions of the NSD1 gene, located at 5q35. Sotos syndrome has been described in a number of patients with autism spectrum disorders, suggesting that NSD1 could be involved in other cases of autism and macrocephaly. Methods We screened the NSD1 gene for mutations and deletions in 88 patients with autism spectrum disorders and macrocephaly (head circumference 2 standard deviations or more above the mean). Mutation analysis was performed by direct sequencing of all exons and flanking regions. Dosage analysis of NSD1 was carried out using multiplex ligation-dependent probe amplification. Results We identified three missense variants (R604L, S822C and E1499G) in one patient each, but none is within a functional domain. In addition, segregation analysis showed that all variants were inherited from healthy parents and in two cases were also present in unaffected siblings, indicating that they are probably nonpathogenic. No partial or whole gene deletions/duplications were observed. Conclusion Our findings suggest that Sotos syndrome is a rare cause of autism spectrum disorders and that screening for NSD1 mutations and deletions in patients with autism and macrocephaly is not warranted in the absence of other features of Sotos syndrome.
Collapse
Affiliation(s)
- Joseph D Buxbaum
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Saugier-Veber P, Bonnet C, Afenjar A, Drouin-Garraud V, Coubes C, Fehrenbach S, Holder-Espinasse M, Roume J, Malan V, Portnoi MF, Jeanne N, Baumann C, Héron D, David A, Gérard M, Bonneau D, Lacombe D, Cormier-Daire V, Billette de Villemeur T, Frébourg T, Bürglen L. Heterogeneity of NSD1 alterations in 116 patients with Sotos syndrome. Hum Mutat 2007; 28:1098-107. [PMID: 17565729 DOI: 10.1002/humu.20568] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sotos syndrome is an overgrowth syndrome characterized by distinctive facial features, learning difficulties, and macrocephaly with frequent pre- and postnatal overgrowth with advanced bone age. Here, we report on our experience in the molecular diagnostic of Sotos syndrome on 116 patients. Using direct sequencing and a quantitative multiplex PCR of short fluorescent fragments (QMPSF)-based assay allowing accurate detection of both total and partial NSD1 deletions, we identified NSD1 abnormalities in 104 patients corresponding to 102 Sotos families (90%). NSD1 point mutations were detected in 80% of the index cases, large deletions removing the NSD1 gene entirely in 14%, and intragenic NSD1 rearrangements in 6%. Among the 69 detected distinct point mutations, 48 were novel. The QMPSF assay detected an exonic duplication and a mosaic partial deletion. QMPSF mapping of the 15 large deletions revealed the heterogeneity of the deletions, which vary in size from 1 to 4.5 Mb. Clinical features of NSD1-positive Sotos patients revealed that the phenotype in patients with nontruncating mutations was less severe that in patients with truncating mutations. This study confirms the heterogeneity of NSD1 alterations in Sotos syndrome and therefore the need to complete sequencing analysis by screening for partial deletions and duplications to ensure an accurate molecular diagnosis of this syndrome.
Collapse
Affiliation(s)
- Pascale Saugier-Veber
- Department of Genetics, Rouen University Hospital, University of Rouen, Rouen, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Sotos syndrome is an overgrowth condition characterized by cardinal features including excessive growth during childhood, macrocephaly, distinctive facial gestalt and various degrees of learning difficulty, and associated with variable minor features. The exact prevalence remains unknown but hundreds of cases have been reported. The diagnosis is usually suspected after birth because of excessive height and occipitofrontal circumference (OFC), advanced bone age, neonatal complications including hypotonia and feeding difficulties, and facial gestalt. Other inconstant clinical abnormalities include scoliosis, cardiac and genitourinary anomalies, seizures and brisk deep tendon reflexes. Variable delays in cognitive and motor development are also observed. The syndrome may also be associated with an increased risk of tumors. Mutations and deletions of the NSD1 gene (located at chromosome 5q35 and coding for a histone methyltransferase implicated in transcriptional regulation) are responsible for more than 75% of cases. FISH analysis, MLPA or multiplex quantitative PCR allow the detection of total/partial NSD1 deletions, and direct sequencing allows detection of NSD1 mutations. The large majority of NSD1 abnormalities occur de novo and there are very few familial cases. Although most cases are sporadic, several reports of autosomal dominant inheritance have been described. Germline mosaicism has never been reported and the recurrence risk for normal parents is very low (<1%). The main differential diagnoses are Weaver syndrome, Beckwith-Wiedeman syndrome, Fragile X syndrome, Simpson-Golabi-Behmel syndrome and 22qter deletion syndrome. Management is multidisciplinary. During the neonatal period, therapies are mostly symptomatic, including phototherapy in case of jaundice, treatment of the feeding difficulties and gastroesophageal reflux, and detection and treatment of hypoglycemia. General pediatric follow-up is important during the first years of life to allow detection and management of clinical complications such as scoliosis and febrile seizures. An adequate psychological and educational program with speech therapy and motor stimulation plays an important role in the global development of the patients. Final body height is difficult to predict but growth tends to normalize after puberty.
