1
|
Brannan S, Garbe L, Richardson BD. Early life stress induced sex-specific changes in behavior is paralleled by altered locus coeruleus physiology in BALB/cJ mice. Neurobiol Stress 2024; 33:100674. [PMID: 39385751 PMCID: PMC11462065 DOI: 10.1016/j.ynstr.2024.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Adverse childhood experiences have been associated with many neurodevelopmental and affective disorders including attention deficit hyperactivity disorder and generalized anxiety disorder, with more exposures increasing negative risk. Sex and genetic background are biological variables involved in adverse psychiatric outcomes due to early life trauma. Females in general have an increased prevalence of stress-related psychopathologies beginning after adolescence, indicative of adolescence being a female-specific sensitive period. To understand the underlying neuronal mechanisms potentially responsible for this relationship between genetic background, sex, stress/trauma, and cognitive/affective behaviors, we assessed behavioral and neuronal changes in a novel animal model of early life stress exposure. Male and female BALB/cJ mice that express elevated basal anxiety-like behaviors and differences in monoamine signaling-associated genes, were exposed to an early life variable stress protocol that combined deprivation in early life with unpredictability in adolescence. Stress exposure produced hyperlocomotion and attention deficits (5-choice serial reaction time task) in male and female mice along with female-specific increased anxiety-like behavior. These behavioral changes were paralleled by reduced excitability of locus coeruleus (LC) neurons, due to resting membrane potential hyperpolarization in males and a female-specific increase in action potential delay time. These data describe a novel interaction between sex, genetic background, and early life stress that results in behavioral changes in clinically relevant domains and potential underlying mechanistic lasting changes in physiological properties of neurons in the LC.
Collapse
Affiliation(s)
- Savannah Brannan
- Department of Pharmacology, Southern Illinois University – School of Medicine, Springfield, IL, 62702, USA
| | - Lauren Garbe
- Department of Pharmacology, Southern Illinois University – School of Medicine, Springfield, IL, 62702, USA
| | - Ben D. Richardson
- Department of Pharmacology, Southern Illinois University – School of Medicine, Springfield, IL, 62702, USA
| |
Collapse
|
2
|
Sharma R, Kumarasamy M, Parihar VK, Ravichandiran V, Kumar N. Monoamine Oxidase: A Potential Link in Papez Circuit to Generalized Anxiety Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:638-655. [PMID: 37055898 DOI: 10.2174/1871527322666230412105711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 04/15/2023]
Abstract
Anxiety is a common mental illness that affects a large number of people around the world, and its treatment is often based on the use of pharmacological substances such as benzodiazepines, serotonin, and 5-hydroxytyrosine (MAO) neurotransmitters. MAO neurotransmitters levels are deciding factors in the biological effects. This review summarizes the current understanding of the MAO system and its role in the modulation of anxiety-related brain circuits and behavior. The MAO-A polymorphisms have been implicated in the susceptibility to generalized anxiety disorder (GAD) in several investigations. The 5-HT system is involved in a wide range of physiological and behavioral processes, involving anxiety, aggressiveness, stress reactions, and other elements of emotional intensity. Among these, 5-HT, NA, and DA are the traditional 5-HT neurons that govern a range of biological activities, including sleep, alertness, eating, thermoregulation, pains, emotion, and memory, as anticipated considering their broad projection distribution in distinct brain locations. The DNMTs (DNA methyltransferase) protein family, which increasingly leads a prominent role in epigenetics, is connected with lower transcriptional activity and activates DNA methylation. In this paper, we provide an overview of the current state of the art in the elucidation of the brain's complex functions in the regulation of anxiety.
Collapse
Affiliation(s)
- Ravikant Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Murali Kumarasamy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Vipan Kumar Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| |
Collapse
|
3
|
Tomasi J, Zai CC, Zai G, Kennedy JL, Tiwari AK. Genetics of human startle reactivity: A systematic review to acquire targets for an anxiety endophenotype. World J Biol Psychiatry 2021; 22:399-427. [PMID: 33040669 DOI: 10.1080/15622975.2020.1834619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Startle response is an objective physiological measure integral to the human defense system and a promising target for endophenotype investigations of anxiety. Given the alterations in startle reactivity observed among anxiety and related disorders, we searched for genetic variants associated with startle reactivity as they may be further involved in pathological anxiety risk. METHODS A systematic literature review was performed to identify genetic variants associated with startle reactivity in humans, specifically baseline and fear- or anxiety-potentiated startle. RESULTS The polymorphisms Val66Met (rs6265) from brain-derived neurotrophic factor (BDNF), Val158Met (rs4680) from catechol-O-methyltransferase (COMT), and the serotonin transporter-linked polymorphic region (5-HTTLPR) from the serotonin transporter gene (SLC6A4) were most commonly studied in human startle. In addition, several other genetic variants have also been identified as potential candidates that warrant further research, especially given their novelty in in the context of anxiety. CONCLUSIONS Similar to psychiatric genetic studies, the studies on startle reactivity primarily focus on candidate genes and are plagued by non-replication. Startle reactivity is a promising endophenotype that requires concerted efforts to collect uniformly assessed, large, well-powered samples and hypothesis-free genome-wide strategies. To further support startle as an endophenotype for anxiety, this review suggests advanced genetic strategies for startle research.
Collapse
Affiliation(s)
- Julia Tomasi
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Clement C Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Gwyneth Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,General Adult Psychiatry and Health Systems Division, CAMH, Toronto, Canada
| | - James L Kennedy
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Arun K Tiwari
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Tretiakov A, Malakhova A, Naumova E, Rudko O, Klimov E. Genetic Biomarkers of Panic Disorder: A Systematic Review. Genes (Basel) 2020; 11:genes11111310. [PMID: 33158196 PMCID: PMC7694264 DOI: 10.3390/genes11111310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Although panic disorder (PD) is one of the most common anxiety disorders severely impacting quality of life, no effective genetic testing exists; known data on possible genetic biomarkers is often scattered and unsystematic which complicates further studies. (2) Methods: We used PathwayStudio 12.3 (Elsevier, The Netherlands) to acquire literature data for further manual review and analysis. 229 articles were extracted, 55 articles reporting associations, and 32 articles reporting no associations were finally selected. (3) Results: We provide exhaustive information on genetic biomarkers associated with PD known in the scientific literature. Data is presented in two tables. Genes COMT and SLC6A4 may be considered the most promising for PD diagnostic to date. (4) Conclusions: This review illustrates current progress in association studies of PD and may indicate possible molecular mechanisms of its pathogenesis. This is a possible basis for data analysis, novel experimental studies, or developing test systems and personalized treatment approaches.
Collapse
Affiliation(s)
- Artemii Tretiakov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.T.); (A.M.); (E.N.); (O.R.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Alena Malakhova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.T.); (A.M.); (E.N.); (O.R.)
| | - Elena Naumova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.T.); (A.M.); (E.N.); (O.R.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga Rudko
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.T.); (A.M.); (E.N.); (O.R.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Eugene Klimov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.T.); (A.M.); (E.N.); (O.R.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
- Correspondence:
| |
Collapse
|
5
|
Tomasi J, Zai CC, Zai G, Herbert D, King N, Freeman N, Kennedy JL, Tiwari AK. The effect of polymorphisms in startle-related genes on anxiety symptom severity. J Psychiatr Res 2020; 125:144-151. [PMID: 32289651 DOI: 10.1016/j.jpsychires.2020.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 01/23/2023]
Abstract
Given the limited effectiveness of treatments for pathological anxiety, there is a pressing need to identify genetic markers that can aid the precise selection of treatments and optimize treatment response. Anxiety and startle response levels demonstrate a direct relationship, and previous literature suggests that exaggerated startle reactivity may serve as an endophenotype of pathological anxiety. In addition, genetic variants related to startle reactivity may play a role in the etiology of pathological anxiety. In the current study, we selected 22 single nucleotide polymorphisms (SNPs) related to startle reactivity in the literature, and examined their association with anxiety symptom severity across psychiatric disorders (n = 508), and in a subset of patients with an anxiety disorder (n = 298). Overall, none of the SNPs pass correction for multiple independent tests. However, across psychiatric patients, rs6323 from the monoamine oxidase A (MAOA) gene and rs324981 from the neuropeptide S receptor 1 (NPSR1) gene were nominally associated with baseline anxiety symptom severity (p = 0.017, 0.023). These preliminary findings provide support for investigating startle-related genetic variants to identify biomarkers of anxiety symptom severity.
Collapse
Affiliation(s)
- Julia Tomasi
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | - Clement C Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gwyneth Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; General Adult Psychiatry and Health Systems Division, CAMH, Toronto, ON, Canada
| | - Deanna Herbert
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Nicole King
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Natalie Freeman
- Campbell Family Mental Health Research Institute and Krembil Centre for Neuroinformatics, CAMH, Toronto, ON, Canada
| | - James L Kennedy
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Arun K Tiwari
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Jiang T, Li X, Ning L, Liu J. Cross-Sectional Survey of Mental Health Risk Factors and Comparison of the Monoamine oxidase A Gene DNA Methylation Level in Different Mental Health Conditions among Oilfield Workers in Xinjiang, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010149. [PMID: 31878203 PMCID: PMC6982168 DOI: 10.3390/ijerph17010149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/23/2022]
Abstract
The incidence of psychological problems among occupational groups is becoming increasingly more serious, and adverse psychological conditions will seriously affect the working ability of occupational groups and harm the health of their bodies. This study adopted a multi-stage stratified cluster sampling method to conduct a cross-sectional survey on the mental health of 3631 oil workers in Karamay, Xinjiang from March 2017 to June 2018. The mental health status of oil workers was evaluated using the Symptom Checklist-90, and mental health risk factors were evaluated. The correlation between the monoamine oxidase A (MAOA) gene and mental health was analyzed, and the DNA methylation level of the MAOA gene was compared between the normal group and the abnormal group. The results show the incidence of mental health problems among oil workers according to differences in age, nationality, type of work, length of service, professional title, shift work, and marital status. The evaluation of mental health risk factors revealed that shift work, occupational stress, and high payment/low return affect mental health. The somatization scores of different genotypes of rs6323 in the MAOA gene were statistically significant (p < 0.05), suggesting that the somatization scores of different genotypes of rs6323 were different. According to the average rank, the TT genotype group had the highest score, followed by the GT genotype group, and the GG genotype group had the lowest score. The level of DNA methylation in the abnormal group was lower than that in the normal group (p < 0.05). The results suggested that occupational mental health can be enhanced by improving shift work, reducing stress, and balancing effort and reward. This preliminary investigation suggests that methylation status can affect mental health, indicating that methylation level may be a predictor of mental health status.
