1
|
Goldstein JM, Cherkerzian S, Tsuang MT, Petryshen TL. Sex differences in the genetic risk for schizophrenia: history of the evidence for sex-specific and sex-dependent effects. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:698-710. [PMID: 24132902 DOI: 10.1002/ajmg.b.32159] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/14/2013] [Indexed: 12/16/2022]
Abstract
Although there is a long history to examinations of sex differences in the familial (and specifically, genetic) transmission of schizophrenia, there have been few investigators who have systematically and rigorously studied this issue. This is true even in light of population and clinical studies identifying significant sex differences in incidence, expression, neuroanatomic and functional brain abnormalities, and course of schizophrenia. This review highlights the history of work in this arena from studies of family transmission patterns, linkage and twin studies to the current molecular genetic strategies of large genome-wide association studies. Taken as a whole, the evidence supports the presence of genetic risks of which some are sex-specific (i.e., presence in one sex and not the other) or sex-dependent (i.e., quantitative differences in risk between the sexes). Thus, a concerted effort to systematically investigate these questions is warranted and, as we argue here, necessary in order to fully understand the etiology of schizophrenia.
Collapse
Affiliation(s)
- Jill M Goldstein
- Brigham & Women's Hospital Departments of Psychiatry and Medicine, Division of Women's Health, Connors Center for Women's Health & Gender Biology, Boston, Massachusetts; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, Massachusetts; Division of Psychiatric Neuroscience, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
2
|
Greene CM, Hassan T, Molloy K, McElvaney NG. The role of proteases, endoplasmic reticulum stress and SERPINA1 heterozygosity in lung disease and α-1 anti-trypsin deficiency. Expert Rev Respir Med 2011; 5:395-411. [PMID: 21702661 DOI: 10.1586/ers.11.20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The serine proteinase inhibitor α-1 anti-trypsin (AAT) provides an antiprotease protective screen throughout the body. Mutations in the AAT gene (SERPINA1) that lead to deficiency in AAT are associated with chronic obstructive pulmonary diseases. The Z mutation encodes a misfolded variant of AAT that is not secreted effectively and accumulates intracellularly in the endoplasmic reticulum of hepatocytes and other AAT-producing cells. Until recently, it was thought that loss of antiprotease function was the major cause of ZAAT-related lung disease. However, the contribution of gain-of-function effects is now being recognized. Here we describe how both loss- and gain-of-function effects can contribute to ZAAT-related lung disease. In addition, we explore how SERPINA1 heterozygosity could contribute to smoking-induced chronic obstructive pulmonary diseases and consider the consequences.
Collapse
Affiliation(s)
- Catherine M Greene
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| | | | | | | |
Collapse
|
3
|
Goldstein JM, Cherkerzian S, Seidman LJ, Petryshen TL, Fitzmaurice G, Tsuang MT, Buka SL. Sex-specific rates of transmission of psychosis in the New England high-risk family study. Schizophr Res 2011; 128:150-5. [PMID: 21334180 PMCID: PMC3085650 DOI: 10.1016/j.schres.2011.01.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/20/2011] [Accepted: 01/23/2011] [Indexed: 10/18/2022]
Abstract
Recent molecular genetic studies have demonstrated X-chromosome abnormalities in the transmission of psychosis, a finding that may contribute to understanding sex differences in the disorder. Using our family high risk paradigm, we tested the hypothesis that there are sex-specific patterns of transmission of psychosis and whether there is specificity comparing nonaffective- with affective-type psychoses. We identified 159 parents with psychoses (schizophrenia psychosis spectrum disorders (SPS, n=59) and affective (AP, n=100)) and 114 comparable, healthy control parents. 203 high risk (HR) and 147 control offspring were diagnostically assessed (185 females; 165 males). We compared the proportion of male:female offspring with psychoses by affected parent sex and the consistency for SPS compared to AP parents, and tested (using exact logistic regression) whether the male:female ratio for affected offspring differed significantly between affected mothers and affected fathers. Risk of psychosis in offspring was a function of the sex of the parent and offspring. Among ill mothers, 18.8% of their male offspring developed psychosis compared with 9.5% of their daughters. In contrast, among ill fathers, 3.1% of their male offspring developed psychosis compared with 15.2% of their daughters. The male:female ratio for affected offspring differed significantly (p < 0.05) between affected mothers and fathers. Similar patterns held for SPS and AP. Results demonstrated sex-specific transmission of psychosis regardless of psychosis-type and suggest X-linked inheritance. This has important implications for molecular genetic studies of psychoses underscoring the impact of one's gender on gene-brain-behavior phenotypes of SCZ.
Collapse
Affiliation(s)
- Jill M Goldstein
- Brigham and Women's Hospital Departments of Psychiatry and Medicine, Division of Women's Health, Connors Center for Women's Health and Gender Biology, Boston, MA 02120, USA.
| | - Sara Cherkerzian
- Brigham & Women’s Hospital Departments of Psychiatry and Medicine, Division of Women’s Health, Connors Center for Women’s Health & Gender Biology, Boston, MA, USA,Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA
| | - Larry J Seidman
- Department of Psychiatry, Division of Psychiatric Neuroscience, Massachusetts General Hospital, Boston, MA, USA,Beth Israel Deaconess Hospital, Department of Psychiatry, Division of Public Psychiatry, Massachusetts Mental Health Center and Harvard Medical School, Boston, MA, USA
| | - Tracey L Petryshen
- Department of Psychiatry, Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Garrett Fitzmaurice
- Department of Psychiatry, Harvard Medical School at McLean Hospital, Belmont, MA, USA
| | - Ming T Tsuang
- Beth Israel Deaconess Hospital, Department of Psychiatry, Division of Public Psychiatry, Massachusetts Mental Health Center and Harvard Medical School, Boston, MA, USA,University of California at San Diego, Department of Psychiatry, Center for Behavior Genomics, San Diego, CA, USA,Harvard Institute of Psychiatric Epidemiology and Genetics, Harvard School of Public Heath, Boston, MA, USA
| | - Stephen L Buka
- Brown University, Department of Community Health, Providence, RI, USA
| |
Collapse
|
4
|
Abstract
Suicide completion rates are significantly higher in males than females in most societies. Although gender differences in suicide rates have been partially explained by environmental and behavioral factors, it is possible that genetic factors, through differential expression between genders, may also help explain gender moderation of suicide risk. This study investigated X-linked genes in suicide completers using a two-step strategy. We first took advantage of the genetic structure of the French-Canadian population and genotyped 722 unrelated French-Canadian male subjects, of whom 333 were suicide completers and 389 were non-suicide controls, using a panel of 37 microsatellite markers spanning the entire X chromosome. Nine haplotype windows and several individual markers were associated with suicide. Significant results aggregated primarily in two regions, one in the long arm and another in the short arm of chromosome X, limited by markers DXS8051 and DXS8102, and DXS1001 and DXS8106, respectively. The second stage of the study investigated differential brain expression of genes mapping to associated regions in Brodmann areas 8/9, 11, 44 and 46, in an independent sample of suicide completers and controls. Six genes within these regions, Rho GTPase-activating protein 6, adaptor-related protein complex 1 sigma 2 subunit, glycoprotein M6B, ribosomal protein S6 kinase 90 kDa polypeptide 3, spermidine/spermine N(1)-acetyltransferase 1 and THO complex 2, were found to be differentially expressed in suicide completers.
