1
|
Trimeche O, Sakka R, Hajji E, Missaoui A, Ben Amor B, Bayar I, Abid S, Marmouch H, Sayedi H, Khochtali I. Portraying the full picture of Neurofibromatosis-Noonan syndrome: a systematic review of literature. J Med Genet 2025; 62:109-116. [PMID: 39643432 DOI: 10.1136/jmg-2024-110253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND AND AIMS Neurofibromatosis-Noonan syndrome (NFNS) is an extremely rare genetic entity combining the clinical phenotype of two conditions: neurofibromatosis type 1 syndrome (NF1) and Noonan syndrome (NS). Nevertheless, many inconsistencies reside in our understanding of this condition, mainly its clinical features and genetic background. Through this systematic review, we aim to shed light on the epidemiological features, the broad clinical spectrum, the underlying genetic defects and the associated comorbidities of NFNS. METHODS Medline, Scopus and Google Scholar were searched for publications on the clinical and genetic features of patients with NFNS. Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed and the study protocol was registered in PROSPERO. RESULTS Of 951 records screened, 42 were eligible. The mean age at diagnosis was 14.7 years ranging from 0 to 69 years. As for the circumstance of discovery of NFNS, it was dominated by family investigation followed by neurofibromas, facial dysmorphia and short stature (SS). Prematurity was noted in 40.9% of cases. The hallmark features of NFNS at diagnosis were 'café au lait' macules, typical facial dysmorphia of NS, postnatal SS, pectus abnormalities, broad neck and lentigines. Macrocephaly, scoliosis and cardiopathies occurred in 26%, 42.4% and 36.9% of cases, respectively. Tumours were found in 18.4% of cases. As for the genetic foundation of NFNS, NF1 gene mutations were depicted in 87.5% of individuals. CONCLUSIONS Based on our findings, we emphasise on the importance of searching for NS features in patients with NF1 since the prognosis, comorbidities and consequently management could be altered. PROSPERO REGISTRATION NUMBER 42024522238.
Collapse
Affiliation(s)
- Omeyma Trimeche
- Fattouma Bourguiba University Hospital of Monastir, Monastir, Tunisia
| | - Rania Sakka
- Histology and Cytogenetics, Faculty of Medicine of Monastir, University of Monastir, Monastir, Tunisia
| | - Ekram Hajji
- Fattouma Bourguiba University Hospital of Monastir, Monastir, Tunisia
| | | | - Bilel Ben Amor
- Fattouma Bourguiba University Hospital of Monastir, Monastir, Tunisia
| | - Ines Bayar
- Fattouma Bourguiba University Hospital of Monastir, Monastir, Tunisia
| | - Sana Abid
- Fattouma Bourguiba University Hospital of Monastir, Monastir, Tunisia
| | - Hela Marmouch
- Fattouma Bourguiba University Hospital of Monastir, Monastir, Tunisia
| | - Hanen Sayedi
- Fattouma Bourguiba University Hospital of Monastir, Monastir, Tunisia
| | - Ines Khochtali
- Fattouma Bourguiba University Hospital of Monastir, Monastir, Tunisia
| |
Collapse
|
2
|
Peduto C, Zanobio M, Nigro V, Perrotta S, Piluso G, Santoro C. Neurofibromatosis Type 1: Pediatric Aspects and Review of Genotype-Phenotype Correlations. Cancers (Basel) 2023; 15:1217. [PMID: 36831560 PMCID: PMC9954221 DOI: 10.3390/cancers15041217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant condition, with a birth incidence of approximately 1:2000-3000, caused by germline pathogenic variants in NF1, a tumor suppressor gene encoding neurofibromin, a negative regulator of the RAS/MAPK pathway. This explains why NF1 is included in the group of RASopathies and shares several clinical features with Noonan syndrome. Here, we describe the main clinical characteristics and complications associated with NF1, particularly those occurring in pediatric age. NF1 has complete penetrance and shows wide inter- and intrafamilial phenotypic variability and age-dependent appearance of manifestations. Clinical presentation and history of NF1 are multisystemic and highly unpredictable, especially in the first years of life when penetrance is still incomplete. In this scenario of extreme phenotypic variability, some genotype-phenotype associations need to be taken into consideration, as they strongly impact on genetic counseling and prognostication of the disease. We provide a synthetic review, based on the most recent literature data, of all known genotype-phenotype correlations from a genetic and clinical perspective. Molecular diagnosis is fundamental for the confirmation of doubtful clinical diagnoses, especially in the light of recently revised diagnostic criteria, and for the early identification of genotypes, albeit few, that correlate with specific phenotypes.
Collapse
Affiliation(s)
- Cristina Peduto
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 7, 80138 Naples, Italy
| | - Mariateresa Zanobio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 7, 80138 Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 7, 80138 Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Silverio Perrotta
- Department of Women’s and Children’s Health and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 2, 80138 Naples, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 7, 80138 Naples, Italy
| | - Claudia Santoro
- Department of Women’s and Children’s Health and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 2, 80138 Naples, Italy
- Clinic of Child and Adolescent Neuropsychiatry, Department of Physical and Mental Health, and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Largo Madonna delle Grazie 1, 80138 Naples, Italy
| |
Collapse
|
3
|
Chaves Rabelo N, Gomes ME, de Oliveira Moraes I, Cantagalli Pfisterer J, Loss de Morais G, Antunes D, Caffarena ER, Llerena Jr J, Gonzalez S. RASopathy Cohort of Patients Enrolled in a Brazilian Reference Center for Rare Diseases: A Novel Familial LZTR1 Variant and Recurrent Mutations. Appl Clin Genet 2022; 15:153-170. [PMID: 36304179 PMCID: PMC9595068 DOI: 10.2147/tacg.s372761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/03/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose Noonan syndrome and related disorders are genetic conditions affecting 1:1000-2000 individuals. Variants causing hyperactivation of the RAS/MAPK pathway lead to phenotypic overlap between syndromes, in addition to an increased risk of pediatric tumors. DNA sequencing methods have been optimized to provide a molecular diagnosis for clinical and genetic heterogeneity conditions. This work aimed to investigate the genetic basis in RASopathy patients through Next Generation Sequencing in a Reference Center for Rare Diseases (IFF/Fiocruz) and implement the precision medicine at a public health institute in Brazil. Patients and Methods This study comprises 26 cases with clinical suspicion of RASopathies. Sanger sequencing was used to screen variants in exons usually affected in the PTPN11 and HRAS genes for cases with clinical features of Noonan and Costello syndrome, respectively. Posteriorly, negative and new cases with clinical suspicion of RASopathy were analyzed by clinical or whole-exome sequencing. Results Molecular analysis revealed recurrent variants and a novel LZTR1 missense variant: 24 unrelated individuals with pathogenic variants [PTPN11(11), NF1(2), SOS1(2), SHOC2(2), HRAS(1), BRAF(1), LZTR (1), RAF1(1), KRAS(1), RIT1(1), a patient with co-occurrence of PTPN11 and NF1 mutations (1)]; familial cases carrying a known pathogenic variant in PTPN11 (mother-two children), and a previously undescribed paternally inherited variant in LZTR1. The comparative modeling analysis of the novel LZTR1 variant p.Pro225Leu showed local and global changes in the secondary and tertiary structures, showing a decrease of about 1% in the β-sheet content. Furthermore, evolutionary conservation indicated that Pro225 is in a highly conserved region, as observed for known dominant pathogenic variants in this protein. Conclusion Bringing precision medicine through NGS towards congenital syndromes promotes a better understanding of complex clinical and/or undiagnosed cases. The National Policy for Rare Diseases in Brazil emphasizes the importance of incorporating and optimizing diagnostic methodologies in the Unified Brazilian Health System (SUS). Therefore, this work is an important step for the NGS inclusion in diagnostic genetic routine in the public health system.
Collapse
Affiliation(s)
- Natana Chaves Rabelo
- Centro de Genética Médica IFF/Fiocruz, Rio de Janeiro, RJ, Brazil,Centro de Referência para Doenças Raras IFF/Fiocruz, Rio de Janeiro, RJ, Brazil,Laboratório de Medicina Genômica IFF/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Maria Eduarda Gomes
- Centro de Genética Médica IFF/Fiocruz, Rio de Janeiro, RJ, Brazil,Centro de Referência para Doenças Raras IFF/Fiocruz, Rio de Janeiro, RJ, Brazil,Laboratório de Medicina Genômica IFF/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Isabelle de Oliveira Moraes
- Centro de Genética Médica IFF/Fiocruz, Rio de Janeiro, RJ, Brazil,Centro de Referência para Doenças Raras IFF/Fiocruz, Rio de Janeiro, RJ, Brazil,Laboratório de Medicina Genômica IFF/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Juliana Cantagalli Pfisterer
- Centro de Genética Médica IFF/Fiocruz, Rio de Janeiro, RJ, Brazil,Centro de Referência para Doenças Raras IFF/Fiocruz, Rio de Janeiro, RJ, Brazil,Laboratório de Medicina Genômica IFF/Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | - Deborah Antunes
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Ernesto Raúl Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica, Fundação Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Juan Llerena Jr
- Centro de Genética Médica IFF/Fiocruz, Rio de Janeiro, RJ, Brazil,Centro de Referência para Doenças Raras IFF/Fiocruz, Rio de Janeiro, RJ, Brazil,Faculdade de Medicina de Petrópolis, FASE, Petrópolis, RJ, Brazil,INAGEMP, Rio de Janeiro, RJ, Brazil,Correspondence: Juan Llerena Jr, Email
| | - Sayonara Gonzalez
- Centro de Genética Médica IFF/Fiocruz, Rio de Janeiro, RJ, Brazil,Centro de Referência para Doenças Raras IFF/Fiocruz, Rio de Janeiro, RJ, Brazil,Laboratório de Medicina Genômica IFF/Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Muthusamy K, El-Jabali A, Ongie LJ, Dhamija R, Babovic-Vuksanovic D. Neurofibromatosis 1 in the setting of dual diagnosis: Diagnostic and management conundrums. Am J Med Genet A 2021; 188:911-918. [PMID: 34797032 DOI: 10.1002/ajmg.a.62575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/27/2021] [Accepted: 10/29/2021] [Indexed: 11/07/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a common neurocutaneous disorder characterized by development of pigmentary skin changes, neurogenic tumors, and other manifestations involving multiple organ systems. Penetrance is complete, though expressivity is quite variable even among the family members. Given that NF1 is a common hereditary condition, existence of a second genetic disorder in NF1 patients is not unexpected. During comprehensive evaluations of individuals with NF1, we encountered 11 patients with dual diagnosis who contributed to phenotypic complexity and challenges for long-term management. Examples include Prader-Willi Syndrome, Autosomal Dominant Polycystic Kidney Disease, Down syndrome, infantile myofibromatosis, Craniosynostosis, cleft lip and palate, 47,XYY, 22q11.2 duplication, 15q13.3 deletion syndrome, and BRCA2- and ATM- related cancer predisposition syndromes. Presence of dysmorphism, developmental delay, atypical tumors, and family history of other genetic disorders including cancers appears as determinants to consider a second genetic etiology and helps to differentiate from an extreme phenotypic spectrum of NF1. Clinicians should have high index of suspicion to exclude coexisting disorders, as apart from providing comprehensive medical care. This also has potential implications in genetic counseling. Long-term effects of the synergistic mechanisms leading to phenotypic complexity and patient outcomes are yet to be characterized, with follow-up needed.
Collapse
Affiliation(s)
- Karthik Muthusamy
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Laura J Ongie
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Radhika Dhamija
- Department of Clinical Genomics, Mayo Clinic, Phoenix, Arizona, USA.,Department of Neurology, Mayo Clinic, Phoenix, Arizona, USA
| | - Dusica Babovic-Vuksanovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA.,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
D'Amico A, Rosano C, Pannone L, Pinna V, Assunto A, Motta M, Ugga L, Daniele P, Mandile R, Mariniello L, Siano MA, Santoro C, Piluso G, Martinelli S, Strisciuglio P, De Luca A, Tartaglia M, Melis D. Clinical variability of neurofibromatosis 1: A modifying role of cooccurring PTPN11 variants and atypical brain MRI findings. Clin Genet 2021; 100:563-572. [PMID: 34346503 DOI: 10.1111/cge.14040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/04/2023]
Abstract
Neurofibromatosis 1 (NF1) is a disorder characterized by variable expressivity caused by loss-of-function variants in NF1, encoding neurofibromin, a protein negatively controlling RAS signaling. We evaluated whether concurrent variation in proteins functionally linked to neurofibromin contribute to the variable expressivity of NF1. Parallel sequencing of a RASopathy gene panel in 138 individuals with molecularly confirmed clinical diagnosis of NF1 identified missense variants in PTPN11, encoding SHP2, a positive regulator of RAS signaling, in four subjects from three unrelated families. Three subjects were heterozygous for a gain-of-function variant and showed a severe expression of NF1 (developmental delay, multiple cerebral neoplasms and peculiar cortical MRI findings), and features resembling Noonan syndrome (a RASopathy caused by activating variants in PTPN11). Conversely, the fourth subject, who showed an attenuated presentation, carried a previously unreported PTPN11 variant that had a hypomorphic behavior in vitro. Our findings document that functionally relevant PTPN11 variants occur in a small but significant proportion of subjects with NF1 modulating disease presentation, suggesting a model in which the clinical expression of pathogenic NF1 variants is modified by concomitant dysregulation of protein(s) functionally linked to neurofibromin. We also suggest targeting of SHP2 function as an approach to treat evolutive complications of NF1.
