1
|
Cheng J, Wang Z, Tang M, Zhang W, Li G, Tan S, Mu C, Hu M, Zhang D, Jia X, Wen Y, Guo H, Xu D, Liu L, Li J, Xia K, Li F, Duan R, Xu Z, Yuan L. KCTD10 regulates brain development by destabilizing brain disorder-associated protein KCTD13. Proc Natl Acad Sci U S A 2024; 121:e2315707121. [PMID: 38489388 PMCID: PMC10963008 DOI: 10.1073/pnas.2315707121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/02/2024] [Indexed: 03/17/2024] Open
Abstract
KCTD10 belongs to the KCTD (potassiumchannel tetramerization domain) family, many members of which are associated with neuropsychiatric disorders. However, the biological function underlying the association with brain disorders remains to be explored. Here, we reveal that Kctd10 is highly expressed in neuronal progenitors and layer V neurons throughout brain development. Kctd10 deficiency triggers abnormal proliferation and differentiation of neuronal progenitors, reduced deep-layer (especially layer V) neurons, increased upper-layer neurons, and lowered brain size. Mechanistically, we screened and identified a unique KCTD10-interacting protein, KCTD13, associated with neurodevelopmental disorders. KCTD10 mediated the ubiquitination-dependent degradation of KCTD13 and KCTD10 ablation resulted in a considerable increase of KCTD13 expression in the developing cortex. KCTD13 overexpression in neuronal progenitors led to reduced proliferation and abnormal cell distribution, mirroring KCTD10 deficiency. Notably, mice with brain-specific Kctd10 knockout exhibited obvious motor deficits. This study uncovers the physiological function of KCTD10 and provides unique insights into the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jianbo Cheng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Zhen Wang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Manpei Tang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Wen Zhang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Guozhong Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Senwei Tan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Chenjun Mu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Mengyuan Hu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Dan Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100101, China
| | - Xiangbin Jia
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Yangxuan Wen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Hui Guo
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou350005, China
| | - Liang Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing100053, China
| | - Jiada Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Kun Xia
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Faxiang Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Ranhui Duan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100101, China
| | - Ling Yuan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| |
Collapse
|
2
|
Wang N, Wan R, Tang K. Transcriptional regulation in the development and dysfunction of neocortical projection neurons. Neural Regen Res 2024; 19:246-254. [PMID: 37488873 PMCID: PMC10503610 DOI: 10.4103/1673-5374.379039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 07/26/2023] Open
Abstract
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas, and between the neocortex and other regions of the brain and spinal cord. Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination, proliferation, specification, differentiation, migration, survival, axonogenesis, and synaptogenesis. These processes are precisely regulated in a tempo-spatial manner by intrinsic factors, extrinsic signals, and neural activities. The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions (such as sensory information integration, motor coordination, and cognition) but also to prevent the onset and progression of neurodevelopmental disorders (such as intellectual disability, autism spectrum disorders, anxiety, and depression). This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
Collapse
Affiliation(s)
- Ningxin Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Rong Wan
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Gavril EC, Nucă I, Pânzaru MC, Ivanov AV, Mihai CT, Antoci LM, Ciobanu CG, Rusu C, Popescu R. Genotype-Phenotype Correlations in 2q37-Deletion Syndrome: An Update of the Clinical Spectrum and Literature Review. Genes (Basel) 2023; 14:465. [PMID: 36833393 PMCID: PMC9957522 DOI: 10.3390/genes14020465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
2q37 microdeletion/deletion syndrome (2q37DS) is one of the most common subtelomeric deletion disorders, caused by a 2q37 deletion of variable size. The syndrome is characterized by a broad and diverse spectrum of clinical findings: characteristic facial dysmorphism, developmental delay/intellectual disability (ID), brachydactyly type E, short stature, obesity, hypotonia in infancy, and abnormal behavior with autism spectrum disorder. Although numerous cases have been described so far, the exact mapping of the genotype and phenotype have not yet been achieved. MATERIALS AND METHODS In this study we analyzed nine newly diagnosed cases with 2q37 deletion (3 male/6 female, aged between 2 and 30 years old), and followed up at the Iasi Regional Medical Genetics Centre. All patients were tested first with MLPA using combined kits P036/P070 subtelomeric screening mix and follow-up mix P264; after, the deletion size and location were confirmed via CGH-array. We compared our findings with the data of other cases reported in the literature. RESULTS From nine cases, four had pure 2q37 deletions of variable sizes, and five presented deletion/duplication rearrangements (with chromosomes 2q, 9q, and 11p). In most cases, characteristic phenotypic aspects were observed: 9/9 facial dysmorphism, 8/9 global developmental delay and ID, 6/9 hypotonia, 5/9 behavior disorders, and 8/9 skeletal anomalies-especially brachydactyly type E. Two cases had obesity, one case had craniosynostosis, and four had heart defects. Other features found in our cases included translucent skin and telangiectasias (6/9), and a hump of fat on the upper thorax (5/9). CONCLUSIONS Our study enriches the literature data by describing new clinical features associated with 2q37 deletion, and possible genotype-phenotype correlations.
