1
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
2
|
Casella AM, Colantuoni C, Ament SA. Identifying enhancer properties associated with genetic risk for complex traits using regulome-wide association studies. PLoS Comput Biol 2022; 18:e1010430. [PMID: 36070311 PMCID: PMC9484640 DOI: 10.1371/journal.pcbi.1010430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic risk for complex traits is strongly enriched in non-coding genomic regions involved in gene regulation, especially enhancers. However, we lack adequate tools to connect the characteristics of these disruptions to genetic risk. Here, we propose RWAS (Regulome Wide Association Study), a new application of the MAGMA software package to identify the characteristics of enhancers that contribute to genetic risk for disease. RWAS involves three steps: (i) assign genotyped SNPs to cell type- or tissue-specific regulatory features (e.g., enhancers); (ii) test associations of each regulatory feature with a trait of interest for which genome-wide association study (GWAS) summary statistics are available; (iii) perform enhancer-set enrichment analyses to identify quantitative or categorical features of regulatory elements that are associated with the trait. These steps are implemented as a novel application of MAGMA, a tool originally developed for gene-based GWAS analyses. Applying RWAS to interrogate genetic risk for schizophrenia, we discovered a class of risk-associated AT-rich enhancers that are active in the developing brain and harbor binding sites for multiple transcription factors with neurodevelopmental functions. RWAS utilizes open-source software, and we provide a comprehensive collection of annotations for tissue-specific enhancer locations and features, including their evolutionary conservation, AT content, and co-localization with binding sites for hundreds of TFs. RWAS will enable researchers to characterize properties of regulatory elements associated with any trait of interest for which GWAS summary statistics are available.
Collapse
Affiliation(s)
- Alex M. Casella
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Medical Scientist Training Program, UMSOM, Baltimore, Maryland, United States of America
| | - Carlo Colantuoni
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Seth A. Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Sodhi DK, Hagerman R. Fragile X Premutation: Medications, Therapy and Lifestyle Advice. Pharmgenomics Pers Med 2022; 14:1689-1699. [PMID: 35002287 PMCID: PMC8721286 DOI: 10.2147/pgpm.s338846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
The fragile X premutation is characterized by 55–200 CGG repeats in the 5ʹ untranslated region of FMR1, whereas full fragile X mutation has greater than 200 repeats and full methylation, which manifests as fragile X syndrome (FXS). The premutation spectrum of clinical involvement includes fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND). In addition, premutation carriers also suffer from various other health problems such as endocrine abnormalities and autoimmune problems. In this paper, we have discussed different health issues faced by the carriers and interventions including medications, therapy and lifestyle changes that could improve their health.
Collapse
Affiliation(s)
- Deepika Kour Sodhi
- The MIND Institute, University of California Davis Health, Sacramento, CA, USA
| | - Randi Hagerman
- The MIND Institute, University of California Davis Health, Sacramento, CA, USA.,Department of Pediatrics, University of California Davis Health, Sacramento, CA, USA
| |
Collapse
|
4
|
Restoration of FMRP expression in adult V1 neurons rescues visual deficits in a mouse model of fragile X syndrome. Protein Cell 2021; 13:203-219. [PMID: 34714519 PMCID: PMC8901859 DOI: 10.1007/s13238-021-00878-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022] Open
Abstract
Many people affected by fragile X syndrome (FXS) and autism spectrum disorders have sensory processing deficits, such as hypersensitivity to auditory, tactile, and visual stimuli. Like FXS in humans, loss of Fmr1 in rodents also cause sensory, behavioral, and cognitive deficits. However, the neural mechanisms underlying sensory impairment, especially vision impairment, remain unclear. It remains elusive whether the visual processing deficits originate from corrupted inputs, impaired perception in the primary sensory cortex, or altered integration in the higher cortex, and there is no effective treatment. In this study, we used a genetic knockout mouse model (Fmr1KO), in vivo imaging, and behavioral measurements to show that the loss of Fmr1 impaired signal processing in the primary visual cortex (V1). Specifically, Fmr1KO mice showed enhanced responses to low-intensity stimuli but normal responses to high-intensity stimuli. This abnormality was accompanied by enhancements in local network connectivity in V1 microcircuits and increased dendritic complexity of V1 neurons. These effects were ameliorated by the acute application of GABAA receptor activators, which enhanced the activity of inhibitory neurons, or by reintroducing Fmr1 gene expression in knockout V1 neurons in both juvenile and young-adult mice. Overall, V1 plays an important role in the visual abnormalities of Fmr1KO mice and it could be possible to rescue the sensory disturbances in developed FXS and autism patients.
Collapse
|
5
|
Dulman RS, Auta J, Wandling GM, Patwell R, Zhang H, Pandey SC. Persistence of cerebellar ataxia during chronic ethanol exposure is associated with epigenetic up-regulation of Fmr1 gene expression in rat cerebellum. Alcohol Clin Exp Res 2021; 45:2006-2016. [PMID: 34453331 PMCID: PMC8602769 DOI: 10.1111/acer.14691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Alcohol intoxication produces ataxia by affecting the cerebellum, which coordinates movements. Fragile X mental retardation (FMR) protein is a complex regulator of RNA and synaptic plasticity implicated in fragile X-associated tremor/ataxia syndrome, which features ataxia and increased Fmr1 mRNA expression resulting from epigenetic dysregulation of FMRP. We recently demonstrated that acute ethanol-induced ataxia is associated with increased cerebellar Fmr1 gene expression via histone modifications in rats, but it is unknown whether similar behavioral and molecular changes occur following chronic ethanol exposure. Here, we investigated the effects of chronic ethanol exposure on ataxia and epigenetically regulated changes in Fmr1 expression in the cerebellum. METHODS Male adult Sprague-Dawley rats were trained on the accelerating rotarod and then fed with chronic ethanol or a control Lieber-DeCarli diet while undergoing periodic behavioral testing for ataxia during ethanol exposure and withdrawal. Cerebellar tissues were analyzed for expression of the Fmr1 gene and its targets using a real-time quantitative polymerase chain reaction assay. The epigenetic regulation of Fmr1 was also investigated using a chromatin immunoprecipitation assay. RESULTS Ataxic behavior measured by the accelerating rotarod behavioral test developed during chronic ethanol treatment and persisted at both the 8-h and 24-h withdrawal time points compared to control diet-fed rats. In addition, chronic ethanol treatment resulted in up-regulated expression of Fmr1 mRNA and increased activating epigenetic marks H3K27 acetylation and H3K4 trimethylation at 2 sites within the Fmr1 promoter. Finally, measurement of the expression of relevant FMRP mRNA targets in the cerebellum showed that chronic ethanol up-regulated cAMP response element binding (CREB) Creb1, Psd95, Grm5, and Grin2b mRNA expression without altering Grin2a, Eaa1, or histone acetyltransferases CREB binding protein (Cbp) or p300 mRNA transcripts. CONCLUSIONS These results suggest that epigenetic regulation of Fmr1 and subsequent FMRP regulation of target mRNA transcripts constitute neuroadaptations in the cerebellum that may underlie the persistence of ataxic behavior during chronic ethanol exposure and withdrawal.
