1
|
Hutchinson A, Taylor CL, Chowdhury SM, Jackson L. ECG Findings Are Poor Predictors for Adverse Events and Cardiac Death in Barth Syndrome. PROGRESS IN PEDIATRIC CARDIOLOGY 2024; 75:101750. [PMID: 39281339 PMCID: PMC11392022 DOI: 10.1016/j.ppedcard.2024.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background Patients with Barth syndrome (BTHS) can present with cardiomyopathy. BTHS subjects are at risk for cardiac adverse outcomes throughout life, including malignant arrhythmias and death. Electrocardiogram (ECG) parameters have never been assessed as a tool to predict adverse outcomes in individuals with BTHS. Objectives The purpose of this study was to identify any ECG parameters including QRS fragmentation, presence of arrhythmia, or abnormal intervals that could predict adverse outcomes and cardiac death among the BTHS population. Methods We performed a retrospective case referent study on subjects with BTHS (n=43), and compared them with our reference group, subjects with idiopathic dilated cardiomyopathy (DCM) from a single institution (n=53) from 2007-2021. BTHS data was obtained from subjects attending the biennial Barth Syndrome Foundation International Scientific, Medical, and Family Conferences (BSFISMFC) from 2002-2018. ECG data from first and last available ECG's prior to an adverse event or cardiac death was analyzed, and then multivariable regression was performed to determine odd ratios between ECG characteristics and adverse events/cardiac death. Results No ECG variables were statistically significant predictors of adverse events or cardiac death in the BTHS group. Last ECG QRS fragmentation trended to statistically significance (OR 13.3, p=0.12) in predicting adverse events in the DCM group. Conclusion No ECG parameters, including QRS fragmentation, presence of arrhythmia, or abnormal interval values predict adverse events or cardiac death among BTHS patients. QRS fragmentation may be a predictor of adverse events in the DCM population.
Collapse
Affiliation(s)
- Alexander Hutchinson
- Department of Pediatrics, Division of Pediatric Cardiology, Medical University of South Carolina, 10 McClennan Banks Drive, Charleston, SC 29425 USA
| | - Carolyn L Taylor
- Department of Pediatrics, Division of Pediatric Cardiology, Medical University of South Carolina, 10 McClennan Banks Drive, Charleston, SC 29425 USA
| | - Shahryar M Chowdhury
- Department of Pediatrics, Division of Pediatric Cardiology, Medical University of South Carolina, 10 McClennan Banks Drive, Charleston, SC 29425 USA
| | - Lanier Jackson
- Department of Pediatrics, Division of Pediatric Cardiology, Medical University of South Carolina, 10 McClennan Banks Drive, Charleston, SC 29425 USA
| |
Collapse
|
2
|
Muksinova MD, Osmolovskaya YF, Leontyeva IV, Galaeva MA, Stukalova OV, Beniashvili AG, Safiullina AA, Zhirov IV, Tereshchenko SN. [Barth syndrome in an adult patient: an overview of the problem and case report. A review]. TERAPEVT ARKH 2024; 96:812-819. [PMID: 39404727 DOI: 10.26442/00403660.2024.08.202815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 11/03/2024]
Abstract
Barth syndrome is a rare genetic disease caused by abnormal cardiolipin metabolism, characterized by high mortality within 5 years of diagnosis due to heart failure and/or infectious complications. This article describes a clinical case of an adult patient with Barth syndrome. The peculiarities of the course of the disease are described, including the transformation of the hypertrophic type of cardiomyopathy into the hypokinetic type as the patient grew older. This article demonstrates the difficulty in selecting the optimal treatment of a patient with Barth syndrome in real clinical practice, in the absence of clearly prescribed recommendations and pathogenetic therapy.
Collapse
Affiliation(s)
- M D Muksinova
- Chazov National Medical Research Center of Cardiology
| | | | - I V Leontyeva
- Pirogov Russian National Research Medical University
| | - M A Galaeva
- Chazov National Medical Research Center of Cardiology
| | - O V Stukalova
- Chazov National Medical Research Center of Cardiology
| | | | | | - I V Zhirov
- Chazov National Medical Research Center of Cardiology
| | | |
Collapse
|
3
|
Parisi X, Bledsoe JR. Discerning clinicopathological features of congenital neutropenia syndromes: an approach to diagnostically challenging differential diagnoses. J Clin Pathol 2024; 77:586-604. [PMID: 38589208 DOI: 10.1136/jcp-2022-208686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
The congenital neutropenia syndromes are rare haematological conditions defined by impaired myeloid precursor differentiation or function. Patients are prone to severe infections with high mortality rates in early life. While some patients benefit from granulocyte colony-stimulating factor treatment, they may still face an increased risk of bone marrow failure, myelodysplastic syndrome and acute leukaemia. Accurate diagnosis is crucial for improved outcomes; however, diagnosis depends on familiarity with a heterogeneous group of rare disorders that remain incompletely characterised. The clinical and pathological overlap between reactive conditions, primary and congenital neutropenias, bone marrow failure, and myelodysplastic syndromes further clouds diagnostic clarity.We review the diagnostically useful clinicopathological and morphological features of reactive causes of neutropenia and the most common primary neutropenia disorders: constitutional/benign ethnic neutropenia, chronic idiopathic neutropenia, cyclic neutropenia, severe congenital neutropenia (due to mutations in ELANE, GFI1, HAX1, G6PC3, VPS45, JAGN1, CSF3R, SRP54, CLPB and WAS), GATA2 deficiency, Warts, hypogammaglobulinaemia, infections and myelokathexis syndrome, Shwachman-Diamond Syndrome, the lysosomal storage disorders with neutropenia: Chediak-Higashi, Hermansky-Pudlak, and Griscelli syndromes, Cohen, and Barth syndromes. We also detail characteristic cytogenetic and molecular factors at diagnosis and in progression to myelodysplastic syndrome/leukaemia.
Collapse
Affiliation(s)
- Xenia Parisi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jacob R Bledsoe
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Snider PL, Sierra Potchanant EA, Sun Z, Edwards DM, Chan KK, Matias C, Awata J, Sheth A, Pride PM, Payne RM, Rubart M, Brault JJ, Chin MT, Nalepa G, Conway SJ. A Barth Syndrome Patient-Derived D75H Point Mutation in TAFAZZIN Drives Progressive Cardiomyopathy in Mice. Int J Mol Sci 2024; 25:8201. [PMID: 39125771 PMCID: PMC11311365 DOI: 10.3390/ijms25158201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiomyopathy is the predominant defect in Barth syndrome (BTHS) and is caused by a mutation of the X-linked Tafazzin (TAZ) gene, which encodes an enzyme responsible for remodeling mitochondrial cardiolipin. Despite the known importance of mitochondrial dysfunction in BTHS, how specific TAZ mutations cause diverse BTHS heart phenotypes remains poorly understood. We generated a patient-tailored CRISPR/Cas9 knock-in mouse allele (TazPM) that phenocopies BTHS clinical traits. As TazPM males express a stable mutant protein, we assessed cardiac metabolic dysfunction and mitochondrial changes and identified temporally altered cardioprotective signaling effectors. Specifically, juvenile TazPM males exhibit mild left ventricular dilation in systole but have unaltered fatty acid/amino acid metabolism and normal adenosine triphosphate (ATP). This occurs in concert with a hyperactive p53 pathway, elevation of cardioprotective antioxidant pathways, and induced autophagy-mediated early senescence in juvenile TazPM hearts. However, adult TazPM males exhibit chronic heart failure with reduced growth and ejection fraction, cardiac fibrosis, reduced ATP, and suppressed fatty acid/amino acid metabolism. This biphasic changeover from a mild-to-severe heart phenotype coincides with p53 suppression, downregulation of cardioprotective antioxidant pathways, and the onset of terminal senescence in adult TazPM hearts. Herein, we report a BTHS genotype/phenotype correlation and reveal that absent Taz acyltransferase function is sufficient to drive progressive cardiomyopathy.
Collapse
Affiliation(s)
- Paige L. Snider
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Elizabeth A. Sierra Potchanant
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Zejin Sun
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Donna M. Edwards
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Ka-Kui Chan
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Catalina Matias
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.M.); (J.J.B.)
| | - Junya Awata
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA; (J.A.); (M.T.C.)
| | - Aditya Sheth
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - P. Melanie Pride
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - R. Mark Payne
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Michael Rubart
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Jeffrey J. Brault
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.M.); (J.J.B.)
| | - Michael T. Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA; (J.A.); (M.T.C.)
| | - Grzegorz Nalepa
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| | - Simon J. Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46033, USA; (P.L.S.); (E.A.S.P.); (Z.S.); (D.M.E.); (K.-K.C.); (A.S.); (P.M.P.); (R.M.P.); (M.R.); (G.N.)
| |
Collapse
|
5
|
Sniezek Carney O, Harris KW, Wohlfarter Y, Lee K, Butschek G, Anzmann A, Claypool SM, Hamacher-Brady A, Keller M, Vernon HJ. Stem cell models of TAFAZZIN deficiency reveal novel tissue-specific pathologies in Barth Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591534. [PMID: 38746168 PMCID: PMC11092433 DOI: 10.1101/2024.04.28.591534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Barth syndrome (BTHS) is a rare mitochondrial disease caused by pathogenic variants in the gene TAFAZZIN, which leads to abnormal cardiolipin (CL) metabolism on the inner mitochondrial membrane. Although TAFAZZIN is ubiquitously expressed, BTHS involves a complex combination of tissue specific phenotypes including cardiomyopathy, neutropenia, skeletal myopathy, and growth delays, with a relatively minimal neurological burden. To understand both the developmental and functional effects of TAZ-deficiency in different tissues, we generated isogenic TAZ knockout (TAZ- KO) and WT cardiomyocytes (CMs) and neural progenitor cells (NPCs) from CRISPR-edited induced pluripotent stem cells (iPSCs). In TAZ-KO CMs we discovered evidence of dysregulated mitophagy including dysmorphic mitochondria and mitochondrial cristae, differential expression of key autophagy-associated genes, and an inability of TAZ-deficient CMs to properly initiate stress-induced mitophagy. In TAZ-deficient NPCs we identified novel phenotypes including a reduction in CIV abundance and CIV activity in the CIII2&CIV2 intermediate complex. Interestingly, while CL acyl chain manipulation was unable to alter mitophagy defects in TAZ-KO CMs, we found that linoleic acid or oleic acid supplementation was able to partially restore CIV abundance in TAZ-deficient NPCs. Taken together, our results have implications for understanding the tissue-specific pathology of BTHS and potential for tissue-specific therapeutic targeting. Moreover, our results highlight an emerging role for mitophagy in the cardiac pathophysiology of BTHS and reveal a potential neuron-specific bioenergetic phenotype.
Collapse
|
6
|
Hachmann M, Gülcan G, Rajendran R, Höring M, Liebisch G, Bachhuka A, Kohlhaas M, Maack C, Ergün S, Dudek J, Karnati S. Tafazzin deficiency causes substantial remodeling in the lipidome of a mouse model of Barth Syndrome cardiomyopathy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1389456. [PMID: 39086433 PMCID: PMC11285559 DOI: 10.3389/fmmed.2024.1389456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/09/2024] [Indexed: 08/02/2024]
Abstract
Barth Syndrome (BTHS) is a rare X-linked disease, characterized clinically by cardiomyopathy, skeletal myopathy, neutropenia, and growth retardation. BTHS is caused by mutations in the phospholipid acyltransferase tafazzin (Gene: TAFAZZIN, TAZ). Tafazzin catalyzes the final step in the remodeling of cardiolipin (CL), a glycerophospholipid located in the inner mitochondrial membrane. As the phospholipid composition strongly determines membrane properties, correct biosynthesis of CL and other membrane lipids is essential for mitochondrial function. Mitochondria provide 95% of the energy demand in the heart, particularly due to their role in fatty acid oxidation. Alterations in lipid homeostasis in BTHS have an impact on mitochondrial membrane proteins and thereby contribute to cardiomyopathy. We analyzed a transgenic TAFAZZIN-knockdown (TAZ-KD) BTHS mouse model and determined the distribution of 193 individual lipid species in TAZ-KD and WT hearts at 10 and 50 weeks of age, using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Our results revealed significant lipid composition differences between the TAZ-KD and WT groups, indicating genotype-dependent alterations in most analyzed lipid species. Significant changes in the myocardial lipidome were identified in both young animals without cardiomyopathy and older animals with heart failure. Notable alterations were found in phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC) and plasmalogen species. PC species with 2-4 double bonds were significantly increased, while polyunsaturated PC species showed a significant decrease in TAZ-KD mice. Furthermore, Linoleic acid (LA, 18:2) containing PC and PE species, as well as arachidonic acid (AA, 20:4) containing PE 38:4 species are increased in TAZ-KD. We found higher levels of AA containing LPE and PE-based plasmalogens (PE P-). Furthermore, we are the first to show significant changes in sphingomyelin (SM) and ceramide (Cer) lipid species Very long-chained SM species are accumulating in TAZ-KD hearts, whereas long-chained Cer and several hexosyl ceramides (HexCer) species accumulate only in 50-week-old TAZ-KD hearts These findings offer potential avenues for the diagnosis and treatment of BTHS, presenting new possibilities for therapeutic approaches.