Collapse
|
5
|
Fullerton JM, Donald JA, Mitchell PB, Schofield PR. Two-dimensional genome scan identifies multiple genetic interactions in bipolar affective disorder. Biol Psychiatry 2010; 67:478-86. [PMID: 20022591 DOI: 10.1016/j.biopsych.2009.10.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 10/01/2009] [Accepted: 10/20/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND Bipolar disorder is a highly heritable psychiatric condition, the etiology of which remains largely unknown despite extensive efforts to identify susceptibility genes. Interactions between genes of small individual effect could partially explain the difficulties of traditional one-dimensional approaches to identify genetic risk factors. METHODS A nonparametric linkage (NPL) analysis of 65 Australian extended pedigrees containing 643 genotyped individuals (of whom 40% were diagnosed with affective disorder) was conducted. Chromosome-by-chromosome correlation analysis of family-specific NPL scores was conducted to detect evidence of genetic interaction. Interaction-specific multipoint NPL and permutation analysis was used to assess linkage interdependence, using family weights derived from the alternative interacting chromosome. Finally, a single nucleotide analysis of each interaction region was conducted using the publicly available genome-wide association, datasets (2933 cases, 2534 controls). RESULTS Significant NPL peaks were detected on chromosomes 2q24-33, 7q21-31, and 17q11-25 (Z = 3.12, 3.01, and 2.95 respectively), with four additional suggestive peaks identified. Four robust interchromosomal interaction clusters exceeding Bonferroni correction at alpha = .05 (uncorrected p < 5.38e-07) were detected on 11q23-25-2p15-12, 4q32-35-1p36, 12q23-24-4p16-15, and 20q13-9q21-22. This linkage interdependence was determined significant after permutation analysis (p = .002-.0002). A suggestive interaction was observed in the combined data on 2p14-11q23 (uncorrected p = 5.76E-10, Bonferroni corrected p = .068). CONCLUSIONS This study indicates a complex interplay between multiple loci underlying bipolar disorder susceptibility, and highlights the continuing usefulness of extended pedigrees in complex genetics. The challenge lies in the identification of specific gene interactions and their biological validation.
Collapse
Affiliation(s)
- Janice M Fullerton
- Prince of Wales Medical Research Institute, Sydney, New South Wales 2031, Australia
| | | | | | | |
Collapse
|
6
|
He B, Li J, Wang G, Ju W, Lu Y, Shi Y, He L, Zhong N. Association of genetic polymorphisms in the type II deiodinase gene with bipolar disorder in a subset of Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:986-90. [PMID: 19427350 DOI: 10.1016/j.pnpbp.2009.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/10/2009] [Accepted: 05/04/2009] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Genetic factors play a critical role in the etiology of bipolar disorder (BPAD). Previous studies suggested an association between thyroid dysfunction and BPAD. We hypothesize that genetic variations in the type II deiodinase (DIO2) gene that possibly alter the bioactivity of thyroid hormones are associated with BPAD. METHOD A case-control association study was conducted in a subset of Chinese Han population. Two single nucleotide polymorphisms (SNP), open reading frame a (ORFa)-Gly3Asp (rs12885300) and Thr92Ala (rs225014) with potential functions on the activity of DIO2, were selected. The frequencies of allele, genotype and haplotype of the two SNPs were compared between the BPAD patients and the control group. RESULTS Statistical significance between the BPAD patients and the control group was observed for the allele (chi(2)=7.746, P=0.005, df=1) and genotype frequencies (chi(2)=8.158, P=0.017, df=2) at the locus of ORFa-Gly3Asp, and for the allele (chi(2)=15.838, P=7.00e-005, df=1) and genotype frequencies (chi(2)=17.236, P=0.0002, df=2) at Thr92Ala. Distribution of allele 3Gly and 92Ala were significantly higher in the BPAD patients, with odds ratios of 1.489 [95% confidence interval (CI)=1.124-1.973] and 1.616 [95% CI=1.275-2.048], respectively. Individuals with two copies of the variant 3Gly or 92Ala were at greater risk of BPAD than individuals with one copy (dose-response manner). Haplotypes ORFa-3Asp-92Ala and ORFa-3Gly-92Ala indicated higher susceptibility for BPAD with odds ratios of 3.759 (95% CI=2.013-7.020) and 1.292 (95% CI=1.017-1.642), respectively, while ORFa-3Asp-92Thr probably played a protective role with an odds ratio of 0.395 (95% CI=0.284-0.549). CONCLUSION Data generated from this study supported our hypothesis that genetic variations of the DIO2 gene were associated with BPAD and suggested further consideration on the possible involvement of these functionally active variants in the pathophysiology of BPAD.
Collapse
Affiliation(s)
- Bing He
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Liu L, Foroud T, Xuei X, Berrettini W, Byerley W, Coryell W, El-Mallakh R, Gershon ES, Kelsoe JR, Lawson WB, MacKinnon DF, McInnis M, McMahon FJ, Murphy DL, Rice J, Scheftner W, Zandi PP, Lohoff F, Niculescu AB, Meyer ET, Edenberg HJ, Nurnberger JI. Evidence of association between brain-derived neurotrophic factor gene and bipolar disorder. Psychiatr Genet 2008; 18:267-74. [PMID: 19018231 PMCID: PMC2653694 DOI: 10.1097/ypg.0b013e3283060f59] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) plays an important role in the survival, differentiation, and outgrowth of select peripheral and central neurons throughout adulthood. Growing evidence suggests that BDNF is involved in the pathophysiology of mood disorders. METHODS Ten single nucleotide polymorphisms (SNPs) across the BDNF gene were genotyped in a sample of 1749 Caucasian Americans from 250 multiplex bipolar families. Family-based association analysis was used with three hierarchical bipolar disorder models to test for an association between SNPs in BDNF and the risk of bipolar disorder. In addition, an exploratory analysis was performed to test for an association of the SNPs in BDNF and the phenotypes of rapid cycling and episode frequency. RESULTS Evidence of association (P<0.05) was found with several of the SNPs using multiple models of bipolar disorder; one of these SNPs also showed evidence of association (P<0.05) with rapid cycling. CONCLUSION These results provide further evidence that variation in BDNF affects the risk for bipolar disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Francis J. McMahon
- National Institute of Mental Health, National Institute of Health, Bethesda, MD 20892
| | - Dennis L. Murphy
- National Institute of Mental Health, National Institute of Health, Bethesda, MD 20892
| | - John Rice
- Washington University St. Louis, St. Louis, MO 63110
| | | | | | - Falk Lohoff
- University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | | |
Collapse
|
8
|
Abstract
Bipolar disorder, especially the most severe type (type I), has a strong genetic component. Family studies suggest that a small number of genes of modest effect are involved in this disorder. Family-based studies have identified a number of chromosomal regions linked to bipolar disorder, and progress is currently being made in identifying positional candidate genes within those regions, À number of candidate genes have also shown evidence of association with bipolar disorder, and genome-wide association studies are now under way, using dense genetic maps. Replication studies in larger or combined datasets are needed to definitively assign a role for specific genes in this disorder. This review covers our current knowledge of the genetics of bipolar disorder, and provides a commentary on current approaches used to identify the genes involved in this complex behavioral disorder.
Collapse
Affiliation(s)
- Michael A Escamilla
- University of Texas Health Science Center at San Antonio, South Texas Medical Genetics Research Center, 1214 Schunior St, Edinburg, TX 78539, USA.
| | | |
Collapse
|
9
|
Shi J, Badner JA, Hattori E, Potash JB, Willour VL, McMahon FJ, Gershon ES, Liu C. Neurotransmission and bipolar disorder: a systematic family-based association study. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:1270-7. [PMID: 18444252 PMCID: PMC2574701 DOI: 10.1002/ajmg.b.30769] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurotransmission pathways/systems have been proposed to be involved in the pathophysiology and treatment of bipolar disorder for over 40 years. In order to test the hypothesis that common variants of genes in one or more of five neurotransmission systems confer risk for bipolar disorder, we analyzed 1,005 tag single nucleotide polymorphisms in 90 genes from dopaminergic, serotonergic, noradrenergic, GABAergic, and glutamatergic neurotransmitter systems in 101 trios and 203 quads from Caucasian bipolar families. Our sample has 80% power to detect ORs >or= 1.82 and >or=1.57 for minor allele frequencies of 0.1 and 0.5, respectively. Nominally significant allelic and haplotypic associations were found for genes from each neurotransmission system, with several reaching gene-wide significance (allelic: GRIA1, GRIN2D, and QDPR; haplotypic: GRIN2C, QDPR, and SLC6A3). However, none of these associations survived correction for multiple testing in an individual system, or in all systems considered together. Significant single nucleotide polymorphism associations were not found with sub-phenotypes (alcoholism, psychosis, substance abuse, and suicide attempts) or significant gene-gene interactions. These results suggest that, within the detectable odds ratios of this study, common variants of the selected genes in the five neurotransmission systems do not play major roles in influencing the risk for bipolar disorder or comorbid sub-phenotypes.