Collapse
Affiliation(s)
- Russell S. Dulman
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
| | - James Auta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
| | - Gabriela M. Wandling
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
| | - Ryan Patwell
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612 USA
| | - Subhash C. Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612 USA
| |
Collapse
|
6
|
Usdin K, Rodriguez-Revenga L, Willemsen R, Hukema R, Giulivi C. Editorial: Proceedings of the "Fourth International Conference of the FMR1 Premutation: Basic Mechanisms, Clinical Involvement and Therapy". Front Mol Biosci 2021; 8:671875. [PMID: 33987206 PMCID: PMC8111284 DOI: 10.3389/fmolb.2021.671875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Karen Usdin
- Gene Structure and Disease Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Renate Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,The MIND Institute, University of California, Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
7
|
Johnson D, Santos E, Kim K, Ponzini MD, McLennan YA, Schneider A, Tassone F, Hagerman RJ. Increased Pain Symptomatology Among Females vs. Males With Fragile X-Associated Tremor/Ataxia Syndrome. Front Psychiatry 2021; 12:762915. [PMID: 35126193 PMCID: PMC8811376 DOI: 10.3389/fpsyt.2021.762915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Individuals with the fragile X premutation report symptoms of chronic pain from multiple systems, have increased incidence of comorbid conditions where pain is a prominent feature, and pathophysiology that supports disrupted pain regulation, inflammation, and energy imbalance. Less is known about how pain manifests for the subpopulation of carriers that develop the motor and cognitive changes of fragile X-associated tremor and ataxia syndrome (FXTAS), and how pain may differ between men and women. We gathered data collected from 104 males and females with FXTAS related to chronic pain, comorbid conditions related to pain, and medications used for pain control to further explore the types of pain experienced and to better characterize how individuals with the fragile X premutation experience pain sensation across genders. We found that women experience significantly more pain symptoms than men, particularly allodynia (20 vs. 2.0%, p = 0.008), peripheral neuropathy pain (43.9 vs. 25.4%, p = 0.0488), migraine (43.9 vs. 14.5%, p = 0.0008), fibromyalgia (26.8 vs. 0%, p = 0.0071) and back pain (48.5 vs. 23.4%, p = 0.008). We found onset of peripheral neuropathy predicts the onset of ataxia (β = 0.63 ± 0.25, p = 0.019) and tremor (β = 0.56 ± 0.17, p = 0.004) across gender. Women also report significantly more anxiety (82.9 vs. 39.7%, p < 0.001), which has implications for ideal pain treatment. These pain symptoms need to be recognized in the medical history and treated appropriately, with consideration for overlapping comorbidities.
Collapse
Affiliation(s)
- Devon Johnson
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Ellery Santos
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Kyoungmi Kim
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States.,Division of Biostatistics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Matthew D Ponzini
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States.,Division of Biostatistics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Yingratana A McLennan
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States.,Department of Pediatrics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States.,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders Institute, School of Medicine, University of California, Davis, Davis, CA, United States.,Department of Pediatrics, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Schneider A, Summers S, Tassone F, Seritan A, Hessl D, Hagerman P, Hagerman R. Women with Fragile X-associated Tremor/Ataxia Syndrome. Mov Disord Clin Pract 2020; 7:910-919. [PMID: 33163562 PMCID: PMC7604678 DOI: 10.1002/mdc3.13084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/16/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Fragile X-associated tremor and ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder linked to the FMR1 premutation. OBJECTIVES FXTAS in women is far less common than in men, and this study represents the largest sample reported to date. METHODS A total of 53 female premutation carriers with FXTAS (meanage, 66.83 years; FXTAS stages 2-5) and 55 age-matched and demographic background-matched control participants (meanage, 61.94 years) underwent a comprehensive molecular, physiological, neuropsychological, and psychiatric assessment. RESULTS The large sample of female premutation carriers showed a wide range of variability of clinical signs and symptom progression. The imaging results showed a middle cerebellar peduncles sign in only 6 patients; another symptom included high-signal intensity in the splenium of the corpus callosum, and diffuse cerebral deep white matter changes (e.g., in the pons) are more common. The rate of psychiatric disorders, especially depression, is higher than in the general population. There is a clear impairment in executive functioning and fine motor skills in connection with a higher FXTAS stage. CONCLUSIONS The manifestation of FXTAS symptoms in female carriers can be diverse with a milder phenotype and a lower penetrance than those observed in male premutation carriers. The middle cerebellar peduncles sign is present in only a small percentage of the sample, and we propose that the imaging criteria for FXTAS in women need to be expanded.
Collapse
Affiliation(s)
- Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders InstituteSacramentoCaliforniaUSA
- Department of Pediatrics, School of MedicineUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| | - Scott Summers
- Department of Psychiatry and Behavioral SciencesUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| | - Flora Tassone
- Department of BiochemistryUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| | - Andreea Seritan
- Department of Psychiatry, UCSF Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - David Hessl
- Medical Investigation of Neurodevelopmental Disorders InstituteSacramentoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| | - Paul Hagerman
- Department of BiochemistryUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders InstituteSacramentoCaliforniaUSA
- Department of Pediatrics, School of MedicineUniversity of California–Davis, Medical CenterSacramentoCaliforniaUSA
| |
Collapse
|
9
|
Cao Y, Peng Y, Kong HE, Allen EG, Jin P. Metabolic Alterations in FMR1 Premutation Carriers. Front Mol Biosci 2020; 7:571092. [PMID: 33195417 PMCID: PMC7531624 DOI: 10.3389/fmolb.2020.571092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
FMR1 gene premutation carriers are at risk of developing Fragile X-associated tremor/ataxia syndrome (FXTAS) and Fragile X-associated primary ovarian insufficiency (FXPOI) in adulthood. Currently the development of biomarkers and effective treatments in FMR1 premutations is still in its infancy. Recent metabolic studies have shown novel findings in asymptomatic FMR1 premutation carriers and FXTAS, which provide promising insight through identification of potential biomarkers and therapeutic pathways. Here we review the latest advancements of the metabolic alterations found in asymptomatic FMR1 premutation carriers and FXTAS, along with our perspective for future studies in this emerging field.