Collapse
Affiliation(s)
- Geneviève Baujat
- Department of Medical Genetic, Hospital Necker-Enfants Malades, 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Valérie Cormier-Daire
- Department of Medical Genetic, Hospital Necker-Enfants Malades, 149 rue de Sèvres, 75743 Paris Cedex 15, France
| |
Collapse
|
43
|
Duno M, Skovby F, Schwartz M. Leukocyte cDNA analysis of NSD1 derived from confirmed Sotos syndrome patients. Ann Hum Genet 2007; 71:713-8. [PMID: 17561922 DOI: 10.1111/j.1469-1809.2007.00376.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Haploinsufficiency of the NSD1 gene leads to Sotos syndrome (Sos), which is characterised by excessive growth, especially during childhood, distinct craniofacial features and variable degree of mental impairment. A wide spectrum of NSD1 mutations have been described in Sos patients, ranging from more than 100 different single nucleotide changes, to partial gene deletions, and to microdeletions of various sizes comprising the entire NSD1 locus. OBJECTIVE To investigate the NSD1 cDNA sequence in genetically confirmed Sos patients harbouring truncating and missense mutations. METHOD Total RNA was isolated from a 250 mul standard EDTA blood sample from nine genetically verified Sos patients, and subsequent reverse-transcribed into cDNA followed by PCR and direct sequencing of specific NSD1 cDNA sequences. RESULTS All nine mutations, including missense, nonsense and whole exon deletions, previously identified in genomic DNA, could confidently be detected in cDNA. Several NSD1 transcript splice variants were detected. CONCLUSION Despite the fact that Sos is caused by haploinsufficiency, NSD1 transcripts containing nonsense and frame shift mutations can be detected in leukocyte-derived cDNA. The possibility therefore exists that certain NSD1 mutations are expressed and contribute to the phenotypic variability of Sos. NSD1 cDNA analysis is likely to enhance mutation detection in Sos patients.
Collapse
Affiliation(s)
- M Duno
- Department of Clinical Genetics, University Hospital Copenhagen, Rigshospitalet 4062, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
44
|
Abstract
Sotos syndrome is an autosomal dominant condition characterised by a distinctive facial appearance, learning disability and overgrowth resulting in tall stature and macrocephaly. In 2002, Sotos syndrome was shown to be caused by mutations and deletions of NSD1, which encodes a histone methyltransferase implicated in chromatin regulation. More recently, the NSD1 mutational spectrum has been defined, the phenotype of Sotos syndrome clarified and diagnostic and management guidelines developed.
Collapse
|
45
|
Srour M, Mazer B, Shevell MI. Diagnosing Sotos syndrome in the setting of global developmental delay and macrocephaly. J Child Neurol 2006; 21:287-90. [PMID: 16900922 DOI: 10.1177/08830738060210042201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sotos syndrome (cerebral gigantism) is characterized by macrocephaly, global developmental delay, characteristic facial dysmorphology, and a markedly advanced bone age. The purpose of this study was to describe the prevalence of Sotos syndrome in a consecutive series of patients with global developmental delay, which might modify our laboratory evaluation approach to this particular clinical situation. For a 10-year inclusive interval, the case records of all consecutive patients referred for global developmental delay in a single pediatric neurology practice were reviewed. Patients with macrocephaly were defined by an age- and gender-adjusted head circumference greater than or equal to the 98th percentile. Possible clinical factors associated with eventual diagnosis of Sotos syndrome in this group of macrocephalic children were tested with a two-tailed Fisher exact test. Of 261 children with global developmental delay, 18 (7%) had documented macrocephaly. Of these 18 children, 3 (17%) had an advanced bone age and were diagnosed with Sotos syndrome. In patients with global developmental delay and concomitant macrocephaly, Sotos syndrome is not uncommon. Assessment of bone age is a simple screening test for diagnosis of this entity and should be undertaken routinely in children with macrocephaly and global developmental delay even in the absence of other distinctive syndromic clinical features.