Collapse
Affiliation(s)
| | | | | | - Jiwen Liu
- Correspondence: ; Tel.: +86-99-1436-5004; Fax: +86-21-6408-5875
| |
Collapse
|
7
|
Tomasi J, Lisoway AJ, Zai CC, Harripaul R, Müller DJ, Zai GCM, McCabe RE, Richter MA, Kennedy JL, Tiwari AK. Towards precision medicine in generalized anxiety disorder: Review of genetics and pharmaco(epi)genetics. J Psychiatr Res 2019; 119:33-47. [PMID: 31563039 DOI: 10.1016/j.jpsychires.2019.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
Abstract
Generalized anxiety disorder (GAD) is a prevalent and chronic mental disorder that elicits widespread functional impairment. Given the high degree of non-response/partial response among patients with GAD to available pharmacological treatments, there is a strong need for novel approaches that can optimize outcomes, and lead to medications that are safer and more effective. Although investigations have identified interesting targets predicting treatment response through pharmacogenetics (PGx), pharmaco-epigenetics, and neuroimaging methods, these studies are often solitary, not replicated, and carry several limitations. This review provides an overview of the current status of GAD genetics and PGx and presents potential strategies to improve treatment response by combining better phenotyping with PGx and improved analytical methods. These strategies carry the dual benefit of delivering data on biomarkers of treatment response as well as pointing to disease mechanisms through the biology of the markers associated with response. Overall, these efforts can serve to identify clinical, genetic, and epigenetic factors that can be incorporated into a pharmaco(epi)genetic test that may ultimately improve treatment response and reduce the socioeconomic burden of GAD.
Collapse
Affiliation(s)
- Julia Tomasi
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Amanda J Lisoway
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Clement C Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ricardo Harripaul
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel J Müller
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gwyneth C M Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; General Adult Psychiatry and Health Systems Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Randi E McCabe
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Anxiety Treatment and Research Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Margaret A Richter
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Frederick W. Thompson Anxiety Disorders Centre, Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - James L Kennedy
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Arun K Tiwari
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Schanzer B, Rivas-Grajales AM, Khan A, Mathew SJ. Novel investigational therapeutics for generalized anxiety disorder (GAD). Expert Opin Investig Drugs 2019; 28:1003-1012. [DOI: 10.1080/13543784.2019.1680638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bella Schanzer
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Ana Maria Rivas-Grajales
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Aamir Khan
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Sanjay J Mathew
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
9
|
Im S, Jeong J, Jin G, Yeom J, Jekal J, Lee SI, Cho JA, Lee S, Lee Y, Kim DH, Bae M, Heo J, Moon C, Lee CH. MAOA variants differ in oscillatory EEG & ECG activities in response to aggression-inducing stimuli. Sci Rep 2019; 9:2680. [PMID: 30804379 PMCID: PMC6390082 DOI: 10.1038/s41598-019-39103-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/17/2019] [Indexed: 01/11/2023] Open
Abstract
Among the genetic variations in the monoamine oxidase A (MAOA) gene, upstream variable number tandem repeats (uVNTRs) of the promoter have been associated with individual differences in human physiology and aggressive behaviour. However, the evidence for a molecular or neural link between MAOA uVNTRs and aggression remains ambiguous. Additionally, the use of inconsistent promoter constructs in previous studies has added to the confusion. Therefore, it is necessary to demonstrate the genetic function of MAOA uVNTR and its effects on multiple aspects of aggression. Here, we identified three MAOA alleles in Koreans: the predominant 3.5R and 4.5R alleles, as well as the rare 2.5R allele. There was a minor difference in transcriptional efficiency between the 3.5R and 4.5R alleles, with the greatest value for the 2.5R allele, in contrast to existing research. Psychological indices of aggression did not differ among MAOA genotypes. However, our electroencephalogram and electrocardiogram results obtained under aggression-related stimulation revealed oscillatory changes as novel phenotypes that vary with the MAOA genotype. In particular, we observed prominent changes in frontal γ power and heart rate in 4.5R carriers of men. Our findings provide genetic insights into MAOA function and offer a neurobiological basis for various socio-emotional mechanisms in healthy individuals.
Collapse
Affiliation(s)
- SeungYeong Im
- School of Undergraduate Studies, DGIST, Daegu, Korea
- Department of Brain and Cognitive Sciences, Graduate School, DGIST, Daegu, Korea
| | - Jinju Jeong
- Undergraduate School Administration Team, DGIST, Daegu, Korea
- Well Aging Research Center, DGIST, Daegu, Korea
| | - Gwonhyu Jin
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Jiwoo Yeom
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | | | - Sang-Im Lee
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Jung Ah Cho
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Sukkyoo Lee
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Youngmi Lee
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Dae-Hwan Kim
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Mijeong Bae
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Jinhwa Heo
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Cheil Moon
- Department of Brain and Cognitive Sciences, Graduate School, DGIST, Daegu, Korea.
| | - Chang-Hun Lee
- School of Undergraduate Studies, DGIST, Daegu, Korea.
| |
Collapse
|
10
|
Pehme PM, Zhang W, Finik J, Pritchett A, Buthmann J, Dana K, Hao K, Nomura Y. Placental MAOA expression mediates prenatal stress effects on temperament in 12-month-olds. INFANT AND CHILD DEVELOPMENT 2018; 27. [PMID: 30505241 DOI: 10.1002/icd.2094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The placenta adapts to maternal environment and its alterations may have a lasting impact on child's temperament development. Prenatal stress has been linked to both a downregulation of monoamine oxidase A (MAOA) gene expression in the placenta and to difficult temperament. Capitalizing on an ongoing longitudinal study, we analysed data from 95 mother-child dyads to investigate whether MAOA mediates the association between prenatal stress and infant temperament. Prenatal stress was defined as exposure to Superstorm Sandy (Sandy) during pregnancy. Infant temperament was measured by Infant Behaviour Questionnaire-Revised. MAOA gene expression was quantified in placenta tissue. The Smiling and Laughter subscale score was independently associated with Sandy exposure and MAOA placental gene expression. Mediation analysis confirmed that MAOA expression partially mediated the relationship between Sandy and Smiling and Laughter subscale, suggesting that in utero exposure to Sandy could induce lower frequency of smiling and laughter via downregulation of placental MAOA gene expression. These effects could compromise optimal temperamental trajectory and contribute to risk for psychological problems. Placental epigenetic markers can contribute to a multidimensional model of early intervention for high-risk children.
Collapse
Affiliation(s)
- Patricia M Pehme
- Clinical Psychology Program, The Graduate Center (CUNY), New York, New York, USA.,Department of Psychology, Queens College (CUNY), New York, New York, USA
| | - Wei Zhang
- Clinical Psychology Program, The Graduate Center (CUNY), New York, New York, USA.,Department of Psychology, Queens College (CUNY), New York, New York, USA
| | - Jackie Finik
- Department of Psychology, Queens College (CUNY), New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,CUNY Graduate School of Public Health and Health Policy, New York, New York, USA
| | - Alexandra Pritchett
- Clinical Psychology Program, The Graduate Center (CUNY), New York, New York, USA.,Department of Psychology, Queens College (CUNY), New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jessica Buthmann
- Department of Psychology, Queens College (CUNY), New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Behavioral and Cognitive Neuroscience Program, The Graduate Center (CUNY), New York, New York, USA
| | - Kathryn Dana
- Clinical Psychology Program, The Graduate Center (CUNY), New York, New York, USA.,Department of Psychology, Queens College (CUNY), New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yoko Nomura
- Clinical Psychology Program, The Graduate Center (CUNY), New York, New York, USA.,Department of Psychology, Queens College (CUNY), New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,CUNY Graduate School of Public Health and Health Policy, New York, New York, USA.,Behavioral and Cognitive Neuroscience Program, The Graduate Center (CUNY), New York, New York, USA
| |
Collapse
|
11
|
Ross RS, Smolen A, Curran T, Nyhus E. MAO-A Phenotype Effects Response Sensitivity and the Parietal Old/New Effect during Recognition Memory. Front Hum Neurosci 2018; 12:53. [PMID: 29487517 PMCID: PMC5816743 DOI: 10.3389/fnhum.2018.00053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/31/2018] [Indexed: 11/13/2022] Open
Abstract
A critical problem for developing personalized treatment plans for cognitive disruptions is the lack of understanding how individual differences influence cognition. Recognition memory is one cognitive ability that varies from person to person and that variation may be related to different genetic phenotypes. One gene that may impact recognition memory is the monoamine oxidase A gene (MAO-A), which influences the transcription rate of MAO-A. Examination of how MAO-A phenotypes impact behavioral and event-related potentials (ERPs) correlates of recognition memory may help explain individual differences in recognition memory performance. Therefore, the current study uses electroencephalography (EEG) in combination with genetic phenotyping of the MAO-A gene to determine how well-characterized ERP components of recognition memory, the early frontal old/new effect, left parietal old/new effect, late frontal old/new effect, and the late posterior negativity (LPN) are impacted by MAO-A phenotype during item and source memory. Our results show that individuals with the MAO-A phenotype leading to increased transcription have lower response sensitivity during both item and source memory. Additionally, during item memory the left parietal old/new effect is not present due to increased ERP amplitude for correct rejections. The results suggest that MAO-A phenotype changes EEG correlates of recognition memory and influences how well individuals differentiate between old and new items.