Collapse
Affiliation(s)
- Eva-Cristiana Gavril
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania
- Investigatii Medicale Praxis, St. Moara de Vant No 35, 700376 Iasi, Romania
| | - Irina Nucă
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania
- Investigatii Medicale Praxis, St. Moara de Vant No 35, 700376 Iasi, Romania
| | - Monica-Cristina Pânzaru
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania
- Medical Genetics Department, “Saint Mary” Emergency Children’s Hospital, St. Vasile Lupu No 62, 700309 Iasi, Romania
| | - Anca Viorica Ivanov
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | | | - Lucian-Mihai Antoci
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania
| | - Cristian-Gabriel Ciobanu
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania
| | - Cristina Rusu
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania
- Medical Genetics Department, “Saint Mary” Emergency Children’s Hospital, St. Vasile Lupu No 62, 700309 Iasi, Romania
| | - Roxana Popescu
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania
- Medical Genetics Department, “Saint Mary” Emergency Children’s Hospital, St. Vasile Lupu No 62, 700309 Iasi, Romania
| |
Collapse
|
4
|
Copy number variations on chromosome 2: impact on human phenotype, a cross-sectional study. Porto Biomed J 2023; 8:e198. [DOI: 10.1097/j.pbj.0000000000000198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/22/2022] [Indexed: 02/10/2023] Open
|
5
|
Tariq K, Luikart BW. Striking a balance: PIP 2 and PIP 3 signaling in neuronal health and disease. EXPLORATION OF NEUROPROTECTIVE THERAPY 2022; 1:86-100. [PMID: 35098253 PMCID: PMC8797975 DOI: 10.37349/ent.2021.00008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphoinositides are membrane phospholipids involved in a variety of cellular processes like growth, development, metabolism, and transport. This review focuses on the maintenance of cellular homeostasis of phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidylinositol 3,4,5-trisphosphate (PIP3). The critical balance of these PIPs is crucial for regulation of neuronal form and function. The activity of PIP2 and PIP3 can be regulated through kinases, phosphatases, phospholipases and cholesterol microdomains. PIP2 and PIP3 carry out their functions either indirectly through their effectors activating integral signaling pathways, or through direct regulation of membrane channels, transporters, and cytoskeletal proteins. Any perturbations to the balance between PIP2 and PIP3 signaling result in neurodevelopmental and neurodegenerative disorders. This review will discuss the upstream modulators and downstream effectors of the PIP2 and PIP3 signaling, in the context of neuronal health and disease.