Collapse
Affiliation(s)
- Alessandra D'Amico
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.,Tortorella Private Hospital, Salerno, Italy
| | - Carmen Rosano
- Translational Medical Sciences Department, University of Naples "Federico II", Naples, Italy
| | - Luca Pannone
- Genetics and Rare Diseases Research Division, Pediatric Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Valentina Pinna
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Antonia Assunto
- Translational Medical Sciences Department, University of Naples "Federico II", Naples, Italy
| | - Marialetizia Motta
- Genetics and Rare Diseases Research Division, Pediatric Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.,Tortorella Private Hospital, Salerno, Italy
| | - Paola Daniele
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Roberta Mandile
- Translational Medical Sciences Department, University of Naples "Federico II", Naples, Italy
| | - Lucio Mariniello
- Translational Medical Sciences Department, University of Naples "Federico II", Naples, Italy
| | - Maria Anna Siano
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Salerno, Italy
| | - Claudia Santoro
- Referral Centre of Neurofibromatosis, Department of Woman and Child, Specialistic and General Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Pietro Strisciuglio
- Translational Medical Sciences Department, University of Naples "Federico II", Naples, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Pediatric Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Daniela Melis
- Translational Medical Sciences Department, University of Naples "Federico II", Naples, Italy.,Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Salerno, Italy
| |
Collapse
|
6
|
Santoro C, Giugliano T, Bernardo P, Palladino F, Torella A, Del Vecchio Blanco F, Onore ME, Carotenuto M, Nigro V, Piluso G. A novel RAB39B mutation and concurrent de novo NF1 mutation in a boy with neurofibromatosis type 1, intellectual disability, and autism: a case report. BMC Neurol 2020; 20:327. [PMID: 32873259 PMCID: PMC7460788 DOI: 10.1186/s12883-020-01911-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mutations in RAB39B at Xq28 causes a rare form of X-linked intellectual disability (ID) and Parkinson's disease. Neurofibromatosis type 1 (NF1) is caused by heterozygous mutations in NF1 occurring de novo in about 50% of cases, usually due to paternal gonadal mutations. This case report describes clinical and genetic findings in a boy with the occurrence of two distinct causative mutations in NF1 and RAB39B explaining the observed phenotype. CASE PRESENTATION Here we report a 7-year-old boy with multiple café-au-lait macules (CALMs) and freckling, severe macrocephaly, peculiar facial gestalt, severe ID with absent speech, epilepsy, autistic traits, self-harming, and aggressiveness. Proband is an only child born to a father aged 47. Parents did not present signs of NF1, while a maternal uncle showed severe ID, epilepsy, and tremors.By RNA analysis of NF1, we identified a de novo splicing variant (NM_000267.3:c.6579+2T>C) in proband, which explained NF1 clinical features but not the severe ID, behavioral problems, and aggressiveness. Family history suggested an X-linked condition and massively parallel sequencing of X-exome identified a novel RAB39B mutation (NM_171998.2:c.436_447del) in proband, his mother, and affected maternal uncle, subsequently validated by Sanger sequencing in these and other family members. CONCLUSIONS The case presented here highlights how concurrent genetic defects should be considered in NF1 patients when NF1 mutations cannot reasonably explain all the observed clinical features.
Collapse
Affiliation(s)
- Claudia Santoro
- Department of Physical and Mental Health, and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Department of Women, Children, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Teresa Giugliano
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio,7 -, 80138, Naples, Italy
| | - Pia Bernardo
- Department of Neurosciences, Pediatric Hospital Santobono-Pausilipon, Naples, Italy
| | - Federica Palladino
- Department of Women, Children, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio,7 -, 80138, Naples, Italy
| | - Francesca Del Vecchio Blanco
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio,7 -, 80138, Naples, Italy
| | - Maria Elena Onore
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio,7 -, 80138, Naples, Italy
| | - Marco Carotenuto
- Department of Physical and Mental Health, and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio,7 -, 80138, Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio,7 -, 80138, Naples, Italy.
| |
Collapse
|
7
|
Radtke HB, Bergner AL, Goetsch AL, McGowan C, Panzer K, Cannon A. Genetic Counseling for Neurofibromatosis 1, Neurofibromatosis 2, and Schwannomatosis—Practice Resource of the National Society of Genetic Counselors. J Genet Couns 2020; 29:692-714. [PMID: 32602153 DOI: 10.1002/jgc4.1303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Heather B. Radtke
- Department of Pediatrics Medical College of Wisconsin Milwaukee Wisconsin USA
- Children’s Tumor Foundation New York New York USA
| | - Amanda L. Bergner
- Department of Genetics and Development Columbia University New York New York USA
| | - Allison L. Goetsch
- Division of Genetics Birth Defects and Metabolism, Ann and Robert H. Lurie Children’s Hospital of Chicago Chicago Illinois USA
- Department of Pediatrics Northwestern University Chicago Illinois USA
| | - Caroline McGowan
- Division of Genetics and Genomics Boston Children’s Hospital Boston Massachusetts USA
| | - Karin Panzer
- Department of Pediatrics University of Iowa Hospitals and Clinics Iowa City Iowa USA
| | - Ashley Cannon
- Department of Genetics University of Alabama at Birmingham Birmingham Alabama USA
| |
Collapse
|
8
|
Peces R, Mena R, Martín Y, Hernández C, Peces C, Tellería D, Cuesta E, Selgas R, Lapunzina P, Nevado J. Co-occurrence of neurofibromatosis type 1 and optic nerve gliomas with autosomal dominant polycystic kidney disease type 2. Mol Genet Genomic Med 2020; 8:e1321. [PMID: 32533764 PMCID: PMC7434601 DOI: 10.1002/mgg3.1321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) and neurofibromatosis type 1 (NF1) are both autosomal dominant disorders with a high rate of novel mutations. However, the two disorders have distinct and well-delineated genetic, biochemical, and clinical findings. Only a few cases of coexistence of ADPKD and NF1 in a single individual have been reported, but the possible implications of this association are unknown. METHODS We report an ADPKD male belonging to a family of several affected members in three generations associated with NF1 and optic pathway gliomas. The clinical diagnosis of ADPKD and NF1 was performed by several image techniques. RESULTS Linkage analysis of ADPKD family was consistent to the PKD2 locus by a nonsense mutation, yielding a truncated polycystin-2 by means of next-generation sequencing. The diagnosis of NF1 was confirmed by mutational analysis of this gene showing a 4-bp deletion, resulting in a truncated neurofibromin, as well. The impact of this association was investigated by analyzing putative genetic interactions and by comparing the evolution of renal size and function in the proband with his older brother with ADPKD without NF1 and with ADPKD cohorts. CONCLUSION Despite the presence of both conditions there was not additive effect of NF1 and PKD2 in terms of the severity of tumor development and/or ADPKD progression.
Collapse
Affiliation(s)
- Ramón Peces
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, Madrid, Spain
| | - Rocío Mena
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Yolanda Martín
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Concepción Hernández
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Carlos Peces
- Area de Tecnologías de la Información, SESCAM, Toledo, Spain
| | - Dolores Tellería
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Emilio Cuesta
- Servicio de Radiología, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, Madrid, Spain
| | - Rafael Selgas
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, Madrid, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| |
Collapse
|
9
|
Zhang Z, Chen X, Zhou R, Yin H, Xu J. Chinese patient with neurofibromatosis-Noonan syndrome caused by novel heterozygous NF1 exons 1-58 deletion: a case report. BMC Pediatr 2020; 20:190. [PMID: 32357851 PMCID: PMC7193357 DOI: 10.1186/s12887-020-02102-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurofibromatosis-Noonan syndrome (NFNS) is a rare autosomal dominant hereditary disease. We present a case of NFNS due to the heterozygous deletion of exons 1-58 of the NF1 gene on chromosome 17 in a 15-month-old boy. CASE PRESENTATION A 15-month-old boy was admitted for motor and language developmental delay, numerous café-au-lait spots, hypertelorism, left blepharoptosis, pectus excavatum, cryptorchidism, secondary atrial septal defect, and UBOs (undefined bright objects) revealed by cranial MRI T2FLAIR in basal ganglia and cerebellum. Using whole exome sequencing, we identified a de novo heterozygous deletion including exons 1-58 of the NF1 gene. CONCLUSION Although genetic tests are useful tools for diagnosis of NFNS, NF1, or NS, comprehensive analysis of genetic factors and phenotypes is indispensable in the clinical practice. To the best of our knowledge, this case presents the first Chinese NFNS case due to NF1 defects, and the NF1 exons 1-58 deletion-related phenotype is unlike any other reported case.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Xin Chen
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China.
| | - Rui Zhou
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Huaixiang Yin
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Jiali Xu
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China.
| |
Collapse
|
10
|
Xu L, Zhou C, Pan R, Tang J, Wang J, Li B, Huang T, Duan S, Xu C. PTPN11 hypomethylation is associated with gastric cancer progression. Oncol Lett 2020; 19:1693-1700. [PMID: 32194661 PMCID: PMC7039138 DOI: 10.3892/ol.2020.11250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 10/14/2019] [Indexed: 11/06/2022] Open
Abstract
Protein tyrosine phosphatase non-receptor type 11 (PTPN11) encodes the tyrosine phosphatase SHP-2 that is overexpressed in gastric cancer (GC). In the present study, the association of PTPN11 methylation levels with the incidence of GC and its correlation with SHP-2 overexpression were investigated. The methylation levels of PTPN11 in tumor and adjacent normal tissues of 112 GC patients were assessed by quantitative methylation specific PCR (qMSP). The Cancer Genome Atlas (TCGA) public database was used to analyze the association between PTPN11 methylation and PTPN11 expression. Survival analyses were conducted in order to evaluate the prognostic value of PTPN11 methylation for GC. The results of the qMSP analysis indicated that the methylation levels of PTPN11 in GC tumor tissues were significantly decreased compared with those noted in the normal adjacent tissues (mean with standard deviation: 40.91±26.33 vs. 51.99±37.37, P=0.007). An inverse correlation between PTPN11 methylation levels and PTPN11 mRNA expression levels (P=4×10-6, r=-0.237) was noted. Subgroup analyses indicated that the association of PTPN11 hypomethylation with the incidence of GC was specific to male subjects (P=0.015), heavy drinking patients (P=0.019), patients with poor tumor differentiation (P=0.010) and patients with tumor node and metastasis (TNM) stage III+IV (P=0.008). Kaplan-Meier analyses and log-rank test suggested that PTPN11 hypomethylation was not associated with GC patient overall survival (P=0.605) and recurrence (P=0.485), although it could predict the recurrence of GC patients up to and including 60 years (≤60, P=0.049). The results indicated that PTPN11 levels were hypomethylated in GC patients. TCGA data analysis suggested that PTPN11 hypomethylation could cause an upregulation in the transcription levels of PTPN11. Although, this may explain the pattern of SHP-2 overexpression in GC, additional studies are required to verify this hypothesis. The association of PTPN11 hypomethylation with GC incidence may be specific to male patients, heavy drinking patients, patients with poor tumor differentiation and patients with TNM stage of III+IV. PTPN11 hypomethylation can be considered a biomarker for the recurrence of GC patients with an age of 60 years or lower.
Collapse
Affiliation(s)
- Lele Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215200, P.R. China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Junjian Tang
- Department of Vascular Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
| | - Jinzhi Wang
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215007, P.R. China
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Tianyi Huang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215200, P.R. China
| |
Collapse
|
11
|
Koczkowska M, Callens T, Chen Y, Gomes A, Hicks AD, Sharp A, Johns E, Uhas KA, Armstrong L, Bosanko KA, Babovic‐Vuksanovic D, Baker L, Basel DG, Bengala M, Bennett JT, Chambers C, Clarkson LK, Clementi M, Cortés FM, Cunningham M, D'Agostino MD, Delatycki MB, Digilio MC, Dosa L, Esposito S, Fox S, Freckmann M, Fauth C, Giugliano T, Giustini S, Goetsch A, Goldberg Y, Greenwood RS, Griffis C, Gripp KW, Gupta P, Haan E, Hachen RK, Haygarth TL, Hernández‐Chico C, Hodge K, Hopkin RJ, Hudgins L, Janssens S, Keller K, Kelly‐Mancuso G, Kochhar A, Korf BR, Lewis AM, Liebelt J, Lichty A, Listernick RH, Lyons MJ, Maystadt I, Martinez Ojeda M, McDougall C, McGregor LK, Melis D, Mendelsohn N, Nowaczyk MJ, Ortenberg J, Panzer K, Pappas JG, Pierpont ME, Piluso G, Pinna V, Pivnick EK, Pond DA, Powell CM, Rogers C, Ruhrman Shahar N, Rutledge SL, Saletti V, Sandaradura SA, Santoro C, Schatz UA, Schreiber A, Scott DA, Sellars EA, Sheffer R, Siqveland E, Slopis JM, Smith R, Spalice A, Stockton DW, Streff H, Theos A, Tomlinson GE, Tran G, Trapane PL, Trevisson E, Ullrich NJ, Van den Ende J, Schrier Vergano SA, Wallace SE, Wangler MF, Weaver DD, Yohay KH, Zackai E, Zonana J, Zurcher V, Claes KBM, Eoli M, Martin Y, Wimmer K, De Luca A, Legius E, Messiaen LM. Clinical spectrum of individuals with pathogenic NF1 missense variants affecting p.Met1149, p.Arg1276, and p.Lys1423: genotype-phenotype study in neurofibromatosis type 1. Hum Mutat 2020; 41:299-315. [PMID: 31595648 PMCID: PMC6973139 DOI: 10.1002/humu.23929] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/03/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022]
Abstract
We report 281 individuals carrying a pathogenic recurrent NF1 missense variant at p.Met1149, p.Arg1276, or p.Lys1423, representing three nontruncating NF1 hotspots in the University of Alabama at Birmingham (UAB) cohort, together identified in 1.8% of unrelated NF1 individuals. About 25% (95% confidence interval: 20.5-31.2%) of individuals heterozygous for a pathogenic NF1 p.Met1149, p.Arg1276, or p.Lys1423 missense variant had a Noonan-like phenotype, which is significantly more compared with the "classic" NF1-affected cohorts (all p < .0001). Furthermore, p.Arg1276 and p.Lys1423 pathogenic missense variants were associated with a high prevalence of cardiovascular abnormalities, including pulmonic stenosis (all p < .0001), while p.Arg1276 variants had a high prevalence of symptomatic spinal neurofibromas (p < .0001) compared with "classic" NF1-affected cohorts. However, p.Met1149-positive individuals had a mild phenotype, characterized mainly by pigmentary manifestations without externally visible plexiform neurofibromas, symptomatic spinal neurofibromas or symptomatic optic pathway gliomas. As up to 0.4% of unrelated individuals in the UAB cohort carries a p.Met1149 missense variant, this finding will contribute to more accurate stratification of a significant number of NF1 individuals. Although clinically relevant genotype-phenotype correlations are rare in NF1, each affecting only a small percentage of individuals, together they impact counseling and management of a significant number of the NF1 population.