Collapse
Affiliation(s)
- Myriam Srour
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
46
|
Cytrynbaum CS, Smith AC, Rubin T, Weksberg R. Advances in overgrowth syndromes: clinical classification to molecular delineation in Sotos syndrome and Beckwith-Wiedemann syndrome. Curr Opin Pediatr 2005; 17:740-6. [PMID: 16282780 DOI: 10.1097/01.mop.0000187191.74295.97] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The clinical importance of overgrowth syndromes in the pediatric patient population has been increasingly recognized during the past decade, but clinical overlap among overgrowth syndromes often makes diagnostic categorization difficult. Advances in the molecular delineation of overgrowth syndromes in recent years have furthered our knowledge of the phenotypic spectrum of this group of conditions. This review focuses on developments in our understanding of the molecular mechanisms and phenotype-genotype correlations in the two most common overgrowth syndromes, Beckwith-Wiedemann syndrome and Sotos syndrome. The implications of these findings with respect to clinical diagnosis, medical management, and genetic counseling are discussed. RECENT FINDINGS Recent reports have redefined the cardinal clinical features of Sotos syndrome, and the identification of two distinct types of molecular alterations in patients with this syndrome has enabled assessment of phenotype-genotype correlations. Recent studies in patients with Beckwith-Wiedemann syndrome have further expanded our understanding of the causative molecular mechanisms of this condition and provide evidence for specific genotype-phenotype correlations, most notably with respect to tumor risk. SUMMARY Recognition of childhood overgrowth and investigation of diagnostic causes is important in anticipating appropriate medical management and facilitating the provision of genetic counseling. New developments in our understanding of the molecular basis and phenotypic expression of overgrowth syndromes provide additional tools in this often challenging process.
Collapse
Affiliation(s)
- Cheryl S Cytrynbaum
- Division of Clinical and Metabolic Genetics, The Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
47
|
Faravelli F. NSD1 mutations in Sotos syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 137C:24-31. [PMID: 16010675 DOI: 10.1002/ajmg.c.30061] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sotos syndrome is a genetic disorder characterized by a typical facial appearance, macrocephaly, accelerated growth, developmental delay, and a variable range of associated abnormalities. The NSD1 gene was recently found to be responsible for Sotos syndrome, and more than 150 patients with NSD1 alterations have been identified. A significant ethnic difference is found in the prevalence of different types of mutation, with a high percentage of microdeletions identified in Japanese Sotos syndrome patients and with intragenic mutations in most non-Japanese patients. NSD1 aberrations are rather specific for Sotos syndrome, but have also been detected in patients lacking one or more major criteria of the disorder, namely overgrowth, macrocephaly, and advanced bone age. Thus, new diagnostic criteria should be considered. Studies have reported different frequencies of mutations versus non-mutations in Sotos syndrome, thus indicating allelic or locus hetereogeneity. Although some authors have suggested genotype/phenotype correlations, further studies are needed.
Collapse
|
48
|
Tatton-Brown K, Douglas J, Coleman K, Baujat G, Cole TRP, Das S, Horn D, Hughes HE, Temple IK, Faravelli F, Waggoner D, Türkmen S, Cormier-Daire V, Irrthum A, Rahman N. Genotype-phenotype associations in Sotos syndrome: an analysis of 266 individuals with NSD1 aberrations. Am J Hum Genet 2005; 77:193-204. [PMID: 15942875 PMCID: PMC1224542 DOI: 10.1086/432082] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 05/19/2005] [Indexed: 11/03/2022] Open
Abstract
We identified 266 individuals with intragenic NSD1 mutations or 5q35 microdeletions encompassing NSD1 (referred to as "NSD1-positive individuals"), through analyses of 530 subjects with diverse phenotypes. Truncating NSD1 mutations occurred throughout the gene, but pathogenic missense mutations occurred only in functional domains (P < 2 x 10(-16)). Sotos syndrome was clinically diagnosed in 99% of NSD1-positive individuals, independent of the molecular analyses, indicating that NSD1 aberrations are essentially specific to this condition. Furthermore, our data suggest that 93% of patients who have been clinically diagnosed with Sotos syndrome have identifiable NSD1 abnormalities, of which 83% are intragenic mutations and 10% are 5q35 microdeletions. We reviewed the clinical phenotypes of 239 NSD1-positive individuals. Facial dysmorphism, learning disability, and childhood overgrowth were present in 90% of the individuals. However, both the height and head circumference of 10% of the individuals were within the normal range, indicating that overgrowth is not obligatory for the diagnosis of Sotos syndrome. A broad spectrum of associated clinical features was also present, the occurrence of which was largely independent of genotype, since individuals with identical mutations had different phenotypes. We compared the phenotypes of patients with intragenic NSD1 mutations with those of patients with 5q35 microdeletions. Patients with microdeletions had less-prominent overgrowth (P = .0003) and more-severe learning disability (P = 3 x 10(-9)) than patients with mutations. However, all features present in patients with microdeletions were also observed in patients with mutations, and there was no correlation between deletion size and the clinical phenotype, suggesting that the deletion of additional genes in patients with 5q35 microdeletions has little specific effect on phenotype. We identified only 13 familial cases. The reasons for the low vertical transmission rate are unclear, although familial cases were more likely than nonfamilial cases (P = .005) to carry missense mutations, suggesting that the underlying NSD1 mutational mechanism in Sotos syndrome may influence reproductive fitness.