Collapse
Affiliation(s)
- Kamran Tariq
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Bryan W Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
6
|
Role of Satb1 and Satb2 Transcription Factors in the Glutamate Receptors Expression and Ca 2+ Signaling in the Cortical Neurons In Vitro. Int J Mol Sci 2021; 22:ijms22115968. [PMID: 34073140 PMCID: PMC8198236 DOI: 10.3390/ijms22115968] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 01/17/2023] Open
Abstract
Transcription factors Satb1 and Satb2 are involved in the processes of cortex development and maturation of neurons. Alterations in the expression of their target genes can lead to neurodegenerative processes. Molecular and cellular mechanisms of regulation of neurotransmission by these transcription factors remain poorly understood. In this study, we have shown that transcription factors Satb1 and Satb2 participate in the regulation of genes encoding the NMDA-, AMPA-, and KA- receptor subunits and the inhibitory GABA(A) receptor. Deletion of gene for either Satb1 or Satb2 homologous factors induces the expression of genes encoding the NMDA receptor subunits, thereby leading to higher amplitudes of Ca2+-signals in neurons derived from the Satb1-deficient (Satb1fl/+ * NexCre/+) and Satb1-null mice (Satb1fl/fl * NexCre/+) in response to the selective agonist reducing the EC50 for the NMDA receptor. Simultaneously, there is an increase in the expression of the Gria2 gene, encoding the AMPA receptor subunit, thus decreasing the Ca2+-signals of neurons in response to the treatment with a selective agonist (5-Fluorowillardiine (FW)). The Satb1 deletion increases the sensitivity of the KA receptor to the agonist (domoic acid), in the cortical neurons of the Satb1-deficient mice but decreases it in the Satb1-null mice. At the same time, the Satb2 deletion decreases Ca2+-signals and the sensitivity of the KA receptor to the agonist in neurons from the Satb1-null and the Satb1-deficient mice. The Satb1 deletion affects the development of the inhibitory system of neurotransmission resulting in the suppression of the neuron maturation process and switching the GABAergic responses from excitatory to inhibitory, while the Satb2 deletion has a similar effect only in the Satb1-null mice. We show that the Satb1 and Satb2 transcription factors are involved in the regulation of the transmission of excitatory signals and inhibition of the neuronal network in the cortical cell culture.
Collapse
|
7
|
Silipigni R, Milani D, Tolva G, Monfrini E, Giacobbe A, Marchisio PG, Guerneri S. Complex genomic alterations and intellectual disability: an interpretative challenge. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2021; 65:113-124. [PMID: 33140510 DOI: 10.1111/jir.12797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/16/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Complex chromosomal rearrangements (CCRs) are structural rearrangements involving more than three chromosomes or having more than two breaks; approximately 70% are not associated with any clinical phenotype. Here, we describe a CCR segregating in a two-generation family. METHOD A 4-year-old male was evaluated for developmental delay, mild intellectual disability and epicanthus. Karyotype, fluorescence in situ hybridisation (FISH) analysis and array comparative genomic hybridisation (aCGH) analysis were performed on the patient and of all family members. RESULT Array CGH analysis of the proband detected two non-contiguous genomic gains of chromosome 2 at bands q32.3q33.2 and bands q36.1q36.3. Both karyotype and FISH analysis revealed a recombinant chromosome 2 with a direct insertion of regions q32.3q33.2 and q36.1q36.3 into region q12. Both of these regions were also present in their original location. Karyotype and FISH analysis of the father revealed a de novo direct insertion of regions q32.3q33.2 and q36.1q36.3 into region q12. Moreover, a de novo balanced translocation involving the q arm of the same chromosome 2 and the p arm of chromosome 10 was observed in the father of the proband. The single nucleotide polymorphism (SNP) array analysis and haplotype reconstruction confirmed the paternal origin of the duplications. Karyotype, FISH analysis and array CGH analysis of other family members were all normal. CONCLUSION This report underlines the importance of using different methods to correctly evaluate the origin and the structure of CCRs in order to provide an appropriate management of the patients and a good estimation of the reproductive risk of the family.