Collapse
Affiliation(s)
| | - Tom Callens
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlbama
| | - Yunjia Chen
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlbama
| | - Alicia Gomes
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlbama
| | - Alesha D. Hicks
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlbama
| | - Angela Sharp
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlbama
| | - Eric Johns
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlbama
| | | | - Linlea Armstrong
- Department of Medical Genetics, BC Women's HospitalUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Katherine Armstrong Bosanko
- Division of Clinical Genetics and Metabolism, Arkansas Children's HospitalUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | | | - Laura Baker
- Division of Medical GeneticsAl DuPont Hospital for ChildrenWilmingtonDelaware
| | | | - Mario Bengala
- U.O.C Laboratorio di Genetica Medica, Dipartimento di OncoematologiaFondazione Policlinico di Tor VergataRomeItaly
| | - James T. Bennett
- Division of Genetic Medicine, Department of PediatricsUniversity of WashingtonSeattleWashington
| | - Chelsea Chambers
- Department of NeurologyUniversity of Virginia Medical CenterCharlottesvilleVirginia
| | | | - Maurizio Clementi
- Clinical Genetics Unit, Department of Women's and Children's HealthUniversity of PadovaPadovaItaly
| | | | - Mitch Cunningham
- Division of Genetic, Genomic, and Metabolic Disorders, Detroit Medical CenterChildren's Hospital of MichiganDetroitMichigan
| | | | - Martin B. Delatycki
- Bruce Lefroy Centre for Genetic Health ResearchMurdoch Childrens Research InstituteParkvilleVictoriaAustralia
| | - Maria C. Digilio
- Medical Genetics Unit, Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Laura Dosa
- SOC Genetica MedicaAOU MeyerFlorenceItaly
| | - Silvia Esposito
- Developmental Neurology UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Stephanie Fox
- Division of Medical GeneticsMcGill University Health CentreMontréalQuebecCanada
| | - Mary‐Louise Freckmann
- Department of Clinical GeneticsRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Christine Fauth
- Division of Human GeneticsMedical University of InnsbruckInnsbruckAustria
| | - Teresa Giugliano
- Department of Precision MedicineUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Sandra Giustini
- Department of Dermatology and Venereology, Policlinico Umberto ISapienza University of RomeRomeItaly
| | - Allison Goetsch
- Department of PediatricsNorthwestern University Feinberg School of MedicineChicagoIllinois
| | - Yael Goldberg
- The Raphael Recanati Genetics InstituteRabin Medical CenterPetah TikvaIsrael
| | - Robert S. Greenwood
- Division of Child NeurologyUniversity of North Carolina School of MedicineChapel HillNorth Carolina
| | | | - Karen W. Gripp
- Division of Medical GeneticsAl DuPont Hospital for ChildrenWilmingtonDelaware
| | - Punita Gupta
- Neurofibromatosis Diagnostic and Treatment ProgramSt. Joseph's Children's HospitalPatersonNew Jersey
| | - Eric Haan
- Adult Genetics UnitRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - Rachel K. Hachen
- Neurofibromatosis ProgramChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Tamara L. Haygarth
- Carolinas HealthCare SystemLevine Children's Specialty CenterCharlotteNorth Carolina
| | - Concepción Hernández‐Chico
- Department of Genetics, Hospital Universitario Ramón y CajalInstitute of Health Research (IRYCIS) and Center for Biomedical Research‐Network of Rare Diseases (CIBERER)MadridSpain
| | - Katelyn Hodge
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndiana
| | - Robert J. Hopkin
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhio
| | - Louanne Hudgins
- Division of Medical GeneticsStanford University School of MedicineStanfordCalifornia
| | - Sandra Janssens
- Center for Medical GeneticsGhent University HospitalGhentBelgium
| | - Kory Keller
- Department of Molecular and Medical GeneticsOregon Health and Science UniversityPortlandOregon
| | | | - Aaina Kochhar
- Department of Medical Genetics and MetabolismValley Children's HealthcareMaderaCalifornia
| | - Bruce R. Korf
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlbama
| | - Andrea M. Lewis
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| | - Jan Liebelt
- The South Australian Clinical Genetics Service at the Women's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | | | - Robert H. Listernick
- Department of PediatricsNorthwestern University Feinberg School of MedicineChicagoIllinois
| | | | - Isabelle Maystadt
- Center for Human GeneticsInstitute of Pathology and Genetics (IPG)GosseliesBelgium
| | | | - Carey McDougall
- Division of Human Genetics, Children's Hospital of PhiladelphiaUniversity of Pennsylvania School of MedicinePhiladelphiaPennsylvania
| | - Lesley K. McGregor
- The South Australian Clinical Genetics Service at the Women's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Daniela Melis
- Section of Pediatrics, Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Nancy Mendelsohn
- Genomics Medicine ProgramChildren's Hospital MinnesotaMinneapolisMinnesota
| | | | - June Ortenberg
- Division of Medical GeneticsMcGill University Health CentreMontréalQuebecCanada
| | - Karin Panzer
- University of Iowa Stead Family Children's HospitalIowa CityIowa
| | - John G. Pappas
- Division of Clinical Genetic Services, Department of PediatricsNYU School of MedicineNew YorkNew York
| | - Mary Ella Pierpont
- Department of Pediatrics and OpthalmologyUniversity of MinnesotaMinneapolisMinnesota
| | - Giulio Piluso
- Department of Precision MedicineUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Valentina Pinna
- Molecular Genetics UnitIRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoFoggiaItaly
| | - Eniko K. Pivnick
- Department of Pediatrics and Department of OphthalmologyUniversity of Tennessee Health Science CenterMemphisTennessee
| | - Dinel A. Pond
- Genomics Medicine ProgramChildren's Hospital MinnesotaMinneapolisMinnesota
| | - Cynthia M. Powell
- Department of Genetics and Department of PediatricsUniversity of North Carolina School of MedicineChapel HillNorth Carolina
| | - Caleb Rogers
- Department of Molecular and Medical GeneticsOregon Health and Science UniversityPortlandOregon
| | - Noa Ruhrman Shahar
- The Raphael Recanati Genetics InstituteRabin Medical CenterPetah TikvaIsrael
| | - S. Lane Rutledge
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlbama
| | - Veronica Saletti
- Developmental Neurology UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Sarah A. Sandaradura
- Division of Clinical Genetics, Department of Paediatrics and Child Health, Children's Hospital at WestmeadUniversity of SydneySydneyNew South WalesAustralia
| | - Claudia Santoro
- Specialistic and General Surgery Unit, Department of Woman and Child, Referral Centre of NeurofibromatosisUniversità degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Ulrich A. Schatz
- Division of Human GeneticsMedical University of InnsbruckInnsbruckAustria
| | | | - Daryl A. Scott
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| | - Elizabeth A. Sellars
- Division of Clinical Genetics and Metabolism, Arkansas Children's HospitalUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | - Ruth Sheffer
- Department of Genetics and Metabolic DiseasesHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | | | - John M. Slopis
- Department of Neuro‐OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Rosemarie Smith
- Division of Genetics, Department of PediatricsMaine Medical CenterPortlandMaine
| | - Alberto Spalice
- Child Neurology Division, Department of PediatricsSapienza University of RomeRomeItaly
| | - David W. Stockton
- Division of Genetic, Genomic, and Metabolic Disorders, Detroit Medical CenterChildren's Hospital of MichiganDetroitMichigan
| | - Haley Streff
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| | - Amy Theos
- Department of DermatologyUniversity of Alabama at BirminghamBirminghamAlabama
| | - Gail E. Tomlinson
- Division of Pediatric Hematology–Oncology, Greehey Children's Cancer Research InstituteThe University of Texas Health Science CenterSan AntonioTexas
| | - Grace Tran
- Department of Clinical Cancer GeneticsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Pamela L. Trapane
- Division of Pediatric Genetics, Department of PediatricsUniversity of Florida College of MedicineJacksonvilleFlorida
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's HealthUniversity of PadovaPadovaItaly
| | - Nicole J. Ullrich
- Department of NeurologyBoston Children's HospitalBostonMassachusetts
| | - Jenneke Van den Ende
- Center for Medical GeneticsUniversity of Antwerp and Antwerp University HospitalAntwerpBelgium
| | | | - Stephanie E. Wallace
- Division of Genetic Medicine, Department of PediatricsUniversity of WashingtonSeattleWashington
| | - Michael F. Wangler
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| | - David D. Weaver
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndiana
| | - Kaleb H. Yohay
- Department of Neurology, New York University School of MedicineLangone Medical CenterNew YorkNew York
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of PhiladelphiaUniversity of Pennsylvania School of MedicinePhiladelphiaPennsylvania
| | - Jonathan Zonana
- Department of Molecular and Medical GeneticsOregon Health and Science UniversityPortlandOregon
| | | | | | - Marica Eoli
- Division of Molecular Neuro‐OncologyFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Yolanda Martin
- Department of Genetics, Hospital Universitario Ramón y CajalInstitute of Health Research (IRYCIS) and Center for Biomedical Research‐Network of Rare Diseases (CIBERER)MadridSpain
| | - Katharina Wimmer
- Division of Human GeneticsMedical University of InnsbruckInnsbruckAustria
| | - Alessandro De Luca
- Molecular Genetics UnitIRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoFoggiaItaly
| | - Eric Legius
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | | |
Collapse
|
12
|
Pinna V, Daniele P, Calcagni G, Mariniello L, Criscione R, Giardina C, Lepri FR, Hozhabri H, Alberico A, Cavone S, Morella AT, Mandile R, Annunziata F, Di Giosaffatte N, D'Asdia MC, Versacci P, Capolino R, Strisciuglio P, Giustini S, Melis D, Digilio MC, Tartaglia M, Marino B, De Luca A. Prevalence, Type, and Molecular Spectrum of NF1 Mutations in Patients with Neurofibromatosis Type 1 and Congenital Heart Disease. Genes (Basel) 2019; 10:E675. [PMID: 31487937 PMCID: PMC6770533 DOI: 10.3390/genes10090675] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to assess the prevalence and type of congenital heart disease (CHD) and the associated mutation spectrum in a large series of patients with neurofibromatosis type 1 (NF1), and correlate the mutation type with the presence and subgroups of cardiac defects. The study cohort included 493 individuals with molecularly confirmed diagnosis of NF1 for whom cardiac evaluation data were available. CHD was reported in 62/493 (12.6%) patients. Among these patients, 23/62 (37.1%) had pulmonary valve stenosis/dysplasia, 20/62 (32.3%) had mitral valve anomalies, and 10/62 (16.1%) had septal defects. Other defects occurred as rare events. In this NF1 subcohort, three subjects carried a whole-gene deletion, while 59 were heterozygous for an intragenic mutation. A significantly increased prevalence of non-truncating intragenic mutations was either observed in individuals with CHD (22/59, 37.3%) or with pulmonary valve stenosis (13/20, 65.0%), when compared to individuals without CHD (89/420, 21.2%) (p = 0.038) or pulmonary valve stenosis (98/459, 21.4%) (p = 0.002). Similarly, patients with non-truncating NF1 mutations displayed two- and six-fold higher risk of developing CHD (odds ratio = 1.9713, 95% confidence interval (CI): 1.1162-3.4814, p = 0.0193) and pulmonary valve stenosis (odds ratio = 6.8411, 95% CI: 2.6574-17.6114, p = 0.0001), respectively. Noteworthy, all but one patient (19/20, 95.0%) with pulmonary valve stenosis, and 18/35 (51.4%) patients with other CHDs displayed Noonan syndrome (NS)-like features. Present data confirm the significant frequency of CHD in patients with NF1, and provide further evidence for a higher than expected prevalence of NF1 in-frame variants and NS-like characteristics in NF1 patients with CHD, particularly with pulmonary valve stenosis.