Collapse
Affiliation(s)
- Jiajun Shi
- Department of Psychiatry, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Crespi B. Genomic imprinting in the development and evolution of psychotic spectrum conditions. Biol Rev Camb Philos Soc 2008; 83:441-93. [PMID: 18783362 DOI: 10.1111/j.1469-185x.2008.00050.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
I review and evaluate genetic and genomic evidence salient to the hypothesis that the development and evolution of psychotic spectrum conditions have been mediated in part by alterations of imprinted genes expressed in the brain. Evidence from the genetics and genomics of schizophrenia, bipolar disorder, major depression, Prader-Willi syndrome, Klinefelter syndrome, and other neurogenetic conditions support the hypothesis that the etiologies of psychotic spectrum conditions commonly involve genetic and epigenetic imbalances in the effects of imprinted genes, with a bias towards increased relative effects from imprinted genes with maternal expression or other genes favouring maternal interests. By contrast, autistic spectrum conditions, including Kanner autism, Asperger syndrome, Rett syndrome, Turner syndrome, Angelman syndrome, and Beckwith-Wiedemann syndrome, commonly engender increased relative effects from paternally expressed imprinted genes, or reduced effects from genes favouring maternal interests. Imprinted-gene effects on the etiologies of autistic and psychotic spectrum conditions parallel the diametric effects of imprinted genes in placental and foetal development, in that psychotic spectrum conditions tend to be associated with undergrowth and relatively-slow brain development, whereas some autistic spectrum conditions involve brain and body overgrowth, especially in foetal development and early childhood. An important role for imprinted genes in the etiologies of psychotic and autistic spectrum conditions is consistent with neurodevelopmental models of these disorders, and with predictions from the conflict theory of genomic imprinting.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biosciences, Simon Fraser University, Burnaby BCV5A1S6, Canada.
| |
Collapse
|
11
|
Genome-wide parametric linkage analyses of 644 bipolar pedigrees suggest susceptibility loci at chromosomes 16 and 20. Psychiatr Genet 2008; 18:191-8. [PMID: 18628681 DOI: 10.1097/ypg.0b013e3283050aa5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Our aim is to map chromosomal regions that harbor loci that increase susceptibility to bipolar disorder. METHODS We analyzed 644 bipolar families ascertained by the National Institute of Mental Health Human Genetics Initiative for bipolar disorder. The families have been genotyped with microsatellite loci spaced every approximately 10 cM or less across the genome. Earlier analyses of these pedigrees have been limited to nonparametric (model-free) methods and thus, information from unaffected subjects with genotypes was not considered. In this study, we used parametric analyses assuming dominant and recessive transmission and specifying a maximum penetrance of 70%, so that information from unaffecteds could be weighed in the linkage analyses. As in previous linkage analyses of these pedigrees, we analyzed three diagnostic categories: model 1 included only bipolar I and schizoaffective, bipolar cases (1565 patients of whom approximately 4% were schizoaffective, bipolar); model 2 included all individuals in model 1 plus bipolar II patients (1764 total individuals); and model 3 included all individuals in model 2 with the addition of patients with recurrent major depressive disorder (2046 total persons). RESULTS Assuming dominant inheritance the highest genome-wide pair-wise logarithm of the odds (LOD) score was 3.2 with D16S749 using model 2 patients. Multipoint analyses of this region yielded a maximum LOD score of 4.91. Under recessive transmission a number of chromosome 20 markers were positive and multipoint analyses of the area gave a maximum LOD of 3.0 with model 2 cases. CONCLUSION The chromosome 16p and 20 regions have been implicated by some studies and the data reported herein provide additional suggestive evidence of bipolar susceptibility genes in these regions.
Collapse
|
12
|
Serretti A, Mandelli L. The genetics of bipolar disorder: genome 'hot regions,' genes, new potential candidates and future directions. Mol Psychiatry 2008; 13:742-71. [PMID: 18332878 DOI: 10.1038/mp.2008.29] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bipolar disorder (BP) is a complex disorder caused by a number of liability genes interacting with the environment. In recent years, a large number of linkage and association studies have been conducted producing an extremely large number of findings often not replicated or partially replicated. Further, results from linkage and association studies are not always easily comparable. Unfortunately, at present a comprehensive coverage of available evidence is still lacking. In the present paper, we summarized results obtained from both linkage and association studies in BP. Further, we indicated new potential interesting genes, located in genome 'hot regions' for BP and being expressed in the brain. We reviewed published studies on the subject till December 2007. We precisely localized regions where positive linkage has been found, by the NCBI Map viewer (http://www.ncbi.nlm.nih.gov/mapview/); further, we identified genes located in interesting areas and expressed in the brain, by the Entrez gene, Unigene databases (http://www.ncbi.nlm.nih.gov/entrez/) and Human Protein Reference Database (http://www.hprd.org); these genes could be of interest in future investigations. The review of association studies gave interesting results, as a number of genes seem to be definitively involved in BP, such as SLC6A4, TPH2, DRD4, SLC6A3, DAOA, DTNBP1, NRG1, DISC1 and BDNF. A number of promising genes, which received independent confirmations, and genes that have to be further investigated in BP, have been also systematically listed. In conclusion, the combination of linkage and association approaches provided a number of liability genes. Nevertheless, other approaches are required to disentangle conflicting findings, such as gene interaction analyses, interaction with psychosocial and environmental factors and, finally, endophenotype investigations.
Collapse
Affiliation(s)
- A Serretti
- Institute of Psychiatry, University of Bologna, Bologna, Italy.
| | | |
Collapse
|
13
|
Shi J, Hattori E, Zou H, Badner JA, Christian SL, Gershon ES, Liu C. No evidence for association between 19 cholinergic genes and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:715-23. [PMID: 17373692 PMCID: PMC2576477 DOI: 10.1002/ajmg.b.30417] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cholinergic dysfunction has been proposed for the pathogenesis of bipolar disorder (BD), and we have therefore performed a systematic association study of cholinergic system genes in BD (including schizoaffective disorder bipolar type). We genotyped 93 single nucleotide polymorphisms (SNPs) in 19 genes (CHAT, CHRM1-5, CHRNA1-7, CHRNA9, CHRNA10, and CHRNB1-4) in two series of samples: the National Institute of Mental Health (NIMH) Genetics Initiative pedigrees with 474 samples from 152 families, and the Clinical Neurogenetics (CNG) pedigrees with 83 samples from 22 multiplex families. Sib-transmission/disequilibrium test (sib_TDT) analysis showed nominally significant transmission bias for four SNPs (CHRNA2: rs7017417, P = 0.024; CHRNA5: rs514743, P = 0.031; CHRNB1: rs2302762, P = 0.049; CHRNB4: rs1948, P = 0.031). Haploview analyses showed nominally significant transmission bias of several haplotypes in CHRNA2, CHRNA7, CHRNB1, and CHRNB4, respectively. However, none of these associations reached gene-wide significance after correction by permutation. Alcohol dependence (including alcohol abuse) was not a significant covariate in the present genetic association analysis. Thus, it is unlikely that these 19 cholinergic genes play a major role in the pre-disposition to BD in these pedigrees.