Collapse
Affiliation(s)
- Malte Hachmann
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Güntas Gülcan
- Department of Medical Biochemistry, Faculty of Medicine, Atlas University, Istanbul, Turkey
| | - Ranjithkumar Rajendran
- Experimental Neurology, Department of Neurology, Justus Liebig University, Giessen, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Akash Bachhuka
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University, Tarragona, Spain
| | - Michael Kohlhaas
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Medical Clinic 1, University Hospital Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Keshavan N, Minczuk M, Viscomi C, Rahman S. Gene therapy for mitochondrial disorders. J Inherit Metab Dis 2024; 47:145-175. [PMID: 38171948 DOI: 10.1002/jimd.12699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/30/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
In this review, we detail the current state of application of gene therapy to primary mitochondrial disorders (PMDs). Recombinant adeno-associated virus-based (rAAV) gene replacement approaches for nuclear gene disorders have been undertaken successfully in more than ten preclinical mouse models of PMDs which has been made possible by the development of novel rAAV technologies that achieve more efficient organ targeting. So far, however, the greatest progress has been made for Leber Hereditary Optic Neuropathy, for which phase 3 clinical trials of lenadogene nolparvovec demonstrated efficacy and good tolerability. Other methods of treating mitochondrial DNA (mtDNA) disorders have also had traction, including refinements to nucleases that degrade mtDNA molecules with pathogenic variants, including transcription activator-like effector nucleases, zinc-finger nucleases, and meganucleases (mitoARCUS). rAAV-based approaches have been used successfully to deliver these nucleases in vivo in mice. Exciting developments in CRISPR-Cas9 gene editing technology have achieved in vivo gene editing in mouse models of PMDs due to nuclear gene defects and new CRISPR-free gene editing approaches have shown great potential for therapeutic application in mtDNA disorders. We conclude the review by discussing the challenges of translating gene therapy in patients both from the point of view of achieving adequate organ transduction as well as clinical trial design.
Collapse
Affiliation(s)
- Nandaki Keshavan
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital, London, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Shamima Rahman
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital, London, UK
| |
Collapse
|
8
|
Johnson R, Otway R, Chin E, Horvat C, Ohanian M, Wilcox JA, Su Z, Prestes P, Smolnikov A, Soka M, Guo G, Rath E, Chakravorty S, Chrzanowski L, Hayward CS, Keogh AM, Macdonald PS, Giannoulatou E, Chang AC, Oates EC, Charchar F, Seidman JG, Seidman CE, Hegde M, Fatkin D. DMD-Associated Dilated Cardiomyopathy: Genotypes, Phenotypes, and Phenocopies. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:421-430. [PMID: 37671549 PMCID: PMC10592075 DOI: 10.1161/circgen.123.004221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/31/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Variants in the DMD gene, that encodes the cytoskeletal protein, dystrophin, cause a severe form of dilated cardiomyopathy (DCM) associated with high rates of heart failure, heart transplantation, and ventricular arrhythmias. Improved early detection of individuals at risk is needed. METHODS Genetic testing of 40 male probands with a potential X-linked genetic cause of primary DCM was undertaken using multi-gene panel sequencing, multiplex polymerase chain reaction, and array comparative genomic hybridization. Variant location was assessed with respect to dystrophin isoform patterns and exon usage. Telomere length was evaluated as a marker of myocardial dysfunction in left ventricular tissue and blood. RESULTS Four pathogenic/likely pathogenic DMD variants were found in 5 probands (5/40: 12.5%). Only one rare variant was identified by gene panel testing with 3 additional multi-exon deletion/duplications found following targeted assays for structural variants. All of the pathogenic/likely pathogenic DMD variants involved dystrophin exons that had percent spliced-in scores >90, indicating high levels of constitutive expression in the human adult heart. Fifteen DMD variant-negative probands (15/40: 37.5%) had variants in autosomal genes including TTN, BAG3, LMNA, and RBM20. Myocardial telomere length was reduced in patients with DCM irrespective of genotype. No differences in blood telomere length were observed between genotype-positive family members with/without DCM and controls. CONCLUSIONS Primary genetic testing using multi-gene panels has a low yield and specific assays for structural variants are required if DMD-associated cardiomyopathy is suspected. Distinguishing X-linked causes of DCM from autosomal genes that show sex differences in clinical presentation is crucial for informed family management.
Collapse
Affiliation(s)
- Renee Johnson
- Victor Chang Cardiac Rsrch Inst, Darlinghurst
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Robyn Otway
- Victor Chang Cardiac Rsrch Inst, Darlinghurst
| | - Ephrem Chin
- Dept of Human Genetics, Emory Univ School of Medicine, Atlanta GA
- PerkinElmer Genomics, PerkinElmer, Waltham
| | | | | | | | - Zheng Su
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW Sydney, Kensington, NSW, Australia
| | - Priscilla Prestes
- Health Innovation & Transformation Ctr, Federation Univ Australia, Ballarat, Victoria, Australia
| | - Andrei Smolnikov
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW Sydney, Kensington, NSW, Australia
| | | | | | - Emma Rath
- Victor Chang Cardiac Rsrch Inst, Darlinghurst
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Samya Chakravorty
- Dept of Human Genetics, Emory Univ School of Medicine, Atlanta GA
- Biocon Bristol Myers Squibb Rsrch & Development Ctr (BBRC), Bangalore, India
| | | | - Christopher S. Hayward
- Victor Chang Cardiac Rsrch Inst, Darlinghurst
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Cardiology Dept, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Anne M. Keogh
- Victor Chang Cardiac Rsrch Inst, Darlinghurst
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Cardiology Dept, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Peter S. Macdonald
- Victor Chang Cardiac Rsrch Inst, Darlinghurst
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Cardiology Dept, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Rsrch Inst, Darlinghurst
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Alex C.Y. Chang
- Dept of Cardiology & Shanghai Inst of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong Univ School of Medicine, Shanghai, China
- Baxter Laboratory for Stem Cell Biology, Dept of Microbiology & Immunology, Inst for Stem Cell Biology & Regenerative Medicine, Stanford Univ School of Medicine, Stanford, CA
| | - Emily C. Oates
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW Sydney, Kensington, NSW, Australia
| | - Fadi Charchar
- Health Innovation & Transformation Ctr, Federation Univ Australia, Ballarat, Victoria, Australia
| | - Jonathan G. Seidman
- Dept of Genetics, Harvard Medical School, Boston, MA
- Howard Hughes Medical Inst, Boston
| | - Christine E. Seidman
- Dept of Genetics, Harvard Medical School, Boston, MA
- Cardiovascular Division, Brigham and Women’s Hospital, Boston MA
| | - Madhuri Hegde
- Dept of Human Genetics, Emory Univ School of Medicine, Atlanta GA
- PerkinElmer Genomics, PerkinElmer, Waltham
| | - Diane Fatkin
- Victor Chang Cardiac Rsrch Inst, Darlinghurst
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Cardiology Dept, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
9
|
郑 奎, 武 菲, 娄 美, 王 莹, 李 博, 郝 京, 王 永, 张 英, 齐 焕. [Clinical and genetic characteristics of children with primary dilated cardiomyopathy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:726-731. [PMID: 37529955 PMCID: PMC10414173 DOI: 10.7499/j.issn.1008-8830.2303077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVES To study the genetic characteristics, clinical characteristics, and prognosis of children with primary dilated cardiomyopathy (DCM). METHODS A retrospective analysis was performed on the medical data of 44 children who were diagnosed with DCM in Hebei Children's Hospital from July 2018 to February 2023. According to the genetic testing results, they were divided into two groups: gene mutation-positive group (n=17) and gene mutation-negative group (n=27). The two groups were compared in terms of clinical data at initial diagnosis and follow-up data. RESULTS Among the 44 children with DCM, there were 21 boys (48%) and 23 girls (52%). Respiratory symptoms including cough and shortness of breath were the most common symptom at initial diagnosis (34%, 15/44). The detection rate of gene mutations was 39% (17/44). There were no significant differences between the two groups in clinical characteristics, proportion of children with cardiac function grade Ⅲ or Ⅳ, brain natriuretic peptide levels, left ventricular ejection fraction, and left ventricular fractional shortening at initial diagnosis (P>0.05). The median follow-up time was 23 months, and 9 children (20%) died, including 8 children from the gene mutation-positive group, among whom 3 had TTN gene mutation, 2 had LMNA gene mutation, 2 had TAZ gene mutation, and 1 had ATAD3A gene mutation. The gene mutation-positive group had a significantly higher mortality rate than the gene mutation-negative group (P<0.05). CONCLUSIONS There is no correlation between the severity of DCM at initial diagnosis and gene mutations in children. However, children with gene mutations may have a poorer prognosis.
Collapse
Affiliation(s)
- 奎 郑
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 菲 武
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 美娜 娄
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 莹雪 王
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 博 李
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 京霞 郝
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 永丽 王
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 英谦 张
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 焕军 齐
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| |
Collapse
|
10
|
Bogle C, Colan SD, Miyamoto SD, Choudhry S, Baez-Hernandez N, Brickler MM, Feingold B, Lal AK, Lee TM, Canter CE, Lipshultz SE. Treatment Strategies for Cardiomyopathy in Children: A Scientific Statement From the American Heart Association. Circulation 2023; 148:174-195. [PMID: 37288568 DOI: 10.1161/cir.0000000000001151] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This scientific statement from the American Heart Association focuses on treatment strategies and modalities for cardiomyopathy (heart muscle disease) in children and serves as a companion scientific statement for the recent statement on the classification and diagnosis of cardiomyopathy in children. We propose that the foundation of treatment of pediatric cardiomyopathies is based on these principles applied as personalized therapy for children with cardiomyopathy: (1) identification of the specific cardiac pathophysiology; (2) determination of the root cause of the cardiomyopathy so that, if applicable, cause-specific treatment can occur (precision medicine); and (3) application of therapies based on the associated clinical milieu of the patient. These clinical milieus include patients at risk for developing cardiomyopathy (cardiomyopathy phenotype negative), asymptomatic patients with cardiomyopathy (phenotype positive), patients with symptomatic cardiomyopathy, and patients with end-stage cardiomyopathy. This scientific statement focuses primarily on the most frequent phenotypes, dilated and hypertrophic, that occur in children. Other less frequent cardiomyopathies, including left ventricular noncompaction, restrictive cardiomyopathy, and arrhythmogenic cardiomyopathy, are discussed in less detail. Suggestions are based on previous clinical and investigational experience, extrapolating therapies for cardiomyopathies in adults to children and noting the problems and challenges that have arisen in this experience. These likely underscore the increasingly apparent differences in pathogenesis and even pathophysiology in childhood cardiomyopathies compared with adult disease. These differences will likely affect the utility of some adult therapy strategies. Therefore, special emphasis has been placed on cause-specific therapies in children for prevention and attenuation of their cardiomyopathy in addition to symptomatic treatments. Current investigational strategies and treatments not in wide clinical practice, including future direction for investigational management strategies, trial designs, and collaborative networks, are also discussed because they have the potential to further refine and improve the health and outcomes of children with cardiomyopathy in the future.