Collapse
Affiliation(s)
- Yiqu Cao
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ha Eun Kong
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
10
|
Cabal-Herrera AM, Saldarriaga-Gil W, Salcedo-Arellano MJ, Hagerman RJ. Fragile X associated neuropsychiatric disorders in a male without FXTAS. Intractable Rare Dis Res 2020; 9:113-118. [PMID: 32494560 PMCID: PMC7263992 DOI: 10.5582/irdr.2020.01028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 11/05/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and autism spectrum disorder. In most cases, it is due to an expansion of the CGG triplet to more than 200 repeats within the promoter region of the FMR1 gene. In the premutation (PM) the trinucleotide is expanded to 55-200 repeats. PM carriers can present with disorders associated with the PM including fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated ovarian insufficiency (FXPOI). Recently fragile X-associated neuropsychiatric disorders (FXAND) was proposed as an umbrella term to include the neuropsychiatric disorders that are more prevalent in PM carriers compared to the general population such as anxiety, depression, chronic fatigue, alcohol abuse, and psychosis, among others. The patient in our study was evaluated by a team of clinicians from the University del Valle in Cali who traveled to Ricaurte, a Colombian town known for being a genetic geographic cluster of FXS. A detailed medical history was collected and complete physical, neurological and psychiatric evaluations were performed in addition to molecular and neuroradiological studies. We report the case of a 78-year-old man, PM carrier, without FXTAS whose main clinical presentation consists of behavioral changes and psychosis. Brain imaging revealed white matter lesions in the periventricular region and mild cerebral atrophy. Although anxiety and depression are the most common neuropsychiatric manifestations in PM carriers, it is important to perform a complete psychiatric evaluation since some patients may present with behavioral changes and psychosis.
Collapse
Affiliation(s)
- Ana María Cabal-Herrera
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA, USA
- School of Medicine, Universidad del Valle, Cali, Colombia
| | | | - Maria Jimena Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
11
|
Dulman RS, Auta J, Teppen T, Pandey SC. Acute Ethanol Produces Ataxia and Induces Fmr1 Expression via Histone Modifications in the Rat Cerebellum. Alcohol Clin Exp Res 2019; 43:1191-1198. [PMID: 30969437 DOI: 10.1111/acer.14044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The cerebellum is fundamental for motor coordination and therefore crucial in ethanol (EtOH)-induced ataxia. EtOH contributes to cerebellar pathophysiology. Fragile-X mental retardation protein (FMRP) is a complex regulator of RNA and synaptic plasticity implicated in fragile-X tremor and ataxia syndrome, a phenotype featuring increased Fmr1 mRNA expression. Recent studies have implicated glutamatergic targets of FMRP in hereditary cerebellar ataxias including the main cerebellar excitatory amino acid (Eaa1) transporter and a subtype of metabotropic glutamate receptor (Grm5). However, EtOH-induced changes in cerebellar Fmr1 expression and its epigenetic regulation have not been investigated. Here, we examined the effects of acute EtOH exposure on ataxic behavior, gene expression, and epigenetic regulation of the Fmr1 gene and its glutamatergic targets in the rat cerebellum. METHODS Male adult Sprague Dawley rats received acute EtOH (2 g/kg) intraperitoneally 1 hour prior to ataxic behavioral testing on the accelerating rotarod and were sacrificed immediately thereafter. Cerebellar tissues were analyzed for gene expression and epigenetic regulation of the Fmr1 gene and its glutamatergic targets in the rat cerebellum using real-time quantitative polymerase chain reaction (PCR) and chromatin immunoprecipitation. RESULTS Acute EtOH exposure caused marked ataxia on the accelerating rotarod test compared with saline-treated controls. This ataxic response was associated with increases in mRNA levels of Fmr1, postsynaptic density 95 (Psd95), Eaa1, and Grm5 in the cerebellum. In addition, we found increased H3K27 acetylation both at the promoter region of Fmr1 and at a proposed cyclic adenosine monophosphate (cAMP) response-element binding (CREB) site downstream of the Fmr1 transcription start site. Furthermore, acute EtOH exposure significantly increased Creb1 and the histone acetyltransferases (HAT) CREB binding protein (Cbp), and p300 mRNA transcripts. CONCLUSIONS Overall, EtOH regulates cerebellar Fmr1 expression most likely via HAT-mediated increase in histone acetylation. We propose that FMRP regulation of glutamatergic transcripts plays an important role in disrupting the excitatory-inhibitory balance in the cerebellum underlying EtOH-induced ataxia.
Collapse
Affiliation(s)
- Russell S Dulman
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois
| | - James Auta
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois
| | - Tara Teppen
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Subhash C Pandey
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
12
|
Tan MM, Dy JB, Salcedo-Arellano MJ, Tassone F, Hagerman RJ. Fragile X- associated Neuropsychiatric Disorders: A Case Report. FUTURE NEUROLOGY 2019; 14:10.2217/fnl-2018-0040. [PMID: 32089651 PMCID: PMC7034938 DOI: 10.2217/fnl-2018-0040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutations in the Fragile X Mental Retardation 1 (FMR1) gene create a spectrum of developmental disorders in children in addition to neurodegenerative problems in older populations. Two types of mutations are recognized in the FMR1 gene. The full mutation (>200 CGG repeats) in the FMR1 gene leads to Fragile X Syndrome which is the most common inherited cause of intellectual disability and autism, while the premutation (55 to 200 CGG repeats) identified among carriers leads to a range of problems linked to elevated levels of the FMR1 mRNA leading to mRNA toxicity and occasionally mildly deficient FMRP levels. Two disorders among premutation carriers have been recognized namely: the Fragile X-associated Primary Ovarian Insufficiency (FXPOI) and Fragile X-associated Tremor/Ataxia Syndrome (FXTAS). Recently, in order to recognize a group of associated disorders commonly found in premutation carriers and extensively reported in co-morbidities studies, a new distinctive name was proposed: Fragile X-associated Neuropsychiatric Disorders (FXAND). This paper will present a case report of a female premutation carrier who has encountered predominantly psychiatric problems, but also chronic pain and sleep disturbances consistent with FXAND.