Collapse
Affiliation(s)
- Robert S Ross
- Neuroscience and Behavior Program, Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Andrew Smolen
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States
| | - Tim Curran
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Erika Nyhus
- Department of Psychology and Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| |
Collapse
|
12
|
Ramadan S, Nowier AM, Hori Y, Inoue-Murayama M. The association between glutamine repeats in the androgen receptor gene and personality traits in dromedary camel (Camelus dromedarius). PLoS One 2018; 13:e0191119. [PMID: 29415053 PMCID: PMC5802489 DOI: 10.1371/journal.pone.0191119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/28/2017] [Indexed: 11/18/2022] Open
Abstract
Temperament traits such as fearfulness are important as they define an animal’s responses to its environment and handling. The increasing automation of daily tasks and growing population limits contact between camels and humans. Such limitations contribute to fear of humans and changes in physical environment. Monoamine oxidase A (MAOA) and androgen receptor (AR) genes are important candidates associated with mammal personality. In our analysis, MAOA exon 15 showed no polymorphism but a novel polymorphism was seen in the camel AR exon 1; 16, 17, 18, and 19 glutamine repeats were detected. We genotyped 138 camels belonging to four Egyptian breeds: Maghrabi (n = 90), Sudani (n = 15), Somali (n = 23), and Baladi (n = 10) for AR. Out of the 90 genotyped Maghrabi camels, we evaluated responses of 33 and 32 mature females to a novel object and exposure to an unfamiliar person, respectively. AR gene showed a significant association based on the principal component (PC) score, which indicated the fear of human touch, and the PC score indicates fear during interaction with novel objects. Individuals carrying a shorter genotype in homozygote (S/S) were found to be more fearful. Furthermore, we found that Sudani and Somali breeds had a higher frequency of shorter genotype (S/S), which was associated with increased fearfulness. These findings reflect the behavioral tendency and consequently, affect the use of this breed. This is the first report showing the role of AR glutamine repeats influencing a behavioral trait in dromedary camels and leading to inter-breed differences. Fear-related traits reported here are important because camels cope with various types of stresses and fear, resulting from the demands of intensive production systems and racing events. However, further studies, employing functional genomics and linkage analysis are necessary for confirming the relationship between fearfulness and genetic variation.
Collapse
Affiliation(s)
- Sherif Ramadan
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Amira M. Nowier
- Biotechnology Research Department, Animal Production Research Institute, Dokki, Egypt
| | - Yusuke Hori
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- Graduate School of Letters, Kyoto University, Kyoto, Japan
| | - Miho Inoue-Murayama
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
13
|
Gottschalk MG, Domschke K. Genetics of generalized anxiety disorder and related traits. DIALOGUES IN CLINICAL NEUROSCIENCE 2018. [PMID: 28867940 PMCID: PMC5573560 DOI: 10.31887/dcns.2017.19.2/kdomschke] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review serves as a systematic guide to the genetics of generalized anxiety disorder (GAD) and further focuses on anxiety-relevant endophenotypes, such as pathological worry fear of uncertainty, and neuroticism. We inspect clinical genetic evidence for the familialityl heritability of GAD and cross-disorder phenotypes based on family and twin studies. Recent advances of linkage studies, genome-wide association studies, and candidate gene studies (eg, 5-HTT, 5-HT1A, MAOA, BDNF) are outlined. Functional and structural neuroimaging and neurophysiological readouts relating to peripheral stress markers and psychophysiology are further integrated, building a multilevel disease framework. We explore etiologic factors in gene-environment interaction approaches investigating childhood trauma, environmental adversity, and stressful life events in relation to selected candidate genes (5-HTT, NPSR1, COMT, MAOA, CRHR1, RGS2), Additionally, the pharmacogenetics of selective serotonin reuptake inhibitor/serotonin-norepinephrine reuptake inhibitor treatment are summarized (5-HTT, 5-HT2A, COMT, CRHR1). Finally, GAD and trait anxiety research challenges and perspectives in the field of genetics, including epigenetics, are discussed.
Collapse
Affiliation(s)
- Michael G Gottschalk
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
14
|
Abstract
Generalized anxiety disorder (GAD) is a prevalent and highly disabling mental health condition; however, there is still much to learn with regard to pertinent biomarkers, as well as diagnosis, made more difficult by the marked and common overlap of GAD with affective and anxiety disorders. Recently, intensive research efforts have focused on GAD, applying neuroimaging, genetic, and blood-based approaches toward discovery of pathogenetic and treatment-related biomarkers. In this paper, we review the large amount of available data, and we focus in particular on evidence from neuroimaging, genetic, and neurochemical measurements in GAD in order to better understand potential biomarkers involved in its etiology and treatment. Overall, the majority of these studies have produced results that are solitary findings, sometimes inconsistent and not clearly replicable. For these reasons, they have not yet been translated into clinical practice. Therefore, further research efforts are needed to distinguish GAD from other mental disorders and to provide new biological insights into its pathogenesis and treatment.
Collapse
Affiliation(s)
- Eduard Maron
- Faculty of Medicine, Department of Medicine, Center for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK ; Department of Psychiatry, University of Tartu, Tartu, Estonia ; North Estonia Medical Center, Department of Psychiatry, Tallinn, Estonia
| | - David Nutt
- Faculty of Medicine, Department of Medicine, Center for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
15
|
Maron E, Lan CC, Nutt D. Imaging and Genetic Approaches to Inform Biomarkers for Anxiety Disorders, Obsessive-Compulsive Disorders, and PSTD. Curr Top Behav Neurosci 2018; 40:219-292. [PMID: 29796838 DOI: 10.1007/7854_2018_49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anxiety disorders are the most common mental health problem in the world and also claim the highest health care cost among various neuropsychiatric disorders. Anxiety disorders have a chronic and recurrent course and cause significantly negative impacts on patients' social, personal, and occupational functioning as well as quality of life. Despite their high prevalence rates, anxiety disorders have often been under-diagnosed or misdiagnosed, and consequently under-treated. Even with the correct diagnosis, anxiety disorders are known to be difficult to treat successfully. In order to implement better strategies in diagnosis, prognosis, treatment decision, and early prevention for anxiety disorders, tremendous efforts have been put into studies using genetic and neuroimaging techniques to advance our understandings of the underlying biological mechanisms. In addition to anxiety disorders including panic disorder, generalised anxiety disorder (GAD), specific phobias, social anxiety disorders (SAD), due to overlapping symptom dimensions, obsessive-compulsive disorder (OCD), and post-traumatic stress disorder (PTSD) (which were removed from the anxiety disorder category in DSM-5 to become separate categories) are also included for review of relevant genetic and neuroimaging findings. Although the number of genetic or neuroimaging studies focusing on anxiety disorders is relatively small compare to other psychiatric disorders such as psychotic disorders or mood disorders, various structural abnormalities in the grey or white matter, functional alterations of activity during resting-state or task conditions, molecular changes of neurotransmitter receptors or transporters, and genetic associations have all been reported. With continuing effort, further genetic and neuroimaging research may potentially lead to clinically useful biomarkers for the prevention, diagnosis, and management of these disorders.
Collapse
Affiliation(s)
- Eduard Maron
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK.
- Department of Psychiatry, University of Tartu, Tartu, Estonia.
- Department of Psychiatry, North Estonia Medical Centre, Tallinn, Estonia.
| | - Chen-Chia Lan
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan
| | - David Nutt
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
16
|
Perry LM, Goldstein-Piekarski AN, Williams LM. Sex differences modulating serotonergic polymorphisms implicated in the mechanistic pathways of risk for depression and related disorders. J Neurosci Res 2017; 95:737-762. [PMID: 27870440 DOI: 10.1002/jnr.23877] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/27/2022]
Abstract
Despite consistent observations of sex differences in depression and related emotional disorders, we do not yet know how these sex differences modulate the effects of genetic polymorphisms implicated in risk for these disorders. This Mini-Review focuses on genetic polymorphisms of the serotonergic system to illustrate how sex differences might modulate the neurobiological pathways involved in the development of depression. We consider the interacting role of environmental factors such as early-life stress. Given limited current knowledge about this topic, we highlight methodological considerations, challenges, and guidelines for future research. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- LeeAnn M Perry
- Neurosciences Program, Stanford University, Stanford, California
| | - Andrea N Goldstein-Piekarski
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.,Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.,Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
17
|
Zhang X, Norton J, Carrière I, Ritchie K, Chaudieu I, Ryan J, Ancelin ML. Preliminary evidence for a role of the adrenergic nervous system in generalized anxiety disorder. Sci Rep 2017; 7:42676. [PMID: 28198454 PMCID: PMC5309880 DOI: 10.1038/srep42676] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/13/2017] [Indexed: 01/31/2023] Open
Abstract
Generalized anxiety disorder (GAD) is a common chronic condition that is understudied compared to other psychiatric disorders. An altered adrenergic function has been reported in GAD, however direct evidence for genetic susceptibility is missing. This study evaluated the associations of gene variants in adrenergic receptors (ADRs) with GAD, with the involvement of stressful events. Data were obtained from 844 French community-dwelling elderly aged 65 or over. Anxiety disorders were assessed using the Mini-International Neuropsychiatry Interview, according to DSM-IV criteria. Eight single-nucleotide polymorphisms (SNPs) involved with adrenergic function were genotyped; adrenergic receptors alpha(1A) (ADRA1A), alpha(2A) (ADRA2A), and beta2 (ADRB2) and transcription factor TCF7L2. Questionnaires evaluated recent stressful life events as well as early environment during childhood and adolescence. Using multivariate logistic regression analyses four SNPs were significantly associated with GAD. A 4-fold modified risk was found with ADRA1A rs17426222 and rs573514, and ADRB2 rs1042713 which remained significant after Bonferroni correction. Certain variants may moderate the effect of adverse life events on the risk of GAD. Replication in larger samples is needed due to the small case number. This is the first study showing that ADR variants are susceptibility factors for GAD, further highlighting the critical role of the adrenergic nervous system in this disorder.