Collapse
Affiliation(s)
- Valentina Pinna
- UOS Diagnosi Genetica Molecolare, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Paola Daniele
- UOS Diagnosi Genetica Molecolare, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Giulio Calcagni
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Pediatric Hospital and Research Institute, 00165 Rome, Italy.
| | - Lucio Mariniello
- Department of Translational Medical Science, Section of Pediatrics, Federico II University, 80100 Naples, Italy.
| | - Roberta Criscione
- UOS Diagnosi Genetica Molecolare, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Chiara Giardina
- UOS Diagnosi Genetica Molecolare, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Francesca Romana Lepri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy.
| | - Hossein Hozhabri
- UOS Diagnosi Genetica Molecolare, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Angela Alberico
- UOS Diagnosi Genetica Molecolare, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Stefania Cavone
- UOS Diagnosi Genetica Molecolare, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Annunziata Tina Morella
- UOS Diagnosi Genetica Molecolare, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Roberta Mandile
- Department of Translational Medical Science, Section of Pediatrics, Federico II University, 80100 Naples, Italy.
| | - Francesca Annunziata
- UOS Diagnosi Genetica Molecolare, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Niccolò Di Giosaffatte
- UOS Diagnosi Genetica Molecolare, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Maria Cecilia D'Asdia
- UOS Diagnosi Genetica Molecolare, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Paolo Versacci
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Rossella Capolino
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy.
| | - Pietro Strisciuglio
- Department of Translational Medical Science, Section of Pediatrics, Federico II University, 80100 Naples, Italy.
| | - Sandra Giustini
- Department of Dermatology and Venereology, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy.
| | - Daniela Melis
- Department of Translational Medical Science, Section of Pediatrics, Federico II University, 80100 Naples, Italy.
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy.
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy.
| | - Bruno Marino
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro De Luca
- UOS Diagnosi Genetica Molecolare, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| |
Collapse
|
13
|
Pacot L, Burin des Roziers C, Laurendeau I, Briand-Suleau A, Coustier A, Mayard T, Tlemsani C, Faivre L, Thomas Q, Rodriguez D, Blesson S, Dollfus H, Muller YG, Parfait B, Vidaud M, Gilbert-Dussardier B, Yardin C, Dauriat B, Derancourt C, Vidaud D, Pasmant E. One NF1 Mutation may Conceal Another. Genes (Basel) 2019; 10:genes10090633. [PMID: 31443423 PMCID: PMC6769760 DOI: 10.3390/genes10090633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/10/2019] [Accepted: 08/20/2019] [Indexed: 01/01/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disease with complete penetrance but high variable expressivity. NF1 is caused by loss-of-function mutations in the NF1 gene, a negative regulator of the RAS-MAPK pathway. The NF1 gene has one of the highest mutation rates in human disorders, which may explain the outbreak of independent de novo variants in the same family. Here, we report the co-occurrence of pathogenic variants in the NF1 and SPRED1 genes in six families with NF1 and Legius syndrome, using next-generation sequencing. In five of these families, we observed the co-occurrence of two independent NF1 variants. All NF1 variants were classified as pathogenic, according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) guidelines. In the sixth family, one sibling inherited a complete deletion of the NF1 gene from her mother and carried a variant of unknown significance in the SPRED1 gene. This variant was also present in her brother, who was diagnosed with Legius syndrome, a differential diagnosis of NF1. This work illustrates the complexity of molecular diagnosis in a not-so-rare genetic disease.
Collapse
Affiliation(s)
- Laurence Pacot
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France
| | - Cyril Burin des Roziers
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France
| | - Ingrid Laurendeau
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France
| | - Audrey Briand-Suleau
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France
| | - Audrey Coustier
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
| | - Théodora Mayard
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
| | - Camille Tlemsani
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France
| | - Laurence Faivre
- Inserm, UMR 1231, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, 21079 Dijon, France
| | - Quentin Thomas
- Inserm, UMR 1231, Génétique des Anomalies du Développement, Université de Bourgogne, 21079 Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, 21079 Dijon, France
| | - Diana Rodriguez
- Department of Child Neurology and National Reference Center for Neurogenetic Disorders, Armand Trousseau Hospital, GHUEP, AP-HP, INSERM U1141, 75012 Paris, France
- GRC n°19 ConCer-LD, Sorbonne Université, 75012 Paris, France
| | - Sophie Blesson
- Service de Génétique, CHRU de Tours, 37044 Tours, France
| | - Hélène Dollfus
- Centre de référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Civil, 67091 Strasbourg, France
- Service de Génétique Médicale, Hôpital de Hautepierre, 67200 Strasbourg, France
- Laboratoire de Génétique Médicale, INSERM U1112, 67000 Strasbourg, France
| | | | - Béatrice Parfait
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France
| | - Michel Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France
| | | | - Catherine Yardin
- Department of Cytogenetics and clinical genetics, Limoges University Hospital, 87042 Limoges, France
- UMR 7252, Limoges University, CNRS, XLIM, 87000 Limoges, France
| | - Benjamin Dauriat
- Department of Cytogenetics and clinical genetics, Limoges University Hospital, 87042 Limoges, France
| | - Christian Derancourt
- EA 4537, Antilles University, 97261 Fort-de-France, Martinique, France
- DRCI, Martinique University Hospital, 97261 Fort-de-France, Martinique, France
| | - Dominique Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France
| | - Eric Pasmant
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France.
- Institut Cochin, INSERM U1016, Université Paris Descartes, 75014 Paris, France.
| |
Collapse
|
14
|
Giugliano T, Santoro C, Torella A, Del Vecchio Blanco F, Grandone A, Onore ME, Melone MAB, Straccia G, Melis D, Piccolo V, Limongelli G, Buono S, Perrotta S, Nigro V, Piluso G. Clinical and Genetic Findings in Children with Neurofibromatosis Type 1, Legius Syndrome, and Other Related Neurocutaneous Disorders. Genes (Basel) 2019; 10:genes10080580. [PMID: 31370276 PMCID: PMC6722641 DOI: 10.3390/genes10080580] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
Pigmentary manifestations can represent an early clinical sign in children affected by Neurofibromatosis type 1 (NF1), Legius syndrome, and other neurocutaneous disorders. The differential molecular diagnosis of these pathologies is a challenge that can now be met by combining next generation sequencing of target genes with concurrent second-level tests, such as multiplex ligation-dependent probe amplification and RNA analysis. We clinically and genetically investigated 281 patients, almost all pediatric cases, presenting with either NF1 (n = 150), only pigmentary features (café au lait macules with or without freckling; (n = 95), or clinical suspicion of other RASopathies or neurocutaneous disorders (n = 36). The causative variant was identified in 239 out of the 281 patients analyzed (85.1%), while 42 patients remained undiagnosed (14.9%). The NF1 and SPRED1 genes were mutated in 73.3% and 2.8% of cases, respectively. The remaining 8.9% carried mutations in different genes associated with other disorders. We achieved a molecular diagnosis in 69.5% of cases with only pigmentary manifestations, allowing a more appropriate clinical management of these patients. Our findings, together with the increasing availability and sharing of clinical and genetic data, will help to identify further novel genotype–phenotype associations that may have a positive impact on patient follow-up.
Collapse
Affiliation(s)
- Teresa Giugliano
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Claudia Santoro
- Departement of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138 Napoli, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Francesca Del Vecchio Blanco
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Anna Grandone
- Departement of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138 Napoli, Italy
| | - Maria Elena Onore
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Mariarosa Anna Beatrice Melone
- Department of Medical Sciences and Advanced Surgery, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138 Napoli, Italy
| | - Giulia Straccia
- Department of Medical Sciences and Advanced Surgery, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138 Napoli, Italy
| | - Daniela Melis
- Department of Pediatrics, University of Naples "Federico II", Via Pansini 5, 80131 Napoli, Italy
| | - Vincenzo Piccolo
- Dermatology Unit, University of Campania "Luigi Vanvitelli", Via Pansini 5, 80131 Napoli, Italy
| | - Giuseppe Limongelli
- Department of Translational Medicine, University of Campania "Luigi Vanvitelli", Via L. Bianchi c/o Ospedale Monaldi, 80131 Napoli, Italy
| | - Salvatore Buono
- Department of Neurosciences, "Santobono-Pausilipon" Pediatric Hospital, Via Fiore 6, 80129 Napoli, Italy
| | - Silverio Perrotta
- Departement of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138 Napoli, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Napoli, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Napoli, Italy.
| |
Collapse
|
15
|
Parivesh A, Barseghyan H, Délot E, Vilain E. Translating genomics to the clinical diagnosis of disorders/differences of sex development. Curr Top Dev Biol 2019; 134:317-375. [PMID: 30999980 PMCID: PMC7382024 DOI: 10.1016/bs.ctdb.2019.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The medical and psychosocial challenges faced by patients living with Disorders/Differences of Sex Development (DSD) and their families can be alleviated by a rapid and accurate diagnostic process. Clinical diagnosis of DSD is limited by a lack of standardization of anatomical and endocrine phenotyping and genetic testing, as well as poor genotype/phenotype correlation. Historically, DSD genes have been identified through positional cloning of disease-associated variants segregating in families and validation of candidates in animal and in vitro modeling of variant pathogenicity. Owing to the complexity of conditions grouped under DSD, genome-wide scanning methods are better suited for identifying disease causing gene variant(s) and providing a clinical diagnosis. Here, we review a number of established genomic tools (karyotyping, chromosomal microarrays and exome sequencing) used in clinic for DSD diagnosis, as well as emerging genomic technologies such as whole-genome (short-read) sequencing, long-read sequencing, and optical mapping used for novel DSD gene discovery. These, together with gene expression and epigenetic studies can potentiate the clinical diagnosis of DSD diagnostic rates and enhance the outcomes for patients and families.
Collapse
Affiliation(s)
- Abhinav Parivesh
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States
| | - Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States
| | - Emmanuèle Délot
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
16
|
Siegfried A, Cances C, Denuelle M, Loukh N, Tauber M, Cavé H, Delisle MB. Noonan syndrome, PTPN11 mutations, and brain tumors. A clinical report and review of the literature. Am J Med Genet A 2017; 173:1061-1065. [PMID: 28328117 DOI: 10.1002/ajmg.a.38108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/05/2016] [Indexed: 01/02/2023]
Abstract
Noonan syndrome (NS), an autosomal dominant disorder, is characterized by short stature, congenital heart defects, developmental delay, and facial dysmorphism. PTPN11 mutations are the most common cause of NS. PTPN11 encodes a non-receptor protein tyrosine phosphatase, SHP2. Hematopoietic malignancies and solid tumors are associated with NS. Among solid tumors, brain tumors have been described in children and young adults but remain rather rare. We report a 16-year-old boy with PTPN11-related NS who, at the age of 12, was incidentally found to have a left temporal lobe brain tumor and a cystic lesion in the right thalamus. He developed epilepsy 2 years later. The temporal tumor was surgically resected because of increasing crises and worsening radiological signs. Microscopy showed nodules with specific glioneuronal elements or glial nodules, leading to the diagnosis of dysembryoplastic neuroepithelial tumor (DNT). Immunohistochemistry revealed positive nuclear staining with Olig2 and pERK in small cells. SHP2 plays a key role in RAS/MAPK pathway signaling which controls several developmental cell processes and oncogenesis. An amino-acid substitution in the N-terminal SHP2 domain disrupts the self-locking conformation and leads to ERK activation. Glioneuronal tumors including DNTs and pilocytic astrocytomas have been described in NS. This report provides further support for the relation of DNTs with RASopathies and for the implication of RAS/MAPK pathways in sporadic low-grade glial tumors including DNTs. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aurore Siegfried
- Department of Pathology, Institut Universitaire du Cancer, Oncopole, Toulouse, France.,Neuropathology, University Laboratory of Pathology, CHU Toulouse, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Claude Cances
- Pediatric Neurology, Hôpital des Enfants, CHU Toulouse, Toulouse, France
| | - Marie Denuelle
- Neurophysiological Investigation Department, Hôpital Pierre-Paul Riquet, CHU Toulouse, Toulouse, France
| | - Najat Loukh
- Neuropathology, University Laboratory of Pathology, CHU Toulouse, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Maïté Tauber
- Endocrinology, Obesity, Bone Disease, Genetics and Medical Gynecology, Hôpital des Enfants, INSERM UMR1043, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Hélène Cavé
- INSERM UMR-S1131, University Institute of Hematology, Université Paris Diderot, Sorbonne-Paris-Cité, Paris, France.,Genetics Department, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Paris, France
| | - Marie-Bernadette Delisle
- Neuropathology, University Laboratory of Pathology, CHU Toulouse, Université Toulouse III-Paul Sabatier, Toulouse, France.,INSERM UMR 1214 ToNIC, Université Toulouse III-Paul Sabatier, Toulouse, France
| |
Collapse
|
17
|
Simanshu DK, Nissley DV, McCormick F. RAS Proteins and Their Regulators in Human Disease. Cell 2017; 170:17-33. [PMID: 28666118 PMCID: PMC5555610 DOI: 10.1016/j.cell.2017.06.009] [Citation(s) in RCA: 1234] [Impact Index Per Article: 154.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/22/2017] [Accepted: 06/07/2017] [Indexed: 02/07/2023]
Abstract
RAS proteins are binary switches, cycling between ON and OFF states during signal transduction. These switches are normally tightly controlled, but in RAS-related diseases, such as cancer, RASopathies, and many psychiatric disorders, mutations in the RAS genes or their regulators render RAS proteins persistently active. The structural basis of the switch and many of the pathways that RAS controls are well known, but the precise mechanisms by which RAS proteins function are less clear. All RAS biology occurs in membranes: a precise understanding of RAS' interaction with membranes is essential to understand RAS action and to intervene in RAS-driven diseases.