Collapse
Affiliation(s)
- Maria Melinda Tan
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA, USA
- MedMom Institute for Human Development, Pasig City, Philippines
- Department of Psychology, University of the Philippines Diliman, Quezon City, Philippines
| | - Jeanne Barbara Dy
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA, USA
- MedMom Institute for Human Development, Pasig City, Philippines
- Department of Pediatrics, The Medical City, Ortigas Avenue, Pasig City, Philippines
| | - Maria Jimena Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
13
|
Cerdeño VM, Hong T, Amina S, Lechpammer M, Ariza J, Tassone F, Noctor SC, Hagerman P, Hagerman R. Microglial cell activation and senescence are characteristic of the pathology FXTAS. Mov Disord 2018; 33:1887-1894. [PMID: 30537011 PMCID: PMC6413690 DOI: 10.1002/mds.27553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/15/2018] [Accepted: 09/27/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder associated with premutation alleles of the FMR1 gene. Expansions of more than 200 CGG repeats give rise to fragile X syndrome, the most common inherited form of cognitive impairment. Fragile X-associated tremor/ataxia syndrome is characterized by cerebellar tremor and ataxia, and the presence of ubiquitin-positive inclusions in neurons and astrocytes. It has been previously suggested that fragile X-associated tremor/ataxia syndrome is associated with an inflammatory state based on signs of oxidative stress-mediated damage and iron deposition. OBJECTIVE Determine whether the pathology of fragile X-associated tremor/ataxia syndrome involves microglial activation and an inflammatory state. METHODS Using ionized calcium binding adaptor molecule 1 and cluster differentiation 68 antibodies to label microglia, we examined the number and state of activation of microglial cells in the putamen of 13 fragile X-associated tremor/ataxia syndrome and 9 control postmortem cases. RESULTS Nearly half of fragile X-associated tremor/ataxia syndrome cases (6 of 13) presented with dystrophic senescent microglial cells. In the remaining fragile X-associated tremor/ataxia syndrome cases (7 of 13), the number of microglial cells and their activation state were increased compared to controls. CONCLUSIONS The presence of senescent microglial cells in half of fragile X-associated tremor/ataxia syndrome cases suggests that this indicator could be used, together with the presence of intranuclear inclusions and the presence of iron deposits, as a biomarker to aid in the postmortem diagnosis of fragile X-associated tremor/ataxia syndrome. An increased number and activation indicate that microglial cells play a role in the inflammatory state present in the fragile X-associated tremor/ataxia syndrome brain. Anti-inflammatory treatment of patients with fragile X-associated tremor/ataxia syndrome may be indicated to slow neurodegeneration. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Verónica Martínez Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California, USA
- MIND Institute, UC Davis Medical Center, Sacramento, California, USA
| | - Tiffany Hong
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California, USA
| | - Sarwat Amina
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California, USA
- MIND Institute, UC Davis Medical Center, Sacramento, California, USA
| | - Mirna Lechpammer
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California, USA
| | - Jeanelle Ariza
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California, USA
| | - Flora Tassone
- MIND Institute, UC Davis Medical Center, Sacramento, California, USA
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine Sacramento, California, USA
| | - Stephen C. Noctor
- MIND Institute, UC Davis Medical Center, Sacramento, California, USA
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine Sacramento, California, USA
| | - Paul Hagerman
- MIND Institute, UC Davis Medical Center, Sacramento, California, USA
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine Sacramento, California, USA
| | - Randi Hagerman
- MIND Institute, UC Davis Medical Center, Sacramento, California, USA
- Department of Pediatrics, UC Davis School of Medicine Sacramento, California, USA
| |
Collapse
|
14
|
Hagerman RJ, Protic D, Rajaratnam A, Salcedo-Arellano MJ, Aydin EY, Schneider A. Fragile X-Associated Neuropsychiatric Disorders (FXAND). Front Psychiatry 2018; 9:564. [PMID: 30483160 PMCID: PMC6243096 DOI: 10.3389/fpsyt.2018.00564] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by the full mutation (>200 CGG repeats) in the Fragile X Mental Retardation 1 (FMR1) gene. It is the most common inherited cause of intellectual disability (ID) and autism. This review focuses on neuropsychiatric disorders frequently experienced by premutation carriers with 55 to 200 CGG repeats and the pathophysiology involves elevated FMR1 mRNA levels, which is different from the absence or deficiency of fragile X mental retardation protein (FMRP) seen in FXS. Neuropsychiatric disorders are the most common problems associated with the premutation, and they affect approximately 50% of individuals with 55 to 200 CGG repeats in the FMR1 gene. Neuropsychiatric disorders in children with the premutation include anxiety, ADHD, social deficits, or autism spectrum disorders (ASD). In adults with the premutation, anxiety and depression are the most common problems, although obsessive compulsive disorder, ADHD, and substance abuse are also common. These problems are often exacerbated by chronic fatigue, chronic pain, fibromyalgia, autoimmune disorders and sleep problems, which are also associated with the premutation. Here we review the clinical studies, neuropathology and molecular underpinnings of RNA toxicity associated with the premutation. We also propose the name Fragile X-associated Neuropsychiatric Disorders (FXAND) in an effort to promote research and the use of fragile X DNA testing to enhance recognition and treatment for these disorders.
Collapse
Affiliation(s)
- Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Dragana Protic
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Akash Rajaratnam
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Maria J. Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Elber Yuksel Aydin
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
15
|
Perche O, Felgerolle C, Ardourel M, Bazinet A, Pâris A, Rossignol R, Meyer-Dilhet G, Mausset-Bonnefont AL, Hébert B, Laurenceau D, Montécot-Dubourg C, Menuet A, Bizot JC, Pichon J, Ranchon-Cole I, Briault S. Early Retinal Defects in Fmr1-/y Mice: Toward a Critical Role of Visual Dys-Sensitivity in the Fragile X Syndrome Phenotype? Front Cell Neurosci 2018; 12:96. [PMID: 29681800 PMCID: PMC5897671 DOI: 10.3389/fncel.2018.00096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/22/2018] [Indexed: 12/29/2022] Open
Abstract
Fragile X Syndrome (FXS) is caused by a deficiency in Fragile X Mental Retardation Protein (FMRP) leading to global sensorial abnormalities, among which visual defects represent a critical part. These visual defects are associated with cerebral neuron immaturity especially in the primary visual cortex. However, we recently demonstrated that retinas of adult Fmr1−/y mice, the FXS murine model, present molecular, cellular and functional alterations. However, no data are currently available on the evolution pattern of such defects. As retinal stimulation through Eye Opening (EO) is a crucial signal for the cerebral visual system maturation, we questioned the precocity of molecular and functional retinal phenotype. To answer this question, we studied the retinal molecular phenotype of Fmr1−/y mice before EO until adult age and the consequences of the retinal loss of Fmrp on retinal function in young and adult mice. We showed that retinal molecular defects are present before EO and remain stable at adult age, leading to electrophysiological impairments without any underlying structural changes. We underlined that loss of Fmrp leads to a wide range of defects in the retina, settled even before EO. Our work demonstrates a critical role of the sensorial dysfunction in the Fmr1−/y mice overall phenotype, and provides evidence that altered peripheral perception is a component of the sensory processing defect in FXS conditions.