Collapse
|
11
|
Wang S, Yazawa E, Keating EM, Mazumdar N, Hauschild A, Ma Q, Wu H, Xu Y, Shi X, Strathdee D, Gerszten RE, Schlame M, Pu WT. Genetic modifiers modulate phenotypic expression of tafazzin deficiency in a mouse model of Barth syndrome. Hum Mol Genet 2023; 32:2055-2067. [PMID: 36917259 PMCID: PMC10244222 DOI: 10.1093/hmg/ddad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Barth syndrome is an X-linked disorder caused by loss-of-function mutations in Tafazzin (TAZ), an acyltransferase that catalyzes remodeling of cardiolipin, a signature phospholipid of the inner mitochondrial membrane. Patients develop cardiac and skeletal muscle weakness, growth delay and neutropenia, although phenotypic expression varies considerably between patients. Taz knockout mice recapitulate many of the hallmark features of the disease. We used mouse genetics to test the hypothesis that genetic modifiers alter the phenotypic manifestations of Taz inactivation. We crossed TazKO/X females in the C57BL6/J inbred strain to males from eight inbred strains and evaluated the phenotypes of first-generation (F1) TazKO/Y progeny, compared to TazWT/Y littermates. We observed that genetic background strongly impacted phenotypic expression. C57BL6/J and CAST/EiJ[F1] TazKO/Y mice developed severe cardiomyopathy, whereas A/J[F1] TazKO/Y mice had normal heart function. C57BL6/J and WSB/EiJ[F1] TazKO/Y mice had severely reduced treadmill endurance, whereas endurance was normal in A/J[F1] and CAST/EiJ[F1] TazKO/Y mice. In all genetic backgrounds, cardiolipin showed similar abnormalities in knockout mice, and transcriptomic and metabolomic investigations identified signatures of mitochondrial uncoupling and activation of the integrated stress response. TazKO/Y cardiac mitochondria were small, clustered and had reduced cristae density in knockouts in severely affected genetic backgrounds but were relatively preserved in the permissive A/J[F1] strain. Gene expression and mitophagy measurements were consistent with reduced mitophagy in knockout mice in genetic backgrounds intolerant of Taz mutation. Our data demonstrate that genetic modifiers powerfully modulate phenotypic expression of Taz loss-of-function and act downstream of cardiolipin, possibly by altering mitochondrial quality control.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02215NYU 10016, USA
| | - Erika Yazawa
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02215NYU 10016, USA
| | - Erin M Keating
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02215NYU 10016, USA
| | - Neil Mazumdar
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02215NYU 10016, USA
| | - Alexander Hauschild
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02215NYU 10016, USA
| | - Qing Ma
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02215NYU 10016, USA
| | - Haiyan Wu
- Department of Pharmacology, Sichuan University West China School of Basic Sciences and Forensic Medicine, Chengdu, Sichuan, China
| | - Yang Xu
- Department of Anesthesiology, New York University School of Medicine, New York, NY, USA
| | - Xu Shi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Douglas Strathdee
- Transgenic Technology Laboratory, Cancer Research UK Beatson Institute, Glasgow, UK
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, NY, USA
| | - William T Pu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02215NYU 10016, USA
- Transgenic Technology Laboratory, Cancer Research UK Beatson Institute, Glasgow, UK
- Harvard Stem Cell Institute, Harvard University, 02138 Beatson, Cambridge, MA G61 1BD, USA
| |
Collapse
|
12
|
Sabbah HN, Taylor C, Vernon HJ. Temporal evolution of the heart failure phenotype in Barth syndrome and treatment with elamipretide. Future Cardiol 2023; 19:211-225. [PMID: 37325898 DOI: 10.2217/fca-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/19/2023] [Indexed: 06/17/2023] Open
Abstract
Barth syndrome (BTHS) is a rare genetic disorder caused by pathogenic variants in TAFAZZIN leading to reduced remodeled cardiolipin (CL), a phospholipid essential to mitochondrial function and structure. Cardiomyopathy presents in most patients with BTHS, typically appearing as dilated cardiomyopathy (DCM) in infancy and evolving to hypertrophic cardiomyopathy (HCM) resembling heart failure (HF) with preserved ejection fraction (HFpEF) in some patients ≥12 years. Elamipretide localizes to the inner mitochondrial membrane where it associates with CL, improving mitochondrial function, structure and bioenergetics, including ATP synthesis. Numerous preclinical and clinical studies in BTHS and other forms of HF have demonstrated that elamipretide improves left ventricular relaxation by ameliorating mitochondrial dysfunction, making it well suited for therapeutic use in adolescent and adult patients with BTHS.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Henry Ford Health, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Carolyn Taylor
- Department of Pediatrics, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hilary J Vernon
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Phenotypic Characterization of Male Tafazzin-Knockout Mice at 3, 6, and 12 Months of Age. Biomedicines 2023; 11:biomedicines11020638. [PMID: 36831174 PMCID: PMC9953241 DOI: 10.3390/biomedicines11020638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Barth syndrome (BTHS) is an X-linked mitochondrial disease caused by mutations in the gene encoding for tafazzin (TAZ), a key enzyme in the remodeling of cardiolipin. Mice with a germline deficiency in Taz have been generated (Taz-KO) but not yet fully characterized. We performed physiological assessments of 3-, 6-, and 12-month-old male Taz-KO mice, including measures of perinatal survival, growth, lifespan, gross anatomy, whole-body energy and substrate metabolism, glucose homeostasis, and exercise capacity. Taz-KO mice displayed reduced viability, with lower-than-expected numbers of mice recorded at 4 weeks of age, and a shortened lifespan due to disease progression. At all ages, Taz-KO mice had lower body weights compared with wild-type (Wt) littermates despite similar absolute food intakes. This finding was attributed to reduced adiposity and diminutive organs and tissues, including heart and skeletal muscles. Although there were no differences in basal levels of locomotion between age-matched genotypes, indirect calorimetry studies showed higher energy expenditure measures and respiratory exchange ratios in Taz-KO mice. At the youngest age, Taz-KO mice had comparable glucose tolerance and insulin action to Wt mice, but while these measures indicated metabolic impairments in Wt mice with advancing age that were likely associated with increasing adiposity, Taz-KO mice were protected. Comparisons across the three age-cohorts revealed a significant and more severe deterioration of exercise capacity in Taz-KO mice than in their Wt littermate controls. The Taz-KO mouse model faithfully recapitulates important aspects of BTHS, and thus provides an important new tool to investigate pathophysiological mechanisms and potential therapies.
Collapse
|
14
|
Starosta RT, Shinawi M. Primary Mitochondrial Disorders in the Neonate. Neoreviews 2022; 23:e796-e812. [PMID: 36450643 DOI: 10.1542/neo.23-12-e796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Primary mitochondrial disorders (PMDs) are a heterogeneous group of disorders characterized by functional or structural abnormalities in the mitochondria that lead to a disturbance of cellular energy, reactive oxygen species, and free radical production, as well as impairment of other intracellular metabolic functions, causing single- or multiorgan dysfunction. PMDs are caused by pathogenic variants in nuclear and mitochondrial genes, resulting in distinct modes of inheritance. Onset of disease is variable and can occur in the neonatal period, with a high morbidity and mortality. In this article, we review the most common methods used for the diagnosis of PMDs, as well as their prenatal and neonatal presentations. We highlight the shift in the diagnostic approach for PMDs since the introduction of nontargeted molecular tests into clinical practice, which has significantly reduced the use of invasive studies. We discuss common PMDs that can present in the neonate, including general, nonsyndromic presentations as well as specific syndromic disorders. We also review current treatment advances, including the use of mitochondrial "cocktails" based on limited scientific evidence and theoretical reasoning, as well as the impending arrival of personalized mitochondrial-specific treatments.
Collapse
Affiliation(s)
| | - Marwan Shinawi
- Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
15
|
Damschroder D, Zapata-Pérez R, Richardson K, Vaz FM, Houtkooper RH, Wessells R. Stimulating the sir2-spargel axis rescues exercise capacity and mitochondrial respiration in a Drosophila model of Barth syndrome. Dis Model Mech 2022; 15:dmm049279. [PMID: 36107830 PMCID: PMC9558626 DOI: 10.1242/dmm.049279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
Cardiolipin (CL) is a phospholipid required for proper mitochondrial function. Tafazzin remodels CL to create highly unsaturated fatty acid chains. However, when TAFAZZIN is mutated, CL remodeling is impeded, leading to mitochondrial dysfunction and the disease Barth syndrome. Patients with Barth syndrome often have severe exercise intolerance, which negatively impacts their overall quality of life. Boosting NAD+ levels can improve symptoms of other mitochondrial diseases, but its effect in the context of Barth syndrome has not been examined. We demonstrate, for the first time, that nicotinamide riboside can rescue exercise tolerance and mitochondrial respiration in a Drosophila Tafazzin mutant and that the beneficial effects are dependent on sir2 and spargel. Overexpressing spargel increased the total abundance of CL in mutants. In addition, muscles and neurons were identified as key targets for future therapies because sir2 or spargel overexpression in either of these tissues is sufficient to restore the exercise capacity of Drosophila Tafazzin mutants.
Collapse
Affiliation(s)
- Deena Damschroder
- Wayne State University School of Medicine, Department of Physiology, Detroit, MI 48201, USA
| | - Rubén Zapata-Pérez
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands
| | - Kristin Richardson
- Wayne State University School of Medicine, Department of Physiology, Detroit, MI 48201, USA
| | - Frédéric M. Vaz
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam 1105AZ, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Riekelt H. Houtkooper
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam 1105AZ, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam 1105AZ, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam 1105AZ, The Netherlands
| | - Robert Wessells
- Wayne State University School of Medicine, Department of Physiology, Detroit, MI 48201, USA
| |
Collapse
|
16
|
Greenwell AA, Tabatabaei Dakhili SA, Gopal K, Saed CT, Chan JSF, Kazungu Mugabo N, Zhabyeyev P, Eaton F, Kruger J, Oudit GY, Ussher JR. Stimulating myocardial pyruvate dehydrogenase activity fails to alleviate cardiac abnormalities in a mouse model of human Barth syndrome. Front Cardiovasc Med 2022; 9:997352. [PMID: 36211560 PMCID: PMC9537754 DOI: 10.3389/fcvm.2022.997352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Barth syndrome (BTHS) is a rare genetic disorder due to mutations in the TAFAZZIN gene, leading to impaired maturation of cardiolipin and thereby adversely affecting mitochondrial function and energy metabolism, often resulting in cardiomyopathy. In a murine model of BTHS involving short-hairpin RNA mediated knockdown of Tafazzin (TazKD mice), myocardial glucose oxidation rates were markedly reduced, likely secondary to an impairment in the activity of pyruvate dehydrogenase (PDH), the rate-limiting enzyme of glucose oxidation. Furthermore, TazKD mice exhibited cardiac hypertrophy with minimal cardiac dysfunction. Because the stimulation of myocardial glucose oxidation has been shown to alleviate diabetic cardiomyopathy and heart failure, we hypothesized that stimulating PDH activity would alleviate the cardiac hypertrophy present in TazKD mice. In order to address our hypothesis, 6-week-old male TazKD mice and their wild-type (WT) littermates were treated with dichloroacetate (DCA; 70 mM in the drinking water), which stimulates PDH activity via inhibiting PDH kinase to prevent inhibitory phosphorylation of PDH. We utilized ultrasound echocardiography to assess cardiac function and left ventricular wall structure in all mice prior to and following 6-weeks of treatment. Consistent with systemic activation of PDH and glucose oxidation, DCA treatment improved glycemia in both TazKD mice and their WT littermates, and decreased PDH phosphorylation equivalently at all 3 of its inhibitory sites (serine 293/300/232). However, DCA treatment had no impact on left ventricular structure, or systolic and diastolic function in TazKD mice. Therefore, it is unlikely that stimulating glucose oxidation is a viable target to improve BTHS-related cardiomyopathy.
Collapse
Affiliation(s)
- Amanda A. Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Seyed Amirhossein Tabatabaei Dakhili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Christina T. Saed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Jordan S. F. Chan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Nick Kazungu Mugabo
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Pavel Zhabyeyev
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Jennifer Kruger
- Health Sciences Laboratory Animal Services, University of Alberta, Edmonton, AB, Canada
| | - Gavin Y. Oudit
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - John R. Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
- *Correspondence: John R. Ussher
| |
Collapse
|
17
|
Chowdhury S, Jackson L, Byrne BJ, Bryant RM, Cade WT, Churchill TL, Buchanan J, Taylor C. Longitudinal Observational Study of Cardiac Outcome Risk Factor Prediction in Children, Adolescents, and Adults with Barth Syndrome. Pediatr Cardiol 2022; 43:1251-1263. [PMID: 35238957 PMCID: PMC9462389 DOI: 10.1007/s00246-022-02846-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/04/2022] [Indexed: 12/01/2022]
Abstract
Barth Syndrome (BTHS) is an X-linked mitochondrial cardioskeletal myopathy caused by defects in TAFAZZIN, a gene responsible for cardiolipin remodeling. Altered mitochondrial levels of cardiolipin lead to cardiomyopathy (CM), muscle weakness, exercise intolerance, and mortality. Cardiac risk factors predicting outcome are unknown. Therefore, we conducted a longitudinal observational study to determine risk factors for outcome in BTHS. Subjects with minimum two evaluations (or one followed by death or transplant) were included. Cardiac size, function, and QTc data were measured by echocardiography and electrocardiography at 7 time points from 2002 to 2018. Analysis included baseline, continuous, and categorical variables. Categorical risk factors included prolonged QTc, abnormal right ventricle fractional area change (RV FAC), left ventricle (LV) or RV non-compaction, and restrictive CM phenotype. The association between variables and cardiac death or transplant (CD/TX) was assessed. Median enrollment age was 7 years (range 0.5-22; n = 44). Transplant-free survival (TFS) was 74.4% at 15 years from first evaluation. The cohort demonstrated longitudinal declines in LV size and stroke volume z-scores (end-diastolic volume, p = 0.0002; stroke volume p < 0.0001), worsening RV FAC (p = 0.0405), and global longitudinal strain (GLS) (p = 0.0001) with stable ejection (EF) and shortening (FS) fraction. CD/TX subjects (n = 9) displayed worsening LV dilation (p = 0.0066), EF (p ≤ 0.0001), FS (p = 0.0028), and RV FAC (p = .0032) versus stability in TFS. Having ≥ 2 categorical risk factors predicted CD/TX (p = 0.0073). Over 15 years, 25% of BTHS subjects progressed to CD/TX. Those with progressive LV enlargement, dysfunction, and multiple cardiac risk factors warrant increased surveillance and intense therapy.
Collapse
Affiliation(s)
| | - Lanier Jackson
- Medical University of South Carolina, Charleston, SC, USA
| | - Barry J. Byrne
- School of Medicine, University of Florida, Gainesville, FL, USA
| | | | - W. Todd Cade
- Duke University School of Medicine, Durham, NC, USA
| | | | - Julia Buchanan
- Medical University of South Carolina, Charleston, SC, USA
| | - Carolyn Taylor
- MUSC Children's Heart Program, Pediatric Echocardiography Lab, Pediatric Cardiology, Shawn Jenkins Children's Hospital, MSC 915, 10 McClennan Banks Dr., Charleston, SC, 29425-8905, USA.
| |
Collapse
|
18
|
Kudlaty E, Agnihotri N, Khojah A. Hypogammaglobulinaemia and B cell lymphopaenia in Barth syndrome. BMJ Case Rep 2022; 15:e249254. [PMID: 35732368 PMCID: PMC9226982 DOI: 10.1136/bcr-2022-249254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 12/24/2022] Open
Abstract
Barth syndrome (BTHS) is an X linked recessive disorder caused by a mutation in the tafazzin (TAZ) gene classically associated with the triad of neutropaenia and cardiac and skeletal myopathies. Here we present a case of BTHS in a 2-month-old male patient found to have a novel variant of the TAZ gene (hemizygous c.639G>A) leading to early termination of the tafazzin protein (p.Trp213Ter) with presumed loss of function. Our patient was found to have dilated cardiomyopathy, cyclic neutropaenia and growth delays, which in combination with genetic work-up confirmed the diagnosis of BTHS. He also experienced repeated bacterial and viral infections, prompting an immunological work-up which revealed persistent B cell lymphopaenia and hypogammaglobulinaemia. He ultimately required subcutaneous immunoglobulin replacement and GM-CSF for ongoing hypogammaglobulinaemia and neutropaenia. To our knowledge, this case is the first report of BTHS associated with B cell lymphopaenia and hypogammaglobulinaemia.