Collapse
Affiliation(s)
- Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21701, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21701, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21701, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3(rd) Street, San Francisco, CA 94158, USA.
| |
Collapse
|
18
|
Yapijakis C, Pachis N, Voumvourakis C. Neurofibromatosis-Noonan Syndrome: A Possible Paradigm of the Combination of Genetic and Epigenetic Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 987:151-159. [PMID: 28971455 DOI: 10.1007/978-3-319-57379-3_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurofibromatosis-Noonan syndrome (NFNS) is a clinical entity possessing traits of autosomal dominant disorders neurofibromatosis type 1 (NF1) and Noonan syndrome (NS). Germline mutations that disrupt the RAS/MAPK pathway are involved in the pathogenesis of both NS and NF1. In light of a studied Greek family, a new theory for etiological pathogenesis of NFNS is suggested. The NFNS phenotype may be the final result of a combination of a genetic factor (a mutation in the NF1 gene) and an environmental factor with the epigenetic effects of muscle hypotonia (such as hydantoin in the reported Greek family), causing hypoplasia of the face and micrognathia.
Collapse
Affiliation(s)
- Christos Yapijakis
- Department of Oral and Maxillofacial Surgery, School of Medicine, University of Athens, Attikon Hospital, Athens, Greece. .,"Cephalogenetics" Genetic Center, Athens, Greece. .,Department of Neurology, School of Medicine, University of Athens, Eginition Hospital, Athens, Greece.
| | - Nikos Pachis
- "Cephalogenetics" Genetic Center, Athens, Greece
| | - Costas Voumvourakis
- 2nd Department of Neurology, School of Medicine, University of Athens, Attikon Hospital, Athens, Greece
| |
Collapse
|
19
|
Ascierto PA, Agarwala S, Botti G, Cesano A, Ciliberto G, Davies MA, Demaria S, Dummer R, Eggermont AM, Ferrone S, Fu YX, Gajewski TF, Garbe C, Huber V, Khleif S, Krauthammer M, Lo RS, Masucci G, Palmieri G, Postow M, Puzanov I, Silk A, Spranger S, Stroncek DF, Tarhini A, Taube JM, Testori A, Wang E, Wargo JA, Yee C, Zarour H, Zitvogel L, Fox BA, Mozzillo N, Marincola FM, Thurin M. Future perspectives in melanoma research : Meeting report from the "Melanoma Bridge". Napoli, December 1st-4th 2015. J Transl Med 2016; 14:313. [PMID: 27846884 PMCID: PMC5111349 DOI: 10.1186/s12967-016-1070-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022] Open
Abstract
The sixth "Melanoma Bridge Meeting" took place in Naples, Italy, December 1st-4th, 2015. The four sessions at this meeting were focused on: (1) molecular and immune advances; (2) combination therapies; (3) news in immunotherapy; and 4) tumor microenvironment and biomarkers. Recent advances in tumor biology and immunology has led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS) of cancer patients. Immunotherapies in particular have emerged as highly successful approaches to treat patients with cancer including melanoma, non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), bladder cancer, and Hodgkin's disease. Specifically, many clinical successes have been using checkpoint receptor blockade, including T cell inhibitory receptors such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and the programmed cell death-1 (PD-1) and its ligand PD-L1. Despite demonstrated successes, responses to immunotherapy interventions occur only in a minority of patients. Attempts are being made to improve responses to immunotherapy by developing biomarkers. Optimizing biomarkers for immunotherapy could help properly select patients for treatment and help to monitor response, progression and resistance that are critical challenges for the immuno-oncology (IO) field. Importantly, biomarkers could help to design rational combination therapies. In addition, biomarkers may help to define mechanism of action of different agents, dose selection and to sequence drug combinations. However, biomarkers and assays development to guide cancer immunotherapy is highly challenging for several reasons: (i) multiplicity of immunotherapy agents with different mechanisms of action including immunotherapies that target activating and inhibitory T cell receptors (e.g., CTLA-4, PD-1, etc.); adoptive T cell therapies that include tissue infiltrating lymphocytes (TILs), chimeric antigen receptors (CARs), and T cell receptor (TCR) modified T cells; (ii) tumor heterogeneity including changes in antigenic profiles over time and location in individual patient; and (iii) a variety of immune-suppressive mechanisms in the tumor microenvironment (TME) including T regulatory cells (Treg), myeloid derived suppressor cells (MDSC) and immunosuppressive cytokines. In addition, complex interaction of tumor-immune system further increases the level of difficulties in the process of biomarkers development and their validation for clinical use. Recent clinical trial results have highlighted the potential for combination therapies that include immunomodulating agents such as anti-PD-1 and anti-CTLA-4. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors on T cells and other approaches such as adoptive cell transfer are tested for clinical efficacy in melanoma as well. These agents are also being tested in combination with targeted therapies to improve upon shorter-term responses thus far seen with targeted therapy. Various locoregional interventions that demonstrate promising results in treatment of advanced melanoma are also integrated with immunotherapy agents and the combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for melanoma patients' population. This meeting's specific focus was on advances in immunotherapy and combination therapy for melanoma. The importance of understanding of melanoma genomic background for development of novel therapies and biomarkers for clinical application to predict the treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into personalized-medicine approach for treatment of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma. We also discussed the requirements for pre-analytical and analytical as well as clinical validation process as applied to biomarkers for cancer immunotherapy. The concept of the fit-for-purpose marker validation has been introduced to address the challenges and strategies for analytical and clinical validation design for specific assays.
Collapse
Affiliation(s)
- Paolo A. Ascierto
- IRCCS Istituto Nazionale Tumori, Fondazione “G. Pascale”, Naples, Italy
- Unit of Medical Oncology and Innovative Therapy, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Sanjiv Agarwala
- Department of Oncology and Hematology, St. Luke’s University Hospital and Temple University, Bethlehem, PA USA
| | - Gerardo Botti
- IRCCS Istituto Nazionale Tumori, Fondazione “G. Pascale”, Naples, Italy
| | | | - Gennaro Ciliberto
- IRCCS Istituto Nazionale Tumori, Fondazione “G. Pascale”, Naples, Italy
| | - Michael A. Davies
- Division of Cancer Medicine, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Sandra Demaria
- Departments of Radiation Oncology and Pathology, Weill Cornell Medical College, New York, NY USA
| | - Reinhard Dummer
- Skin Cancer Unit, Department of Dermatology, University Hospital Zürich, 8091 Zurich, Switzerland
| | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Yang Xin Fu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX USA
| | - Thomas F. Gajewski
- Departments of Medicine and of Pathology, Immunology and Cancer Program, The University of Chicago Medicine, Chicago, IL USA
| | - Claus Garbe
- Department of Dermatology, Center for Dermato Oncology, University of Tübingen, Tübingen, Germany
| | - Veronica Huber
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Samir Khleif
- Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA USA
| | | | - Roger S. Lo
- Departments of Medicine and Molecular and Medical Pharmacology, David Geffen School of Medicine and Jonsson Comprehensive Cancer Center at the University of California Los Angeles (UCLA), Los Angeles, CA USA
| | - Giuseppe Masucci
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Michael Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY USA
| | - Igor Puzanov
- Department of Medicine, Early Phase Clinical Trials Program, Roswell Park Cancer Institute, New York, NY USA
| | - Ann Silk
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI USA
| | | | - David F. Stroncek
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, MD USA
| | - Ahmad Tarhini
- Departments of Medicine, Immunology and Dermatology, University of Pittsburgh, Pittsburgh, PA USA
| | - Janis M. Taube
- Department of Dermatology, Johns Hopkins University SOM, Baltimore, MD USA
| | | | - Ena Wang
- Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Jennifer A. Wargo
- Genomic Medicine and Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Cassian Yee
- The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Hassane Zarour
- Departments of Medicine, Immunology and Dermatology, University of Pittsburgh, Pittsburgh, PA USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Center, U1015 INSERM, Villejuif, France
- University Paris XI, Kremlin Bicêtre, France
| | - Bernard A. Fox
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, Portland, OR USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR USA
| | - Nicola Mozzillo
- IRCCS Istituto Nazionale Tumori, Fondazione “G. Pascale”, Naples, Italy
| | | | - Magdalena Thurin
- Cancer Diagnosis Program, National Cancer Institute, NIH, Bethesda, MD USA
| |
Collapse
|
20
|
Zhang J, Li M, Yao Z. Molecular screening strategies for NF1-like syndromes with café-au-lait macules (Review). Mol Med Rep 2016; 14:4023-4029. [PMID: 27666661 PMCID: PMC5112360 DOI: 10.3892/mmr.2016.5760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 04/26/2016] [Indexed: 12/28/2022] Open
Abstract
Multiple café-au-lait macules (CALM) are usually associated with neurofibromatosis type 1 (NF1), one of the most common hereditary disorders. However, a group of genetic disorders presenting with CALM have mutations that are involved in human skin pigmentation regulation signaling pathways, including KIT ligand/KIT proto‑oncogene receptor tyrosine kinase and Ras/mitogen‑activated protein kinase. These disorders, which include Legius syndrome, Noonan syndrome with multiple lentigines or LEOPARD syndrome, and familial progressive hyperpigmentation) are difficult to distinguish from NF1 at early stages, using skin appearance alone. Furthermore, certain syndromes are clinically overlapping and molecular testing is a vital diagnostic method. The present review aims to provide an overview of these 'NF1‑like' inherited diseases and recommend a cost‑effective strategy for making a clear diagnosis among these diseases with an ambiguous borderline.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Dermatology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
21
|
Halaban R, Krauthammer M. RASopathy Gene Mutations in Melanoma. J Invest Dermatol 2016; 136:1755-1759. [PMID: 27236105 DOI: 10.1016/j.jid.2016.05.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/17/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
Next-generation sequencing of melanomas has unraveled critical driver genes and genomic abnormalities, mostly defined as occurring at high frequency. In addition, less abundant mutations are present that link melanoma to a set of disorders, commonly called RASopathies. These disorders, which include neurofibromatosis and Noonan and Legius syndromes, harbor germline mutations in various RAS/mitogen-activated protein kinase signaling pathway genes. We highlight shared amino acid substitutions between this set of RASopathy mutations and those observed in large-scale melanoma sequencing data, uncovering a significant overlap. We review the evidence that these mutations activate the RAS/mitogen-activated protein kinase pathway in melanoma and are involved in melanomagenesis. Furthermore, we discuss the observations that two or more RASopathy mutations often co-occur in melanoma and may act synergistically on activating the pathway.
Collapse
Affiliation(s)
- Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | - Michael Krauthammer
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA; Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Vurallı D, Gönç N, Vidaud D, Özön A, Alikaşifoğlu A, Kandemir N. Growth Hormone Deficiency in a Child with Neurofibromatosis-Noonan Syndrome. J Clin Res Pediatr Endocrinol 2016; 8:96-100. [PMID: 26758488 PMCID: PMC4805056 DOI: 10.4274/jcrpe.2070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Neurofibromatosis-Noonan syndrome (NFNS) is a distinct entity which shows the features of both NF1 (neurofibromatosis 1) and Noonan syndrome (NS). While growth hormone deficiency (GHD) has been relatively frequently identified in NF1 and NS patients, there is limited experience in NFNS cases. The literature includes only one case report of a NFNS patient having GHD and that report primarily focuses on the dermatological lesions that accompany the syndrome and not on growth hormone (GH) treatment. Here, we present a 13-year-old girl who had clinical features of NFNS with a mutation in the NF1 gene. The case is the first NFNS patient reported in the literature who was diagnosed to have GHD and who received GH treatment until reaching final height. The findings in this patient show that short stature is a feature of NFNS and can be caused by GHD. Patients with NFNS who show poor growth should be evaluated for GHD.
Collapse
Affiliation(s)
- Doğuş Vurallı
- Hacettepe University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey, E-mail:
| | - Nazlı Gönç
- Hacettepe University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Dominique Vidaud
- EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris, France
,
Service de Biochimie et de Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alev Özön
- Hacettepe University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Ayfer Alikaşifoğlu
- Hacettepe University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Nurgün Kandemir
- Hacettepe University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| |
Collapse
|
23
|
Krauthammer M, Kong Y, Bacchiocchi A, Evans P, Pornputtapong N, Wu C, McCusker JP, Ma S, Cheng E, Straub R, Serin M, Bosenberg M, Ariyan S, Narayan D, Sznol M, Kluger HM, Mane S, Schlessinger J, Lifton RP, Halaban R. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet 2015. [PMID: 26214590 DOI: 10.1038/ng.3361] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report on whole-exome sequencing (WES) of 213 melanomas. Our analysis established NF1, encoding a negative regulator of RAS, as the third most frequently mutated gene in melanoma, after BRAF and NRAS. Inactivating NF1 mutations were present in 46% of melanomas expressing wild-type BRAF and RAS, occurred in older patients and showed a distinct pattern of co-mutation with other RASopathy genes, particularly RASA2. Functional studies showed that NF1 suppression led to increased RAS activation in most, but not all, melanoma cases. In addition, loss of NF1 did not predict sensitivity to MEK or ERK inhibitors. The rebound pathway, as seen by the induction of phosphorylated MEK, occurred in cells both sensitive and resistant to the studied drugs. We conclude that NF1 is a key tumor suppressor lost in melanomas, and that concurrent RASopathy gene mutations may enhance its role in melanomagenesis.