Collapse
Affiliation(s)
- Olivier Perche
- Genetic Department, Centre Hospitalier Régional d'Orléans, Orléans, France.,UMR7355, Immunologie et Neurogénétique Expérimentales et Moléculaires (INEM), Centre National de la Recherche Scientifique, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Chloé Felgerolle
- UMR7355, Immunologie et Neurogénétique Expérimentales et Moléculaires (INEM), Centre National de la Recherche Scientifique, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Maryvonne Ardourel
- UMR7355, Immunologie et Neurogénétique Expérimentales et Moléculaires (INEM), Centre National de la Recherche Scientifique, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Audrey Bazinet
- UMR7355, Immunologie et Neurogénétique Expérimentales et Moléculaires (INEM), Centre National de la Recherche Scientifique, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Arnaud Pâris
- UMR7355, Immunologie et Neurogénétique Expérimentales et Moléculaires (INEM), Centre National de la Recherche Scientifique, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Rafaëlle Rossignol
- UMR7355, Immunologie et Neurogénétique Expérimentales et Moléculaires (INEM), Centre National de la Recherche Scientifique, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Géraldine Meyer-Dilhet
- UMR7355, Immunologie et Neurogénétique Expérimentales et Moléculaires (INEM), Centre National de la Recherche Scientifique, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | | | - Betty Hébert
- UMR7355, Immunologie et Neurogénétique Expérimentales et Moléculaires (INEM), Centre National de la Recherche Scientifique, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - David Laurenceau
- Genetic Department, Centre Hospitalier Régional d'Orléans, Orléans, France
| | - Céline Montécot-Dubourg
- UMR7355, Immunologie et Neurogénétique Expérimentales et Moléculaires (INEM), Centre National de la Recherche Scientifique, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Arnaud Menuet
- UMR7355, Immunologie et Neurogénétique Expérimentales et Moléculaires (INEM), Centre National de la Recherche Scientifique, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | | | - Jacques Pichon
- UMR7355, Immunologie et Neurogénétique Expérimentales et Moléculaires (INEM), Centre National de la Recherche Scientifique, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Isabelle Ranchon-Cole
- Laboratory of Sensorial Biophysical, INSERM UMR1107 Equipe Biophysique Neurosensorielle, University of Clermont 1, Clermont-Ferrand, France
| | - Sylvain Briault
- Genetic Department, Centre Hospitalier Régional d'Orléans, Orléans, France.,UMR7355, Immunologie et Neurogénétique Expérimentales et Moléculaires (INEM), Centre National de la Recherche Scientifique, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| |
Collapse
|
16
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Napoli E, Song G, Wong S, Hagerman R, Giulivi C. Altered Bioenergetics in Primary Dermal Fibroblasts from Adult Carriers of the FMR1 Premutation Before the Onset of the Neurodegenerative Disease Fragile X-Associated Tremor/Ataxia Syndrome. THE CEREBELLUM 2017; 15:552-64. [PMID: 27089882 DOI: 10.1007/s12311-016-0779-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late onset neurodegenerative disorder, characterized by tremors, ataxia, impaired coordination, and cognitive decline. While all FXTAS individuals are carriers of a 55-200 CGG expansion at the 5'-UTR of the fragile X mental retardation gene (FMR1), also known as premutation, not all carriers develop FXTAS symptoms and some display other types of psychological/emotional disorders (e.g., autism, anxiety). The goal of this study was to investigate whether the mitochondrial dysfunction previously observed in fibroblasts from older premutation individuals (>60 years) was already present in younger (17-48 years), non-FXTAS-affected carriers and to identify the type and severity of the bioenergetic deficit. Since FXTAS affects mostly males, while females account for a small part of the FXTAS-affected population displaying less severe symptoms, only fibroblasts from males were evaluated in this study. Based on polarographic and enzymatic measurements, a generalized OXPHOS deficit was noted accompanied by increases in the matrix biomarker citrate synthase, oxidative stress (as increased mtDNA copy number and deletions), and mitochondrial network disruption/disorganization. Some of the outcomes (ATP-linked oxygen uptake, coupling, citrate synthase activity, and mitochondrial network organization) strongly correlated with the extent of the CGG expansion, with more severe deficits observed in cell lines carrying higher CGG number. Furthermore, mitochondrial outcomes can identify endophenotypes among carriers and are robust predictors of the premutation diagnosis before the onset of FXTAS, with the potential to be used as markers of prognosis and/or as readouts of pharmacological interventions.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Dr., VetMed 3B, Davis, CA, 95616, USA
| | - Gyu Song
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Dr., VetMed 3B, Davis, CA, 95616, USA
| | - Sarah Wong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Dr., VetMed 3B, Davis, CA, 95616, USA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders Institute (M. I. N. D.), University of California Davis, Sacramento, CA, 95817, USA.,Department of Pediatrics, University of California Medical Center, Sacramento, CA, 95817, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Dr., VetMed 3B, Davis, CA, 95616, USA. .,Medical Investigation of Neurodevelopmental Disorders Institute (M. I. N. D.), University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
18
|
Wang JY, Hessl D, Hagerman RJ, Simon TJ, Tassone F, Ferrer E, Rivera SM. Abnormal trajectories in cerebellum and brainstem volumes in carriers of the fragile X premutation. Neurobiol Aging 2017; 55:11-19. [PMID: 28391068 DOI: 10.1016/j.neurobiolaging.2017.03.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/27/2017] [Accepted: 03/10/2017] [Indexed: 10/19/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder typically affecting male premutation carriers with 55-200 CGG trinucleotide repeat expansions in the FMR1 gene after age 50. The aim of this study was to examine whether cerebellar and brainstem changes emerge during development or aging in late life. We retrospectively analyzed magnetic resonance imaging scans from 322 males (age 8-81 years). Volume changes in the cerebellum and brainstem were contrasted with those in the ventricles and whole brain. Compared to the controls, premutation carriers without FXTAS showed significantly accelerated volume decrease in the cerebellum and whole brain, flatter inverted U-shaped trajectory of the brainstem, and larger ventricles. Compared to both older controls and premutation carriers without FXTAS, carriers with FXTAS exhibited significant volume decrease in the cerebellum and whole brain and accelerated volume decrease in the brainstem. We therefore conclude that cerebellar and brainstem volumes were likely affected during both development and progression of neurodegeneration in premutation carriers, suggesting that interventions may need to start early in adulthood to be most effective.