Collapse
Affiliation(s)
- R Silipigni
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - D Milani
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G Tolva
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - E Monfrini
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - A Giacobbe
- Child and Adolescent Neuropsychiatric Service (UONPIA), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - P G Marchisio
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - S Guerneri
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
8
|
Alvarez-Saavedra M, Yan K, De Repentigny Y, Hashem LE, Chaudary N, Sarwar S, Yang D, Ioshikhes I, Kothary R, Hirayama T, Yagi T, Picketts DJ. Snf2h Drives Chromatin Remodeling to Prime Upper Layer Cortical Neuron Development. Front Mol Neurosci 2019; 12:243. [PMID: 31680852 PMCID: PMC6811508 DOI: 10.3389/fnmol.2019.00243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Alterations in the homeostasis of either cortical progenitor pool, namely the apically located radial glial (RG) cells or the basal intermediate progenitors (IPCs) can severely impair cortical neuron production. Such changes are reflected by microcephaly and are often associated with cognitive defects. Genes encoding epigenetic regulators are a frequent cause of intellectual disability and many have been shown to regulate progenitor cell growth, including our inactivation of the Smarca1 gene encoding Snf2l, which is one of two ISWI mammalian orthologs. Loss of the Snf2l protein resulted in dysregulation of Foxg1 and IPC proliferation leading to macrocephaly. Here we show that inactivation of the closely related Smarca5 gene encoding the Snf2h chromatin remodeler is necessary for embryonic IPC expansion and subsequent specification of callosal projection neurons. Telencephalon-specific Smarca5 cKO embryos have impaired cell cycle kinetics and increased cell death, resulting in fewer Tbr2+ and FoxG1+ IPCs by mid-neurogenesis. These deficits give rise to adult mice with a dramatic reduction in Satb2+ upper layer neurons, and partial agenesis of the corpus callosum. Mice survive into adulthood but molecularly display reduced expression of the clustered protocadherin genes that may further contribute to altered dendritic arborization and a hyperactive behavioral phenotype. Our studies provide novel insight into the developmental function of Snf2h-dependent chromatin remodeling processes during brain development.
Collapse
Affiliation(s)
- Matías Alvarez-Saavedra
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Lukas E. Hashem
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Nidhi Chaudary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Shihab Sarwar
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Doo Yang
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ilya Ioshikhes
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Teruyoshi Hirayama
- KOKORO-Biology Group, Integrated Biology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Department of Anatomy and Developmental Neurobiology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Integrated Biology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
Teng X, Aouacheria A, Lionnard L, Metz KA, Soane L, Kamiya A, Hardwick JM. KCTD: A new gene family involved in neurodevelopmental and neuropsychiatric disorders. CNS Neurosci Ther 2019; 25:887-902. [PMID: 31197948 PMCID: PMC6566181 DOI: 10.1111/cns.13156] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
The underlying molecular basis for neurodevelopmental or neuropsychiatric disorders is not known. In contrast, mechanistic understanding of other brain disorders including neurodegeneration has advanced considerably. Yet, these do not approach the knowledge accrued for many cancers with precision therapeutics acting on well-characterized targets. Although the identification of genes responsible for neurodevelopmental and neuropsychiatric disorders remains a major obstacle, the few causally associated genes are ripe for discovery by focusing efforts to dissect their mechanisms. Here, we make a case for delving into mechanisms of the poorly characterized human KCTD gene family. Varying levels of evidence support their roles in neurocognitive disorders (KCTD3), neurodevelopmental disease (KCTD7), bipolar disorder (KCTD12), autism and schizophrenia (KCTD13), movement disorders (KCTD17), cancer (KCTD11), and obesity (KCTD15). Collective knowledge about these genes adds enhanced value, and critical insights into potential disease mechanisms have come from unexpected sources. Translation of basic research on the KCTD-related yeast protein Whi2 has revealed roles in nutrient signaling to mTORC1 (KCTD11) and an autophagy-lysosome pathway affecting mitochondria (KCTD7). Recent biochemical and structure-based studies (KCTD12, KCTD13, KCTD16) reveal mechanisms of regulating membrane channel activities through modulation of distinct GTPases. We explore how these seemingly varied functions may be disease related.