Collapse
Affiliation(s)
- Xiaobin Zhang
- Inserm, U1061, Montpellier, France.,Univ Montpellier, Montpellier, France.,Tianjin Mental Health Center, Tianjin, China
| | - Joanna Norton
- Inserm, U1061, Montpellier, France.,Univ Montpellier, Montpellier, France
| | - Isabelle Carrière
- Inserm, U1061, Montpellier, France.,Univ Montpellier, Montpellier, France
| | - Karen Ritchie
- Inserm, U1061, Montpellier, France.,Univ Montpellier, Montpellier, France.,Faculty of Medicine, Imperial College, London, UK
| | - Isabelle Chaudieu
- Inserm, U1061, Montpellier, France.,Univ Montpellier, Montpellier, France
| | - Joanne Ryan
- Inserm, U1061, Montpellier, France.,Univ Montpellier, Montpellier, France.,Disease Epigenetics Group, Murdoch Children's Research Institute, and Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | | |
Collapse
|
18
|
Saavedra K, Molina-Márquez AM, Saavedra N, Zambrano T, Salazar LA. Epigenetic Modifications of Major Depressive Disorder. Int J Mol Sci 2016; 17:ijms17081279. [PMID: 27527165 PMCID: PMC5000676 DOI: 10.3390/ijms17081279] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/24/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022] Open
Abstract
Major depressive disorder (MDD) is a chronic disease whose neurological basis and pathophysiology remain poorly understood. Initially, it was proposed that genetic variations were responsible for the development of this disease. Nevertheless, several studies within the last decade have provided evidence suggesting that environmental factors play an important role in MDD pathophysiology. Alterations in epigenetics mechanism, such as DNA methylation, histone modification and microRNA expression could favor MDD advance in response to stressful experiences and environmental factors. The aim of this review is to describe genetic alterations, and particularly altered epigenetic mechanisms, that could be determinants for MDD progress, and how these alterations may arise as useful screening, diagnosis and treatment monitoring biomarkers of depressive disorders.
Collapse
Affiliation(s)
- Kathleen Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile.
| | - Ana María Molina-Márquez
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile.
| | - Nicolás Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile.
| | - Tomás Zambrano
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile.
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile.
- Millennium Institute for Research in Depression and Personality (MIDAP), Universidad de La Frontera, Temuco 4811230, Chile.
| |
Collapse
|
19
|
Nikolac Perkovic M, Svob Strac D, Nedic Erjavec G, Uzun S, Podobnik J, Kozumplik O, Vlatkovic S, Pivac N. Monoamine oxidase and agitation in psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:131-46. [PMID: 26851573 DOI: 10.1016/j.pnpbp.2016.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/15/2016] [Accepted: 02/02/2016] [Indexed: 11/17/2022]
Abstract
Subjects with schizophrenia or conduct disorder display a lifelong pattern of antisocial, aggressive and violent behavior and agitation. Monoamine oxidase (MAO) is an enzyme involved in the degradation of various monoamine neurotransmitters and neuromodulators and therefore has a role in various psychiatric and neurodegenerative disorders and pathological behaviors. Platelet MAO-B activity has been associated with psychopathy- and aggression-related personality traits, while variants of the MAOA and MAOB genes have been associated with diverse clinical phenotypes, including aggressiveness, antisocial problems and violent delinquency. The aim of the study was to evaluate the association of platelet MAO-B activity, MAOB rs1799836 polymorphism and MAOA uVNTR polymorphism with severe agitation in 363 subjects with schizophrenia and conduct disorder. The results demonstrated significant association of severe agitation and smoking, but not diagnosis or age, with platelet MAO-B activity. Higher platelet MAO-B activity was found in subjects with severe agitation compared to non-agitated subjects. Platelet MAO-B activity was not associated with MAOB rs1799836 polymorphism. These results suggested the association between increased platelet MAO-B activity and severe agitation. No significant association was found between severe agitation and MAOA uVNTR or MAOB rs1799836 polymorphism, revealing that these individual polymorphisms in MAO genes are not related to severe agitation in subjects with schizophrenia and conduct disorder. As our study included 363 homogenous Caucasian male subjects, our data showing this negative genetic association will be a useful addition to future meta-analyses.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Suzana Uzun
- Clinic for Psychiatry Vrapce, Bolnicka cesta 32, 10000 Zagreb, Croatia
| | - Josip Podobnik
- Department of Psychiatry, Psychiatric Hospital for Children and Youth Zagreb, Kukuljeviceva 11, 10000 Zagreb, Croatia
| | - Oliver Kozumplik
- Clinic for Psychiatry Vrapce, Bolnicka cesta 32, 10000 Zagreb, Croatia
| | | | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
20
|
Bandelow B, Baldwin D, Abelli M, Altamura C, Dell'Osso B, Domschke K, Fineberg NA, Grünblatt E, Jarema M, Maron E, Nutt D, Pini S, Vaghi MM, Wichniak A, Zai G, Riederer P. Biological markers for anxiety disorders, OCD and PTSD - a consensus statement. Part I: Neuroimaging and genetics. World J Biol Psychiatry 2016; 17:321-65. [PMID: 27403679 DOI: 10.1080/15622975.2016.1181783] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Biomarkers are defined as anatomical, biochemical or physiological traits that are specific to certain disorders or syndromes. The objective of this paper is to summarise the current knowledge of biomarkers for anxiety disorders, obsessive-compulsive disorder (OCD) and post-traumatic stress disorder (PTSD). METHODS Findings in biomarker research were reviewed by a task force of international experts in the field, consisting of members of the World Federation of Societies for Biological Psychiatry Task Force on Biological Markers and of the European College of Neuropsychopharmacology Anxiety Disorders Research Network. RESULTS The present article (Part I) summarises findings on potential biomarkers in neuroimaging studies, including structural brain morphology, functional magnetic resonance imaging and techniques for measuring metabolic changes, including positron emission tomography and others. Furthermore, this review reports on the clinical and molecular genetic findings of family, twin, linkage, association and genome-wide association studies. Part II of the review focuses on neurochemistry, neurophysiology and neurocognition. CONCLUSIONS Although at present, none of the putative biomarkers is sufficient and specific as a diagnostic tool, an abundance of high-quality research has accumulated that will improve our understanding of the neurobiological causes of anxiety disorders, OCD and PTSD.