Collapse
Affiliation(s)
- Jiajun Shi
- Department of Psychiatry, The University of Chicago, Chicago, IL 60637, USA
| | - Eiji Hattori
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute (BSI), Wako, Saitama 351-0198, Japan
| | - Hongwei Zou
- Department of Psychiatry, The University of Chicago, Chicago, IL 60637, USA
| | - Judith A. Badner
- Department of Psychiatry, The University of Chicago, Chicago, IL 60637, USA
| | - Susan L. Christian
- Department of Psychiatry, The University of Chicago, Chicago, IL 60637, USA
| | - Elliot S. Gershon
- Department of Psychiatry, The University of Chicago, Chicago, IL 60637, USA
| | - Chunyu Liu
- Department of Psychiatry, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Schmechel DE. Art, alpha-1-antitrypsin polymorphisms and intense creative energy: Blessing or curse? Neurotoxicology 2007; 28:899-914. [PMID: 17659342 DOI: 10.1016/j.neuro.2007.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/21/2007] [Accepted: 05/21/2007] [Indexed: 12/30/2022]
Abstract
Persons heterozygous for Z, S and rare alpha-1-antitrypsin (AAT, SERPIN1A) polymorphisms (ca. 9% of population) are often considered 'silent' carriers with increased vulnerability to environmentally modulated liver and lung disease. They may have significantly more anxiety and bipolar spectrum disorders, nutritional compromise, and white matter disease [Schmechel DE, Browndyke J, Ghio A. Strategies for the dissection of genetic-environmental interactions in neurodegenerative disorders. Neurotoxicology 2006;27:637-57]. Given association of art and mood disorders, we examined occupation and artistic vocation from this same series. One thousand five hundred and thirty-seven consecutive persons aged 16-90 years old received comprehensive work-up including testing for AAT 'phenotype' and level, nutritional factors, and inflammatory, iron and copper indices. Occupations were grouped by Bureau of Labor Standards classification and information gathered on artistic activities. Proportion of reactive airway disease, obstructive pulmonary disease, and pre-existing anxiety disorder or bipolar disorder were significantly increased in persons carrying AAT non-M polymorphisms compared to normal MM genotype (respectively, 10, 20, 21, and 33% compared to 8, 12, 11, and 9%; contingency table, pulmonary: chi2 37, p=0.0001; affective disorder: chi2=171, p=0.0001). In persons with artistic avocation (n=189) or occupation (n=57), AAT non-M polymorphisms are significantly increased (respectively, proportions of 44 and 40% compared to background rate of 9%; contingency table, avocation: chi2=172, p=0.0001; occupation: chi2=57, p=0.0007). Artistic ability and 'anxiety/bipolar spectrum' mood disorders may represent phenotypic attributes that had selective advantage during recent human evolution, an 'intensive creative energy' (ICE) behavioral phenotype. Background proportion of ICE of 7% consists of 49 of 1312 persons with AAT MM genotype (4%), and 58 of 225 persons with non-MM genotypes (26%) (contingency table, chi2=222, p=0.0001). Penetrance of ICE increases in genotypes with lower AAT levels: PiMS, 18%; PiMZ, 44%; PiSS and PiZZ, 100% (five cases). At all ages, persons with non-MM genotype had significantly higher proportion of thiamine deficiency (50% in PiMZ), reactive hypoglycemia (20% in PiMZ), and possibly fatty liver (thiamine: chi2=28, p=0.0001; hypoglycemia: chi2=92, p=0.0001). In older persons, PiMZ genotype had significantly increased proportion (46%) of brain MRI T2 white matter abnormalities (chi2=49, p=0.003). Persons with ICE and MM genotype showed increased prevalence of pulmonary disorders and same signature as S and Z carriers and homozygotes (see above). Z polymorphism was associated with delayed age of onset (average 7 years) for persons with toxic environmental or occupational exposures (log rank, p=0.0001) and more stable cognitive change in persons with neurodegenerative illness (p<0.05). At all ages, ICE phenotype and Z polymorphism were associated with altered copper homeostasis with low or absent non-ceruloplasmin bound copper (p<0.05). AAT polymorphisms which affect iron, lipid and copper metabolism may affect early events in nervous system development, function and response to environmental exposures. AAT may also be a 'switch' for copper metabolism and low 'free' copper would be theorized to provide protection for lipid oxidation and favorably affect beta-amyloid and other aggregation, but possibly alter early 'critical' period of CNS development. AAT polymorphisms may define an important and treatable subset of persons presenting with CNS disorders. This new proposed phenotype for AAT transcends classic pattern of strictly liver and lung disease, and should be considered for proper evaluation and management of patients presenting with classic AAT-related disorders, affective disorders, persons with ICE, white matter disease or multisystem disorders of memory.
Collapse
Affiliation(s)
- Donald Everett Schmechel
- Department of Medicine, Duke University Medical Center, Medical Director, The Falls Neurology and Memory Center, 4355 Hickory Boulevard (US 321), Granite Falls, NC 28630, United States.
| |
Collapse
|
15
|
Kerner B, Brugman DL, Freimer NB. Evidence of linkage to psychosis on chromosome 5q33-34 in pedigrees ascertained for bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:74-8. [PMID: 16958032 DOI: 10.1002/ajmg.b.30402] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is hypothesized that the presence of psychotic features may define a subtype of bipolar disorder that is more homogeneous in its genetic predisposition than bipolar disorder as a whole. We used psychosis as an alternative phenotype definition in a re-analysis of the NIMH Bipolar Genetics Initiative data sets. In this analysis we selected only those families in which at least two members were diagnosed with bipolar disorder type 1 with psychotic features. This analysis identified a linkage signal on chromosome 5q33-q34, a region previously implicated in independent linkage studies of schizophrenia and of psychosis, broadly defined. This finding is consistent with the hypothesis that susceptibility to psychosis may characterize at least a subtype of bipolar disorder.
Collapse
Affiliation(s)
- Berit Kerner
- Department of Psychiatry and Biobehavioral Sciences, Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, CA 90095-1761, USA.
| | | | | |
Collapse
|
16
|
Abramowitz J, Birnbaumer L. Know thy neighbor: a survey of diseases and complex syndromes that map to chromosomal regions encoding TRP channels. Handb Exp Pharmacol 2007:379-408. [PMID: 17225326 DOI: 10.1007/978-3-540-34891-7_23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
On the basis of their ever-expanding roles, not only in sensory signaling but also in a plethora of other, often Ca(2+)-mediated actions in cell and whole body homeostasis, it is suggested that mutations in TRP channel genes not only cause disease states but also contribute in more subtle ways to simple and complex diseases. A survey is therefore presented of diseases and syndromes that map to one or multiple chromosomal loci containing TRP channel genes. A visual map of the chromosomal locations of TRP channel genes in man and mouse is also presented.
Collapse
Affiliation(s)
- J Abramowitz
- Transmembrane Signaling Group, Laboratory of Signal Transduction, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, DHHS, Building 101, Room A214, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
17
|
Rodd ZA, Bertsch BA, Strother WN, Le-Niculescu H, Balaraman Y, Hayden E, Jerome RE, Lumeng L, Nurnberger JI, Edenberg HJ, McBride WJ, Niculescu AB. Candidate genes, pathways and mechanisms for alcoholism: an expanded convergent functional genomics approach. THE PHARMACOGENOMICS JOURNAL 2006; 7:222-56. [PMID: 17033615 DOI: 10.1038/sj.tpj.6500420] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We describe a comprehensive translational approach for identifying candidate genes for alcoholism. The approach relies on the cross-matching of animal model brain gene expression data with human genetic linkage data, as well as human tissue data and biological roles data, an approach termed convergent functional genomics. An analysis of three animal model paradigms, based on inbred alcohol-preferring (iP) and alcohol-non-preferring (iNP) rats, and their response to treatments with alcohol, was used. A comprehensive analysis of microarray gene expression data from five key brain regions (frontal cortex, amygdala, caudate-putamen, nucleus accumbens and hippocampus) was carried out. The Bayesian-like integration of multiple independent lines of evidence, each by itself lacking sufficient discriminatory power, led to the identification of high probability candidate genes, pathways and mechanisms for alcoholism. These data reveal that alcohol has pleiotropic effects on multiple systems, which may explain the diverse neuropsychiatric and medical pathology in alcoholism. Some of the pathways identified suggest avenues for pharmacotherapy of alcoholism with existing agents, such as angiotensin-converting enzyme (ACE) inhibitors. Experiments we carried out in alcohol-preferring rats with an ACE inhibitor show a marked modulation of alcohol intake. Other pathways are new potential targets for drug development. The emergent overall picture is that physical and physiological robustness may permit alcohol-preferring individuals to withstand the aversive effects of alcohol. In conjunction with a higher reactivity to its rewarding effects, they may able to ingest enough of this nonspecific drug for a strong hedonic and addictive effect to occur.