Collapse
Affiliation(s)
- Xinchen Teng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Abdel Aouacheria
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Loïc Lionnard
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Kyle A. Metz
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
- Present address:
Feinberg School of MedicineNorthwestern UniversityChicagoUSA
| | - Lucian Soane
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreMaryland
| | - J. Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| |
Collapse
|
10
|
Rudolf G, Lovrečić L, Tul N, Teran N, Peterlin B. The frequency of CNVs in a cohort population of consecutive fetuses with congenital anomalies after the termination of pregnancy. Mol Genet Genomic Med 2019; 7:e658. [PMID: 31004418 PMCID: PMC6565594 DOI: 10.1002/mgg3.658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The implementation of molecular karyotyping has resulted in an improved diagnostic yield in the genetic diagnostics of congenital anomalies, detected prenatally or after the termination of pregnancy. However, the systematic epidemiologic ascertainment of copy number variations in the etiology of congenital anomalies has not yet been sufficiently explored. METHODS Consecutive fetuses, altogether 204, with major single or multiple congenital anomalies were ascertained by using the SLOCAT registry for the period from 2011 to 2015. After excluding aneuploidies by using conventional karyotyping or Quantitative Fluorescence-Polymerase Chain Reaction, array comparative genomic hybridization was performed for the detection of copy number variations. RESULTS We identified pathogenic or likely pathogenic copy number variations in 14 fetuses (6.8%); 2.9% in fetuses with isolated, and 3.9% in fetuses with multiple congenital anomalies. Additionally, aneuploidies and major structural chromosomal abnormalities were detected in 40.2%. CONCLUSION Our systematic approach of ascertaining congenital anomalies resulted in explaining the etiology of congenital anomalies in 47% of fetuses after the termination of pregnancy. By using array comparative genomic hybridization, we found that copy number variations represent an important part in the etiology of multiple, as well as isolated congenital anomalies, which indicates the importance of analyzing copy number variations in the diagnostic approach of fetuses with congenital anomalies after the termination of pregnancy.
Collapse
Affiliation(s)
- Gorazd Rudolf
- Clinical Institute of Medical Genetics (CIMG), University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Luca Lovrečić
- Clinical Institute of Medical Genetics (CIMG), University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Nataša Tul
- Department of Perinatology, Division of Gynaecology and Obstetrics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Nataša Teran
- Clinical Institute of Medical Genetics (CIMG), University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics (CIMG), University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Zhang Q, Huang Y, Zhang L, Ding YQ, Song NN. Loss of Satb2 in the Cortex and Hippocampus Leads to Abnormal Behaviors in Mice. Front Mol Neurosci 2019; 12:33. [PMID: 30809123 PMCID: PMC6380165 DOI: 10.3389/fnmol.2019.00033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/25/2019] [Indexed: 01/05/2023] Open
Abstract
Satb2-associated syndrome (SAS) is a genetic disorder that results from the deletion or mutation of one allele within the Satb2 locus. Patients with SAS show behavioral abnormalities, including developmental delay/intellectual disability, hyperactivity, and symptoms of autism. To address the role of Satb2 in SAS-related behaviors and generate an SAS mouse model, Satb2 was deleted in the cortex and hippocampus of Emx1-Cre; Satb2flox/flox [Satb2 conditional knockout (CKO)] mice. Satb2 CKO mice showed hyperactivity, increased impulsivity, abnormal social novelty, and impaired spatial learning and memory. Furthermore, we also found that the development of neurons in cortical layer IV was defective in Satb2 CKO mice, as shown by the loss of layer-specific gene expression and abnormal thalamocortical projections. In summary, the abnormal behaviors revealed in Satb2 CKO mice may reflect the SAS symptoms associated with Satb2 mutation in human patients, possibly due to defective development of cortical neurons in multiple layers including alterations of their inputs/outputs.
Collapse
Affiliation(s)
- Qiong Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Ying Huang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.,Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Ning-Ning Song
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Satb2 ablation decreases PTZ-induced seizure susceptibility and pyramidal neuronal excitability. Brain Res 2018; 1695:102-107. [PMID: 29750936 DOI: 10.1016/j.brainres.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 04/11/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022]
Abstract
Special AT-rich sequence-binding protein 2 (Satb2) is a transcriptional regulator and people with SATB2 mutation or duplication could display epilepsy. However, whether Satb2 is related with epilepsy and its mechanisms are largely unexplored. Here we found that the expression of Satb2 was decreased following the neuronal hyperactivities. Ablation of Satb2 in mice would decrease incidence and stage of seizure induced by intraperitoneal injection of pentylenetetrazol (PTZ). At cellular levels, we found pyramidal neuronal excitability and excitatory synaptic inputs in CA1 were decreased in Satb2 mutant mice. Taking together, we proved that deletion of Satb2 in mice increased PTZ seizure threshold probably by modulating neuronal excitability.