Collapse
Affiliation(s)
- Borwin Bandelow
- a Department of Psychiatry and Psychotherapy , University of Göttingen , Germany
| | - David Baldwin
- b Faculty of Medicine , University of Southampton , Southampton , UK
| | - Marianna Abelli
- c Department of Clinical and Experimental Medicine , Section of Psychiatry, University of Pisa , Italy
| | - Carlo Altamura
- d Department of Psychiatry , University of Milan; Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - Bernardo Dell'Osso
- d Department of Psychiatry , University of Milan; Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - Katharina Domschke
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany
| | - Naomi A Fineberg
- f Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire , Rosanne House, Parkway , Welwyn Garden City , UK
| | - Edna Grünblatt
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany ;,g Neuroscience Center Zurich , University of Zurich and the ETH Zurich , Zürich , Switzerland ;,h Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zurich , Zürich , Switzerland ;,i Zurich Center for Integrative Human Physiology , University of Zurich , Switzerland
| | - Marek Jarema
- j Third Department of Psychiatry , Institute of Psychiatry and Neurology , Warszawa , Poland
| | - Eduard Maron
- k North Estonia Medical Centre, Department of Psychiatry , Tallinn , Estonia ;,l Department of Psychiatry , University of Tartu , Estonia ;,m Faculty of Medicine, Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences , Imperial College London , UK
| | - David Nutt
- m Faculty of Medicine, Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences , Imperial College London , UK
| | - Stefano Pini
- c Department of Clinical and Experimental Medicine , Section of Psychiatry, University of Pisa , Italy
| | - Matilde M Vaghi
- n Department of Psychology and Behavioural and Clinical Neuroscience Institute , University of Cambridge , UK
| | - Adam Wichniak
- j Third Department of Psychiatry , Institute of Psychiatry and Neurology , Warszawa , Poland
| | - Gwyneth Zai
- n Department of Psychology and Behavioural and Clinical Neuroscience Institute , University of Cambridge , UK ;,o Neurogenetics Section, Centre for Addiction & Mental Health , Toronto , Canada ;,p Frederick W. Thompson Anxiety Disorders Centre, Department of Psychiatry, Sunnybrook Health Sciences Centre , Toronto , Canada ;,q Institute of Medical Science and Department of Psychiatry, University of Toronto , Toronto , Canada
| | - Peter Riederer
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany ;,g Neuroscience Center Zurich , University of Zurich and the ETH Zurich , Zürich , Switzerland ;,h Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zurich , Zürich , Switzerland
| |
Collapse
|
21
|
Fišar Z. Drugs related to monoamine oxidase activity. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:112-24. [PMID: 26944656 DOI: 10.1016/j.pnpbp.2016.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 02/07/2023]
Abstract
Progress in understanding the role of monoamine neurotransmission in pathophysiology of neuropsychiatric disorders was made after the discovery of the mechanisms of action of psychoactive drugs, including monoamine oxidase (MAO) inhibitors. The increase in monoamine neurotransmitter availability, decrease in hydrogen peroxide production, and neuroprotective effects evoked by MAO inhibitors represent an important approach in the development of new drugs for the treatment of mental disorders and neurodegenerative diseases. New drugs are synthesized by acting as multitarget-directed ligands, with MAO, acetylcholinesterase, and iron chelation as targets. Basic information is summarized in this paper about the drug-induced regulation of monoaminergic systems in the brain, with a focus on MAO inhibition. Desirable effects of MAO inhibition include increased availability of monoamine neurotransmitters, decreased oxidative stress, decreased formation of neurotoxins, induction of pro-survival genes and antiapoptotic factors, and improved mitochondrial functions.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| |
Collapse
|
22
|
Candidate genes in panic disorder: meta-analyses of 23 common variants in major anxiogenic pathways. Mol Psychiatry 2016; 21:665-79. [PMID: 26390831 DOI: 10.1038/mp.2015.138] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/22/2015] [Accepted: 08/05/2015] [Indexed: 12/13/2022]
Abstract
The utilization of molecular genetics approaches in examination of panic disorder (PD) has implicated several variants as potential susceptibility factors for panicogenesis. However, the identification of robust PD susceptibility genes has been complicated by phenotypic diversity, underpowered association studies and ancestry-specific effects. In the present study, we performed a succinct review of case-control association studies published prior to April 2015. Meta-analyses were performed for candidate gene variants examined in at least three studies using the Cochrane Mantel-Haenszel fixed-effect model. Secondary analyses were also performed to assess the influences of sex, agoraphobia co-morbidity and ancestry-specific effects on panicogenesis. Meta-analyses were performed on 23 variants in 20 PD candidate genes. Significant associations after correction for multiple testing were observed for three variants, TMEM132D rs7370927 (T allele: odds ratio (OR)=1.27, 95% confidence interval (CI): 1.15-1.40, P=2.49 × 10(-6)), rs11060369 (CC genotype: OR=0.65, 95% CI: 0.53-0.79, P=1.81 × 10(-5)) and COMT rs4680 (Val (G) allele: OR=1.27, 95% CI: 1.14-1.42, P=2.49 × 10(-5)) in studies with samples of European ancestry. Nominal associations that did not survive correction for multiple testing were observed for NPSR1 rs324891 (T allele: OR=1.22, 95% CI: 1.07-1.38, P=0.002), TPH1 rs1800532 (AA genotype: OR=1.46, 95% CI: 1.14-1.89, P=0.003) and HTR2A rs6313 (T allele: OR=1.19, 95% CI: 1.07-1.33, P=0.002) in studies with samples of European ancestry and for MAOA-uVNTR in female PD (low-active alleles: OR=1.21, 95% CI: 1.07-1.38, P=0.004). No significant associations were observed in the secondary analyses considering sex, agoraphobia co-morbidity and studies with samples of Asian ancestry. Although these findings highlight a few associations, PD likely involves genetic variation in a multitude of biological pathways that is diverse among populations. Future studies must incorporate larger sample sizes and genome-wide approaches to further quantify the observed genetic variation among populations and subphenotypes of PD.
Collapse
|
23
|
The analysis of anxiety and mood in healthy late-reproductive-stage women with regard to hormonal and genetic factors. Arch Womens Ment Health 2016; 19:1141-1148. [PMID: 27614969 PMCID: PMC5102941 DOI: 10.1007/s00737-016-0667-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 09/02/2016] [Indexed: 10/31/2022]
Abstract
The purpose of this study was to determine whether anxiety and mood disorders in late-reproductive-stage women are related to the serotonin transporter and monoamine oxidase A gene polymorphisms. Research instrument used in this study were the State-Trait Anxiety Inventory and the UWIST Mood Adjective Checklist. The 44-bp VNTR polymorphism in the 5-HTT (SLC 6A4) promoter region and the 30-bp VNTR polymorphism in the MAO-A promoter region were analyzed. The study included 345 healthy Polish women in the late reproductive stage. The mean age of the participants was 42.3 ± 4.5 years. State anxiety was observed in 16.8 % of the women and trait anxiety in 14.5 %. There were no statistically significant differences in the mood and the mean levels of anxiety depending on the presence of the polymorphisms analyzed in this study. Depressed mood is frequent among healthy women in the late reproductive stage. Anxiety is definitely less common. The study did not demonstrate the relationship between the 5-HTT and MAO-A gene polymorphisms, and the severity of anxiety and mood disorders in healthy late-reproductive-stage women.
Collapse
|
24
|
MAOA Variants and Genetic Susceptibility to Major Psychiatric Disorders. Mol Neurobiol 2015; 53:4319-27. [PMID: 26227907 DOI: 10.1007/s12035-015-9374-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/21/2015] [Indexed: 12/20/2022]
Abstract
Monoamine oxidase A (MAOA) is a mitochondrial enzyme involved in the metabolism of several biological amines such as dopamine, norepinephrine, and serotonin, which are important neurochemicals in the pathogenesis of major psychiatric illnesses. MAOA is regarded as a functional plausible susceptibility gene for psychiatric disorders, whereas previous hypothesis-driven association studies obtained controversial results, a reflection of small sample size, genetic heterogeneity, or true negative associations. In addition, MAOA is not analyzed in most of genome-wide association studies (GWAS) on psychiatric disorders, since it is located on Chromosome Xp11.3. Therefore, the effects of MAOA variants on genetic predisposition to psychiatric disorders remain obscure. To fill this gap, we collected psychiatric phenotypic (schizophrenia, bipolar disorder, and major depressive disorder) and genetic data in up to 18,824 individuals from diverse ethnic groups. We employed classical fixed (or random) effects inverse variance weighted methods to calculate summary odds ratios (OR) and 95 % confidence intervals (CI). We identified a synonymous SNP rs1137070 showing significant associations with major depressive disorder (p = 0.00067, OR = 1.263 for T allele) and schizophrenia (p = 0.0039, OR = 1.225 for T allele) as well as a broad spectrum of psychiatric phenotype (p = 0.000066, OR = 1.218 for T allele) in both males and females. The effect size was similar between different ethnic populations and different gender groups. Collectively, we confirmed that MAOA is a risk gene for psychiatric disorders, and our results provide useful information toward a better understanding of genetic mechanism involving MAOA underlying risk of complex psychiatric disorders.
Collapse
|
25
|
Abstract
The objective of the present study was to examine the joint effects of the body mass index and the MAOA gene polymorphism on depressive symptoms. In two independent Chinese samples, we measured adolescents' depressive symptoms and body mass index and collected their DNA. The results indicated that the main effects of the MAOA gene polymorphism on depressive symptoms were significant. However, the main effects of body mass index and the interaction of the MAOA gene polymorphism and body mass index on depressive symptoms were not significant. By using Chinese adolescents, this study confirmed that the MAOA gene polymorphism directly influenced adolescents' depressive symptoms.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Psychology, Nanjing University, Nanjing, China
| |
Collapse
|
26
|
Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology 2015; 40:88-112. [PMID: 25178408 PMCID: PMC4262911 DOI: 10.1038/npp.2014.231] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/30/2014] [Accepted: 08/20/2014] [Indexed: 02/07/2023]
Abstract
Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system development, such sensitive periods shape the formation of neurocircuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint as well as the environmental context. While allowing for adaptation, such sensitive periods are also vulnerability windows during which external and internal factors can confer risk to disorders by derailing otherwise resilient developmental programs. Here we review developmental periods that are sensitive to monoamine signaling and impact adult behaviors of relevance to psychiatry. Specifically, we review (1) a serotonin-sensitive period that impacts sensory system development, (2) a serotonin-sensitive period that impacts cognition, anxiety- and depression-related behaviors, and (3) a dopamine- and serotonin-sensitive period affecting aggression, impulsivity and behavioral response to psychostimulants. We discuss preclinical data to provide mechanistic insight, as well as epidemiological and clinical data to point out translational relevance. The field of translational developmental neuroscience has progressed exponentially providing solid conceptual advances and unprecedented mechanistic insight. With such knowledge at hand and important methodological innovation ongoing, the field is poised for breakthroughs elucidating the developmental origins of neuropsychiatric disorders, and thus understanding pathophysiology. Such knowledge of sensitive periods that determine the developmental trajectory of complex behaviors is a necessary step towards improving prevention and treatment approaches for neuropsychiatric disorders.