Collapse
Affiliation(s)
- Katrina Tatton-Brown
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, United Kingdom; Department of Medical Genetics, Hopital Necker Enfants Malades, Paris; Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, United Kingdom; Department of Human Genetics, University of Chicago, Chicago; Institut für Medizinische Genetik, Humboldt-Universität, Charité, Berlin; Institute of Medical Genetics, University Hospital of Wales, Cardiff; Department of Human Genetics, Southampton University Hospital, Southampton, United Kingdom; and Laboratorio di Genetica Umana, Ospedali Galliera de Genova, Genova, Italy
| | - Jenny Douglas
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, United Kingdom; Department of Medical Genetics, Hopital Necker Enfants Malades, Paris; Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, United Kingdom; Department of Human Genetics, University of Chicago, Chicago; Institut für Medizinische Genetik, Humboldt-Universität, Charité, Berlin; Institute of Medical Genetics, University Hospital of Wales, Cardiff; Department of Human Genetics, Southampton University Hospital, Southampton, United Kingdom; and Laboratorio di Genetica Umana, Ospedali Galliera de Genova, Genova, Italy
| | - Kim Coleman
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, United Kingdom; Department of Medical Genetics, Hopital Necker Enfants Malades, Paris; Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, United Kingdom; Department of Human Genetics, University of Chicago, Chicago; Institut für Medizinische Genetik, Humboldt-Universität, Charité, Berlin; Institute of Medical Genetics, University Hospital of Wales, Cardiff; Department of Human Genetics, Southampton University Hospital, Southampton, United Kingdom; and Laboratorio di Genetica Umana, Ospedali Galliera de Genova, Genova, Italy
| | - Geneviève Baujat
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, United Kingdom; Department of Medical Genetics, Hopital Necker Enfants Malades, Paris; Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, United Kingdom; Department of Human Genetics, University of Chicago, Chicago; Institut für Medizinische Genetik, Humboldt-Universität, Charité, Berlin; Institute of Medical Genetics, University Hospital of Wales, Cardiff; Department of Human Genetics, Southampton University Hospital, Southampton, United Kingdom; and Laboratorio di Genetica Umana, Ospedali Galliera de Genova, Genova, Italy
| | - Trevor R. P. Cole
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, United Kingdom; Department of Medical Genetics, Hopital Necker Enfants Malades, Paris; Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, United Kingdom; Department of Human Genetics, University of Chicago, Chicago; Institut für Medizinische Genetik, Humboldt-Universität, Charité, Berlin; Institute of Medical Genetics, University Hospital of Wales, Cardiff; Department of Human Genetics, Southampton University Hospital, Southampton, United Kingdom; and Laboratorio di Genetica Umana, Ospedali Galliera de Genova, Genova, Italy
| | - Soma Das
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, United Kingdom; Department of Medical Genetics, Hopital Necker Enfants Malades, Paris; Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, United Kingdom; Department of Human Genetics, University of Chicago, Chicago; Institut für Medizinische Genetik, Humboldt-Universität, Charité, Berlin; Institute of Medical Genetics, University Hospital of Wales, Cardiff; Department of Human Genetics, Southampton University Hospital, Southampton, United Kingdom; and Laboratorio di Genetica Umana, Ospedali Galliera de Genova, Genova, Italy
| | - Denise Horn
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, United Kingdom; Department of Medical Genetics, Hopital Necker Enfants Malades, Paris; Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, United Kingdom; Department of Human Genetics, University of Chicago, Chicago; Institut für Medizinische Genetik, Humboldt-Universität, Charité, Berlin; Institute of Medical Genetics, University Hospital of Wales, Cardiff; Department of Human Genetics, Southampton University Hospital, Southampton, United Kingdom; and Laboratorio di Genetica Umana, Ospedali Galliera de Genova, Genova, Italy
| | - Helen E. Hughes