Collapse
|
13
|
Gupta A, Yo J, Huang G, Soong L, Dong J. Developmental Defects Associated With DNA Copy Number Gain of Chromosome 2q33.1: A Case Report and Review of Literature. Lab Med 2018; 49:160-164. [PMID: 29301000 DOI: 10.1093/labmed/lmx086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Caspases play a vital role during apoptosis. In addition to apoptosis, caspases play a role in cytokine gene induction and work to inhibit apoptosis. In order for individuals to thrive with useful tissue growth, the rate of cell growth and division must surpass the rate of cell division. It is well established that excessive cell death of embryonic cells is a vital process occurring before structural abnormalities, regardless of their nature. Here we describe a 13-month-old male patient with a 4.7Mb interstitial duplication of chromosome 2q33.1. This duplication was identified by chromosomal microarray (CMA) which is the first-tier clinical diagnostic test to identify copy number variants (CNVs) for patients with unexplained developmental delay or intellectual disability. This patient presents with global developmental delay, especially in speech, language, hypotonia, and bilateral simian creases. The duplicated region contains several disease-causing genes. We believe that the phenotype in this patient's case was likely related to the gain of caspase 8 and 10 genes.
Collapse
Affiliation(s)
- Akshaya Gupta
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Jacob Yo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Gengming Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lynn Soong
- Departments of Microbiology & Immunology and Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jianli Dong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
14
|
Colangelo M, Alfonsi M, Palka C, Zio ED, Renzo SD, Guanciali-Franchi P, Palka G. Case report of newborn with de novo partial trisomy 2q31.2–37.3 and monosomy 9p24.3. J Genet 2018. [DOI: 10.1007/s12041-017-0879-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Gao K, Zhang Y, Zhang L, Kong W, Xie H, Wang J, Wu Y, Wu X, Liu X, Zhang Y, Zhang F, Yu ACH, Jiang Y. Large De Novo Microdeletion in Epilepsy with Intellectual and Developmental Disabilities, with a Systems Biology Analysis. ADVANCES IN NEUROBIOLOGY 2018; 21:247-266. [DOI: 10.1007/978-3-319-94593-4_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Two familial intrachromosomal insertions with maternal dup(6)(p22.3p25.3) or dup(2)(q24.2q32.1) in recombinant offspring. Clin Dysmorphol 2017; 26:209-216. [PMID: 28737552 DOI: 10.1097/mcd.0000000000000191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this study, we describe two patients with a recombinant chromosome secondary to a maternal intrachromosomal insertion. Patient 1 was a girl with dup(6)(p22.3p25.3). Patient 2 was a boy with dup(2)(q24.2q32.1). Both familial rearrangements were characterized by means of GTG-bands, fluorescence in-situ hybridization, and comparative genomic hybridization microarray analyses. Patient 1 had an ∼23 Mb gain that involved the bands 6p22.3-6p25.3. Patient 2 had an ∼23 Mb gain (cytobands 2q24.2-2q32.1) and a further ∼1.9 Mb gain of 2p16.2-p16.3. The phenotype of each patient was in agreement with the typical 6p duplication or 2q24.2q32.1 duplication syndrome. The compound macular lesion in patient 1 suggests that retinal anomalies may be a part of the 6p trisomy phenotype. Among the 70 intrachromosomal insertions compiled here (including 68 from the literature), four were submicroscopic unbalanced insertions inherited from a balanced carrier and 66 were detectable on banded chromosomes (with or without array comparative genomic hybridization or other high-resolution assessment) and therefore spanned at least 5 Mb. Pericentric insertions are found in most chromosomes, whereas the paracentric ones are mainly observed in large and medium chromosome arms. That the former outnumber the latter in almost a 2 : 1 ratio appears to be related to the technique of diagnosis, size of the insertion, and size of the involved chromosome. Regardless of the apparent excess of carrier mothers, carriers of an intrachromosomal insertion beget almost twice as many children with a duplication than with a deletion.