Collapse
Affiliation(s)
- Michael Krauthammer
- Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yong Kong
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Antonella Bacchiocchi
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Perry Evans
- Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Natapol Pornputtapong
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Cen Wu
- School of Public Health, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James P McCusker
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shuangge Ma
- School of Public Health, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Elaine Cheng
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robert Straub
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Merdan Serin
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marcus Bosenberg
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Stephan Ariyan
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Deepak Narayan
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mario Sznol
- Comprehensive Cancer Center Section of Medical Oncology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Harriet M Kluger
- Comprehensive Cancer Center Section of Medical Oncology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Martinelli S, Stellacci E, Pannone L, D'Agostino D, Consoli F, Lissewski C, Silvano M, Cencelli G, Lepri F, Maitz S, Pauli S, Rauch A, Zampino G, Selicorni A, Melançon S, Digilio MC, Gelb BD, De Luca A, Dallapiccola B, Zenker M, Tartaglia M. Molecular Diversity and Associated Phenotypic Spectrum of Germline CBL Mutations. Hum Mutat 2015; 36:787-96. [PMID: 25952305 DOI: 10.1002/humu.22809] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/30/2015] [Indexed: 01/11/2023]
Abstract
Noonan syndrome (NS) is a relatively common developmental disorder with a pleomorphic phenotype. Mutations causing NS alter genes encoding proteins involved in the RAS-MAPK pathway. We and others identified Casitas B-lineage lymphoma proto-oncogene (CBL), which encodes an E3-ubiquitin ligase acting as a tumor suppressor in myeloid malignancies, as a disease gene underlying a condition clinically related to NS. Here, we further explored the spectrum of germline CBL mutations and their associated phenotype. CBL mutation scanning performed on 349 affected subjects with features overlapping NS and no mutation in NS genes allowed the identification of five different variants with pathological significance. Among them, two splice-site changes, one in-frame deletion, and one missense mutation affected the RING domain and/or the adjacent linker region, overlapping cancer-associated defects. A novel nonsense mutation generating a v-Cbl-like protein able to enhance signal flow through RAS was also identified. Genotype-phenotype correlation analysis performed on available records indicated that germline CBL mutations cause a variable phenotype characterized by a relatively high frequency of neurological features, predisposition to juvenile myelomonocytic leukemia, and low prevalence of cardiac defects, reduced growth, and cryptorchidism. Finally, we excluded a major contribution of two additional members of the CBL family, CBLB and CBLC, to NS and related disorders.
Collapse
Affiliation(s)
- Simone Martinelli
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Emilia Stellacci
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Luca Pannone
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy.,Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy
| | - Daniela D'Agostino
- Department of Medical Genetics, McGill University Health Centre, Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Federica Consoli
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy.,Laboratorio Mendel, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza, Rome, Italy
| | - Christina Lissewski
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg, Germany
| | - Marianna Silvano
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Giulia Cencelli
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | | | - Silvia Maitz
- Dipartimento di Pediatria, Genetica Clinica, Ospedale S. Gerardo, Università di Milano-Bicocca, Monza, Italy
| | - Silke Pauli
- Institute of Human Genetics, University of Göttingen, Göttingen, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Giuseppe Zampino
- Istituto di Clinica Pediatrica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angelo Selicorni
- Dipartimento di Pediatria, Genetica Clinica, Ospedale S. Gerardo, Università di Milano-Bicocca, Monza, Italy
| | - Serge Melançon
- Department of Medical Genetics, McGill University Health Centre, Montreal Children's Hospital, Montreal, Quebec, Canada
| | | | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Alessandro De Luca
- Laboratorio Mendel, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza, Rome, Italy
| | | | - Martin Zenker
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg, Germany
| | - Marco Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
25
|
Sant DW, Margraf RL, Stevenson DA, Grossmann AH, Viskochil DH, Hanson H, Everitt MD, Rios JJ, Elefteriou F, Hennessey T, Mao R. Evaluation of somatic mutations in tibial pseudarthrosis samples in neurofibromatosis type 1. J Med Genet 2015; 52:256-61. [PMID: 25612910 DOI: 10.1136/jmedgenet-2014-102815] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Tibial pseudarthrosis is associated with neurofibromatosis type 1 (NF1) and there is wide clinical variability of the tibial dysplasia in NF1, suggesting the possibility of genetic modifiers. Double inactivation of NF1 is postulated to be necessary for the development of tibial pseudarthrosis, but tissue or cell of origin of the 'second hit' mutation remains unclear. METHODS Exome sequencing of different sections of surgically resected NF1 tibial pseudarthrosis tissue was performed and compared to germline (peripheral blood). RESULTS A germline NF1 splice site mutation (c.61-2A>T, p.L21 M68del) was identified from DNA extracted from peripheral blood. Exome sequencing of DNA extracted from tissue removed during surgery of the tibial pseudarthrosis showed a somatic mutation of NF1 (c.3574G>T, p.E1192*) in the normal germline allele. Further analysis of different regions of the tibial pseudarthrosis sample showed enrichment of the somatic mutation in the soft tissue within the pseudarthrosis site and absence of the somatic mutation in cortical bone. In addition, a germline variant in PTPN11 (c.1658C>T, p.T553M), a gene involved in the RAS signal transduction pathway was identified, although the clinical significance is unknown. CONCLUSIONS Given that the NF1 somatic mutation was primarily detected in the proliferative soft tissue at the pseudarthrosis site, it is likely that the second hit occurred in mesenchymal progenitors from the periosteum. These results are consistent with a defect of differentiation, which may explain why the mutation is found in proliferative cells and not within cortical bone tissue, as the latter by definition contains mostly mature differentiated osteoblasts and osteocytes.
Collapse
Affiliation(s)
- David W Sant
- ARUP Laboratories, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA
| | - Rebecca L Margraf
- ARUP Laboratories, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA
| | - David A Stevenson
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, California, USA Departments of Pediatrics, Division of Medical Genetics, University of Utah, School of Medicine, Salt Lake City, Utah, USA Shriners Hospital for Children Salt Lake City, Salt Lake City, Utah, USA
| | - Allie H Grossmann
- ARUP Laboratories, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA Department of Pathology, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| | - David H Viskochil
- Departments of Pediatrics, Division of Medical Genetics, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| | - Heather Hanson
- Departments of Pediatrics, Division of Medical Genetics, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| | - Melanie D Everitt
- Departments of Pediatrics, Division of Medical Genetics, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| | - Jonathan J Rios
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA Eugene McDermott Center for Human Growth and Development and UT Southwestern Medical Center, Dallas, Texas, USA Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Florent Elefteriou
- Vanderbilt Center for Bone Biology; Vanderbilt University Medical Center, Nashville, Tennessee, USA Departments of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA Departments of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Theresa Hennessey
- Shriners Hospital for Children Salt Lake City, Salt Lake City, Utah, USA
| | - Rong Mao
- ARUP Laboratories, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA Department of Pathology, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
26
|
Baldassarre G, Mussa A, Banaudi E, Rossi C, Tartaglia M, Silengo M, Ferrero GB. Phenotypic variability associated with the invariant SHOC2 c.4A>G (p.Ser2Gly) missense mutation. Am J Med Genet A 2014; 164A:3120-5. [PMID: 25331583 DOI: 10.1002/ajmg.a.36697] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 06/27/2014] [Indexed: 11/07/2022]
Abstract
Noonan-like syndrome with loose anagen hair (NS/LAH; OMIM 607721) is a developmental disorder clinically related to Noonan syndrome (NS) and characterized by facial dysmorphisms, postnatal growth retardation, cardiac anomalies (in particular dysplasia of the mitral valve and septal defects), variable neurocognitive impairment, and florid ectodermal features. A distinctive trait of NS/LAH is its association with easily pluckable, slow growing, sparse, and thin hair. This rare condition is due to the invariant c.4A > G missense (p.Ser2Gly) change in SHOC2, which encodes a regulatory protein that participate in RAS signaling. Here we report two patients with molecularly confirmed NS/LAH, with extremely different phenotypic expression, in particular concerning the severity of the cardiac phenotype and neurocognitive profile. While the first available clinical records outlined a relatively homogeneous phenotype in NS/LAH, the present data emphasize that the phenotype spectrum associated with this invariant mutation is wider than previously recognized.
Collapse
|
27
|
Louati R, Abdelmoula NB, Trabelsi I, Abid D, Lissewski C, Kharrat N, Kamoun S, Zenker M, Rebai T. Clinical and Molecular Findings of Tunisian Patients with RASopathies. Mol Syndromol 2014; 5:212-7. [PMID: 25337068 DOI: 10.1159/000362898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2014] [Indexed: 11/19/2022] Open
Abstract
Noonan syndrome (NS) and related disorders, which are now summarized under the term RASopathies, are caused by germline mutations in genes encoding protein components of the Ras/mitogen-activated protein kinase pathway. In this study, we evaluated the clinical and molecular spectrum of 21 Tunisian patients, recruited by a cardiology unit, for whom RASopathy diagnosis was suspected by clinical geneticists. Overall, 19 patients had a clinical diagnosis of NS and 2 were classified as having Cardiofaciocutaneous (CFC) syndrome. In 52% (n = 11) of patients, a RASopathy has been molecularly confirmed. Mutations in PTPN11 and SOS1 genes were found in patients with diagnosis of NS and BRAF gene mutations in patients with CFC syndrome. As reported from other cohorts, mutations in exons 3 and 8 of the PTPN11 gene predominated in Tunisian NS patients. A very uncommon PTPN11 mutation c.5C>T (p.T2I), the functional consequences of which have so far remained unclear, was identified in one patient. As biased by the mode of recruitment, all patients included in this study had a congenital heart defect, with pulmonary valve stenosis being the most frequent one. Short stature and developmental abnormalities were present in mutation-positive cases. This is the first molecular study in patients from southern Tunisia with RASopathy diagnosis.
Collapse
Affiliation(s)
- Rim Louati
- Department of Histology, Medical University of Sfax, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - N Bouayed Abdelmoula
- Department of Histology, Medical University of Sfax, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Imen Trabelsi
- Cardiology Service, Hedi Chaker Hospital, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Dorra Abid
- Cardiology Service, Hedi Chaker Hospital, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Christina Lissewski
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Najla Kharrat
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Samir Kamoun
- Cardiology Service, Hedi Chaker Hospital, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Tarek Rebai
- Department of Histology, Medical University of Sfax, Center of Biotechnology of Sfax, Sfax, Tunisia
| |
Collapse
|
28
|
Ekvall S, Sjörs K, Jonzon A, Vihinen M, Annerén G, Bondeson ML. Novel association of neurofibromatosis type 1-causing mutations in families with neurofibromatosis-Noonan syndrome. Am J Med Genet A 2013; 164A:579-87. [PMID: 24357598 DOI: 10.1002/ajmg.a.36313] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 09/29/2013] [Indexed: 11/10/2022]
Abstract
Neurofibromatosis-Noonan syndrome (NFNS) is a rare condition with clinical features of both neurofibromatosis type 1 (NF1) and Noonan syndrome (NS). All three syndromes belong to the RASopathies, which are caused by dysregulation of the RAS-MAPK pathway. The major gene involved in NFNS is NF1, but co-occurring NF1 and PTPN11 mutations in NFNS have been reported. Knowledge about possible involvement of additional RASopathy-associated genes in NFNS is, however, very limited. We present a comprehensive clinical and molecular analysis of eight affected individuals from three unrelated families displaying features of NF1 and NFNS. The genetic etiology of the clinical phenotypes was investigated by mutation analysis, including NF1, PTPN11, SOS1, KRAS, NRAS, BRAF, RAF1, SHOC2, SPRED1, MAP2K1, MAP2K2, and CBL. All three families harbored a heterozygous NF1 variant, where the first family had a missense variant, c.5425C>T;p.R1809C, the second family a recurrent 4bp-deletion, c.6789_6792delTTAC;p.Y2264Tfs*6, and the third family a splice-site variant, c.2991-1G>A, resulting in skipping of exon 18 and an in-frame deletion of 41 amino acids. These NF1 variants have all previously been reported in NF1 patients. Surprisingly, both c.6789_6792delTTAC and c.2991-1G>A are frequently associated with NF1, but association to NFNS has, to our knowledge, not previously been reported. Our results support the notion that NFNS represents a variant of NF1, genetically distinct from NS, and is caused by mutations in NF1, some of which also cause classical NF1. Due to phenotypic overlap between NFNS and NS, we propose screening for NF1 mutations in NS patients, preferentially when café-au-lait spots are present.