Collapse
Affiliation(s)
- Elizabeth Kudlaty
- Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Neha Agnihotri
- Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amer Khojah
- Pediatrics, Umm Al-Qura University College of Medicine, Makkah, Saudi Arabia
| |
Collapse
|
19
|
N-oleoylethanolamide treatment of lymphoblasts deficient in Tafazzin improves cell growth and mitochondrial morphology and dynamics. Sci Rep 2022; 12:9466. [PMID: 35676289 PMCID: PMC9178007 DOI: 10.1038/s41598-022-13463-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Barth syndrome (BTHS) is caused by mutations in the TAZ gene encoding the cardiolipin remodeling enzyme, Tafazzin. The study objective was to quantitatively examine growth characteristics and mitochondrial morphology of transformed lymphoblast cell lines derived from five patients with BTHS relative to five healthy controls, as well as the therapeutic potential of oleoylethanolamide (OEA) and linoleoylethanolamide (LEA). These bioactive lipids both activate PPARα, which may be therapeutic. BTHS lymphoblasts grew more slowly than controls, suggesting lymphopenia merits clinical investigation. Treatment of BTHS lymphoblasts with OEA, but not LEA, significantly restored mitochondrial membrane potential, as well as colony growth in all BTHS lymphoblast lines, although a full growth rescue was not achieved. Quantification analysis of electron micrographs from three BTHS and healthy lymphoblast donors indicated similar numbers of mitochondria per cell, but lower average cristae length per mitochondrion, and higher mitochondrial density. Additionally, BTHS lymphoblasts had larger mitochondria, and a higher percentage of abnormally large mitochondria (> 1 μm2) than healthy controls. Notably, OEA treatment significantly restored mitochondrial size, without affecting density or cristae lengths. Cardiolipin total content, relative linoleic acid content and monolysocardiolipin:cardiolipin ratios were not improved by OEA, indicating that effects on growth, and mitochondrial morphology and function, occurred without resolving this deficit. However, immunoblotting showed higher levels of OPA1, a biomarker for mitochondrial fusion, in BTHS lymphoblasts, which was attenuated by OEA treatment, implicating altered mitochondrial dynamics in the pathology and treatment of BTHS.
Collapse
|
20
|
Pang J, Bao Y, Mitchell-Silbaugh K, Veevers J, Fang X. Barth Syndrome Cardiomyopathy: An Update. Genes (Basel) 2022; 13:genes13040656. [PMID: 35456462 PMCID: PMC9030331 DOI: 10.3390/genes13040656] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/23/2022] [Accepted: 04/02/2022] [Indexed: 12/28/2022] Open
Abstract
Barth syndrome (BTHS) is an X-linked mitochondrial lipid disorder caused by mutations in the TAFAZZIN (TAZ) gene, which encodes a mitochondrial acyltransferase/transacylase required for cardiolipin (CL) biosynthesis. Cardiomyopathy is a major clinical feature of BTHS. During the past four decades, we have witnessed many landmark discoveries that have led to a greater understanding of clinical features of BTHS cardiomyopathy and their molecular basis, as well as the therapeutic targets for this disease. Recently published Taz knockout mouse models provide useful experimental models for studying BTHS cardiomyopathy and testing potential therapeutic approaches. This review aims to summarize key findings of the clinical features, molecular mechanisms, and potential therapeutic approaches for BTHS cardiomyopathy, with particular emphasis on the most recent studies.
Collapse
Affiliation(s)
- Jing Pang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (J.P.); (Y.B.); (K.M.-S.); (J.V.)
- Department of Biological Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Yutong Bao
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (J.P.); (Y.B.); (K.M.-S.); (J.V.)
- Department of Biological Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Kalia Mitchell-Silbaugh
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (J.P.); (Y.B.); (K.M.-S.); (J.V.)
| | - Jennifer Veevers
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (J.P.); (Y.B.); (K.M.-S.); (J.V.)
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (J.P.); (Y.B.); (K.M.-S.); (J.V.)
- Correspondence: ; Tel.: +1-858-246-4637
| |
Collapse
|
21
|
Yester J, Feingold B. Extended recovery of cardiac function after severe infantile cardiomyopathy presentation of Barth syndrome. JIMD Rep 2022; 63:114-122. [PMID: 35281665 PMCID: PMC8898717 DOI: 10.1002/jmd2.12264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022] Open
Abstract
Cardiomyopathy is the most common presenting feature of Barth syndrome, often presenting in infancy with severe heart failure and cardiac dysfunction. Historically, affected infants commonly died early after presentation, sometimes before a diagnosis of Barth syndrome was made. With increases in awareness of Barth syndrome and in the care of infants with severe heart failure, survival of children with Barth syndrome and severe heart failure has improved. We describe our experience caring for five unrelated boys with Barth syndrome who presented with severe cardiomyopathy and heart failure prior to age 2 who have had marked improvement with long-term response to medical heart failure therapy.
Collapse
Affiliation(s)
- Jessie Yester
- Heart InstituteUPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
| | - Brian Feingold
- Heart InstituteUPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
- Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Clinical and Translational ScienceUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
22
|
Lodato V, Parlapiano G, Calì F, Silvetti MS, Adorisio R, Armando M, El Hachem M, Romanzo A, Dionisi-Vici C, Digilio MC, Novelli A, Drago F, Raponi M, Baban A. Cardiomyopathies in Children and Systemic Disorders When Is It Useful to Look beyond the Heart? J Cardiovasc Dev Dis 2022; 9:47. [PMID: 35200700 PMCID: PMC8877723 DOI: 10.3390/jcdd9020047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiomyopathy (CMP) is a rare disease in the pediatric population, with a high risk of morbidity and mortality. The genetic etiology of CMPs in children is extremely heterogenous. These two factors play a major role in the difficulties of establishing standard diagnostic and therapeutic protocols. Isolated CMP in children is a frequent finding, mainly caused by sarcomeric gene variants with a detection rate that can reach up to 50% of analyzed cohorts. Complex multisystemic forms of pediatric CMP are even more heterogenous. Few studies in literature take into consideration this topic as the main core since it represents a rarity (systemic CMP) within a rarity (pediatric population CMP). Identifying etiology in this cohort is essential for understanding prognosis, risk stratification, eligibility to heart transplantation and/or mechanical-assisted procedures, preventing multiorgan complications, and relatives' recurrence risk calculation. The previous points represent a cornerstone in patients' empowerment and personalized medical care approach. The aim of this work is to propose a new approach for an algorithm in the setting of the diagnostic framework of systemic pediatric CMP. On the other hand, during the literature review, we noticed a relatively common etiologic pattern in some forms of complex/multisystem CMP. In other words, certain syndromes such as Danon, Vici, Alström, Barth, and Myhre syndrome share a common pathway of directly or indirectly defective "autophagy" process, which appears to be a possible initiating/triggering factor for CMPs. This conjoint aspect could be important for possible prognostic/therapeutic implications in this category of patients. However, multicentric studies detailed functional and experimental models are needed prior to deriving conclusions.
Collapse
Affiliation(s)
- Valentina Lodato
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Giovanni Parlapiano
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Federica Calì
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Massimo Stefano Silvetti
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Rachele Adorisio
- Heart Failure Clinic-Heart Failure, Heart Transplant, Mechanical Circulatory Support Unit, Department of Pediatric Cardiology and Cardiac Surgery, Heart and Lung Transplant, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Michela Armando
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - May El Hachem
- Dermatology and Genodermatosis Units, Genetics and Rare Disease Research Division, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Antonino Romanzo
- Ophtalmology Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Fabrizio Drago
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Massimiliano Raponi
- Medical Direction, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy;
| | - Anwar Baban
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| |
Collapse
|
23
|
Beecher G, Fleming MD, Liewluck T. Hereditary myopathies associated with hematological abnormalities. Muscle Nerve 2022; 65:374-390. [PMID: 34985130 DOI: 10.1002/mus.27474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/19/2023]
Abstract
The diagnostic evaluation of a patient with suspected hereditary muscle disease can be challenging. Clinicians rely largely on clinical history and examination features, with additional serological, electrodiagnostic, radiologic, histopathologic, and genetic investigations assisting in definitive diagnosis. Hematological testing is inexpensive and widely available, but frequently overlooked in the hereditary myopathy evaluation. Hematological abnormalities are infrequently encountered in this setting; however, their presence provides a valuable clue, helps refine the differential diagnosis, tailors further investigation, and assists interpretation of variants of uncertain significance. A diverse spectrum of hematological abnormalities is associated with hereditary myopathies, including anemias, leukocyte abnormalities, and thrombocytopenia. Recurrent rhabdomyolysis in certain glycolytic enzymopathies co-occurs with hemolytic anemia, often chronic and mild in phosphofructokinase and phosphoglycerate kinase deficiencies, or acute and fever-associated in aldolase-A and triosephosphate isomerase deficiency. Sideroblastic anemia, commonly severe, accompanies congenital-to-childhood onset mitochondrial myopathies including Pearson marrow-pancreas syndrome and mitochondrial myopathy, lactic acidosis, and sideroblastic anemia phenotypes. Congenital megaloblastic macrocytic anemia and mitochondrial dysfunction characterize SFXN4-related myopathy. Neutropenia, chronic or cyclical, with recurrent infections, infantile-to-childhood onset skeletal myopathy and cardiomyopathy are typical of Barth syndrome, while chronic neutropenia without infection occurs rarely in DNM2-centronuclear myopathy. Peripheral eosinophilia may accompany eosinophilic inflammation in recessive calpainopathy. Lipid accumulation in leukocytes on peripheral blood smear (Jordans' anomaly) is pathognomonic for neutral lipid storage diseases. Mild thrombocytopenia occurs in autosomal dominant, childhood-onset STIM1 tubular aggregate myopathy, STIM1 and ORAI1 deficiency syndromes, and GNE myopathy. Herein, we review these hereditary myopathies in which hematological features play a prominent role.
Collapse
Affiliation(s)
- Grayson Beecher
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Teerin Liewluck
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
24
|
Dudek J, Maack C. Mechano-energetic aspects of Barth syndrome. J Inherit Metab Dis 2022; 45:82-98. [PMID: 34423473 DOI: 10.1002/jimd.12427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
Energy-demanding organs like the heart are strongly dependent on oxidative phosphorylation in mitochondria. Oxidative phosphorylation is governed by the respiratory chain located in the inner mitochondrial membrane. The inner mitochondrial membrane is the only cellular membrane with significant amounts of the phospholipid cardiolipin, and cardiolipin was found to directly interact with a number of essential protein complexes, including respiratory chain complexes I to V. An inherited defect in the biogenesis of cardiolipin causes Barth syndrome, which is associated with cardiomyopathy, skeletal myopathy, neutropenia and growth retardation. Energy conversion is dependent on reducing equivalents, which are replenished by oxidative metabolism in the Krebs cycle. Cardiolipin deficiency in Barth syndrome also affects Krebs cycle activity, metabolite transport and mitochondrial morphology. During excitation-contraction coupling, calcium (Ca2+ ) released from the sarcoplasmic reticulum drives sarcomeric contraction. At the same time, Ca2+ influx into mitochondria drives the activation of Krebs cycle dehydrogenases and the regeneration of reducing equivalents. Reducing equivalents are essential not only for energy conversion, but also for maintaining a redox buffer, which is required to detoxify reactive oxygen species (ROS). Defects in CL may also affect Ca2+ uptake into mitochondria and thereby hamper energy supply and demand matching, but also detoxification of ROS. Here, we review the impact of cardiolipin deficiency on mitochondrial function in Barth syndrome and discuss potential therapeutic strategies.
Collapse
Affiliation(s)
- Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
Taylor C, Rao ES, Pierre G, Chronopoulou E, Hornby B, Heyman A, Vernon HJ. Clinical presentation and natural history of Barth Syndrome: An overview. J Inherit Metab Dis 2022; 45:7-16. [PMID: 34355402 DOI: 10.1002/jimd.12422] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 01/25/2023]
Abstract
Barth Syndrome is a rare X-linked disorder caused by pathogenic variants in the gene TAFAZZIN, which encodes for an enzyme involved in the remodeling of cardiolipin, a phospholipid primarily localized to the inner mitochondrial membrane. Barth Syndrome is characterized by cardiomyopathy, skeletal myopathy, neutropenia, and growth abnormalities, among other features. In this review, we will discuss the clinical presentation and natural history of Barth Syndrome, review key features of this disease, and introduce less common clinical associations. Recognition and understanding of the natural history of Barth Syndrome are important for ongoing patient management and developing endpoints for the demonstration of efficacy of new and emerging therapies.
Collapse
Affiliation(s)
- Carolyn Taylor
- Department of Pediatrics, Division of Cardiology, Children's Hospital, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Emily S Rao
- Department of Pediatrics, Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Germaine Pierre
- Department of Inherited Metabolic Disease, Division of Women's and Children's Services, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Estathia Chronopoulou
- Department of Inherited Metabolic Disease, Division of Women's and Children's Services, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Brittany Hornby
- Department of Physical Therapy, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Andrea Heyman
- Department of Nutrition, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Hilary J Vernon
- Department of Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Pu WT. Experimental models of Barth syndrome. J Inherit Metab Dis 2022; 45:72-81. [PMID: 34370877 PMCID: PMC8814986 DOI: 10.1002/jimd.12423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 01/03/2023]
Abstract
Mutation of the gene Tafazzin (TAZ) causes Barth syndrome, an X-linked disorder characterized by cardiomyopathy, skeletal muscle weakness, and neutropenia. TAZ is an acyltransferase that catalyzes the remodeling of cardiolipin, the signature phospholipid of the inner mitochondrial membrane. Here, we review the major model systems that have been established to study the role of cardiolipin remodeling in mitochondrial function and the pathogenesis of Barth syndrome. We summarize key features of each model and provide examples of how each has contributed to advance our understanding of TAZ function and Barth syndrome pathophysiology.