Collapse
|
27
|
Yu Q, Teixeira CM, Mahadevia D, Huang YY, Balsam D, Mann JJ, Gingrich JA, Ansorge MS. Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Mol Psychiatry 2014; 19:688-98. [PMID: 24589889 PMCID: PMC4311886 DOI: 10.1038/mp.2014.10] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/06/2013] [Accepted: 12/16/2013] [Indexed: 12/16/2022]
Abstract
Pharmacologic blockade of monoamine oxidase A (MAOA) or serotonin transporter (5-HTT) has antidepressant and anxiolytic efficacy in adulthood. Yet, genetically conferred MAOA or 5-HTT hypoactivity is associated with altered aggression and increased anxiety/depression. Here we test the hypothesis that increased monoamine signaling during development causes these paradoxical aggressive and affective phenotypes. We find that pharmacologic MAOA blockade during early postnatal development (P2-P21) but not during peri-adolescence (P22-41) increases anxiety- and depression-like behavior in adult (>P90) mice, mimicking the effect of P2-21 5-HTT inhibition. Moreover, MAOA blockade during peri-adolescence, but not P2-21 or P182-201, increases adult aggressive behavior, and 5-HTT blockade from P22-P41 reduced adult aggression. Blockade of the dopamine transporter, but not the norepinephrine transporter, during P22-41 also increases adult aggressive behavior. Thus, P2-21 is a sensitive period during which 5-HT modulates adult anxiety/depression-like behavior, and P22-41 is a sensitive period during which DA and 5-HT bi-directionally modulate adult aggression. Permanently altered DAergic function as a consequence of increased P22-P41 monoamine signaling might underlie altered aggression. In support of this hypothesis, we find altered aggression correlating positively with locomotor response to amphetamine challenge in adulthood. Proving that altered DA function and aggression are causally linked, we demonstrate that optogenetic activation of VTA DAergic neurons increases aggression. It therefore appears that genetic and pharmacologic factors impacting dopamine and serotonin signaling during sensitive developmental periods can modulate adult monoaminergic function and thereby alter risk for aggressive and emotional dysfunction.
Collapse
Affiliation(s)
- Qinghui Yu
- Divisions of Developmental Neuroscienc e, Department of Psychiatry, Columbia University, New York,Department of Biological Sciences, Columbia University, New York
| | - Cátia M. Teixeira
- Divisions of Developmental Neuroscienc e, Department of Psychiatry, Columbia University, New York,Sackler Institute for Developmental Psychobiology, Columbia University and the New York State Psychiatric Institute, New York
| | - Darshini Mahadevia
- Divisions of Developmental Neuroscienc e, Department of Psychiatry, Columbia University, New York,Sackler Institute for Developmental Psychobiology, Columbia University and the New York State Psychiatric Institute, New York
| | - Yung-Yu Huang
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute and Department of Psychiatry, Columbia University, New York
| | - Daniel Balsam
- Divisions of Developmental Neuroscienc e, Department of Psychiatry, Columbia University, New York,Sackler Institute for Developmental Psychobiology, Columbia University and the New York State Psychiatric Institute, New York
| | - J John Mann
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute and Department of Psychiatry, Columbia University, New York
| | - Jay A Gingrich
- Divisions of Developmental Neuroscienc e, Department of Psychiatry, Columbia University, New York,Sackler Institute for Developmental Psychobiology, Columbia University and the New York State Psychiatric Institute, New York,To whom correspondence should be addressed: Sackler Professor of Clinical Developmental Psychobiology in the Dept. of Psychiatry, Director, Sackler Institute for Developmental Psychobiology, Division of Developmental Neuroscience, Columbia University and the NYSPI, 1051 Riverside Drive, room 4911A New York, NY 10032, , 212-543-6083
| | - Mark S. Ansorge
- Divisions of Developmental Neuroscienc e, Department of Psychiatry, Columbia University, New York,Sackler Institute for Developmental Psychobiology, Columbia University and the New York State Psychiatric Institute, New York
| |
Collapse
|
28
|
Verma D, Chakraborti B, Karmakar A, Bandyopadhyay T, Singh AS, Sinha S, Chatterjee A, Ghosh S, Mohanakumar KP, Mukhopadhyay K, Rajamma U. Sexual dimorphic effect in the genetic association of monoamine oxidase A (MAOA) markers with autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:11-20. [PMID: 24291416 DOI: 10.1016/j.pnpbp.2013.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 11/19/2022]
Abstract
Autism spectrum disorders are heritable and behaviorally-defined neurodevelopmental disorders having skewed sex ratio. Serotonin as modulator of behavior and implication of serotonergic dysfunction in ASD etiology corroborates that serotonergic system genes are potential candidates for autism susceptibility. In the current study X-chromosomal gene, MAOA responsible for degradation of serotonin is investigated for possible association with ASD using population-based approach. Study covers analysis of 8 markers in 421 subjects including cases and ethnically-matched controls from West Bengal. MAOA marker, rs6323 and various haplotypes formed between the markers show significant association with the disorder. Stratification on the basis of sex reveals significant genetic effect of rs6323 with low activity T allele posing higher risk in males, but not in females. Haplotypic association results also show differential effect both in males and females. Contrasting linkage disequilibrium pattern between pair of markers involving rs6323 in male cases and controls further supports the sex-bias in genetic association. Bioinformatic analysis shows presence of Y-encoded SRY transcription factor binding sites in the neighborhood of rs1137070. C allele of rs1137070 causes deletion of GATA-2 binding site and GATA-2 is known to interact with SRY. This is the first study highlighting male-specific effect of rs6323 marker and its haplotypes in ASD etiology and it suggests sexual dimorphic effect of MAOA in this disorder. Overall results of this study identify MAOA as a possible ASD susceptibility locus and the differential genetic effect in males and females might contribute to the sex ratio differences and molecular pathology of the disorder.
Collapse
Affiliation(s)
- Deepak Verma
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Barnali Chakraborti
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Arijit Karmakar
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Tirthankar Bandyopadhyay
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Asem Surindro Singh
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Swagata Sinha
- Out-Patients Department, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Anindita Chatterjee
- Out-Patients Department, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Saurabh Ghosh
- Human Genetics Unit, Indian Statistical Institute, 203 BT Road, Kolkata, West Bengal, India
| | - Kochupurackal P Mohanakumar
- Lab of Clinical & Experimental Neurosciences, Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Jadavpur, Kolkata, West Bengal, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Usha Rajamma
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India.
| |
Collapse
|
29
|
Mueller SC, Cornwell BR, Grillon C, Macintyre J, Gorodetsky E, Goldman D, Pine DS, Ernst M. Evidence of MAOA genotype involvement in spatial ability in males. Behav Brain Res 2014; 267:106-10. [PMID: 24671068 DOI: 10.1016/j.bbr.2014.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/13/2014] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
Abstract
Although the monoamine oxidase-A (MAOA) gene has been linked to spatial learning and memory in animal models, convincing evidence in humans is lacking. Performance on an ecologically-valid, virtual computer-based equivalent of the Morris Water Maze task was compared between 28 healthy males with the low MAOA transcriptional activity and 41 healthy age- and IQ-matched males with the high MAOA transcriptional activity. The results revealed consistently better performance (reduced heading error, shorter path length, and reduced failed trials) for the high MAOA activity individuals relative to the low activity individuals. By comparison, groups did not differ on pre-task variables or strategic measures such as first-move latency. The results provide novel evidence of MAOA gene involvement in human spatial navigation using a virtual analogue of the Morris Water Maze task.
Collapse
Affiliation(s)
- Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, 9000 Ghent, Belgium; Section on Developmental and Affective Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | - Christian Grillon
- Section Neurobiology of Fear & Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Macintyre
- Section on Developmental and Affective Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elena Gorodetsky
- Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel S Pine
- Section on Developmental and Affective Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Monique Ernst
- Section on Developmental and Affective Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Gene × environment effects of serotonin transporter, dopamine receptor D4, and monoamine oxidase A genes with contextual and parenting risk factors on symptoms of oppositional defiant disorder, anxiety, and depression in a community sample of 4-year-old children. Dev Psychopathol 2013; 25:555-75. [PMID: 23627963 DOI: 10.1017/s0954579412001241] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genetic factors can play a key role in the multiple level of analyses approach to understanding the development of child psychopathology. The present study examined gene-environment correlations and gene × environment interactions for polymorphisms of three target genes, the serotonin transporter gene, the D4 dopamine receptor gene, and the monoamine oxidase A gene in relation to symptoms of anxiety, depression, and oppositional behavior. Saliva samples were collected from 175 non-Hispanic White, 4-year-old children. Psychosocial risk factors included socioeconomic status, life stress, caretaker depression, parental support, hostility, and scaffolding skills. In comparison with the short forms (s/s, s/l) of the serotonin transporter linked polymorphic repeat, the long form (l/l) was associated with greater increases in symptoms of oppositional defiant disorder in interaction with family stress and with greater increases in symptoms of child depression and anxiety in interaction with caretaker depression, family conflict, and socioeconomic status. In boys, low-activity monoamine oxidase A gene was associated with increases in child anxiety and depression in interaction with caretaker depression, hostility, family conflict, and family stress. The results highlight the important of gene-environment interplay in the development of symptoms of child psychopathology in young children.
Collapse
|
31
|
Abstract
In a sample of 569 Chinese high school students, the present findings indicated that students with the 4-repeat genotype showed a higher level of test anxiety. Furthermore, the prediction of academic performance on test anxiety was stronger among students with the 3-repeat genotype than those with the 4-repeat genotype. The present findings suggest that mono-amine-oxidase type A gene polymorphism is significantly related to test anxiety.