Collapse
Affiliation(s)
- Sara Ekvall
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Rankin J, Short J, Turnpenny P, Castle B, Hanemann CO. Medulloblastoma in a patient with the PTPN11 p.Thr468Met mutation. Am J Med Genet A 2013; 161A:2027-9. [PMID: 23813970 DOI: 10.1002/ajmg.a.36005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/01/2013] [Indexed: 11/12/2022]
Abstract
Medulloblastoma is the commonest brain tumor in childhood and in a minority of patients is associated with an underlying genetic disorder such as Gorlin syndrome or familial adenomatous polyposis. Increased susceptibility to certain tumors, including neuroblastoma and some hematological malignancies, is recognized in disorders caused by mutations in genes encoding components of the RAS signaling pathway which include Noonan syndrome, Noonan syndrome with multiple lentigines (NSML; formerly called LEOPARD syndrome), Costello syndrome, Cardiofaciocutaneous syndrome, Legius syndrome, and Neurofibromatosis type 1 (NF1), collectively termed RASopathies. Although an association between medulloblastoma and NF1 has been reported, this tumor has not previously been reported in other RASopathies. We present a patient with NSML caused by the recurrent PTPN11 mutation c.1403C > T (p.Thr468Met) in whom medulloblastoma was diagnosed at age 10 years. Medulloblastoma could therefore be part of the tumor spectrum associated with this disorder.
Collapse
Affiliation(s)
- Julia Rankin
- Department of Clinical Genetics, Royal Devon and Exeter NHS Trust, Exeter, UK.
| | | | | | | | | |
Collapse
|
30
|
Ben-Shachar S, Constantini S, Hallevi H, Sach EK, Upadhyaya M, Evans GD, Huson SM. Increased rate of missense/in-frame mutations in individuals with NF1-related pulmonary stenosis: a novel genotype-phenotype correlation. Eur J Hum Genet 2013; 21:535-9. [PMID: 23047742 PMCID: PMC3641387 DOI: 10.1038/ejhg.2012.221] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 07/10/2012] [Accepted: 08/31/2012] [Indexed: 11/09/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) and its related disorders (NF1-Noonan syndrome (NFNS) and Watson syndrome (WS)) are caused by heterozygous mutations in the NF1 gene. Pulmonary stenosis (PS) occurs more commonly in NF1 and its related disorders than in the general population. This study investigated whether PS is associated with specific types of NF1 gene mutations in NF1, NFNS and WS. The frequency of different NF1 mutation types in a cohort of published and unpublished cases with NF1/NFNS/WS and PS was examined. Compared with NF1 in general, NFNS patients had higher rates of PS (9/35=26% vs 25/2322=1.1%, P value<0.001). Stratification according to mutation type showed that the increased PS rate appears to be driven by the NFNS group with non-truncating mutations. Eight of twelve (66.7%) NFNS cases with non-truncating mutations had PS compared with a 1.1% PS frequency in NF1 in general (P<0.001); there was no increase in the frequency of PS in NFNS patients with truncating mutations. Eight out of eleven (73%) individuals with NF1 and PS, were found to have non-truncating mutations, a much higher frequency than the 19% reported in NF1 cohorts (P<0.015). Only three cases of WS have been published with intragenic mutations, two of three had non-truncating mutations. Therefore, PS in NF1 and its related disorders is clearly associated with non-truncating mutations in the NF1 gene providing a new genotype-phenotype correlation. The data indicate a specific role of non-truncating mutations on the NF1 cardiac phenotype.
Collapse
Affiliation(s)
- Shay Ben-Shachar
- The Gilbert Neurofibromatosis center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | | | | | | | | | | | | |
Collapse
|
31
|
Pascual-Castroviejo I, Pascual-Pascual SI. Neurofibromatosis type 1 (NF1) associated with tumor of the corpus callosum. Childs Nerv Syst 2012; 28:2177-80. [PMID: 23001021 DOI: 10.1007/s00381-012-1903-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/25/2012] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF1), one of the most common neurocutaneous disorders, is a multisystemic disease associated with tumors in any organ of the body, especially in the central nervous system and also the peripheral nervous system. Pilocytic astrocytomas have been described in almost all intracranial regions in patients with NF1. However, only a few patients with NF1 and tumor of the corpus callosum have been reported to date. MATERIAL AND METHODS An 11-year-old white Spanish boy was evaluated due to a family history of NF1 and low performance test scores in school. He was studied from the neurological and intellectual level points of view. RESULTS Magnetic resonance (MR) study revealed a tumor in the anterior-middle portion of the corpus callosum and a Wechsler Intelligence Scale for Children-Revised showed verbal IQ of 92, a performance IQ of 108, and a total IQ of 100. In addition, he showed attention deficit and hyperactivity disorder. CONCLUSIONS Tumors of corpus callosum in patients with NF1 are very uncommon. The patient presented in this paper consulted due to family history of NF1, progressive hyperactivity, and below average school performance. The MR study showed tumor in the corpus callosum. Tumor histology was not investigated.
Collapse
|
32
|
Yimenicioğlu S, Yakut A, Karaer K, Zenker M, Ekici A, Carman KB. A new nonsense mutation in the NF1 gene with neurofibromatosis-Noonan syndrome phenotype. Childs Nerv Syst 2012; 28:2181-3. [PMID: 22965773 DOI: 10.1007/s00381-012-1905-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/24/2012] [Indexed: 11/27/2022]
Abstract
PURPOSE Neurofibromatosis-Noonan syndrome is a rare autosomal dominant disorder which combines neurofibromatosis type 1 (NF1) features with Noonan syndrome. NF1 gene mutations are reported in the majority of these patients. METHOD Sequence analysis of the established genes for Noonan syndrome revealed no mutation; a heterozygous NF1 point mutation c.7549C>T in exon 51, creating a premature stop codon (p.R2517X), had been demonstrated. RESULT Neurofibromatosis-Noonan syndrome recently has been considered a subtype of NF1 and caused by different NF1 mutations. CONCLUSION We report the case of a 14-year-old boy with neurofibromatosis type 1 with Noonan-like features, who complained of headache with triventricular hydrocephaly and a heterozygous NF1 point mutation c.7549C>T in exon 51.
Collapse
Affiliation(s)
- Sevgi Yimenicioğlu
- Department of Pediatric Neurology, Osmangazi University Medical Faculty, Eskisehir, Turkey.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
A 16-year-old man with splenomegaly presented with ascites and bilateral leg eschars. Although he had intermittently elevated absolute monocyte counts, a diagnosis of juvenile myelomonocytic leukemia (JMML) was discounted because of his age and lack of persistent leukocytosis. Detailed examination demonstrated features consistent with Noonan syndrome (NS), including typical facies, growth retardation, a cardiac defect, and a history of a coagulopathy. He underwent a splenectomy where the surgeons encountered a rind of tissue composed of monocytes encasing the abdominal organs. After splenectomy, his leukocytes rose to over 100×10(9)/L with a monocytosis, suggesting JMML. On the basis of the clinical suspicion of NS, mutation analysis revealed a KRAS mutation, which is known to be common to both NS and JMML. Clinicians should have high index of suspicion for JMML in patients with Noonan features, regardless of a patient's age.
Collapse
|
34
|
Fahrner JA, Frazier A, Bachir S, Walsh MF, Applegate CD, Thompson R, Halushka MK, Murphy AM, Gunay-Aygun M. A rasopathy phenotype with severe congenital hypertrophic obstructive cardiomyopathy associated with a PTPN11 mutation and a novel variant in SOS1. Am J Med Genet A 2012; 158A:1414-21. [PMID: 22585553 DOI: 10.1002/ajmg.a.35363] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 03/03/2012] [Indexed: 01/26/2023]
Abstract
The RAS-MAPK pathway is critical for human growth and development. Abnormalities at different steps of this signaling cascade result in neuro-cardio-facial-cutaneous syndromes, or the RASopathies, a group of disorders with overlapping yet distinct phenotypes. RASopathy patients have variable degrees of intellectual disability, poor growth, relative macrocephaly, ectodermal abnormalities, dysmorphic features, and increased risk for certain malignancies. Congenital heart disease, particularly hypertrophic cardiomyopathy (HCM) and pulmonic stenosis, are prominent features in these disorders. Significant locus heterogeneity exists for many of the RASopathies. Traditionally, these diseases were thought to be inherited in an autosomal dominant manner. However, recently patients with defects in two components of this pathway and overlapping features of various forms of Noonan syndrome and neurofibromatosis 1 and have been reported. Here we present a patient with severe, progressive neonatal HCM, elevated urinary catecholamine metabolites, and dysmorphic features in whom we identified a known LEOPARD syndrome-associated PTPN11 mutation (c.1403 C > T; p.T468M) and a novel, potentially pathogenic missense SOS1 variant (c.1018 C > T; p.P340S) replacing a rigid nonpolar imino acid with a polar amino acid at a highly conserved position. We describe detailed clinical manifestations, cardiac histopathology, and the molecular genetic findings. Oligogenic models of inheritance with potential synergistic effects should be considered in the RASopathies.
Collapse
Affiliation(s)
- Jill A Fahrner
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Stevens CA, Chiang PW, Messiaen LM. Café-au-lait macules and intertriginous freckling in piebaldism: Clinical overlap with neurofibromatosis type 1 and Legius syndrome. Am J Med Genet A 2012; 158A:1195-9. [DOI: 10.1002/ajmg.a.35297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/07/2012] [Indexed: 01/20/2023]
|
36
|
Abstract
Our knowledge about human genes and the consequences of mutations leading to human genetic diseases has drastically improved over the last few years. It has been recognized that many mutations are indeed pathogenic because they impact the mRNA rather than the protein itself. With our better understanding of the very complex mechanism of splicing, various bioinformatics tools have been developed. They are now frequently used not only to search for sequence motifs corresponding to splicing signals (splice sites, branch points, ESE, and ESS) but also to predict the impact of mutations on these signals. We now need to address the impact of mutations that affect the splicing process, as their consequences could vary from the activation of cryptic signals to the skipping of one or multiple exons. Despite the major developments of the bioinformatics field coupled to experimental data generated on splicing, it is today still not possible to efficiently predict the consequences of mutations impacting splicing signals, especially to predict if they will lead to exon skipping or to cryptic splice site activation.
Collapse
|
37
|
Brasil AS, Malaquias AC, Wanderley LT, Kim CA, Krieger JE, Jorge AAL, Pereira AC, Bertola DR. Co-occurring PTPN11 and SOS1 gene mutations in Noonan syndrome: does this predict a more severe phenotype? ACTA ACUST UNITED AC 2011; 54:717-22. [PMID: 21340158 DOI: 10.1590/s0004-27302010000800009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/15/2010] [Indexed: 12/18/2022]
Abstract
Noonan syndrome (NS) is an autosomal dominant disorder, with variable phenotypic expression, characterized by short stature, facial dysmorphisms and heart disease. Different genes of the RAS/MAPK signaling pathway are responsible for the syndrome, the most common are: PTPN11, SOS1, RAF1, and KRAS. The objective of this study was to report a patient with Noonan syndrome presenting mutations in two genes of RAS/MAPK pathway in order to establish whether these mutations lead to a more severe expression of the phenotype. We used direct sequencing of the PTPN11, SOS1, RAF1, and KRAS genes. We have identified two described mutations in heterozygosity: p.N308D and p.R552G in the genes PTPN11 and SOS1, respectively. The patient has typical clinical features similar to the ones with NS and mutation in only one gene, even those with the same mutation identified in this patient. A more severe or atypical phenotype was not observed, suggesting that these mutations do not exhibit an additive effect.
Collapse
Affiliation(s)
- Amanda Salem Brasil
- Genetics Unit, Children’s Institute, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Carcavilla A, Pinto I, Muñoz-Pacheco R, Barrio R, Martin-Frías M, Ezquieta B. LEOPARD syndrome (PTPN11, T468M) in three boys fulfilling neurofibromatosis type 1 clinical criteria. Eur J Pediatr 2011; 170:1069-74. [PMID: 21365175 DOI: 10.1007/s00431-011-1418-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/03/2011] [Indexed: 01/20/2023]
Abstract
Noonan syndrome (NS) and neurofibromatosis type 1 (NF1) are well-defined entities. The association of both disorders is called neurofibromatosis-Noonan syndrome (NFNS), a disorder that has been related to mutations in the NF1 gene. Both NS and NFNS display phenotypic overlapping with LEOPARD syndrome (LS), and differential diagnosis between these two entities often represents a challenge for clinicians. We report on three patients (two brothers and a not-related patient) diagnosed as having NFNS. They fulfilled NF1 diagnostic criteria and had some features of NS. The three of them had hypertophic cardiomyopathy while neurofibromas, Lisch nodules, and unidentified bright objects on MRI were absent. PTPN11 gene assays revealed a T468M mutation, typical of LS. Thorough clinical examinations of the patients revealed multiple lentigines, which were considered to be freckling in the initial evaluation. We conclude that NF1 clinical criteria should be used with caution in patients with features of NS. Patients with hyperpigmented cutaneous spots associated with cardiac anomalies, even if fulfilling the minimal NF1 criteria for diagnosis, should be strongly considered for LS diagnosis.