Collapse
|
17
|
Gross C. Defective phosphoinositide metabolism in autism. J Neurosci Res 2016; 95:1161-1173. [PMID: 27376697 DOI: 10.1002/jnr.23797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
Phosphoinositides are essential components of lipid membranes and crucial regulators of many cellular functions, including signal transduction, vesicle trafficking, membrane receptor localization and activity, and determination of membrane identity. These functions depend on the dynamic and highly regulated metabolism of phosphoinositides and require finely balanced activity of specific phosphoinositide kinases and phosphatases. There is increasing evidence from genetic and functional studies that these enzymes are often dysregulated or mutated in autism spectrum disorders; in particular, phosphoinositide 3-kinases and their regulatory subunits appear to be affected frequently. Examples of autism spectrum disorders with defective phosphoinositide metabolism are fragile X syndrome and autism disorders associated with mutations in the phosphoinositide 3-phosphatase tensin homolog deleted on chromosome 10 (PTEN), but recent genetic analyses also suggest that select nonsyndromic, idiopathic forms of autism may have altered activity of phosphoinositide kinases and phosphatases. Isoform-specific inhibitors for some of the phosphoinositide kinases have already been developed for cancer research and treatment, and a few are being evaluated for use in humans. Altogether, this offers exciting opportunities to explore altered phosphoinositide metabolism as a therapeutic target in individuals with certain forms of autism. This review summarizes genetic and functional studies identifying defects in phosphoinositide metabolism in autism and related disorders, describes published preclinical work targeting phosphoinositide 3-kinases in neurological diseases, and discusses the opportunities and challenges ahead to translate these findings from animal models and human cells into clinical application in humans. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
18
|
|
19
|
Toma K, Hanashima C. Switching modes in corticogenesis: mechanisms of neuronal subtype transitions and integration in the cerebral cortex. Front Neurosci 2015; 9:274. [PMID: 26321900 PMCID: PMC4531338 DOI: 10.3389/fnins.2015.00274] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/21/2015] [Indexed: 12/16/2022] Open
Abstract
Information processing in the cerebral cortex requires the activation of diverse neurons across layers and columns, which are established through the coordinated production of distinct neuronal subtypes and their placement along the three-dimensional axis. Over recent years, our knowledge of the regulatory mechanisms of the specification and integration of neuronal subtypes in the cerebral cortex has progressed rapidly. In this review, we address how the unique cytoarchitecture of the neocortex is established from a limited number of progenitors featuring neuronal identity transitions during development. We further illuminate the molecular mechanisms of the subtype-specific integration of these neurons into the cerebral cortex along the radial and tangential axis, and we discuss these key features to exemplify how neocortical circuit formation accomplishes economical connectivity while maintaining plasticity and evolvability to adapt to environmental changes.