Collapse
Affiliation(s)
- William T. Pu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138
- correspondence:
| |
Collapse
|
27
|
Cardiac Complications of Neuromuscular Disorders. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Zhao X, Li X, Sun W, Jia JA, Yu M, Tian R. Prenatal case report of Barth syndrome caused by novel TAFAZZIN mutation: Clinical characteristics of fetal dilated cardiomyopathy with ascites. Front Pediatr 2022; 10:1004485. [PMID: 36440345 PMCID: PMC9682154 DOI: 10.3389/fped.2022.1004485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Barth syndrome (BTHS) is a rare X-linked recessive genetic disease, which appears in infancy with myocardial and skeletal muscle diseases, neutropenia, growth retardation, and other clinical features. TAFAZZIN is the pathogenic gene of BTHS, which encodes the tafazzin protein of the inner membrane of the mitochondria, a phosphatidyltransferase involved in cardiolipin remodeling and functional maturation. At present, BTHS has been widely reported, but prenatal cases are rare. We report a 24+4-week fetus with clinical manifestations including left ventricular insufficiency and ascites. After induced labor, whole exome sequencing detection of fetal skin tissue showed that TAFAZZIN had the mutation c.311A > C/p.His104Pro and that his mother was the carrier. This His104Pro mutation has hitherto not been reported, and it is rated as likely to be pathogenic according to the American College of Medical Genetics and Genetics guidelines. Molecular dynamics and protein expression experiments on the His104Pro mutation showed that the stability of the local protein structure and protein expression were reduced. In conclusion, the case presented in this study enriches our knowledge of the TAFAZZIN mutation spectrum and suggests that His104Pro may lead to cardiac structural abnormalities in the early embryo. The possibility of BTHS should be considered when an abnormal cardiac structure or ascites appear in a prenatal ultrasound.
Collapse
Affiliation(s)
- Xuliang Zhao
- Department of Laboratory, The 901th Hospital of the Joint Service of the People's Liberation Army, Hefei, China
| | - Xu Li
- Department of Radiology, Anhui Children's Hospital, Hefei, China
| | - Weiwei Sun
- Department of Medical, Beijing Chigene Translational Medicine Research Center, Beijing, China
| | - Jian-An Jia
- Department of Laboratory, The 901th Hospital of the Joint Service of the People's Liberation Army, Hefei, China
| | - Min Yu
- Department of Obstetrics and Gynecology, The 901th Hospital of the Joint Service of the People's Liberation Army, Hefei, China
| | - Ruixia Tian
- Department of Obstetrics and Gynecology, The 901th Hospital of the Joint Service of the People's Liberation Army, Hefei, China
| |
Collapse
|
29
|
Thompson R, Jefferies J, Wang S, Pu WT, Takemoto C, Hornby B, Heyman A, Chin MT, Vernon HJ. Current and future treatment approaches for Barth syndrome. J Inherit Metab Dis 2022; 45:17-28. [PMID: 34713454 DOI: 10.1002/jimd.12453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022]
Abstract
Barth Syndrome is an X-linked disorder of mitochondrial cardiolipin metabolism caused by pathogenic variants in TAFAZZIN with pleiotropic effects including cardiomyopathy, neutropenia, growth delay, and skeletal myopathy. Management requires a multidisciplinary approach to the organ-specific manifestations including specialists from cardiology, hematology, nutrition, physical therapy, genetics, and metabolism. Currently, treatment is centered on management of specific clinical features, and is not targeted toward remediating the underlying biochemical defect. However, two clinical trials have been recently undertaken which target the mitochondrial pathology of this disease: a study to examine the effects of elamipretide, a cardiolipin targeted agent, and a study to examine the effects of bezafibrate, a peroxisome proliferator-activated receptor (PPAR) agonist. Treatments to directly target the defective TAFAZZIN pathway are under development, including enzyme and gene therapies.
Collapse
Affiliation(s)
- Reid Thompson
- Department of Pediatric Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John Jefferies
- The Cardiovascular Institute, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Suya Wang
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Clifford Takemoto
- Division of Clinical Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Brittany Hornby
- Department of Physical Therapy, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Andrea Heyman
- Department of Nutrition, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Michael T Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Hilary J Vernon
- Department of Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Bertero E, Nickel A, Kohlhaas M, Hohl M, Sequeira V, Brune C, Schwemmlein J, Abeßer M, Schuh K, Kutschka I, Carlein C, Münker K, Atighetchi S, Müller A, Kazakov A, Kappl R, von der Malsburg K, van der Laan M, Schiuma AF, Böhm M, Laufs U, Hoth M, Rehling P, Kuhn M, Dudek J, von der Malsburg A, Prates Roma L, Maack C. Loss of Mitochondrial Ca 2+ Uniporter Limits Inotropic Reserve and Provides Trigger and Substrate for Arrhythmias in Barth Syndrome Cardiomyopathy. Circulation 2021; 144:1694-1713. [PMID: 34648376 DOI: 10.1161/circulationaha.121.053755] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Barth syndrome (BTHS) is caused by mutations of the gene encoding tafazzin, which catalyzes maturation of mitochondrial cardiolipin and often manifests with systolic dysfunction during early infancy. Beyond the first months of life, BTHS cardiomyopathy typically transitions to a phenotype of diastolic dysfunction with preserved ejection fraction, blunted contractile reserve during exercise, and arrhythmic vulnerability. Previous studies traced BTHS cardiomyopathy to mitochondrial formation of reactive oxygen species (ROS). Because mitochondrial function and ROS formation are regulated by excitation-contraction coupling, integrated analysis of mechano-energetic coupling is required to delineate the pathomechanisms of BTHS cardiomyopathy. METHODS We analyzed cardiac function and structure in a mouse model with global knockdown of tafazzin (Taz-KD) compared with wild-type littermates. Respiratory chain assembly and function, ROS emission, and Ca2+ uptake were determined in isolated mitochondria. Excitation-contraction coupling was integrated with mitochondrial redox state, ROS, and Ca2+ uptake in isolated, unloaded or preloaded cardiac myocytes, and cardiac hemodynamics analyzed in vivo. RESULTS Taz-KD mice develop heart failure with preserved ejection fraction (>50%) and age-dependent progression of diastolic dysfunction in the absence of fibrosis. Increased myofilament Ca2+ affinity and slowed cross-bridge cycling caused diastolic dysfunction, in part, compensated by accelerated diastolic Ca2+ decay through preactivated sarcoplasmic reticulum Ca2+-ATPase. Taz deficiency provoked heart-specific loss of mitochondrial Ca2+ uniporter protein that prevented Ca2+-induced activation of the Krebs cycle during β-adrenergic stimulation, oxidizing pyridine nucleotides and triggering arrhythmias in cardiac myocytes. In vivo, Taz-KD mice displayed prolonged QRS duration as a substrate for arrhythmias, and a lack of inotropic response to β-adrenergic stimulation. Cellular arrhythmias and QRS prolongation, but not the defective inotropic reserve, were restored by inhibiting Ca2+ export through the mitochondrial Na+/Ca2+ exchanger. All alterations occurred in the absence of excess mitochondrial ROS in vitro or in vivo. CONCLUSIONS Downregulation of mitochondrial Ca2+ uniporter, increased myofilament Ca2+ affinity, and preactivated sarcoplasmic reticulum Ca2+-ATPase provoke mechano-energetic uncoupling that explains diastolic dysfunction and the lack of inotropic reserve in BTHS cardiomyopathy. Furthermore, defective mitochondrial Ca2+ uptake provides a trigger and a substrate for ventricular arrhythmias. These insights can guide the ongoing search for a cure of this orphaned disease.
Collapse
Affiliation(s)
- Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.).,Now with Department of Internal Medicine and Specialties (Di.M.I.), University of Genoa, Italy (E.B.)
| | - Alexander Nickel
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.)
| | - Michael Kohlhaas
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.)
| | - Mathias Hohl
- Clinic for Internal Medicine III (M. Hohl, C.B., K.M., S.A., A.K., M.B., C.M.), Saarland University Clinic, Homburg/Saar, Germany
| | - Vasco Sequeira
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.)
| | - Carolin Brune
- Clinic for Internal Medicine III (M. Hohl, C.B., K.M., S.A., A.K., M.B., C.M.), Saarland University Clinic, Homburg/Saar, Germany
| | - Julia Schwemmlein
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.)
| | - Marco Abeßer
- Institute of Physiology, University of Würzburg, Germany (M.A., K.S., M. Kuhn)
| | - Kai Schuh
- Institute of Physiology, University of Würzburg, Germany (M.A., K.S., M. Kuhn)
| | - Ilona Kutschka
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.)
| | - Christopher Carlein
- Department for Biophysics, ZHMB, CIPMM (C.C., R.K., M. Hoth, L.P.R.), Saarland University, Homburg/Saar, Germany
| | - Kai Münker
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.).,Clinic for Internal Medicine III (M. Hohl, C.B., K.M., S.A., A.K., M.B., C.M.), Saarland University Clinic, Homburg/Saar, Germany
| | - Sarah Atighetchi
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.).,Clinic for Internal Medicine III (M. Hohl, C.B., K.M., S.A., A.K., M.B., C.M.), Saarland University Clinic, Homburg/Saar, Germany
| | - Andreas Müller
- Clinic for Radiology (A.M.), Saarland University Clinic, Homburg/Saar, Germany
| | - Andrey Kazakov
- Clinic for Internal Medicine III (M. Hohl, C.B., K.M., S.A., A.K., M.B., C.M.), Saarland University Clinic, Homburg/Saar, Germany
| | - Reinhard Kappl
- Department for Biophysics, ZHMB, CIPMM (C.C., R.K., M. Hoth, L.P.R.), Saarland University, Homburg/Saar, Germany
| | - Karina von der Malsburg
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine (K.v.d.M., M.v.d.L., A.v.d.M.), Saarland University, Homburg/Saar, Germany
| | - Martin van der Laan
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine (K.v.d.M., M.v.d.L., A.v.d.M.), Saarland University, Homburg/Saar, Germany
| | - Anna-Florentine Schiuma
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.)
| | - Michael Böhm
- Clinic for Internal Medicine III (M. Hohl, C.B., K.M., S.A., A.K., M.B., C.M.), Saarland University Clinic, Homburg/Saar, Germany
| | - Ulrich Laufs
- Now with Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (U.L.)
| | - Markus Hoth
- Department for Biophysics, ZHMB, CIPMM (C.C., R.K., M. Hoth, L.P.R.), Saarland University, Homburg/Saar, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany (P.R., J.D.).,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (P.R.).,Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany (P.R.)
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Germany (M.A., K.S., M. Kuhn)
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.).,Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany (P.R., J.D.)
| | - Alexander von der Malsburg
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine (K.v.d.M., M.v.d.L., A.v.d.M.), Saarland University, Homburg/Saar, Germany
| | - Leticia Prates Roma
- Department for Biophysics, ZHMB, CIPMM (C.C., R.K., M. Hoth, L.P.R.), Saarland University, Homburg/Saar, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.).,Clinic for Internal Medicine III (M. Hohl, C.B., K.M., S.A., A.K., M.B., C.M.), Saarland University Clinic, Homburg/Saar, Germany.,Department for Internal Medicine 1, University Clinic Würzburg, Germany (C.M.)
| |
Collapse
|
31
|
Ralph-Epps T, Onu CJ, Vo L, Schmidtke MW, Le A, Greenberg ML. Studying Lipid-Related Pathophysiology Using the Yeast Model. Front Physiol 2021; 12:768411. [PMID: 34777024 PMCID: PMC8581491 DOI: 10.3389/fphys.2021.768411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023] Open
Abstract
Saccharomyces cerevisiae, commonly known as baker's yeast, is one of the most comprehensively studied model organisms in science. Yeast has been used to study a wide variety of human diseases, and the yeast model system has proved to be an especially amenable tool for the study of lipids and lipid-related pathophysiologies, a topic that has gained considerable attention in recent years. This review focuses on how yeast has contributed to our understanding of the mitochondrial phospholipid cardiolipin (CL) and its role in Barth syndrome (BTHS), a genetic disorder characterized by partial or complete loss of function of the CL remodeling enzyme tafazzin. Defective tafazzin causes perturbation of CL metabolism, resulting in many downstream cellular consequences and clinical pathologies that are discussed herein. The influence of yeast research in the lipid-related pathophysiologies of Alzheimer's and Parkinson's diseases is also summarized.