Collapse
|
39
|
Bessis D. [Neuro-cardio-facial-cutaneous syndrome]. Ann Dermatol Venereol 2011; 138:483-93. [PMID: 21700069 DOI: 10.1016/j.annder.2011.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/15/2011] [Accepted: 02/21/2011] [Indexed: 12/31/2022]
Abstract
The concept of neuro-cardio-facio-cutaneous (NCFC) syndrome has recently been formulated in order to bring together a number of hereditary diseases that include a number of shared phenotypic features to differing degrees: (i) craniofacial dysmorphia; (ii) delayed growth; (iii) mental retardation or learning difficulties; (iv) cardiac malformations (most commonly pulmonary valve stenosis and hypertrophic cardiomyopathy); (v) cutaneous anomalies, and in some cases, predisposition to certain forms of malignant solid tumors and blood diseases, associated at the physiopathological level with deregulation of the Ras-MAP kinase cellular signaling pathways 1. NCFC subsumes neurofibromatosis type1, Legius syndrome, LEOPARD syndrome, Noonan syndrome, Costello syndrome and cardiofaciocutaneous (CFC) syndrome. While the majority of these diseases are readily distinguishable in clinical terms, with or without diagnostic criteria, none of them have any pathognomonic signs. Many cases attest to the strong clinical homologies and forms of overlapping between these different diseases. In recent years, the discovery of germinal mutations of these different diseases has in fact reinforced the unifying clinical and biochemical concept of NCFC syndrome.
Collapse
Affiliation(s)
- D Bessis
- Service de dermatologie, hôpital Saint-Éloi, 34295 Montpellier cedex 5, France.
| |
Collapse
|
40
|
Prada CE, Zarate YA, Hagenbuch S, Lovell A, Schorry EK, Hopkin RJ. Lethal presentation of neurofibromatosis and Noonan syndrome. Am J Med Genet A 2011; 155A:1360-6. [PMID: 21567923 DOI: 10.1002/ajmg.a.33996] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 02/20/2011] [Indexed: 11/09/2022]
Abstract
Neurofibromatosis type 1 and Noonan syndrome are both common genetic disorders with autosomal dominant inheritance. Similarities between neurofibromatosis type 1 and Noonan syndrome have been noted for over 20 years and patients who share symptoms of both conditions are often given the diagnosis of neurofibromatosis-Noonan syndrome (NFNS). The molecular basis of these combined phenotypes was poorly understood and controversially discussed over several decades until the discovery that the syndromes are related through disturbances of the Ras pathway. We present an infant male with coarse facial features, severe supravalvar pulmonic stenosis, automated atrial tachycardia, hypertrophic cardiomyopathy, airway compression, severe neurological involvement, and multiple complications that lead to death during early infancy. The severity of clinical presentation and significant dysmorphic features suggested the possibility of a double genetic disorder in the Ras pathway instead of NFNS. Molecular analysis showed a missense mutation in exon 25 of the NF1 gene (4288A>G, p.N1430D) and a pathogenic mutation on exon 8 (922A>G, p.N308D) of the PTPN11 gene. Cardiovascular disease has been well described in patients with Noonan syndrome with PTPN11 mutations but the role of haploinsufficiency for neurofibromin in the heart development and function is not yet well understood. Our case suggests that a double genetic defect resulting in the hypersignaling of the Ras pathway may lead to complex cardiovascular abnormalities, cardiomyopathy, refractory arrhythmia, severe neurological phenotype, and early death.
Collapse
Affiliation(s)
- Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
41
|
Ekvall S, Hagenäs L, Allanson J, Annerén G, Bondeson ML. Co-occurring SHOC2 and PTPN11 mutations in a patient with severe/complex Noonan syndrome-like phenotype. Am J Med Genet A 2011; 155A:1217-24. [DOI: 10.1002/ajmg.a.33987] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 02/07/2011] [Indexed: 12/17/2022]
|
42
|
Lepri F, De Luca A, Stella L, Rossi C, Baldassarre G, Pantaleoni F, Cordeddu V, Williams BJ, Dentici ML, Caputo V, Venanzi S, Bonaguro M, Kavamura I, Faienza MF, Pilotta A, Stanzial F, Faravelli F, Gabrielli O, Marino B, Neri G, Silengo MC, Ferrero GB, Torrrente I, Selicorni A, Mazzanti L, Digilio MC, Zampino G, Dallapiccola B, Gelb BD, Tartaglia M. SOS1 mutations in Noonan syndrome: molecular spectrum, structural insights on pathogenic effects, and genotype-phenotype correlations. Hum Mutat 2011; 32:760-72. [PMID: 21387466 PMCID: PMC3118925 DOI: 10.1002/humu.21492] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/23/2011] [Indexed: 01/03/2023]
Abstract
Noonan syndrome (NS) is among the most common nonchromosomal disorders affecting development and growth. NS is caused by aberrant RAS-MAPK signaling and is genetically heterogeneous, which explains, in part, the marked clinical variability documented for this Mendelian trait. Recently, we and others identified SOS1 as a major gene underlying NS. Here, we explored further the spectrum of SOS1 mutations and their associated phenotypic features. Mutation scanning of the entire SOS1 coding sequence allowed the identification of 33 different variants deemed to be of pathological significance, including 16 novel missense changes and in-frame indels. Various mutation clusters destabilizing or altering orientation of regions of the protein predicted to contribute structurally to the maintenance of autoinhibition were identified. Two previously unappreciated clusters predicted to enhance SOS1's recruitment to the plasma membrane, thus promoting a spatial reorientation of domains contributing to inhibition, were also recognized. Genotype–phenotype analysis confirmed our previous observations, establishing a high frequency of ectodermal anomalies and a low prevalence of cognitive impairment and reduced growth. Finally, mutation analysis performed on cohorts of individuals with nonsyndromic pulmonic stenosis, atrial septal defects, and ventricular septal defects excluded a major contribution of germline SOS1 lesions to the isolated occurrence of these cardiac anomalies. Hum Mutat 32:760–772, 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Francesca Lepri
- IRCCS Casa Sollievo della Sofferenza, Laboratorio Mendel, San Giovanni Rotondo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Noonan syndrome is a relatively common, clinically variable developmental disorder. Cardinal features include postnatally reduced growth, distinctive facial dysmorphism, congenital heart defects and hypertrophic cardiomyopathy, variable cognitive deficit and skeletal, ectodermal and hematologic anomalies. Noonan syndrome is transmitted as an autosomal dominant trait, and is genetically heterogeneous. So far, heterozygous mutations in nine genes (PTPN11, SOS1, KRAS, NRAS, RAF1, BRAF, SHOC2, MEK1 and CBL) have been documented to underlie this disorder or clinically related phenotypes. Based on these recent discoveries, the diagnosis can now be confirmed molecularly in approximately 75% of affected individuals. Affected genes encode for proteins participating in the RAS-mitogen-activated protein kinases (MAPK) signal transduction pathway, which is implicated in several developmental processes controlling morphology determination, organogenesis, synaptic plasticity and growth. Here, we provide an overview of clinical aspects of this disorder and closely related conditions, the molecular mechanisms underlying pathogenesis, and major genotype-phenotype correlations.
Collapse
Affiliation(s)
- Marco Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy.
| | | | | |
Collapse
|
44
|
Tartaglia M, Gelb BD. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms. Ann N Y Acad Sci 2010; 1214:99-121. [PMID: 20958325 PMCID: PMC3010252 DOI: 10.1111/j.1749-6632.2010.05790.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
RAS GTPases control a major signaling network implicated in several cellular functions, including cell fate determination, proliferation, survival, differentiation, migration, and senescence. Within this network, signal flow through the RAF-MEK-ERK pathway-the first identified mitogen-associated protein kinase (MAPK) cascade-mediates early and late developmental processes controlling morphology determination, organogenesis, synaptic plasticity, and growth. Signaling through the RAS-MAPK cascade is tightly controlled; and its enhanced activation represents a well-known event in oncogenesis. Unexpectedly, in the past few years, inherited dysregulation of this pathway has been recognized as the cause underlying a group of clinically related disorders sharing facial dysmorphism, cardiac defects, reduced postnatal growth, ectodermal anomalies, variable cognitive deficits, and susceptibility to certain malignancies as major features. These disorders are caused by heterozygosity for mutations in genes encoding RAS proteins, regulators of RAS function, modulators of RAS interaction with effectors, or downstream signal transducers. Here, we provide an overview of the phenotypic spectrum associated with germline mutations perturbing RAS-MAPK signaling, the unpredicted molecular mechanisms converging toward the dysregulation of this signaling cascade, and major genotype-phenotype correlations.
Collapse
Affiliation(s)
- Marco Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy.
| | | |
Collapse
|
45
|
Brasil AS, Pereira AC, Wanderley LT, Kim CA, Malaquias AC, Jorge AAL, Krieger JE, Bertola DR. PTPN11 and KRAS gene analysis in patients with Noonan and Noonan-like syndromes. Genet Test Mol Biomarkers 2010; 14:425-32. [PMID: 20578946 DOI: 10.1089/gtmb.2009.0192] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Noonan and Noonan-like syndromes are disorders of dysregulation of the rat sarcoma viral oncogene homolog (RAS)-mitogen-activated protein kinase signaling pathway. In Noonan syndrome (NS), four genes of this pathway (PTPN11, SOS1, RAF1, and KRAS) are responsible for roughly 70% of the cases. We analyzed PTPN11 and KRAS genes by bidirectional sequencing in 95 probands with NS and 29 with Noonan-like syndromes, including previously reported patients already screened for PTPN11 gene mutations. In the new patients with NS, 20/46 (43%) showed a PTPN11 gene mutation, two of them novel. In our total cohort, patients with NS and a PTPN11 mutation presented significantly higher prevalence of short stature (p = 0.03) and pulmonary valve stenosis (p = 0.01), and lower prevalence of hypertrophic cardiomyopathy (p = 0.01). Only a single gene alteration, of uncertain role, was found in the KRAS gene in an NS patient also presenting a PTPN11 gene mutation. We further analyzed the influence in clinical variability of three frequent polymorphisms found in the KRAS gene and no statistically significant difference was observed among the frequency of clinical findings regarding the studied polymorphisms.
Collapse
|
46
|
Muram-Zborovski TM, Stevenson DA, Viskochil DH, Dries DC, Wilson AR, Mao R. SPRED 1 mutations in a neurofibromatosis clinic. J Child Neurol 2010; 25:1203-9. [PMID: 20179001 PMCID: PMC3243064 DOI: 10.1177/0883073809359540] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Legius syndrome, caused by SPRED1 mutations, has phenotypic overlap with neurofibromatosis type 1 (NF1) without tumorigenic manifestations. Patients fulfilling the National Institutes of Health (NIH) diagnostic criteria for NF1 were enrolled at the University of Utah NF Clinic, and SPRED1 mutation analysis was performed to identify the frequency of Legius syndrome within an NF1 clinic population. SPRED1 sequencing was performed on 151 individuals with the clinical diagnosis of NF1, and 2 individuals (1.3%) were found to have novel SPRED1 mutations, p.R18X and p.Q194X. The phenotypes for the 2 individuals with SPRED1 mutations included altered pigmentation without tumorigenesis. A specific SPRED1 haplotype allele was identified in 27 individuals. The frequency of SPRED1 mutations in patients meeting diagnostic criteria for NF1 in a hospital-based clinic is 1% to 2%. The likelihood an individual is harboring a SPRED1 mutation increases with age if multiple, nonpigmentary NF1 findings are absent. Legius syndrome patients may benefit from altered medical surveillance.
Collapse
Affiliation(s)
| | | | | | | | | | - Rong Mao
- University of Utah, Department of Pathology,ARUP Laboratories
| |
Collapse
|
47
|
Tartaglia M, Zampino G, Gelb BD. Noonan syndrome: clinical aspects and molecular pathogenesis. Mol Syndromol 2010; 1:2-26. [PMID: 20648242 DOI: 10.1159/000276766] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 10/30/2009] [Indexed: 01/20/2023] Open
Abstract
Noonan syndrome (NS) is a relatively common, clinically variable and genetically heterogeneous developmental disorder characterized by postnatally reduced growth, distinctive facial dysmorphism, cardiac defects and variable cognitive deficits. Other associated features include ectodermal and skeletal defects, cryptorchidism, lymphatic dysplasias, bleeding tendency, and, rarely, predisposition to hematologic malignancies during childhood. NS is caused by mutations in the PTPN11, SOS1, KRAS, RAF1, BRAF and MEK1 (MAP2K1) genes, accounting for approximately 70% of affected individuals. SHP2 (encoded by PTPN11), SOS1, BRAF, RAF1 and MEK1 positively contribute to RAS-MAPK signaling, and possess complex autoinhibitory mechanisms that are impaired by mutations. Similarly, reduced GTPase activity or increased guanine nucleotide release underlie the aberrant signal flow through the MAPK cascade promoted by most KRAS mutations. More recently, a single missense mutation in SHOC2, which encodes a cytoplasmic scaffold positively controlling RAF1 activation, has been discovered to cause a closely related phenotype previously termed Noonan-like syndrome with loose anagen hair. This mutation promotes aberrantly acquired N-myristoylation of the protein, resulting in its constitutive targeting to the plasma membrane and dysregulated function. PTPN11, BRAF and RAF1 mutations also account for approximately 95% of LEOPARD syndrome, a condition which resembles NS phenotypically but is characterized by multiple lentigines dispersed throughout the body, café-au-lait spots, and a higher prevalence of electrocardiographic conduction abnormalities, obstructive cardiomyopathy and sensorineural hearing deficits. These recent discoveries demonstrate that the substantial phenotypic variation characterizing NS and related conditions can be ascribed, in part, to the gene mutated and even the specific molecular lesion involved.
Collapse
Affiliation(s)
- M Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | | | | |
Collapse
|