Collapse
Affiliation(s)
- Kenichi Toma
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology Kobe, Japan
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology Kobe, Japan ; Department of Biology, Graduate School of Science, Kobe University Kobe, Japan
| |
Collapse
|
20
|
Gigek CO, Chen ES, Ota VK, Maussion G, Peng H, Vaillancourt K, Diallo AB, Lopez JP, Crapper L, Vasuta C, Chen GG, Ernst C. A molecular model for neurodevelopmental disorders. Transl Psychiatry 2015; 5:e565. [PMID: 25966365 PMCID: PMC4471287 DOI: 10.1038/tp.2015.56] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/24/2015] [Indexed: 01/24/2023] Open
Abstract
Genes implicated in neurodevelopmental disorders (NDDs) important in cognition and behavior may have convergent function and several cellular pathways have been implicated, including protein translational control, chromatin modification, and synapse assembly and maintenance. Here, we test the convergent effects of methyl-CpG binding domain 5 (MBD5) and special AT-rich binding protein 2 (SATB2) reduced dosage in human neural stem cells (NSCs), two genes implicated in 2q23.1 and 2q33.1 deletion syndromes, respectively, to develop a generalized model for NDDs. We used short hairpin RNA stably incorporated into healthy neural stem cells to supress MBD5 and SATB2 expression, and massively parallel RNA sequencing, DNA methylation sequencing and microRNA arrays to test the hypothesis that a primary etiology of NDDs is the disruption of the balance of NSC proliferation and differentiation. We show that reduced dosage of either gene leads to significant overlap of gene-expression patterns, microRNA patterns and DNA methylation states with control NSCs in a differentiating state, suggesting that a unifying feature of 2q23.1 and 2q33.1 deletion syndrome may be a lack of regulation between proliferation and differentiation in NSCs, as we observed previously for TCF4 and EHMT1 suppression following a similar experimental paradigm. We propose a model of NDDs whereby the balance of NSC proliferation and differentiation is affected, but where the molecules that drive this effect are largely specific to disease-causing genetic variation. NDDs are diverse, complex and unique, but the optimal balance of factors that determine when and where neural stem cells differentiate may be a major feature underlying the diverse phenotypic spectrum of NDDs.
Collapse
Affiliation(s)
- C O Gigek
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - E S Chen
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - V K Ota
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - G Maussion
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - H Peng
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - K Vaillancourt
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - A B Diallo
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - J P Lopez
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - L Crapper
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - C Vasuta
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - G G Chen
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - C Ernst
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada,Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building Room 2101.2 Verdun, QC, Canada H4H 1R3. E-mail:
| |
Collapse
|
21
|
Liedén A, Kvarnung M, Nilssson D, Sahlin E, Lundberg ES. Intragenic duplication--a novel causative mechanism for SATB2-associated syndrome. Am J Med Genet A 2014; 164A:3083-7. [PMID: 25251319 DOI: 10.1002/ajmg.a.36769] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 08/01/2014] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that genetic aberrations involving the special AT-rich sequence-binding protein 2 (SATB2) gene result in a variable phenotype of syndromic intellectual disability. Although only a small number of patients have been described, there is already considerable variation in regard to the underlying molecular mechanism spanning from structural variation to point mutations. We here describe a male patient with intellectual disability, speech and language impairment, cleft palate, malformed teeth, and oligodontia. Array CGH analysis identified a small intragenic duplication in the SATB2 gene that included three coding exons. The result was confirmed by multiplex ligation-dependent probe amplification and low coverage whole genome mate pair sequencing. WGS breakpoint analysis directly confirmed the duplication as intragenic. This is the first reported patient with an intragenic duplication in SATB2 in combination with a phenotype that is highly similar to previously described patients with small deletions or point mutations of the same gene. Our findings expand the spectra of SATB2 mutations and confirm the presence of a distinct SATB2-phenotype with severe ID and speech impairment, cleft palate and/or high arched palate, and abnormalities of the teeth. For patients that present with this clinical picture, a high-resolution exon targeted array CGH and/or WGS, in addition to sequencing of SATB2, should be considered.
Collapse
Affiliation(s)
- Agne Liedén
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
22
|
Yamamoto T, Shimada S, Shimojima K. Fiber-fluorescence in situ hybridization analyses as a diagnostic application for orientation of microduplications. World J Med Genet 2013; 3:5-8. [DOI: 10.5496/wjmg.v3.i2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/14/2013] [Accepted: 06/04/2013] [Indexed: 02/06/2023] Open
Abstract
Microduplications are normally invisible under microscopy and were not recognized before chromosomal microarray testing was available. Although it is difficult to confirm the orientation of duplicated segments by standard fluorescence in situ hybridization (FISH), our data indicates that fiber-FISH analysis has the potential to reveal the orientation of duplicated and triplicated segments of chromosomes. Recurrent microduplications reciprocal to microdeletions show tandem orientations of the duplicated segments, which is consistent with a non-allelic homologous recombination mechanism. Several random duplications showed tandem configurations and inverted duplications are rare. Further analysis is required to fully elucidate the basic mechanisms underlying such duplications/triplications.
Collapse
|