Collapse
Affiliation(s)
- Z A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schmechel DE, Browndyke J, Ghio A. Strategies for dissecting genetic-environmental interactions in neurodegenerative disorders. Neurotoxicology 2006; 27:637-57. [PMID: 16870258 DOI: 10.1016/j.neuro.2006.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/18/2006] [Accepted: 05/20/2006] [Indexed: 01/22/2023]
Abstract
Complex genetic and environmental interactions contribute to abnormal aging and neurodegenerative disorders. We present information from a series of 1136 consecutive patients presenting with cognitive disorders and show possible significant contribution of toxic environmental and occupational exposures to pathological aging (21% of patients) and interactions of these exposures with common polymorphisms that affect cell injury and inflammation. Such exposures may lower age of onset to same degree as APOE4/4. Common polymorphisms in apolipoprotein E (APOE), hemochromatosis gene (Hfe) and alpha-1-antitrypsin (AAT) are present in up to 40+% of patients and may partially account for differences in clinical syndrome, age of onset and rate of progression. Strategies for the study of these disorders must also consider the role and treatment of common co-morbid illnesses such as alcohol use, nutritional deficiencies, sleep disorders, and pre-existing affective disorder. APOE, Hfe, and AAT genes are expressed in liver tissue and in macrophages and are involved in the host innate immune response to stress, inflammation and infections. Hfe and AAT are involved in iron metabolism and their polymorphisms may contribute to hepatosteatosis and altered homeostasis of lipids (role of APOE), iron, and trace minerals. Some of these responses may be adaptive. Hfe and AAT modulate the apparent effects of toxic exposures on age of onset and progression rate. C282Y polymorphism paradoxically reverses APOE4/4 effect on age of onset. S and Z AAT polymorphisms may attenuate earlier age of onset in persons with toxic or environmental exposure. AAT S or Z polymorphisms are present in 25% of persons with anxiety disorder and 42% of persons with bipolar disorder compared to 10% of control group without pre-existing affective disorder. Common genetic polymorphisms that affect the response to inflammation and cell injury provide a beginning strategy for dissecting neurodegenerative disorders. The effects of APOE, Hfe, and AAT on glucose, lipid, iron and trace mineral homeostasis may affect normal development and aging of the nervous system in addition to their effects on outcome of toxic environmental and occupational exposures and susceptibility and outcome of neurodegenerative illnesses.
Collapse
Affiliation(s)
- Donald E Schmechel
- Joseph and Kathleen Bryan Alzheimer Disease Research Center, Department of Medicine (Neurology), Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
19
|
Abstract
Bipolar disorder (BPD) is an often devastating illness characterized by extreme mood dysregulation. Although family, twin and adoption studies consistently indicate a strong genetic component, specific genes that contribute to the illness remain unclear. This study gives an overview of linkage studies of BPD, concluding that the regions with the best evidence for linkage include areas on chromosomes 2p, 4p, 4q, 6q, 8q, 11p, 12q, 13q, 16p, 16q, 18p, 18q, 21q, 22q and Xq. Association studies are summarized, which support a possible role for numerous candidate genes in BPD including COMT, DAT, HTR4, DRD4, DRD2, HTR2A, 5-HTT, the G72/G30 complex, DISC1, P2RX7, MAOA and BDNF. Animal models related to bipolar illness are also reviewed, with special attention paid to those with clear genetic implications. We conclude with suggestions for strategies that may help clarify the genetic bases of this complex illness.
Collapse
Affiliation(s)
- E P Hayden
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202-4887, USA.
| | | |
Collapse
|
20
|
Craddock N, O'Donovan MC, Owen MJ. The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J Med Genet 2006; 42:193-204. [PMID: 15744031 PMCID: PMC1736023 DOI: 10.1136/jmg.2005.030718] [Citation(s) in RCA: 424] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Much work has been done to identify susceptibility genes in schizophrenia and bipolar disorder. Several well established linkages have emerged in schizophrenia. Strongly supported regions are 6p24-22, 1q21-22, and 13q32-34, while other promising regions include 8p21-22, 6q16-25, 22q11-12, 5q21-q33, 10p15-p11, and 1q42. Genomic regions of interest in bipolar disorder include 6q16-q22, 12q23-q24, and regions of 9p22-p21, 10q21-q22, 14q24-q32, 13q32-q34, 22q11-q22, and chromosome 18. Recently, specific genes or loci have been implicated in both disorders and, crucially, replicated. Current evidence supports NRG1, DTNBP1, DISC1, DAOA(G72), DAO, and RGS4 as schizophrenia susceptibility loci. For bipolar disorder the strongest evidence supports DAOA(G72) and BDNF. Increasing evidence suggests an overlap in genetic susceptibility across the traditional classification systems that dichotomised psychotic disorders into schizophrenia or bipolar disorder, most notably with association findings at DAOA(G72), DISC1, and NRG1. Future identification of psychosis susceptibility genes will have a major impact on our understanding of disease pathophysiology and will lead to changes in classification and the clinical practice of psychiatry.
Collapse
Affiliation(s)
- N Craddock
- Department of Psychological Medicine, The Henry Wellcome Building for Biomedical Research, Wales School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| | | | | |
Collapse
|
21
|
McQueen MB, Devlin B, Faraone SV, Nimgaonkar VL, Sklar P, Smoller JW, Abou Jamra R, Albus M, Bacanu SA, Baron M, Barrett TB, Berrettini W, Blacker D, Byerley W, Cichon S, Coryell W, Craddock N, Daly MJ, Depaulo JR, Edenberg HJ, Foroud T, Gill M, Gilliam TC, Hamshere M, Jones I, Jones L, Juo SH, Kelsoe JR, Lambert D, Lange C, Lerer B, Liu J, Maier W, Mackinnon JD, McInnis MG, McMahon FJ, Murphy DL, Nothen MM, Nurnberger JI, Pato CN, Pato MT, Potash JB, Propping P, Pulver AE, Rice JP, Rietschel M, Scheftner W, Schumacher J, Segurado R, Van Steen K, Xie W, Zandi PP, Laird NM. Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q. Am J Hum Genet 2005; 77:582-95. [PMID: 16175504 PMCID: PMC1275607 DOI: 10.1086/491603] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 07/21/2005] [Indexed: 11/03/2022] Open
Abstract
Several independent studies and meta-analyses aimed at identifying genomic regions linked to bipolar disorder (BP) have failed to find clear and consistent evidence of linkage regions. Our hypothesis is that combining the original genotype data provides benefits of increased power and control over sources of heterogeneity that outweigh the difficulty and potential pitfalls of the implementation. We conducted a combined analysis using the original genotype data from 11 BP genomewide linkage scans comprising 5,179 individuals from 1,067 families. Heterogeneity among studies was minimized in our analyses by using uniform methods of analysis and a common, standardized marker map and was assessed using novel methods developed for meta-analysis of genome scans. To date, this collaboration is the largest and most comprehensive analysis of linkage samples involving a psychiatric disorder. We demonstrate that combining original genome-scan data is a powerful approach for the elucidation of linkage regions underlying complex disease. Our results establish genomewide significant linkage to BP on chromosomes 6q and 8q, which provides solid information to guide future gene-finding efforts that rely on fine-mapping and association approaches.