Collapse
|
32
|
MAOA and MAOB polymorphisms and anger-related traits in suicidal participants and controls. Eur Arch Psychiatry Clin Neurosci 2013; 263:393-403. [PMID: 23111930 DOI: 10.1007/s00406-012-0378-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/15/2012] [Indexed: 12/11/2022]
Abstract
MAOA and, to a lesser extent, MAOB polymorphisms have been related to aggression traits and suicidality. We aimed to investigate the role of MAOA and MAOB in suicidal versus non-suicidal participants and interactions between genetic variation and suicidal status on aggression and anger-related traits. The sample was composed of three groups: one group of suicide attempters (n = 171, males 35.1 %), one group of suicide completers (n = 90, males 57.8 %) and a healthy control group (n = 317, males 43.8 %). We examined the following markers: MAOA rs909525, rs6323, and rs2064070, and MAOB rs1799836. Anger traits were measured with the state-trait anger expression inventory (STAXI) and aggression traits with the questionnaire for measuring factors of aggression (FAF). Associations were separately examined for males and females. Variation in the three MAOA variants was associated with higher levels of anger expressed outwards (STAXI "anger-out" subscale) in male suicidal patients compared to controls (p < 0.001). In females, the C allele of rs6323 showed higher scores on the same subscale ("anger out") (p = 0.002). Allele frequencies of the MAOA rs909525 were associated with suicidality (p < 0.007). Our findings show an association between genetic variation in three polymorphisms of the MAOA and anger traits in suicidal males and one replication for the functional variant rs6323 in females. This relationship was stronger than a direct genetic association with suicide status. Future studies incorporating endophenotypic measures of anger and aggression in suicidal participants are warranted.
Collapse
|
33
|
Abstract
BACKGROUND It has been well established that both genes and non-shared environment contribute substantially to the underlying aetiology of major depressive disorder (MDD). A comprehensive overview of genetic research in MDD is presented. Method Papers were retrieved from PubMed up to December 2011, using many keywords including: depression, major depressive disorder, genetics, rare variants, gene-environment, whole genome, epigenetics, and specific candidate genes and variants. These were combined in a variety of permutations. RESULTS Linkage studies have yielded some promising chromosomal regions in MDD. However, there is a continued lack of consistency in association studies, in both candidate gene and genome-wide association studies (GWAS). Numerous factors may account for variable results including the use of different diagnostic approaches, small samples in early studies, population stratification, epigenetic phenomena, copy number variation (CNV), rare variation, and phenotypic and allelic heterogeneity. The conflicting results are also probably, in part, a consequence of environmental factors not being considered or controlled for. CONCLUSIONS Each research group has to identify what issues their sample may best address. We suggest that, where possible, more emphasis should be placed on the environment in molecular behavioural genetics to identify individuals at environmental high risk in addition to genetic high risk. Sequencing should be used to identify rare and alternative variation that may act as a risk factor, and a systems biology approach including gene-gene interactions and pathway analyses would be advantageous. GWAS may require even larger samples with reliably defined (sub)phenotypes.
Collapse
Affiliation(s)
- S Cohen-Woods
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, UK.
| | | | | |
Collapse
|
34
|
Reif A, Weber H, Domschke K, Klauke B, Baumann C, Jacob CP, Ströhle A, Gerlach AL, Alpers GW, Pauli P, Hamm A, Kircher T, Arolt V, Wittchen HU, Binder EB, Erhardt A, Deckert J. Meta-analysis argues for a female-specific role of MAOA-uVNTR in panic disorder in four European populations. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:786-93. [PMID: 22911667 DOI: 10.1002/ajmg.b.32085] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 07/09/2012] [Indexed: 01/04/2023]
Abstract
Panic disorder (PD) is a common mental disorder, ranking highest among the anxiety disorders in terms of disease burden. The pathogenesis of PD is multifactorial with significant heritability, however only a few convincing risk genes have been reported thus far. One of the most promising candidates is the gene encoding monoamine oxidase A (MAOA), due to its key role in monoaminergic neurotransmission, established validity of animal models, and the efficacy of MAO inhibitors in the treatment of PD. A promoter repeat polymorphism in MAOA (MAOA-uVNTR) impacts on gene expression; high-expression alleles have been reported to increase the risk for PD. To further scrutinize the role of this polymorphism, we performed a formal meta-analysis on MAOA-uVNTR and PD using original data from four published European (Estonian, German, Italian, and Polish) samples and genotypes from three hitherto unpublished German PD samples, resulting in the largest (n = 1,115 patients and n = 1,260 controls) genetic study on PD reported to date. In the unpublished samples, evidence for association of MAOA-uVNTR with PD was obtained in one of the three samples. Results of the meta-analysis revealed a significant and female-specific association when calculating an allelic model (OR = 1.23, P = 0.006). This sex-specific effect might be explained by a gene-dose effect causing higher MAOA expression in females. Taken together, our meta-analysis therefore argues that high-expression MAOA-uVNTR alleles significantly increase the risk towards PD in women. However, epigenetic mechanisms might obfuscate the genetic association, calling for ascertainment in larger samples as well as assessment of the MAOA promoter methylation status therein.
Collapse
Affiliation(s)
- Andreas Reif
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Association of MAOA and COMT gene polymorphisms with palatable food intake in children. J Nutr Biochem 2012; 23:272-7. [DOI: 10.1016/j.jnutbio.2010.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 11/23/2022]
|
36
|
Sethi D, Chen CP, Jing RY, Thakur ML, Wickstrom E. Fluorescent Peptide–PNA Chimeras for Imaging Monoamine Oxidase A mRNA in Neuronal Cells. Bioconjug Chem 2012; 23:158-63. [DOI: 10.1021/bc2004507] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Dalip Sethi
- Departments of Biochemistry & Molecular Biology, ‡Radiology, and §Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Chang-Po Chen
- Departments of Biochemistry & Molecular Biology, ‡Radiology, and §Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Rui-Yan Jing
- Departments of Biochemistry & Molecular Biology, ‡Radiology, and §Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Mathew L. Thakur
- Departments of Biochemistry & Molecular Biology, ‡Radiology, and §Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Eric Wickstrom
- Departments of Biochemistry & Molecular Biology, ‡Radiology, and §Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| |
Collapse
|
37
|
Sapra S, Beavin LE, Zak PJ. A combination of dopamine genes predicts success by professional Wall Street traders. PLoS One 2012; 7:e30844. [PMID: 22292056 PMCID: PMC3265532 DOI: 10.1371/journal.pone.0030844] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 12/29/2011] [Indexed: 11/18/2022] Open
Abstract
What determines success on Wall Street? This study examined if genes affecting dopamine levels of professional traders were associated with their career tenure. Sixty professional Wall Street traders were genotyped and compared to a control group who did not trade stocks. We found that distinct alleles of the dopamine receptor 4 promoter (DRD4P) and catecholamine-O-methyltransferase (COMT) that affect synaptic dopamine were predominant in traders. These alleles are associated with moderate, rather than very high or very low, levels of synaptic dopamine. The activity of these alleles correlated positively with years spent trading stocks on Wall Street. Differences in personality and trading behavior were also correlated with allelic variants. This evidence suggests there may be a genetic basis for the traits that make one a successful trader.
Collapse
Affiliation(s)
- Steve Sapra
- Center for Neuroeconomics Studies, Claremont Graduate University, Claremont, California, United States of America
| | - Laura E. Beavin
- Center for Neuroeconomics Studies, Claremont Graduate University, Claremont, California, United States of America
| | - Paul J. Zak
- Center for Neuroeconomics Studies, Claremont Graduate University, Claremont, California, United States of America
- Department of Economics, Claremont Graduate University, Claremont, California, United States of America
- Department of Neurology, Loma Linda University Medical Center, Loma Linda, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Sun Y, Zhang J, Yuan Y, Yu X, Shen Y, Xu Q. Study of a possible role of the monoamine oxidase A (MAOA) gene in paranoid schizophrenia among a Chinese population. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:104-11. [PMID: 22162429 DOI: 10.1002/ajmg.b.32009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 11/14/2011] [Indexed: 12/20/2022]
Abstract
Monoamine oxidase A (MAOA) is the enzyme responsible for degradation of several monoamines, such as dopamine and serotonin that are considered as being two of the most important neurotransmitters involved in the pathophysiology of schizophrenia. To study a possible role of the MAOA gene in conferring susceptibility to schizophrenia, the present study genotyped the variable number of tandem repeat (VNTR) polymorphism and 41 SNPs across this gene among 555 unrelated patients with paranoid schizophrenia and 567 unrelated healthy controls. Quantitative real-time PCR analysis was employed to quantify expression of MAOA mRNA in 73 drug-free patients. While none of these genotyped DNA markers showed allelic association with paranoid schizophrenia, haplotypic association was found for the VNTR-rs6323, VNTR-rs1137070, and VNTR-rs6323-rs1137070 haplotypes in female subjects. Nevertheless, no significant change of the expression of MAOA mRNA was detected in either female or male patients with paranoid schizophrenia. Our study suggests that the interaction between genetic variants within the MAOA gene may contribute to an increased risk of paranoid schizophrenia, but the precise mechanism needs further investigation.