Collapse
Affiliation(s)
- Jun Yi Wang
- Center for Mind and Brain, University of California-Davis, Davis, CA, USA.
| | - David Hessl
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California-Davis Medical Center, Sacramento, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California-Davis, School of Medicine, Sacramento, CA, USA
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California-Davis Medical Center, Sacramento, CA, USA; Department of Pediatrics, University of California-Davis, School of Medicine, Sacramento, CA, USA
| | - Tony J Simon
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California-Davis Medical Center, Sacramento, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California-Davis, School of Medicine, Sacramento, CA, USA
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California-Davis Medical Center, Sacramento, CA, USA; Department of Biochemistry and Molecular Medicine, University of California-Davis, School of Medicine, Sacramento, CA, USA
| | - Emilio Ferrer
- Department of Psychology, University of California-Davis, Davis, CA, USA
| | - Susan M Rivera
- Center for Mind and Brain, University of California-Davis, Davis, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California-Davis Medical Center, Sacramento, CA, USA; Department of Psychology, University of California-Davis, Davis, CA, USA
| |
Collapse
|
19
|
Ariza J, Rogers H, Hartvigsen A, Snell M, Dill M, Judd D, Hagerman P, Martínez-Cerdeño V. Iron accumulation and dysregulation in the putamen in fragile X-associated tremor/ataxia syndrome. Mov Disord 2017; 32:585-591. [PMID: 28233916 DOI: 10.1002/mds.26902] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/07/2016] [Accepted: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Fragile X-associated tremor/ataxia syndrome is an adult-onset disorder associated with premutation alleles of the FMR1 gene. This disorder is characterized by progressive action tremor, gait ataxia, and cognitive decline. Fragile X-associated tremor/ataxia syndrome pathology includes dystrophic white matter and intranuclear inclusions in neurons and astrocytes. We previously demonstrated that the transport of iron into the brain is altered in fragile X-associated tremor/ataxia syndrome; therefore, we also expect an alteration of iron metabolism in brain areas related to motor control. Iron is essential for cell metabolism, but uncomplexed iron leads to oxidative stress and contributes to the development of neurodegenerative diseases. We investigated a potential iron modification in the putamen - a structure that participates in motor learning and performance - in fragile X-associated tremor/ataxia syndrome. METHODS We used samples of putamen obtained from 9 fragile X-associated tremor/ataxia syndrome and 9 control cases to study iron localization using Perl's method, and iron-binding proteins using immunostaining. RESULTS We found increased iron deposition in neuronal and glial cells in the putamen in fragile X-associated tremor/ataxia syndrome. We also found a generalized decrease in the amount of the iron-binding proteins transferrin and ceruloplasmin, and decreased number of neurons and glial cells that contained ceruloplasmin. However, we found increased levels of iron, transferrin, and ceruloplasmin in microglial cells, indicating an attempt by the immune system to remove the excess iron. CONCLUSIONS Overall, found a deficit in proteins that eliminate extra iron from the cells with a concomitant increase in the deposit of cellular iron in the putamen in Fragile X-associated tremor/ataxia syndrome. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jeanelle Ariza
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Hailee Rogers
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Anna Hartvigsen
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Melissa Snell
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Michael Dill
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Derek Judd
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Paul Hagerman
- MIND Institute, UC Davis Medical Center, Sacramento, California.,Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California.,MIND Institute, UC Davis Medical Center, Sacramento, California
| |
Collapse
|
20
|
Seritan AL, Kim K, Benjamin I, Seritan I, Hagerman RJ. Risk Factors for Cognitive Impairment in Fragile X-Associated Tremor/Ataxia Syndrome. J Geriatr Psychiatry Neurol 2016; 29:328-337. [PMID: 27647792 PMCID: PMC5357600 DOI: 10.1177/0891988716666379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disease with motor, psychiatric, and cognitive manifestations that occurs in carriers of the fragile X mental retardation 1 ( FMR1) gene premutations. This was a retrospective chart review of 196 individuals (127 men and 69 women) with FXTAS. Forty-six (23%) participants were cognitively impaired, of whom 19 (10%) had dementia. Risk factors for dementia were examined (CGG repeat size; alcohol, benzodiazepine, and opioid use; diabetes; hyperlipidemia; hypertension; hypothyroidism; obesity; sleep apnea; surgeries with general anesthesia; depression; family history of dementia). Thirteen individuals with FXTAS and dementia were then compared to 13 cognitively intact individuals matched on age, gender, and FXTAS stage. CGG repeat size was significantly higher (mean = 98.5, standard deviation [SD] = 22.2) in the dementia group, compared to the cognitively intact group (mean = 81.6, SD = 11.5; P = .0256). These results show that CGG repeat size is a risk factor for FXTAS dementia.
Collapse
Affiliation(s)
- Andreea L. Seritan
- Department of Psychiatry, University of California, San Francisco, San Francisco, California
| | - Kyoungmi Kim
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, Davis California,Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, Sacramento, California
| | | | - Ioana Seritan
- University of California, Berkeley, Berkeley, California
| | - Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, Sacramento, California,Department of Pediatrics, University of California, Davis Medical Center, Sacramento, California
| |
Collapse
|
21
|
Foote M, Arque G, Berman RF, Santos M. Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS) Motor Dysfunction Modeled in Mice. CEREBELLUM (LONDON, ENGLAND) 2016; 15:611-22. [PMID: 27255703 PMCID: PMC5014696 DOI: 10.1007/s12311-016-0797-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that affects some carriers of the fragile X premutation (PM). In PM carriers, there is a moderate expansion of a CGG trinucleotide sequence (55-200 repeats) in the fragile X gene (FMR1) leading to increased FMR1 mRNA and small to moderate decreases in the fragile X mental retardation protein (FMRP) expression. The key symptoms of FXTAS include cerebellar gait ataxia, kinetic tremor, sensorimotor deficits, neuropsychiatric changes, and dementia. While the specific trigger(s) that causes PM carriers to progress to FXTAS pathogenesis remains elusive, the use of animal models has shed light on the underlying neurobiology of the altered pathways involved in disease development. In this review, we examine the current use of mouse models to study PM and FXTAS, focusing on recent advances in the field. Specifically, we will discuss the construct, face, and predictive validities of these PM mouse models, the insights into the underlying disease mechanisms, and potential treatments.