Collapse
Affiliation(s)
- Matthew B McQueen
- Harvard School of Public Health, Department of Epidemiology, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lin PI, McInnis MG, Potash JB, Willour VL, MacKinnon DF, Miao K, DePaulo JR, Zandi PP. Assessment of the effect of age at onset on linkage to bipolar disorder: evidence on chromosomes 18p and 21q. Am J Hum Genet 2005; 77:545-55. [PMID: 16175501 PMCID: PMC1275604 DOI: 10.1086/491602] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 07/18/2005] [Indexed: 01/31/2023] Open
Abstract
Previous evidence suggests that the inheritance of bipolar disorder (BP) may vary depending on the age at onset (AAO). Therefore, we sought to incorporate AAO as a covariate in linkage analyses of BP using two different methods, LODPAL and ordered-subset analysis (OSA), in genomewide scans of 150 multiplex pedigrees with 874 individuals. The LODPAL analysis identified two loci, on chromosomes 21q22.13 (LOD = 3.29; empirical chromosomewide P value = .009) and 18p11.2 (LOD = 2.83; empirical chromosomewide P = .05), with increased linkage among subjects who had early onset (AAO < or = 21 years) and later onset (AAO >21 years), respectively. The finding on 21q22.13 was significant at the chromosomewide level, even after correction for multiple testing. Moreover, a similar finding was observed in an independent sample of 65 pedigrees (LOD = 2.88; empirical chromosomewide P = .025). The finding on 18p11.2 was only nominally significant and was not observed in the independent sample. However, 18p11.2 emerged as one of the strongest regions in the OSA (LOD = 2.92; empirical P = .001), in which it was the only finding to meet chromosomewide levels of significance after correction for multiple testing. These results suggest that 21q22.13 and 18p11.2 may harbor genes that increase the risks for early-onset and later-onset forms of BP, respectively. There have been previous reports of linkage on 21q22.13 and 18p11.2, but the findings have not been consistent. This inconsistency may be due to differences in the AAO characteristics of the samples examined. Future studies to fine map susceptibility genes for BP on chromosomes 21q22.13 and 18p11.2 should take AAO into account.
Collapse
Affiliation(s)
- Ping-I Lin
- Department of Mental Health, the Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Sciences, School of Medicine, The Johns Hopkins University, Baltimore
| | - Melvin G. McInnis
- Department of Mental Health, the Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Sciences, School of Medicine, The Johns Hopkins University, Baltimore
| | - James B. Potash
- Department of Mental Health, the Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Sciences, School of Medicine, The Johns Hopkins University, Baltimore
| | - Virginia L. Willour
- Department of Mental Health, the Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Sciences, School of Medicine, The Johns Hopkins University, Baltimore
| | - Dean F. MacKinnon
- Department of Mental Health, the Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Sciences, School of Medicine, The Johns Hopkins University, Baltimore
| | - Kuangyi Miao
- Department of Mental Health, the Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Sciences, School of Medicine, The Johns Hopkins University, Baltimore
| | - J. Raymond DePaulo
- Department of Mental Health, the Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Sciences, School of Medicine, The Johns Hopkins University, Baltimore
| | - Peter P. Zandi
- Department of Mental Health, the Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Sciences, School of Medicine, The Johns Hopkins University, Baltimore
| |
Collapse
|
23
|
Damsa C, Borras L, Bianchi-Demicheli F, Andreoli A. [Alpha-thalassemias and bipolar disorders: a genetic link?]. Encephale 2005; 31:72-5. [PMID: 15971642 DOI: 10.1016/s0013-7006(05)82374-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
After a previous paper discussing the possible association between beta-thalassemias and bipolar disorder, this article considers a possible association between alpha-thalassemia and the bipolar disorder. We report the case of a 36 year old woman with bipolar disorder and alpha-thalassemia. The patient, native of Reunion Island, has a family history of bipolar disorder (both parents, one brother, and a paternal uncle). The severity of the bipolar disorder type I in her family, is illustrated by the suicides of both parents, one brother and the paternal uncle, in intervals of only a few years. After a Medline review (1980-2004) we found only two studies suggesting a possible relationship between bipolar disorders and alpha-thalassemias, but without clinical case report information. Some genetic studies described the existence of possible genetic susceptibility for bipolar disorder on the short arm of chromosome 16, close to the gene involved in certain alpha-thalassemias, on the region 16p13.3. An interesting finding is that the sequencing of 258 kb of the chromosome region 16p13.3 not only allowed the identification of genes involved in the alpha-thalassemia and in the vulnerability to bipolar disorders, but also the identification of genes implicated in tuberous sclerosis, in polycystic kidney disease, in cataract with microophtalmia, and in vulnerability genetic factors for ATR-16 syndrome, asthma, epilepsy, certain forms of autism and mental retardation. Numerous clinical descriptions and some familial studies on linkage suggested a possible relationship between tuberous sclerosis, polycystic kidney disease, cataract with microophtalmia, ATR-16 syndrome, asthma, epilepsy, certain forms of autism, mental retardation and bipolar disorder, given the closeness of these vulnerability genes on the short arm of the chromosome 16. A vulnerability gene of alcohol dependence was also identified on this same chromosome region (16p13.3), by a study concerning 105 families. Taking into account the methodological difficulties due to the clinical and genetic heterogeneity of bipolar disorder, we suggest that linkage techniques should be used to confirm the presence of susceptibility genetic factor for bipolar disorders on chromosome 16. Thus a known genetic disease (alpha-thalassemia) could contribute to confirming the presence on the short arm of chromosome 16 of a susceptibility genetic factor for bipolar disorders. Linkage studies should be performed in families with a strong association for both diseases. Thanks to linkage techniques, one could hope for an improvement in understanding the physiopathology of bipolar disorder, with possible implications at a therapeutic level.
Collapse
Affiliation(s)
- C Damsa
- Hôpitaux Universitaires de Genève, 24, rue Micheli-du-Crest, CH 1211 Genève 14
| | | | | | | |
Collapse
|
24
|
Visscher PM, Haley CS, Ewald H, Mors O, Egeland J, Thiel B, Ginns E, Muir W, Blackwood DH. Joint multi-population analysis for genetic linkage of bipolar disorder or "wellness" to chromosome 4p. Am J Med Genet B Neuropsychiatr Genet 2005; 133B:18-24. [PMID: 15562426 DOI: 10.1002/ajmg.b.30108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To test the hypothesis that the same genetic loci confer susceptibility to, or protection from, disease in different populations, and that a combined analysis would improve the map resolution of a common susceptibility locus, we analyzed data from three studies that had reported linkage to bipolar disorder in a small region on chromosome 4p. Data sets comprised phenotypic information and genetic marker data on Scottish, Danish, and USA extended pedigrees. Across the three data sets, 913 individuals appeared in the pedigrees, 462 were classified, either as unaffected (323) or affected (139) with unipolar or bipolar disorder. A consensus linkage map was created from 14 microsatellite markers in a 33 cM region. Phenotypic and genetic data were analyzed using a variance component (VC) and allele sharing method. All previously reported elevated test statistics in the region were confirmed with one or both analysis methods, indicating the presence of one or more susceptibility genes to bipolar disorder in the three populations in the studied chromosome segment. When the results from both the VC and allele sharing method were considered, there was strong evidence for a susceptibility locus in the data from Scotland, some evidence in the data from Denmark and relatively less evidence in the data from the USA. The test statistics from the Scottish data set dominated the test statistics from the other studies, and no improved map resolution for a putative genetic locus underlying susceptibility in all three studies was obtained. Studies reporting linkage to the same region require careful scrutiny and preferably joint or meta analysis on the same basis in order to ensure that the results are truly comparable.