Collapse
Affiliation(s)
- Tyler Ralph-Epps
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Chisom J Onu
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Linh Vo
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Anh Le
- Muskegon Catholic Central High School, Muskegon, MI, United States
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
32
|
Abstract
Barth syndrome is a rare and potentially fatal X-linked disease characterized by cardiomyopathy, skeletal muscle weakness, growth delays, and cyclic neutropenia. Patients with Barth syndrome are prone to high risk of mortality in infancy and the development of cardiomyopathy with severe weakening of the immune system. Elamipretide is a water-soluble, aromatic-cationic, mitochondria-targeting tetrapeptide that readily penetrates and transiently localizes to the inner mitochondrial membrane. Therapy with elamipretide facilitates cell health by improving energy production and inhibiting excessive formation of reactive oxygen species, thus alleviating oxidative stress. Elamipretide crosses the outer membrane of the mitochondrion and becomes associated with cardiolipin, a constituent phospholipid of the inner membrane. Elamipretide improves mitochondrial bioenergetics and morphology rapidly in induced pluripotent stem cells from patients with Barth syndrome and other genetically related diseases characterized by pediatric cardiomyopathy. Data with elamipretide across multiple models of disease are especially promising, with results from several studies supporting the use of elamipretide as potential therapy for patients with Barth syndrome, particularly where there is a confirmed diagnosis of cardiomyopathy. This review highlights the challenges and opportunities presented in treating Barth syndrome cardiomyopathy patients with elamipretide and addresses evidence supporting the durability of effect of elamipretide as a therapeutic agent for Barth syndrome, especially its likely durable effects on progression of cardiomyopathy following the cessation of drug treatment and the capability of elamipretide to structurally reverse remodel the failing left ventricle at the global, cellular, and molecular level in a gradual manner through specific targeting of the mitochondrial inner membrane.
Collapse
|
33
|
Vanderniet JA, Benitez-Aguirre PZ, Broderick CR, Kelley RI, Balasubramaniam S. Barth syndrome with severe dilated cardiomyopathy and growth hormone resistance: a case report. J Pediatr Endocrinol Metab 2021; 34:951-955. [PMID: 33851526 DOI: 10.1515/jpem-2020-0666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/19/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To describe the metabolic and endocrine features of a patient with Barth syndrome who showed evidence of growth hormone resistance. CASE PRESENTATION A male proband deteriorated rapidly with lactic acidosis after a circumcision at age three weeks and was found to have severe dilated cardiomyopathy. A cardiomyopathy gene panel led to the diagnosis of TAZ-deficiency Barth syndrome. He subsequently experienced hypotonia and gross motor delay, feeding difficulties for the first four years, constitutional growth delay and one episode of ketotic hypoglycaemia. Cardiomyopathy resolved on oral anti-failure therapy by age three years. He had a hormonal pattern of growth hormone resistance, and growth hormone treatment was considered, however height velocity improved spontaneously after age 3½ years. He also had biochemical primary hypothyroidism. CONCLUSIONS With careful metabolic management with l-arginine supplementation, overnight corn starch, and a prescribed exercise program, our patient's strength, endurance, level of physical activity and body composition improved significantly by age six years.
Collapse
Affiliation(s)
- Joel A Vanderniet
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Paul Z Benitez-Aguirre
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Paediatrics and Child Health, University of Sydney, Sydney, NSW, Australia
| | - Carolyn R Broderick
- Children's Hospital Institute of Sports Medicine, The Children's Hospital at Westmead, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Richard I Kelley
- Department of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Shanti Balasubramaniam
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Sydney, NSW, Australia
| |
Collapse
|
34
|
Diverse mitochondrial abnormalities in a new cellular model of TAFFAZZIN deficiency are remediated by cardiolipin-interacting small molecules. J Biol Chem 2021; 297:101005. [PMID: 34314685 PMCID: PMC8384898 DOI: 10.1016/j.jbc.2021.101005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/11/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022] Open
Abstract
Barth syndrome (BTHS) is an X-linked disorder of mitochondrial phospholipid metabolism caused by pathogenic variants in TAFFAZIN, which results in abnormal cardiolipin (CL) content in the inner mitochondrial membrane. To identify unappreciated pathways of mitochondrial dysfunction in BTHS, we utilized an unbiased proteomics strategy and identified that complex I (CI) of the mitochondrial respiratory chain and the mitochondrial quality control protease presenilin-associated rhomboid-like protein (PARL) are altered in a new HEK293–based tafazzin-deficiency model. Follow-up studies confirmed decreased steady state levels of specific CI subunits and an assembly factor in the absence of tafazzin; this decrease is in part based on decreased transcription and results in reduced CI assembly and function. PARL, a rhomboid protease associated with the inner mitochondrial membrane with a role in the mitochondrial response to stress, such as mitochondrial membrane depolarization, is increased in tafazzin-deficient cells. The increased abundance of PARL correlates with augmented processing of a downstream target, phosphoglycerate mutase 5, at baseline and in response to mitochondrial depolarization. To clarify the relationship between abnormal CL content, CI levels, and increased PARL expression that occurs when tafazzin is missing, we used blue-native PAGE and gene expression analysis to determine that these defects are remediated by SS-31 and bromoenol lactone, pharmacologic agents that bind CL or inhibit CL deacylation, respectively. These findings have the potential to enhance our understanding of the cardiac pathology of BTHS, where defective mitochondrial quality control and CI dysfunction have well-recognized roles in the pathology of diverse forms of cardiac dysfunction.
Collapse
|
35
|
Li Y, Godown J, Taylor CL, Dipchand AI, Bowen VM, Feingold B. Favorable outcomes after heart transplantation in Barth syndrome. J Heart Lung Transplant 2021; 40:1191-1198. [PMID: 34330606 DOI: 10.1016/j.healun.2021.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/26/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Barth Syndrome (BTHS) is a rare, X-linked disease characterized by cardioskeletal myopathy and neutropenia. Comparative outcomes after heart transplantation have not been reported. METHODS We identified BTHS recipients across 3 registries (Pediatric Heart Transplant Study Registry [PHTS], Barth Syndrome Research Registry and Repository, and Scientific Registry of Transplant Recipient-Pediatric Health Information System) and matched them 1:4 to non-BTHS, male heart transplant (HT) recipients listed with dilated cardiomyopathy in PHTS. Demographics and survival data were analyzed for all recipients, whereas post-HT infection, malignancy, allograft vasculopathy, and acute rejection were only available for analysis for individuals with PHTS data. RESULTS Forty-seven BTHS individuals with 51 listings and 43 HTs (including 2 re-transplants) were identified. Age at primary HT was 1.7 years (IQR: 0.6-4.5). Mechanical circulatory support at HT was common (ventricular assist device 29%, extracorporeal membrane oxygenation 5%). Over a median follow-up of 4.5 years (IQR 2.7-9.1), survival for BTHS HT recipients was no different than non-BTHS HT recipients (HR 0.91, 95% CI 0.40-2.12, p = 0.85). Among those with PHTS data (n = 28), BTHS HT recipients showed no difference in freedom from infection (HR 0.64, 0.34-1.22; p = 0.18), malignancy (HR 0.22, 0.02-2.01, p = 0.18), and allograft vasculopathy (HR 0.58, 0.16-2.1, p = 0.41). Freedom from acute rejection (HR 0.39, 0.17-0.86, p = 0.02) was greater for BTHS HT recipients despite similar use of induction (61 vs 73%, p = 0.20), steroids at 30-days (75 vs 62%, p = 0.27), and dual/triple drug immunosuppression at 1-year (80 vs 84%, p = 0.55). CONCLUSIONS In this largest cohort yet reported, individuals with BTHS have equivalent survival with less acute rejection and no difference in infection or malignancy after HT. When indicated, HT for individuals with BTHS is appropriate.
Collapse
Affiliation(s)
- Yu Li
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Justin Godown
- Division of Pediatric Cardiology, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Carolyn L Taylor
- Division of Cardiology, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Anne I Dipchand
- Division of Cardiology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | - Brian Feingold
- Departments of Pediatrics and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
36
|
Zhu S, Chen Z, Zhu M, Shen Y, Leon LJ, Chi L, Spinozzi S, Tan C, Gu Y, Nguyen A, Zhou Y, Feng W, Vaz FM, Wang X, Gustafsson AB, Evans SM, Kunfu O, Fang X. Cardiolipin Remodeling Defects Impair Mitochondrial Architecture and Function in a Murine Model of Barth Syndrome Cardiomyopathy. Circ Heart Fail 2021; 14:e008289. [PMID: 34129362 PMCID: PMC8210459 DOI: 10.1161/circheartfailure.121.008289] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Cardiomyopathy is a major clinical feature in Barth syndrome (BTHS), an X-linked mitochondrial lipid disorder caused by mutations in Tafazzin (TAZ), encoding a mitochondrial acyltransferase required for cardiolipin remodeling. Despite recent description of a mouse model of BTHS cardiomyopathy, an in-depth analysis of specific lipid abnormalities and mitochondrial form and function in an in vivo BTHS cardiomyopathy model is lacking. METHODS We performed in-depth assessment of cardiac function, cardiolipin species profiles, and mitochondrial structure and function in our newly generated Taz cardiomyocyte-specific knockout mice and Cre-negative control mice (n≥3 per group). RESULTS Taz cardiomyocyte-specific knockout mice recapitulate typical features of BTHS and mitochondrial cardiomyopathy. Fewer than 5% of cardiomyocyte-specific knockout mice exhibited lethality before 2 months of age, with significantly enlarged hearts. More than 80% of cardiomyocyte-specific knockout displayed ventricular dilation at 16 weeks of age and survived until 50 weeks of age. Full parameter analysis of cardiac cardiolipin profiles demonstrated lower total cardiolipin concentration, abnormal cardiolipin fatty acyl composition, and elevated monolysocardiolipin to cardiolipin ratios in Taz cardiomyocyte-specific knockout, relative to controls. Mitochondrial contact site and cristae organizing system and F1F0-ATP synthase complexes, required for cristae morphogenesis, were abnormal, resulting in onion-shaped mitochondria. Organization of high molecular weight respiratory chain supercomplexes was also impaired. In keeping with observed mitochondrial abnormalities, seahorse experiments demonstrated impaired mitochondrial respiration capacity. CONCLUSIONS Our mouse model mirrors multiple physiological and biochemical aspects of BTHS cardiomyopathy. Our results give important insights into the underlying cause of BTHS cardiomyopathy and provide a framework for testing therapeutic approaches to BTHS cardiomyopathy, or other mitochondrial-related cardiomyopathies.
Collapse
Affiliation(s)
- Siting Zhu
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ze’e Chen
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Mason Zhu
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Ying Shen
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Leonardo J Leon
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Liguo Chi
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Simone Spinozzi
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Changming Tan
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yusu Gu
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Anh Nguyen
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Yi Zhou
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA
| | - Wei Feng
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Asa B Gustafsson
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Sylvia M Evans
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Ouyang Kunfu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xi Fang
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
37
|
Sivitskaya L, Danilenko N, Motuk I, Zhelev N. Splicing mutation in TAZ gene leading to exon skipping and Barth syndrome. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2021; 40:88-92. [PMID: 34355125 PMCID: PMC8290511 DOI: 10.36185/2532-1900-047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 06/13/2023]
Abstract
Barth syndrome is a monogenic X-linked disorder characterized by cardiomyopathy, skeletal myopathy and neutropenia. It is caused by deficiency of cardiolipin and associated with mutations in the tafazzin gene (TAZ). A 3 years old boy with dilated cardiomyopathy, neutropenia and growth retardation was investigated. Genetic screening found a new variant in the junction of intron 2 and exon 3 of the TAZ gene - c.239-1_239delinsTT. Functional analysis of the variant revealed the aberrant splicing of exon 3 leading to its complete excision from mature mRNA and frameshift at the beginning of tafazzin. Variant c.239-1_239delinsTT can be classified as pathogenic based on splicing alteration and typical clinical phenotype observed in TAZ mutation carriers.
Collapse
Affiliation(s)
- Larysa Sivitskaya
- Institute of Genetics and Cytology, National Academy of Sciences, Minsk, Belarus
| | - Nina Danilenko
- Institute of Genetics and Cytology, National Academy of Sciences, Minsk, Belarus
| | - Iryna Motuk
- Medical Genetic Department of Regional Perinatal Center, Grodno, Belarus
| | - Nikolai Zhelev
- School of Medicine, University of Dundee, Scotland, UK
- Medical University Plovdiv, Bulgaria
| |
Collapse
|
38
|
Liu X, Wang S, Guo X, Li Y, Ogurlu R, Lu F, Prondzynski M, Buzon SDLS, Ma Q, Zhang D, Wang G, Cotton J, Guo Y, Xiao L, Milan DJ, Xu Y, Schlame M, Bezzerides VJ, Pu WT. Increased Reactive Oxygen Species-Mediated Ca 2+/Calmodulin-Dependent Protein Kinase II Activation Contributes to Calcium Handling Abnormalities and Impaired Contraction in Barth Syndrome. Circulation 2021; 143:1894-1911. [PMID: 33793303 PMCID: PMC8691127 DOI: 10.1161/circulationaha.120.048698] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Mutations in tafazzin (TAZ), a gene required for biogenesis of cardiolipin, the signature phospholipid of the inner mitochondrial membrane, causes Barth syndrome (BTHS). Cardiomyopathy and risk of sudden cardiac death are prominent features of BTHS, but the mechanisms by which impaired cardiolipin biogenesis causes cardiac muscle weakness and arrhythmia are poorly understood. METHODS We performed in vivo electrophysiology to define arrhythmia vulnerability in cardiac-specific TAZ knockout mice. Using cardiomyocytes derived from human induced pluripotent stem cells and cardiac-specific TAZ knockout mice as model systems, we investigated the effect of TAZ inactivation on Ca2+ handling. Through genome editing and pharmacology, we defined a molecular link between TAZ mutation and abnormal Ca2+ handling and contractility. RESULTS A subset of mice with cardiac-specific TAZ inactivation developed arrhythmias, including bidirectional ventricular tachycardia, atrial tachycardia, and complete atrioventricular block. Compared with wild-type controls, BTHS-induced pluripotent stem cell-derived cardiomyocytes had increased diastolic Ca2+ and decreased Ca2+ transient amplitude. BTHS-induced pluripotent stem cell-derived cardiomyocytes had higher levels of mitochondrial and cellular reactive oxygen species than wild-type controls, which activated CaMKII (Ca2+/calmodulin-dependent protein kinase II). Activated CaMKII phosphorylated the RYR2 (ryanodine receptor 2) on serine 2814, increasing Ca2+ leak through RYR2. Inhibition of this reactive oxygen species-CaMKII-RYR2 pathway through pharmacological inhibitors or genome editing normalized aberrant Ca2+ handling in BTHS-induced pluripotent stem cell-derived cardiomyocytes and improved their contractile function. Murine Taz knockout cardiomyocytes also exhibited elevated diastolic Ca2+ and decreased Ca2+ transient amplitude. These abnormalities were ameliorated by Ca2+/calmodulin-dependent protein kinase II or reactive oxygen species inhibition. CONCLUSIONS This study identified a molecular pathway that links TAZ mutation with abnormal Ca2+ handling and decreased cardiomyocyte contractility. This pathway may offer therapeutic opportunities to treat BTHS and potentially other diseases with elevated mitochondrial reactive oxygen species production.