Collapse
Affiliation(s)
- Molly Foote
- Department of Neurological Surgery, University of California, Davis, CA, USA.
| | - Gloria Arque
- Department of Molecular Neuroscience, Medical University of Vienna, Vienna, Austria
| | - Robert F Berman
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | - Mónica Santos
- Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
22
|
Plasma metabolic profile delineates roles for neurodegeneration, pro-inflammatory damage and mitochondrial dysfunction in the FMR1 premutation. Biochem J 2016; 473:3871-3888. [PMID: 27555610 DOI: 10.1042/bcj20160585] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/23/2016] [Indexed: 12/19/2022]
Abstract
Carriers of premutation CGG expansions in the fragile X mental retardation 1 (FMR1) gene are at higher risk of developing a late-onset neurodegenerative disorder named Fragile X-associated tremor ataxia syndrome (FXTAS). Given that mitochondrial dysfunction has been identified in fibroblasts, PBMC and brain samples from carriers as well as in animal models of the premutation and that mitochondria are at the center of intermediary metabolism, the aim of the present study was to provide a complete view of the metabolic pattern by uncovering plasma metabolic perturbations in premutation carriers. To this end, metabolic profiles were evaluated in plasma from 23 premutation individuals and 16 age- and sex-matched controls. Among the affected pathways, mitochondrial dysfunction was associated with a Warburg-like shift with increases in lactate levels and altered Krebs' intermediates, neurotransmitters, markers of neurodegeneration and increases in oxidative stress-mediated damage to biomolecules. The number of CGG repeats correlated with a subset of plasma metabolites, which are implicated not only in mitochondrial disorders but also in other neurological diseases, such as Parkinson's, Alzheimer's and Huntington's diseases. For the first time, the identified pathways shed light on disease mechanisms contributing to morbidity of the premutation, with the potential of assessing metabolites in longitudinal studies as indicators of morbidity or disease progression, especially at the early preclinical stages.
Collapse
|
23
|
Giulivi C, Napoli E, Tassone F, Halmai J, Hagerman R. Plasma Biomarkers for Monitoring Brain Pathophysiology in FMR1 Premutation Carriers. Front Mol Neurosci 2016; 9:71. [PMID: 27570505 PMCID: PMC4981605 DOI: 10.3389/fnmol.2016.00071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/29/2016] [Indexed: 12/12/2022] Open
Abstract
Premutation carriers have a 55–200 CGG expansion in the fragile X mental retardation 1 (FMR1) gene. Currently, 1.5 million individuals are affected in the United States, and carriers are at risk of developing the late-onset neurodegenerative disorder Fragile X-associated tremor ataxia syndrome (FXTAS). Limited efforts have been made to develop new methods for improved early patient monitoring, treatment response, and disease progression. To this end, plasma metabolomic phenotyping was obtained for 23 premutation carriers and 16 age- and sex-matched controls. Three biomarkers, phenylethylamine normalized by either aconitate or isocitrate and oleamide normalized by isocitrate, exhibited excellent model performance. The lower phenylethylamine and oleamide plasma levels in carriers may indicate, respectively, incipient nigrostriatal degeneration and higher incidence of substance abuse, anxiety and sleep disturbances. Higher levels of citrate, isocitrate, aconitate, and lactate may reflect deficits in both bioenergetics and neurotransmitter metabolism (Glu, GABA). This study lays important groundwork by defining the potential utility of plasma metabolic profiling to monitor brain pathophysiology in carriers before and during the progression of FXTAS, treatment efficacy and evaluation of side effects.
Collapse
Affiliation(s)
- Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CAUSA; Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Davis, CAUSA
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Davis, CAUSA; Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CAUSA
| | - Julian Halmai
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Davis, CAUSA; Department of Pediatrics, University of California Davis Medical Center, Sacramento, CAUSA
| |
Collapse
|
24
|
Bourgeois JA. Neuropsychiatry of fragile X-premutation carriers with and without fragile X-associated tremor-ataxia syndrome: implications for neuropsychology. Clin Neuropsychol 2016; 30:913-28. [PMID: 27355575 DOI: 10.1080/13854046.2016.1192134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Clinical neuropsychologists benefit from clinical currency in recently ascertained neuropsychiatric illness, such as fragile X premutation (FXPM) disorders. The author reviewed the clinical literature through 2016 for neuropsychiatric phenotypes in FXPM disorders, including patients with fragile X-associated tremor/ataxia syndrome (FXTAS). METHODS A PubMed search using the search terms 'Fragile X,' 'Premutation,' 'Carriers,' 'Psychiatric,' 'Dementia,' 'Mood,' and 'Anxiety' for citations in the clinical literature through 2016 was reviewed for studies specifically examining the neuropsychiatric phenotype in FXPM patients. The relevant articles were classified according to specific neuropsychiatric syndromes, including child onset, adult onset with and without FXTAS, as well as common systemic comorbidities in FXPM patients. RESULTS Eighty-six articles were reviewed for the neuropsychiatric and other phenotypes in FXPM patients. The neuropsychiatric phenotype in FXPM patients is distinct from that of full mutation (Fragile X Syndrome) patients. FXTAS is associated with a specific cortical-subcortical major or mild neurocognitive disorder (NCD). CONCLUSIONS FXPM patients are at risk for neuropsychiatric illness. In addition, FXPM patients are at risk for other systemic conditions that should raise suspicion for FXPM-associated illnesses. Clinicians should consider a diagnosis of FXPM-associated neuropsychiatric illness when patients with specific clinical scenarios are encountered; especially in patient pedigrees consistent with a typical (often multigenerational) presentation of fragile X-associated conditions, confirmatory genetic testing should be considered. Clinical management should take into account the psychological challenges of a multigenerational genetic neuropsychiatric illness with a variable CNS and systemic clinical phenotype.