Collapse
Affiliation(s)
- Yuhui Sun
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine & Peking Union Medical College, Tsinghua University, Beijing, China
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
As shown by clinical genetic studies, affective and anxiety disorders are complex genetic disorders with genetic and environmental factors interactively determining their respective pathomechanism. Advances in molecular genetic techniques including linkage studies, association studies, and genome-wide association studies allow for the detailed dissection of the genetic influence on the development of these disorders. Besides the molecular genetic investigation of categorical entities according to standardized diagnostic criteria, intermediate phenotypes comprising neurobiological or neuropsychological traits (e.g., neuronal correlates of emotional processing) that are linked to the disease of interest and that are heritable, have been proposed to be closer to the underlying genotype than the overall disease phenotype. These intermediate phenotypes are dimensional and more precisely defined than the categorical disease phenotype, and therefore have attracted much interest in the genetic investigation of affective and anxiety disorders. Given the complex genetic nature of affective and anxiety disorders with an interaction of multiple risk genes and environmental influences, the interplay of genetic factors with environmental factors is investigated by means of gene-environment interaction (GxE) studies. Pharmacogenetic studies aid in the dissection of the genetically influenced heterogeneity of psychotropic drug response and may contribute to the development of a more individualized treatment of affective and anxiety disorders. Finally, there is some evidence for genetic factors potentially shared between affective and anxiety disorders pointing to a possible overlapping phenotype between anxiety disorders and depression.
Collapse
Affiliation(s)
- Katharina Domschke
- Department of Psychiatry, University of Würzburg, Füchsleinstrasse 15, D-97080, Würzburg, Germany,
| | | |
Collapse
|
40
|
Contextual conditioning in rats as an animal model for generalized anxiety disorder. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2011; 11:228-44. [PMID: 21302154 DOI: 10.3758/s13415-011-0021-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Animal models of psychiatric disorders are important translational tools for exploring new treatment options and gaining more insight into the disease. Thus far, there is no systematically validated animal model for generalized anxiety disorder (GAD), a severely impairing and difficult-to-treat disease. In this review, we propose contextual conditioning (CC) as an animal model for GAD. We argue that this model has sufficient face validity (there are several symptom similarities), predictive validity (it responds to clinically effective treatments), and construct validity (the underlying mechanisms are comparable). Although the refinement and validation of an animal model is a never-ending process, we want to give a concise overview of the currently available evidence. We suggest that the CC model might be a valuable preclinical tool to enhance the development of new treatment strategies and our understanding of GAD.
Collapse
|
41
|
Shared genetic contributions to anxiety disorders and pathological gambling in a male population. J Affect Disord 2011; 132:406-12. [PMID: 21481943 PMCID: PMC3671371 DOI: 10.1016/j.jad.2011.03.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 02/01/2011] [Accepted: 03/02/2011] [Indexed: 11/23/2022]
Abstract
BACKGROUND Pathological gambling (PG) frequently co-occurs with anxiety disorders. However, the extent to which the co-occurrence is related to genetic or environmental factors across PG and anxiety disorders is not known. METHOD Data from the Vietnam Era Twin Registry (n=7869, male twins) were examined in bivariate models to estimate genetic and shared and unique environmental contributions to PG and generalized anxiety disorder (GAD) and PG and panic disorder (PD). RESULTS While both genetic and unique environmental factors contributed individually to PG, GAD, and PD, the best fitting model indicated that the relationship between PG and GAD was attributable predominantly to shared genetic contributions (r(A)=0.53). In contrast, substantial correlations were observed between both the genetic (r(A)=0.34) and unique environmental (r(E)=0.31) contributions to PG and PD. LIMITATIONS Results may be limited to middle aged males. CONCLUSIONS The existence of shared genetic contributions between PG and both GAD and PD suggests that specific genes, perhaps those involved in affect regulation or stress responsiveness, contribute to PG and anxiety disorders. Overlapping environmental contributions to the co-occurrence of PG and PD suggest that common life experiences (e.g., early life trauma) contribute to both PG and PD. Conversely, the data suggest that distinct environmental factors contribute to PG and GAD (e.g., early onset of gambling in PG). Future studies should examine the relationship between PG and anxiety disorders amongst other populations (women and adolescents) to identify specific genetic and environmental influences that account for the manifestation of these disorders and their co-occurrences.
Collapse
|
42
|
van Loo KMJ, Martens GJM. Genetic and environmental factors in complex neurodevelopmental disorders. Curr Genomics 2011; 8:429-44. [PMID: 19412416 PMCID: PMC2647153 DOI: 10.2174/138920207783591717] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 11/07/2007] [Accepted: 11/09/2007] [Indexed: 12/14/2022] Open
Abstract
Complex neurodevelopmental disorders, such as schizophrenia, autism, attention deficit (hyperactivity) disorder, (manic) depressive illness and addiction, are thought to result from an interaction between genetic and environmental factors. Association studies on candidate genes and genome-wide linkage analyses have identified many susceptibility chromosomal regions and genes, but considerable efforts to replicate association have been surprisingly often disappointing. Here, we summarize the current knowledge of the genetic contribution to complex neurodevelopmental disorders, focusing on the findings from association and linkage studies. Furthermore, the contribution of the interaction of the genetic with environmental and epigenetic factors to the aetiology of complex neurodevelopmental disorders as well as suggestions for future research are discussed.
Collapse
Affiliation(s)
- K M J van Loo
- Department of Molecular Animal Physiology, Donders Institute for Neuroscience, Nijmegen Center for Molecular Life Sciences (NCMLS), Faculty of Science, Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | | |
Collapse
|
43
|
Soronen P, Mantere O, Melartin T, Suominen K, Vuorilehto M, Rytsälä H, Arvilommi P, Holma I, Holma M, Jylhä P, Valtonen HM, Haukka J, Isometsä E, Paunio T. P2RX7 gene is associated consistently with mood disorders and predicts clinical outcome in three clinical cohorts. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:435-47. [PMID: 21438144 DOI: 10.1002/ajmg.b.31179] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 02/17/2011] [Indexed: 11/08/2022]
Abstract
We investigated the effect of nine candidate genes on risk for mood disorders, hypothesizing that predisposing gene variants not only elevate the risk for mood disorders but also result in clinically significant differences in the clinical course of mood disorders. We genotyped 178 DSM-IV bipolar I and II and 272 major depressive disorder patients from three independent clinical cohorts carefully diagnosed with semistructured interviews and prospectively followed up with life charts for a median of 60 (range 6-83) months. Healthy control subjects (n = 1322) were obtained from the population-based national Health 2000 Study. We analyzed 62 genotyped variants within the selected genes (BDNF, NTRK2, SLC6A4, TPH2, P2RX7, DAOA, COMT, DISC1, and MAOA) against the presence of mood disorder, and in post-hoc analyses, specifically against bipolar disorder or major depressive disorder. Estimates for time ill were based on life charts. The P2RX7 gene variants rs208294 and rs2230912 significantly elevated the risk for a familial mood disorder (OR = 1.35, P = 0.0013, permuted P = 0.06, and OR = 1.44, P = 0.0031, permuted P = 0.17, respectively). The results were consistent in all three cohorts. The same risk alleles predicted more time ill in all cohorts (OR 1.3, 95% CI 1.1-1.6, P = 0.0069 and OR 1.7, 95% CI 1.3-2.3, P = 0.0002 with rs208294 and rs2230912, respectively), so that homozygous carriers spent 12 and 24% more time ill. P2RX7 and its risk alleles predisposed to mood disorders consistently in three independent clinical cohorts. The same risk alleles resulted in clinically significant differences in outcome of patients with major depressive and bipolar disorder.
Collapse
Affiliation(s)
- Pia Soronen
- Public Health Genomics Unit, Institute for Molecular Medicine FIMM, National Institute for Health and Welfare, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kertz SJ, Woodruff-Borden J. The Developmental Psychopathology of Worry. Clin Child Fam Psychol Rev 2011; 14:174-97. [DOI: 10.1007/s10567-011-0086-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
|
46
|
Martin EI, Ressler KJ, Binder E, Nemeroff CB. The neurobiology of anxiety disorders: brain imaging, genetics, and psychoneuroendocrinology. Clin Lab Med 2011; 30:865-91. [PMID: 20832657 DOI: 10.1016/j.cll.2010.07.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Anxiety disorders are highly comorbid with each other and with major depressive disorder. As syndromes, anxiety and mood disorders share many symptoms, and several treatments are effective for both. Despite this overlap, there exist many distinguishing features that support the continued classification of individual anxiety disorders that are distinct from each other and from major depression. The goal of this article is to describe the key biological similarities and differences between anxiety disorders.
Collapse
Affiliation(s)
- Elizabeth I Martin
- Laboratory of Neuropsychopharmacology, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
47
|
Depression and the role of genes involved in dopamine metabolism and signalling. Prog Neurobiol 2010; 92:112-33. [DOI: 10.1016/j.pneurobio.2010.06.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 01/11/2023]
|
48
|
Larson CL, Taubitz LE, Robinson JS. MAOA T941G polymorphism and the time course of emotional recovery following unpleasant pictures. Psychophysiology 2010; 47:857-62. [PMID: 20374544 DOI: 10.1111/j.1469-8986.2010.01005.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Difficulty down-regulating negative affect has been linked with anxiety and depression. In addition, recent studies have identified specific polymorphisms of the MAOA gene related to affective psychopathology. Here we examined whether genetic variation in MAOA was associated with the time course of responses to affective stimuli. Emotion-modulation of the startle blink response was measured during and after affective pictures. Women with the G/G genotype of the MAOA T941G single nucleotide polymorphism showed sustained reactivity to unpleasant stimuli, as evidenced by continued blink potentiation during the picture-offset period. These data suggest that the MAOA T941G polymorphism, which has been previously linked with mood disorders, is associated with a maladaptive pattern of affective responding in women.
Collapse
Affiliation(s)
- Christine L Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA.
| | | | | |
Collapse
|
49
|
Affiliation(s)
- Steven P Hamilton
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, California 94143-0984, USA.
| |
Collapse
|
50
|
Meta-analysis of the association between the monoamine oxidase-A gene and mood disorders. Psychiatr Genet 2010; 20:1-7. [DOI: 10.1097/ypg.0b013e3283351112] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|