Collapse
Affiliation(s)
- Xujie Liu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Radiology, Basic Medical School, Chongqing Medical University, Chongqing, 400016, China
| | - Suya Wang
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Xiaoling Guo
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Roza Ogurlu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Fujian Lu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | | | - Qing Ma
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Donghui Zhang
- State key laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, Hubei 430062, China
| | - Gang Wang
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Justin Cotton
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard College, Cambridge, MA 02138, USA
| | - Yuxuan Guo
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ling Xiao
- Department of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David J. Milan
- Department of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yang Xu
- Department of Anesthesiology, New York University School of Medicine, New York, New York
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, New York
| | | | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
39
|
Rohde S, Muslem R, Kaya E, Dalinghaus M, van Waning JI, Majoor-Krakauer D, Towbin J, Caliskan K. State-of-the art review: Noncompaction cardiomyopathy in pediatric patients. Heart Fail Rev 2021; 27:15-28. [PMID: 33715140 PMCID: PMC8739285 DOI: 10.1007/s10741-021-10089-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Noncompaction cardiomyopathy (NCCM) is a disease characterized by hypertrabeculation, commonly hypothesized due to an arrest in compaction during fetal development. In 2006, NCCM was classified as a distinct form of cardiomyopathy (CMP) by the American Heart Association. NCCM in childhood is more frequently familial than when diagnosed in adulthood and is associated with other congenital heart diseases (CHDs), other genetic CMPs, and neuromuscular diseases (NMDs). It is yet a rare cardiac diseased with an estimated incidence of 0.12 per 100.000 in children up to 10 years of age. Diagnosing NCCM can be challenging due to non-uniform diagnostic criteria, unawareness, presumed other CMPs, and presence of CHD. Therefore, the incidence of NCCM in children might be an underestimation. Nonetheless, NCCM is the third most common cardiomyopathy in childhood and is associated with heart failure, arrhythmias, and/or thromboembolic events. This state-of-the-art review provides an overview on pediatric NCCM. In addition, we discuss the natural history, epidemiology, genetics, clinical presentation, outcome, and therapeutic options of NCCM in pediatric patients, including fetuses, neonates, infants, and children. Furthermore, we provide a simple classification of different forms of the disease. Finally, the differences between the pediatric population and the adult population are described.
Collapse
Affiliation(s)
- Sofie Rohde
- Thoraxcenter, Department of Cardiology, Erasmus University Medical Center, Room RG 431, 3015 GD, Rotterdam, The Netherlands
| | - Rahatullah Muslem
- Thoraxcenter, Department of Cardiology, Erasmus University Medical Center, Room RG 431, 3015 GD, Rotterdam, The Netherlands
| | - Emrah Kaya
- Thoraxcenter, Department of Cardiology, Erasmus University Medical Center, Room RG 431, 3015 GD, Rotterdam, The Netherlands
| | - Michel Dalinghaus
- Division of Pediatric Cardiology, Sophia Children's Hospital, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jaap I van Waning
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Jeffery Towbin
- The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Kadir Caliskan
- Thoraxcenter, Department of Cardiology, Erasmus University Medical Center, Room RG 431, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
40
|
Barth syndrome: cardiolipin, cellular pathophysiology, management, and novel therapeutic targets. Mol Cell Biochem 2021; 476:1605-1629. [PMID: 33415565 DOI: 10.1007/s11010-020-04021-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Barth syndrome is a rare X-linked genetic disease classically characterized by cardiomyopathy, skeletal myopathy, growth retardation, neutropenia, and 3-methylglutaconic aciduria. It is caused by mutations in the tafazzin gene localized to chromosome Xq28.12. Mutations in tafazzin may result in alterations in the level and molecular composition of the mitochondrial phospholipid cardiolipin and result in large elevations in the lysophospholipid monolysocardiolipin. The increased monolysocardiolipin:cardiolipin ratio in blood is diagnostic for the disease, and it leads to disruption in mitochondrial bioenergetics. In this review, we discuss cardiolipin structure, synthesis, and function and provide an overview of the clinical and cellular pathophysiology of Barth Syndrome. We highlight known pharmacological management for treatment of the major pathological features associated with the disease. In addition, we discuss non-pharmacological management. Finally, we highlight the most recent promising therapeutic options for this rare mitochondrial disease including lipid replacement therapy, peroxisome proliferator-activated receptor agonists, tafazzin gene replacement therapy, induced pluripotent stem cells, mitochondria-targeted antioxidants and peptides, and the polyphenolic compound resveratrol.
Collapse
|
41
|
Park KC, Krywawych S, Richard E, Desviat LR, Swietach P. Cardiac Complications of Propionic and Other Inherited Organic Acidemias. Front Cardiovasc Med 2020; 7:617451. [PMID: 33415129 PMCID: PMC7782273 DOI: 10.3389/fcvm.2020.617451] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Clinical observations and experimental studies have determined that systemic acid-base disturbances can profoundly affect the heart. A wealth of information is available on the effects of altered pH on cardiac function but, by comparison, much less is known about the actions of the organic anions that accumulate alongside H+ ions in acidosis. In the blood and other body fluids, these organic chemical species can collectively reach concentrations of several millimolar in severe metabolic acidoses, as in the case of inherited organic acidemias, and exert powerful biological actions on the heart that are not intuitive to predict. Indeed, cardiac pathologies, such as cardiomyopathy and arrhythmia, are frequently reported in organic acidemia patients, but the underlying pathophysiological mechanisms are not well established. Research efforts in the area of organic anion physiology have increased dramatically in recent years, particularly for propionate, which accumulates in propionic acidemia, one of the commonest organic acidemias characterized by a high incidence of cardiac disease. This Review provides a comprehensive historical overview of all known organic acidemias that feature cardiac complications and a state-of-the-art overview of the cardiac sequelae observed in propionic acidemia. The article identifies the most promising candidates for molecular mechanisms that become aberrantly engaged by propionate anions (and its metabolites), and discusses how these may result in cardiac derangements in propionic acidemia. Key clinical and experimental findings are considered in the context of potential therapies in the near future.
Collapse
Affiliation(s)
- Kyung Chan Park
- Department of Anatomy, Physiology and Genetics, Burdon Sanderson Cardiac Science Centre, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Steve Krywawych
- Department of Chemical Pathology, Great Ormond Street Hospital, London, United Kingdom
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa, Universidad Autonoma de Madrid-Consejo Superior de Investigaciones Cientificas (UAM-CSIC), Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa, Universidad Autonoma de Madrid-Consejo Superior de Investigaciones Cientificas (UAM-CSIC), Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pawel Swietach
- Department of Anatomy, Physiology and Genetics, Burdon Sanderson Cardiac Science Centre, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Metabolic Alterations Caused by Defective Cardiolipin Remodeling in Inherited Cardiomyopathies. Life (Basel) 2020; 10:life10110277. [PMID: 33187128 PMCID: PMC7697959 DOI: 10.3390/life10110277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
The heart is the most energy-consuming organ in the human body. In heart failure, the homeostasis of energy supply and demand is endangered by an increase in cardiomyocyte workload, or by an insufficiency in energy-providing processes. Energy metabolism is directly associated with mitochondrial redox homeostasis. The production of toxic reactive oxygen species (ROS) may overwhelm mitochondrial and cellular ROS defense mechanisms in case of heart failure. Mitochondria are essential cell organelles and provide 95% of the required energy in the heart. Metabolic remodeling, changes in mitochondrial structure or function, and alterations in mitochondrial calcium signaling diminish mitochondrial energy provision in many forms of cardiomyopathy. The mitochondrial respiratory chain creates a proton gradient across the inner mitochondrial membrane, which couples respiration with oxidative phosphorylation and the preservation of energy in the chemical bonds of ATP. Akin to other mitochondrial enzymes, the respiratory chain is integrated into the inner mitochondrial membrane. The tight association with the mitochondrial phospholipid cardiolipin (CL) ensures its structural integrity and coordinates enzymatic activity. This review focuses on how changes in mitochondrial CL may be associated with heart failure. Dysfunctional CL has been found in diabetic cardiomyopathy, ischemia reperfusion injury and the aging heart. Barth syndrome (BTHS) is caused by an inherited defect in the biosynthesis of cardiolipin. Moreover, a dysfunctional CL pool causes other types of rare inherited cardiomyopathies, such as Sengers syndrome and Dilated Cardiomyopathy with Ataxia (DCMA). Here we review the impact of cardiolipin deficiency on mitochondrial functions in cellular and animal models. We describe the molecular mechanisms concerning mitochondrial dysfunction as an incitement of cardiomyopathy and discuss potential therapeutic strategies.
Collapse
|
43
|
Nagalapuram V, McCall D, Palabindela P, Howard TH, Bemrich-Stolz C, Lebensburger J, Hilliard L, Wilson HP. Outcomes of Isolated Neutropenia Referred to Pediatric Hematology-Oncology Clinic. Pediatrics 2020; 146:peds.2019-3637. [PMID: 32883808 DOI: 10.1542/peds.2019-3637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Children with isolated neutropenia (absolute neutrophil count [ANC] <1500/μL) are frequently referred to pediatric hematology and oncology clinics for further diagnostic evaluation. Scant literature exists on interventions and outcomes for isolated neutropenia. We hypothesized that children will have resolution of their neutropenia without the need for intervention(s) by a pediatric hematologist and oncologist. METHODS We performed a 5.5-year institutional review board-approved retrospective chart review of children referred to our pediatric hematology and oncology clinics for isolated neutropenia. Neutropenia was categorized as mild (ANC of 1001-1500/μL), moderate (ANC of 500-1000 μL), severe (ANC of 201-500/μL), or very severe (ANC of ≤200/μL). RESULTS Among 155 children referred with isolated neutropenia, 45 (29%) had mild neutropenia, 65 (42%) had moderate neutropenia, 30 (19%) had severe neutropenia, and 15 (10%) had very severe neutropenia. Only 29 (19%) children changed to an ANC category lower than their initial referral category. At a median follow-up of 12 months, 101 children had resolution of neutropenia, 40 children had mild neutropenia, 10 children had moderate neutropenia, 3 children had severe neutropenia, and 1 patient had very severe neutropenia. A specific diagnosis was not identified in most (54%) children. The most common etiologies were viral suppression (16%), autoimmune neutropenia (14%), and drug-induced neutropenia (8%). Black children had a 3.5 higher odds of having persistent mild neutropenia. Six (4%) children received granulocyte colony-stimulating factor therapy. CONCLUSIONS Most children referred for isolated neutropenia do not progress in severity and do not require subspecialty interventions or hospitalizations.
Collapse
Affiliation(s)
- Vishnu Nagalapuram
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; and
| | - David McCall
- MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Prasannalaxmi Palabindela
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Thomas H Howard
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Christina Bemrich-Stolz
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Jeffrey Lebensburger
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Lee Hilliard
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Hope P Wilson
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
44
|
Rao K, Bhaskaran A, Choudhary P, Tan TC. The role of multimodality imaging in the diagnosis of left ventricular noncompaction. Eur J Clin Invest 2020; 50:e13254. [PMID: 32329049 DOI: 10.1111/eci.13254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/06/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022]
Abstract
Left ventricular noncompaction (LVNC) is a heterogeneous entity and, in reality, a likely spectrum of disease which is clinically associated with arrhythmia, thromboembolic complications and sudden cardiac death. With the emergence of cardiac MRI (cMRI), the phenotype is increasingly more prevalent, resulting in clinical uncertainty regarding prognosis and management. The currently accepted hypothesis suggests an early embryonic arrest of the normal, sequential myocardial compaction process. LVNC is observed in isolation or in association with congenital heart disease, neuromuscular disease or a vast array of genetic cardiomyopathies. Definition of the entity varies among international society guidelines with differences both within and between imaging modalities, predominantly echocardiography and cMRI. Long-term prognostic data are emerging but due to the intrinsic variability in reported prevalence, selection bias and lack of pathological to prognostic correlation, there are many uncertainties regarding clinical management. This review seeks to clarify the role of multimodality imaging in diagnosis and management of the disease. We discuss the sensitivity and specificity of the current diagnostic criteria, as well as the nuances in diagnosis using the available imaging modalities.