Collapse
Affiliation(s)
- P M Visscher
- Institute of Cell, Animal and Population Biology, University of Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Solberg LC, Baum AE, Ahmadiyeh N, Shimomura K, Li R, Turek FW, Churchil GA, Takahashi JS, Redei EE. Sex- and lineage-specific inheritance of depression-like behavior in the rat. Mamm Genome 2005; 15:648-62. [PMID: 15457344 PMCID: PMC3764448 DOI: 10.1007/s00335-004-2326-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
The Wistar-Kyoto (WKY) rat exhibits physiological and behavioral similarities to endophenotypes of human depression. In the forced swim test (FST), a well-characterized antidepressant-reversible test for behavioral despair in rodents, WKYs express characteristics of behavioral despair; increased immobility, and decreased climbing. To map genetic loci linked to behavior in the FST, we conducted a quantitative trait loci (QTL) analysis of the segregating F2 generation of a WKY x Fisher 344 (F344) reciprocal intercross. Using linear-model-based genome scans to include covariate (sex or lineage)-by-QTL interaction effects, four significant QTL influencing climbing behavior were identified. In addition, we identified three, seven, and two suggestive QTL for climbing, immobility, and swimming, respectively. One of these loci was pleiotropic, affecting both immobility and climbing. As found in human linkage studies, several of these QTL showed sex- and/or lineage-dependent effects. A simultaneous search strategy identified three epistatic locus pairs for climbing. Multiple regression analysis was employed to characterize the joint contributions of these QTL and to clarify the sex- and lineage-dependent effects. As expected for complex traits, FST behavior is influenced by multiple QTL of small effect, each contributing 5%-10%, accounting for a total 10%-30% of the phenotypic variance. A number of loci mapped in this study share overlapping candidate regions with previously identified emotionality QTL in mice as well as with susceptibility loci recognized by linkage or genome scan analyses for major depression or bipolar disorder in humans. The presence of these loci across species suggests that these QTL may represent universal genetic factors contributing to mood disorders.
Collapse
Affiliation(s)
- Leah C. Solberg
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, Ilinois, 60611, USA
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Ilinois 60208, USA
| | - Amber E. Baum
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, Ilinois, 60611, USA
- Department of Endocrinology and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ilinois, 60611, USA
| | - Nasim Ahmadiyeh
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, Ilinois, 60611, USA
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Ilinois 60208, USA
- Howard Hughes Medical Institute, Northwestern University, Evanston, Ilinois 60208, USA
| | - Kazuhiro Shimomura
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Ilinois 60208, USA
- Howard Hughes Medical Institute, Northwestern University, Evanston, Ilinois 60208, USA
| | - Renhua Li
- The Jackson Laboratory, Bar Harbor, Maine, 04609, USA
| | - Fred W. Turek
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Ilinois 60208, USA
| | | | - Joseph S. Takahashi
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Ilinois 60208, USA
- Howard Hughes Medical Institute, Northwestern University, Evanston, Ilinois 60208, USA
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, Ilinois, 60611, USA
| |
Collapse
|
26
|
Green E, Craddock N. Brain-derived neurotrophic factor as a potential risk locus for bipolar disorder: Evidence, limitations, and implications. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/bf02629417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Frey BN, Fonseca MMRD, Machado-Vieira R, Soares JC, Kapczinski F. [Neuropatological and neurochemical abnormalities in bipolar disorder]. BRAZILIAN JOURNAL OF PSYCHIATRY 2004; 26:180-8. [PMID: 15645064 DOI: 10.1590/s1516-44462004000300008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Postmortem, pharmacological, neuroimaging, and animal model studies have demonstrated a possible association of intracellular signaling mechanisms in the pathophysiology of bipolar disorder. The objective of this paper is to review the findings in neuropathology and cellular biochemistry. METHODS We performed a MEDLINE research, between 1980-2003, using bipolar disorder, signaling, second messengers, and postmortem as keywords, and cross-references. RESULTS Neuropathological studies reported a decrease in neuronal and glial cells, mainly in the prefrontal cortex of bipolar patients. Neurochemical studies reported dysfunction in cAMP, phosphoinositide, Wnt/GSK-3b, and intracellular Ca++ pathways in these patients. CONCLUSION The neuropathological and neurochemical abnormalities demonstrated in BD may be related to the pathophysiology of this disorder and the effects of mood stabilizers. However, further studies are needed to clarify the role of the intracellular signaling cascade in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Benício Noronha Frey
- Laboratório de Psiquiatria Experimental, Hospital de Clínicas de Porto Alegre, Brazil.
| | | | | | | | | |
Collapse
|
28
|
Ogden CA, Rich ME, Schork NJ, Paulus MP, Geyer MA, Lohr JB, Kuczenski R, Niculescu AB. Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol Psychiatry 2004; 9:1007-29. [PMID: 15314610 DOI: 10.1038/sj.mp.4001547] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Identifying genes for bipolar mood disorders through classic genetics has proven difficult. Here, we present a comprehensive convergent approach that translationally integrates brain gene expression data from a relevant pharmacogenomic mouse model (involving treatments with a stimulant--methamphetamine, and a mood stabilizer--valproate), with human data (linkage loci from human genetic studies, changes in postmortem brains from patients), as a bayesian strategy of crossvalidating findings. Topping the list of candidate genes, we have DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of 32 kDa) located at 17q12, PENK (preproenkephalin) located at 8q12.1, and TAC1 (tachykinin 1, substance P) located at 7q21.3. These data suggest that more primitive molecular mechanisms involved in pleasure and pain may have been recruited by evolution to play a role in higher mental functions such as mood. The analysis also revealed other high-probability candidates genes (neurogenesis, neurotrophic, neurotransmitter, signal transduction, circadian, synaptic, and myelin related), pathways and mechanisms of likely importance in pathophysiology.
Collapse
Affiliation(s)
- C A Ogden
- Laboratory of Neurophenomics, University of California, San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Fallin MD, Lasseter VK, Wolyniec PS, McGrath JA, Nestadt G, Valle D, Liang KY, Pulver AE. Genomewide linkage scan for bipolar-disorder susceptibility loci among Ashkenazi Jewish families. Am J Hum Genet 2004; 75:204-19. [PMID: 15208783 PMCID: PMC1216055 DOI: 10.1086/422474] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 05/10/2004] [Indexed: 01/22/2023] Open
Abstract
The relatively short history of linkage studies in bipolar disorders (BPs) has produced inconsistent findings. Implicated regions have been large, with reduced levels of significance and modest effect sizes. Both phenotypic and genetic heterogeneity may have contributed to the failure to define risk loci. BP is part of a spectrum of apparently familial affective disorders, which have been organized by severity. Heterogeneity may arise because of insufficient data to define the spectrum boundaries, and, in general, the less-severe disorders are more difficult to diagnose reliably. To address the inherent complexities in detecting BP susceptibility loci, we have used restricted diagnostic classifications and a genetically more homogeneous (Ashkenazi Jewish) family collection to perform a 9-cM autosomal genomewide linkage scan. Although they are genetically more homogeneous, there are no data to suggest that the rate of illness in the Ashkenazim differs from that in other populations. In a genome scan of 41 Ashkenazi pedigrees with a proband affected with bipolar I disorder (BPI) and at least one other member affected with BPI or bipolar II disorder (BPII), we identified four regions suggestive of linkage on chromosomes 1, 3, 11, and 18. Follow-up genotyping showed that the regions on chromosomes 1, 3, and 18 are also suggestive of linkage in a subset of pedigrees limited to relative pairs affected with BPI. Furthermore, our chromosome 18q22 signal (D18S541 and D18S477) overlaps with previous BP findings. This research is being conducted in parallel with our companion study of schizophrenia, in which, by use of an identical approach, we recently reported significant evidence for a schizophrenia susceptibility locus in the Ashkenazim on chromosome 10q22.