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, United Kingdom; Department of Medical Genetics, Hopital Necker Enfants Malades, Paris; Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, United Kingdom; Department of Human Genetics, University of Chicago, Chicago; Institut für Medizinische Genetik, Humboldt-Universität, Charité, Berlin; Institute of Medical Genetics, University Hospital of Wales, Cardiff; Department of Human Genetics, Southampton University Hospital, Southampton, United Kingdom; and Laboratorio di Genetica Umana, Ospedali Galliera de Genova, Genova, Italy
| | - I. Karen Temple
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, United Kingdom; Department of Medical Genetics, Hopital Necker Enfants Malades, Paris; Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, United Kingdom; Department of Human Genetics, University of Chicago, Chicago; Institut für Medizinische Genetik, Humboldt-Universität, Charité, Berlin; Institute of Medical Genetics, University Hospital of Wales, Cardiff; Department of Human Genetics, Southampton University Hospital, Southampton, United Kingdom; and Laboratorio di Genetica Umana, Ospedali Galliera de Genova, Genova, Italy
| | - Francesca Faravelli
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, United Kingdom; Department of Medical Genetics, Hopital Necker Enfants Malades, Paris; Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, United Kingdom; Department of Human Genetics, University of Chicago, Chicago; Institut für Medizinische Genetik, Humboldt-Universität, Charité, Berlin; Institute of Medical Genetics, University Hospital of Wales, Cardiff; Department of Human Genetics, Southampton University Hospital, Southampton, United Kingdom; and Laboratorio di Genetica Umana, Ospedali Galliera de Genova, Genova, Italy
| | - Darrel Waggoner
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, United Kingdom; Department of Medical Genetics, Hopital Necker Enfants Malades, Paris; Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, United Kingdom; Department of Human Genetics, University of Chicago, Chicago; Institut für Medizinische Genetik, Humboldt-Universität, Charité, Berlin; Institute of Medical Genetics, University Hospital of Wales, Cardiff; Department of Human Genetics, Southampton University Hospital, Southampton, United Kingdom; and Laboratorio di Genetica Umana, Ospedali Galliera de Genova, Genova, Italy
| | - Seval Türkmen
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, United Kingdom; Department of Medical Genetics, Hopital Necker Enfants Malades, Paris; Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, United Kingdom; Department of Human Genetics, University of Chicago, Chicago; Institut für Medizinische Genetik, Humboldt-Universität, Charité, Berlin; Institute of Medical Genetics, University Hospital of Wales, Cardiff; Department of Human Genetics, Southampton University Hospital, Southampton, United Kingdom; and Laboratorio di Genetica Umana, Ospedali Galliera de Genova, Genova, Italy
| | - Valérie Cormier-Daire
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, United Kingdom; Department of Medical Genetics, Hopital Necker Enfants Malades, Paris; Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, United Kingdom; Department of Human Genetics, University of Chicago, Chicago; Institut für Medizinische Genetik, Humboldt-Universität, Charité, Berlin; Institute of Medical Genetics, University Hospital of Wales, Cardiff; Department of Human Genetics, Southampton University Hospital, Southampton, United Kingdom; and Laboratorio di Genetica Umana, Ospedali Galliera de Genova, Genova, Italy
| | - Alexandre Irrthum
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, United Kingdom; Department of Medical Genetics, Hopital Necker Enfants Malades, Paris; Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, United Kingdom; Department of Human Genetics, University of Chicago, Chicago; Institut für Medizinische Genetik, Humboldt-Universität, Charité, Berlin; Institute of Medical Genetics, University Hospital of Wales, Cardiff; Department of Human Genetics, Southampton University Hospital, Southampton, United Kingdom; and Laboratorio di Genetica Umana, Ospedali Galliera de Genova, Genova, Italy
| | - Nazneen Rahman
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, United Kingdom; Department of Medical Genetics, Hopital Necker Enfants Malades, Paris; Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, United Kingdom; Department of Human Genetics, University of Chicago, Chicago; Institut für Medizinische Genetik, Humboldt-Universität, Charité, Berlin; Institute of Medical Genetics, University Hospital of Wales, Cardiff; Department of Human Genetics, Southampton University Hospital, Southampton, United Kingdom; and Laboratorio di Genetica Umana, Ospedali Galliera de Genova, Genova, Italy
| | | |
Collapse
|