Collapse
Affiliation(s)
- Karan Rao
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia.,University of Sydney, NSW, Australia
| | - Ashwin Bhaskaran
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia.,University of Sydney, NSW, Australia
| | - Preeti Choudhary
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia
| | - Timothy C Tan
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia.,University of Sydney, NSW, Australia.,University of Western Sydney, NSW, Australia
| |
Collapse
|
45
|
Le CH, Benage LG, Specht KS, Li Puma LC, Mulligan CM, Heuberger AL, Prenni JE, Claypool SM, Chatfield KC, Sparagna GC, Chicco AJ. Tafazzin deficiency impairs CoA-dependent oxidative metabolism in cardiac mitochondria. J Biol Chem 2020; 295:12485-12497. [PMID: 32665401 DOI: 10.1074/jbc.ra119.011229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Barth syndrome is a mitochondrial myopathy resulting from mutations in the tafazzin (TAZ) gene encoding a phospholipid transacylase required for cardiolipin remodeling. Cardiolipin is a phospholipid of the inner mitochondrial membrane essential for the function of numerous mitochondrial proteins and processes. However, it is unclear how tafazzin deficiency impacts cardiac mitochondrial metabolism. To address this question while avoiding confounding effects of cardiomyopathy on mitochondrial phenotype, we utilized Taz-shRNA knockdown (TazKD ) mice, which exhibit defective cardiolipin remodeling and respiratory supercomplex instability characteristic of human Barth syndrome but normal cardiac function into adulthood. Consistent with previous reports from other models, mitochondrial H2O2 emission and oxidative damage were greater in TazKD than in wild-type (WT) hearts, but there were no differences in oxidative phosphorylation coupling efficiency or membrane potential. Fatty acid and pyruvate oxidation capacities were 40-60% lower in TazKD mitochondria, but an up-regulation of glutamate oxidation supported respiration rates approximating those with pyruvate and palmitoylcarnitine in WT. Deficiencies in mitochondrial CoA and shifts in the cardiac acyl-CoA profile paralleled changes in fatty acid oxidation enzymes and acyl-CoA thioesterases, suggesting limitations of CoA availability or "trapping" in TazKD mitochondrial metabolism. Incubation of TazKD mitochondria with exogenous CoA partially rescued pyruvate and palmitoylcarnitine oxidation capacities, implicating dysregulation of CoA-dependent intermediary metabolism rather than respiratory chain defects in the bioenergetic impacts of tafazzin deficiency. These findings support links among cardiolipin abnormalities, respiratory supercomplex instability, and mitochondrial oxidant production and shed new light on the distinct metabolic consequences of tafazzin deficiency in the mammalian heart.
Collapse
Affiliation(s)
- Catherine H Le
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado, USA
| | - Lindsay G Benage
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Kalyn S Specht
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Lance C Li Puma
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Christopher M Mulligan
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - Adam L Heuberger
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathryn C Chatfield
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Genevieve C Sparagna
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Adam J Chicco
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado, USA .,Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.,Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
46
|
Bertero E, Kutschka I, Maack C, Dudek J. Cardiolipin remodeling in Barth syndrome and other hereditary cardiomyopathies. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165803. [PMID: 32348916 DOI: 10.1016/j.bbadis.2020.165803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/19/2019] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Mitochondria play a prominent role in cardiac energy metabolism, and their function is critically dependent on the integrity of mitochondrial membranes. Disorders characterized by mitochondrial dysfunction are commonly associated with cardiac disease. The mitochondrial phospholipid cardiolipin directly interacts with a number of essential protein complexes in the mitochondrial membranes including the respiratory chain, mitochondrial metabolite carriers, and proteins critical for mitochondrial morphology. Barth syndrome is an X-linked disorder caused by an inherited defect in the biogenesis of the mitochondrial phospholipid cardiolipin. How cardiolipin deficiency impacts on mitochondrial function and how mitochondrial dysfunction causes cardiomyopathy has been intensively studied in cellular and animal models of Barth syndrome. These findings may also have implications for the molecular mechanisms underlying other inherited disorders associated with defects in cardiolipin, such as Sengers syndrome and dilated cardiomyopathy with ataxia (DCMA).
Collapse
Affiliation(s)
- Edoardo Bertero
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Ilona Kutschka
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
47
|
Wang S, Li Y, Xu Y, Ma Q, Lin Z, Schlame M, Bezzerides VJ, Strathdee D, Pu WT. AAV Gene Therapy Prevents and Reverses Heart Failure in a Murine Knockout Model of Barth Syndrome. Circ Res 2020; 126:1024-1039. [PMID: 32146862 PMCID: PMC7233109 DOI: 10.1161/circresaha.119.315956] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Barth syndrome is an X-linked cardiac and skeletal myopathy caused by mutation of the gene Tafazzin (TAZ). Currently, there is no targeted treatment for Barth syndrome. Lack of a proper genetic animal model that recapitulates the features of Barth syndrome has hindered understanding of disease pathogenesis and therapeutic development. OBJECTIVE We characterized murine germline TAZ knockout mice (TAZ-KO) and cardiomyocyte-specific TAZ knockout mice models and tested the efficacy of adeno-associated virus (AAV)-mediated gene replacement therapy with human TAZ (hTAZ). METHODS AND RESULTS TAZ-KO caused embryonic and neonatal lethality, impaired growth, dilated cardiomyopathy, and skeletal myopathy. TAZ-KO mice that survived the neonatal period developed progressive, severe cardiac dysfunction, and fibrosis. Cardiomyocyte-specific inactivation of floxed Taz in cardiomyocytes using Myh6-Cre caused progressive dilated cardiomyopathy without fetal or perinatal loss. Using both constitutive and conditional knockout models, we tested the efficacy and durability of Taz replacement by AAV gene therapy. Neonatal AAV-hTAZ rescued neonatal death, cardiac dysfunction, and fibrosis in TAZ-KO mice, and both prevented and reversed established cardiac dysfunction in TAZ-KO and cardiomyocyte-specific TAZ knockout mice models. However, both neonatal and adult therapies required high cardiomyocyte transduction (≈70%) for durable efficacy. CONCLUSIONS TAZ-KO and cardiomyocyte-specific TAZ knockout mice recapitulate many of the key clinical features of Barth syndrome. AAV-mediated gene replacement is efficacious when a sufficient fraction of cardiomyocytes are transduced.
Collapse
Affiliation(s)
- Suya Wang
- From the Department of Cardiology, Boston Children's Hospital, MA (S.W., Y.L., Q.M., Z.L., V.J.B., W.T.P.)
| | - Yifei Li
- From the Department of Cardiology, Boston Children's Hospital, MA (S.W., Y.L., Q.M., Z.L., V.J.B., W.T.P.).,Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China (Y.L.)
| | - Yang Xu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China (Y.L.)
| | - Qing Ma
- From the Department of Cardiology, Boston Children's Hospital, MA (S.W., Y.L., Q.M., Z.L., V.J.B., W.T.P.)
| | - Zhiqiang Lin
- From the Department of Cardiology, Boston Children's Hospital, MA (S.W., Y.L., Q.M., Z.L., V.J.B., W.T.P.)
| | - Michael Schlame
- Department of Anesthesiology (Y.X., M.S.).,Department of Cell Biology (M.S.), New York University School of Medicine
| | - Vassilios J Bezzerides
- From the Department of Cardiology, Boston Children's Hospital, MA (S.W., Y.L., Q.M., Z.L., V.J.B., W.T.P.)
| | - Douglas Strathdee
- Transgenic Technology Laboratory, Cancer Research UK Beatson Institute, Glasgow, United Kingdom (D.S.)
| | - William T Pu
- From the Department of Cardiology, Boston Children's Hospital, MA (S.W., Y.L., Q.M., Z.L., V.J.B., W.T.P.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| |
Collapse
|
48
|
Miller PC, Ren M, Schlame M, Toth MJ, Phoon CKL. A Bayesian Analysis to Determine the Prevalence of Barth Syndrome in the Pediatric Population. J Pediatr 2020; 217:139-144. [PMID: 31732128 DOI: 10.1016/j.jpeds.2019.09.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/30/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine the prevalence of Barth syndrome in the pediatric population. STUDY DESIGN Data were collected from the Barth Syndrome Foundation Registry and relevant literature. With the advent of genetic testing and whole-exome sequencing, a multipronged Bayesian analysis was used to estimate the prevalence of Barth syndrome based on published data on the incidence and prevalence of cardiomyopathy and neutropenia, and the respective subpopulations of patients with Barth syndrome indicated in these publications. RESULTS Based on 7 published studies of cardiomyopathy and 2 published studies of neutropenia, the estimated prevalence of Barth syndrome is approximately 1 case per million male population. This contrasts with 99 cases in the Barth Syndrome Foundation Registry, 58 of which indicate a US location, and only 230-250 cases known worldwide. CONCLUSIONS It appears that Barth syndrome is greatly underdiagnosed. There is a need for better education and awareness of this rare disease to move toward early diagnosis and treatment.
Collapse
Affiliation(s)
- Paighton C Miller
- Division of Pediatric Cardiology, Department of Pediatrics, New York University School of Medicine, New York, NY
| | - Mindong Ren
- Department of Anesthesiology, New York University School of Medicine, New York, NY; Department of Cell Biology, New York University School of Medicine, New York, NY
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, NY; Department of Cell Biology, New York University School of Medicine, New York, NY
| | | | - Colin K L Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University School of Medicine, New York, NY.
| |
Collapse
|
49
|
Sacchetto C, Sequeira V, Bertero E, Dudek J, Maack C, Calore M. Metabolic Alterations in Inherited Cardiomyopathies. J Clin Med 2019; 8:E2195. [PMID: 31842377 PMCID: PMC6947282 DOI: 10.3390/jcm8122195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
The normal function of the heart relies on a series of complex metabolic processes orchestrating the proper generation and use of energy. In this context, mitochondria serve a crucial role as a platform for energy transduction by supplying ATP to the varying demand of cardiomyocytes, involving an intricate network of pathways regulating the metabolic flux of substrates. The failure of these processes results in structural and functional deficiencies of the cardiac muscle, including inherited cardiomyopathies. These genetic diseases are characterized by cardiac structural and functional anomalies in the absence of abnormal conditions that can explain the observed myocardial abnormality, and are frequently associated with heart failure. Since their original description, major advances have been achieved in the genetic and phenotype knowledge, highlighting the involvement of metabolic abnormalities in their pathogenesis. This review provides a brief overview of the role of mitochondria in the energy metabolism in the heart and focuses on metabolic abnormalities, mitochondrial dysfunction, and storage diseases associated with inherited cardiomyopathies.
Collapse
Affiliation(s)
- Claudia Sacchetto
- IMAiA—Institute for Molecular Biology and RNA Technology, Faculty of Health, Universiteitssingel 50, 6229ER Maastricht, The Netherlands;
- Medicine and Life Sciences, Faculty of Science and Engineering, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
- Department of Biology, University of Padova, via Ugo Bassi 58B, 35121 Padova, Italy
| | - Vasco Sequeira
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Edoardo Bertero
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Jan Dudek
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Christoph Maack
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Martina Calore
- IMAiA—Institute for Molecular Biology and RNA Technology, Faculty of Health, Universiteitssingel 50, 6229ER Maastricht, The Netherlands;
- Medicine and Life Sciences, Faculty of Science and Engineering, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| |
Collapse
|
50
|
Mazar I, Stokes J, Ollis S, Love E, Espensen A, Barth PG, Powers JH, Shields AL. Understanding the life experience of Barth syndrome from the perspective of adults: a qualitative one-on-one interview study. Orphanet J Rare Dis 2019; 14:243. [PMID: 31699126 PMCID: PMC6836365 DOI: 10.1186/s13023-019-1200-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Barth syndrome (BTHS, OMIM 302060) is a rare, life-threatening, x-linked genetic disorder that occurs almost exclusively in males and is characterized by cardiomyopathy, neutropenia, skeletal muscle myopathy primarily affecting larger muscles, and shorter stature in youth. A greater number of individuals with BTHS are now surviving into adulthood due to advancements in diagnosis and disease management. Given these improvements in life expectancy, understanding the disease experience over time has become increasingly important to individuals with the condition, treatment developers, and regulatory agencies. A study was conducted to explore the experience of BTHS from the perspective of adult males at least 35 years of age with the condition via in-depth qualitative interviews. RESULTS Findings showed that adults with BTHS experienced a variety of signs/symptoms with variable onset and severity throughout their lives, the most frequently reported being the symptoms of tiredness, muscle weakness, and a fast and/or irregular heart rate, and the sign of short stature in youth. These signs/symptoms negatively impacted individuals' emotional, physical, social, and role functioning. Tiredness and weakness impacted some individuals' physical functioning from an early age and into adulthood. These symptoms generally worsened over time, increasingly interfering with individuals' ability to fully participate in paid and unpaid labor and to partake in family and leisure activities. CONCLUSIONS This research complements recent studies characterizing the potentially degenerative and progressive nature of BTHS and can encourage future research into the natural history and progression of BTHS in untreated individuals. Participants' interview responses revealed a range of symptoms and the potential for multiple impacts on individuals' physical, social, emotional, and role functioning as a result of BTHS symptoms, yet also revealed variability in severity of experience as well as the possibility of resilience and adaptation to the condition.
Collapse
Affiliation(s)
- Iyar Mazar
- Employed at Adelphi Values at the time of the conduct of the research, Boston, MA, USA.
| | - Jonathan Stokes
- Employed at Adelphi Values at the time of the conduct of the research, Boston, MA, USA
| | - Sarah Ollis
- Adelphi Values, 290 Congress St., 6th floor, Boston, MA, USA
| | - Emily Love
- Adelphi Values, 290 Congress St., 6th floor, Boston, MA, USA
| | - Ashlee Espensen
- Employed at Adelphi Values at the time of the conduct of the research, Boston, MA, USA
| | - Peter G Barth
- Department of Pediatric Neurology, Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - John H Powers
- George Washington University School of Medicine, Washington DC, USA
| | - Alan L Shields
- Adelphi Values, 290 Congress St., 6th floor, Boston, MA, USA
| |
Collapse
|