Collapse
Affiliation(s)
- M. Daniele Fallin
- Departments of Epidemiology and Biostatistics, Johns Hopkins Bloomberg School of Public Health, and Departments of Psychiatry & Behavioral Sciences, Pediatrics, Molecular Biology, and Genetics, Howard Hughes Medical Institute, and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore
| | - Virginia K. Lasseter
- Departments of Epidemiology and Biostatistics, Johns Hopkins Bloomberg School of Public Health, and Departments of Psychiatry & Behavioral Sciences, Pediatrics, Molecular Biology, and Genetics, Howard Hughes Medical Institute, and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore
| | - Paula S. Wolyniec
- Departments of Epidemiology and Biostatistics, Johns Hopkins Bloomberg School of Public Health, and Departments of Psychiatry & Behavioral Sciences, Pediatrics, Molecular Biology, and Genetics, Howard Hughes Medical Institute, and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore
| | - John A. McGrath
- Departments of Epidemiology and Biostatistics, Johns Hopkins Bloomberg School of Public Health, and Departments of Psychiatry & Behavioral Sciences, Pediatrics, Molecular Biology, and Genetics, Howard Hughes Medical Institute, and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore
| | - Gerald Nestadt
- Departments of Epidemiology and Biostatistics, Johns Hopkins Bloomberg School of Public Health, and Departments of Psychiatry & Behavioral Sciences, Pediatrics, Molecular Biology, and Genetics, Howard Hughes Medical Institute, and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore
| | - David Valle
- Departments of Epidemiology and Biostatistics, Johns Hopkins Bloomberg School of Public Health, and Departments of Psychiatry & Behavioral Sciences, Pediatrics, Molecular Biology, and Genetics, Howard Hughes Medical Institute, and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore
| | - Kung-Yee Liang
- Departments of Epidemiology and Biostatistics, Johns Hopkins Bloomberg School of Public Health, and Departments of Psychiatry & Behavioral Sciences, Pediatrics, Molecular Biology, and Genetics, Howard Hughes Medical Institute, and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore
| | - Ann E. Pulver
- Departments of Epidemiology and Biostatistics, Johns Hopkins Bloomberg School of Public Health, and Departments of Psychiatry & Behavioral Sciences, Pediatrics, Molecular Biology, and Genetics, Howard Hughes Medical Institute, and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore
| |
Collapse
|
30
|
Green E, Craddock N. Brain-derived neurotrophic factor as a potential risk locus for bipolar disorder: evidence, limitations, and implications. Curr Psychiatry Rep 2003; 5:469-76. [PMID: 14609502 DOI: 10.1007/s11920-003-0086-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in promoting and modifying growth, development, and survival of neuronal populations, and, in the mature nervous system, is involved in activity-dependent neuronal plasticity. Based on several lines of evidence, BDNF has been hypothesized to play an important role in the pathogenesis of mood disorder and the therapeutic action of at least some effective treatments. The gene encoding BDNF lies on the short arm of chromosome 11 in a region where some linkage studies of bipolar disorder have reported evidence for a susceptibility gene. BDNF can, thus, be considered as an attractive candidate gene for involvement in the pathogenesis of bipolar disorder, and two recent family-based association studies have provided evidence that one or more sequence variants within or near the BDNF gene show an association with disease susceptibility. These findings are of great interest and may open up a new chapter in the understanding of the causation and treatment of bipolar disorder. However, it is still early in the genetic investigation of BDNF in bipolar disorder, and it is important that these findings are replicated in large independent samples and that functional studies can confirm and characterize the pathogenic relevance of this genetic variation.
Collapse
Affiliation(s)
- Elaine Green
- Neuropsychiatric Genetics Unit, Department of Psychological Medicine, University of Wales College of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | | |
Collapse
|
31
|
McInnis MG, Dick DM, Willour VL, Avramopoulos D, MacKinnon DF, Simpson SG, Potash JB, Edenberg HJ, Bowman ES, McMahon FJ, Smiley C, Chellis JL, Huo Y, Diggs T, Meyer ET, Miller M, Matteini AT, Rau NL, DePaulo JR, Gershon ES, Badner JA, Rice JP, Goate AM, Detera-Wadleigh SD, Nurnberger JI, Reich T, Zandi PP, Foroud TM. Genome-wide scan and conditional analysis in bipolar disorder: evidence for genomic interaction in the National Institute of Mental Health genetics initiative bipolar pedigrees. Biol Psychiatry 2003; 54:1265-73. [PMID: 14643094 DOI: 10.1016/j.biopsych.2003.08.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND In 1989 the National Institute of Mental Health began a collaborative effort to identify genes for bipolar disorder. The first 97 pedigrees showed evidence of linkage to chromosomes 1, 6, 7, 10, 16, and 22 (Nurnberger et al 1997). An additional 56 bipolar families have been genotyped, and the combined sample of 153 pedigrees studied. METHODS Three hierarchical affection status models were analyzed with 513 simple sequence repeat markers; 298 were common across all pedigrees. The primary analysis was a nonparametric genome-wide scan. We performed conditional analyses based on epistasis or heterogeneity for five regions. RESULTS One region, on 16p13, was significant at the genome-wide p <.05 level. Four additional chromosomal regions (20p12, 11p15, 6q24, and 10p12) showed nominally significant linkage findings (p </=.01). Conditional analysis assuming epistasis identified a significant increase in linkage at four regions. Families linked to 6q24 showed a significant increase in nonparametric logarithms of the odds (NPL) scores at 5q11 and 7q21. Epistasis also was observed between 20p12 and 13q21, and 16p13 and 9q21. CONCLUSIONS The findings are presented in rank order of nominal significance. Several of these regions have been previously implicated in independent studies of either bipolar disorder or schizophrenia. The strongest finding is at 16p13 at D16S748 with an NPL of 3.3, there is evidence of epistasis between this locus and 9q21. Application of conditional analyses is potentially useful in larger sample collections to identify susceptibility genes of modest influence that may not be identified in a genome-wide scan aimed to identify single gene effects.
Collapse
Affiliation(s)
- Melvin G McInnis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287-7463, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Willour VL, Zandi PP, Huo Y, Diggs TL, Chellis JL, MacKinnon DF, Simpson SG, McMahon FJ, Potash JB, Gershon ES, Reich T, Foroud T, Nurnberger JI, DePaulo JR, McInnis MG. Genome scan of the fifty-six bipolar pedigrees from the NIMH genetics initiative replication sample: chromosomes 4, 7, 9, 18, 19, 20, and 21. Am J Med Genet B Neuropsychiatr Genet 2003; 121B:21-7. [PMID: 12898570 DOI: 10.1002/ajmg.b.20051] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The NIMH genetics initiative on bipolar disorder was established to collect uniformly ascertained bipolar pedigrees for genetic studies. In 1997, the four participating sites published a genome scan on the initial set of 97 bipolar pedigrees. Fifty-six additional bipolar pedigrees have now been ascertained and evaluated. This replication pedigree set contains 354 genotyped subjects, including 139 bipolar I (BPI) subjects, five schizoaffective bipolar type SA/BP subjects, 41 bipolar II (BPII) subjects, and 43 recurrent unipolar (RUP) depression subjects. Our site has recently genotyped the replication study bipolar pedigrees using 107 microsatellite markers from chromosomes 4, 7, 9, 18, 19, 20, and 21. We are now reporting parametric and nonparametric linkage results from this effort. Multipoint nonparametric linkage analysis produced three candidate regions with allele sharing LOD scores >/= 1.0. The linkage signal on 4q35 peaked between markers D4S3335 and D4S2390 with an allele sharing LOD score of 2.49. This finding exceeds standard criteria for suggestive linkage. Two additional loci approach suggestive linkage levels: the 4q32 finding had its maximum near marker D4S1629 with an allele sharing LOD score of 2.16, and the 20p12 finding peaked at D20S162 with an allele sharing LOD score of 1.82. Multipoint parametric linkage analysis produced similar findings. When we combined the genotype data from the original and the replication pedigree sets, 20p12 yielded a nonparametric LOD score of 2.38, which exceeds standard criteria for suggestive linkage, and a corresponding parametric HLOD score of 2.98. The combined analysis did not provide further support for linkage to 4q32 and 4q35.
Collapse
|