Collapse
Affiliation(s)
- James A Bourgeois
- a Department of Psychiatry , University of California San Francisco School of Medicine , San Francisco , CA , USA
| |
Collapse
|
25
|
Stepniak B, Kästner A, Poggi G, Mitjans M, Begemann M, Hartmann A, Van der Auwera S, Sananbenesi F, Krueger-Burg D, Matuszko G, Brosi C, Homuth G, Völzke H, Benseler F, Bagni C, Fischer U, Dityatev A, Grabe HJ, Rujescu D, Fischer A, Ehrenreich H. Accumulated common variants in the broader fragile X gene family modulate autistic phenotypes. EMBO Mol Med 2016; 7:1565-79. [PMID: 26612855 PMCID: PMC4693501 DOI: 10.15252/emmm.201505696] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fragile X syndrome (FXS) is mostly caused by a CGG triplet expansion in the fragile X mental retardation 1 gene (FMR1). Up to 60% of affected males fulfill criteria for autism spectrum disorder (ASD), making FXS the most frequent monogenetic cause of syndromic ASD. It is unknown, however, whether normal variants (independent of mutations) in the fragile X gene family (FMR1, FXR1, FXR2) and in FMR2 modulate autistic features. Here, we report an accumulation model of 8 SNPs in these genes, associated with autistic traits in a discovery sample of male patients with schizophrenia (N = 692) and three independent replicate samples: patients with schizophrenia (N = 626), patients with other psychiatric diagnoses (N = 111) and a general population sample (N = 2005). For first mechanistic insight, we contrasted microRNA expression in peripheral blood mononuclear cells of selected extreme group subjects with high‐ versus low‐risk constellation regarding the accumulation model. Thereby, the brain‐expressed miR‐181 species emerged as potential “umbrella regulator”, with several seed matches across the fragile X gene family and FMR2. To conclude, normal variation in these genes contributes to the continuum of autistic phenotypes.
Collapse
Affiliation(s)
- Beata Stepniak
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anne Kästner
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Giulia Poggi
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Marina Mitjans
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Martin Begemann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Annette Hartmann
- Department of Psychiatry and Psychotherapy, University of Halle, Halle, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Farahnaz Sananbenesi
- Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Dilja Krueger-Burg
- Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Gabriela Matuszko
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Cornelia Brosi
- Department of Biochemistry, University of Würzburg, Würzburg, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Fritz Benseler
- Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Claudia Bagni
- KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, Leuven, Belgium Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Utz Fischer
- Department of Biochemistry, University of Würzburg, Würzburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Hans-Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, University of Halle, Halle, Germany
| | - Andre Fischer
- Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany Department of Psychiatry & Psychotherapy, University of Göttingen, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
26
|
Napoli E, Ross-Inta C, Song G, Wong S, Hagerman R, Gane LW, Smilowitz JT, Tassone F, Giulivi C. Premutation in the Fragile X Mental Retardation 1 (FMR1) Gene Affects Maternal Zn-milk and Perinatal Brain Bioenergetics and Scaffolding. Front Neurosci 2016; 10:159. [PMID: 27147951 PMCID: PMC4835505 DOI: 10.3389/fnins.2016.00159] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
Fragile X premutation alleles have 55–200 CGG repeats in the 5′ UTR of the FMR1 gene. Altered zinc (Zn) homeostasis has been reported in fibroblasts from >60 years old premutation carriers, in which Zn supplementation significantly restored Zn-dependent mitochondrial protein import/processing and function. Given that mitochondria play a critical role in synaptic transmission, brain function, and cognition, we tested FMRP protein expression, brain bioenergetics, and expression of the Zn-dependent synaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (Shank3) in a knock-in (KI) premutation mouse model with 180 CGG repeats. Mitochondrial outcomes correlated with FMRP protein expression (but not FMR1 gene expression) in KI mice and human fibroblasts from carriers of the pre- and full-mutation. Significant deficits in brain bioenergetics, Zn levels, and Shank3 protein expression were observed in the Zn-rich regions KI hippocampus and cerebellum at PND21, with some of these effects lasting into adulthood (PND210). A strong genotype × age interaction was observed for most of the outcomes tested in hippocampus and cerebellum, whereas in cortex, age played a major role. Given that the most significant effects were observed at the end of the lactation period, we hypothesized that KI milk might have a role at compounding the deleterious effects on the FMR1 genetic background. A higher gene expression of ZnT4 and ZnT6, Zn transporters abundant in brain and lactating mammary glands, was observed in the latter tissue of KI dams. A cross-fostering experiment allowed improving cortex bioenergetics in KI pups nursing on WT milk. Conversely, WT pups nursing on KI milk showed deficits in hippocampus and cerebellum bioenergetics. A highly significant milk type × genotype interaction was observed for all three-brain regions, being cortex the most influenced. Finally, lower milk-Zn levels were recorded in milk from lactating women carrying the premutation as well as other Zn-related outcomes (Zn-dependent alkaline phosphatase activity and lactose biosynthesis—whose limiting step is the Zn-dependent β-1,4-galactosyltransferase). In premutation carriers, altered Zn homeostasis, brain bioenergetics and Shank3 levels could be compounded by Zn-deficient milk, increasing the risk of developing emotional and neurological/cognitive problems and/or FXTAS later in life.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine Davis, CA, USA
| | - Catherine Ross-Inta
- Department of Molecular Biosciences, School of Veterinary Medicine Davis, CA, USA
| | - Gyu Song
- Department of Molecular Biosciences, School of Veterinary Medicine Davis, CA, USA
| | - Sarah Wong
- Department of Molecular Biosciences, School of Veterinary Medicine Davis, CA, USA
| | - Randi Hagerman
- Medical Investigations of Neurodevelopmental Disorders Institute, University of California, DavisDavis, CA, USA; Department of Pediatrics, University of California Davis Medical CenterSacramento, CA, USA
| | - Louise W Gane
- Medical Investigations of Neurodevelopmental Disorders Institute, University of California, Davis Davis, CA, USA
| | - Jennifer T Smilowitz
- Department of Food Science and Technology and Foods for Health Institute, University of California, Davis Davis, CA, USA
| | - Flora Tassone
- Medical Investigations of Neurodevelopmental Disorders Institute, University of California, DavisDavis, CA, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, DavisDavis, CA, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary MedicineDavis, CA, USA; Medical Investigations of Neurodevelopmental Disorders Institute, University of California, DavisDavis, CA, USA
| |
Collapse
|
27
|
Martínez-Cerdeño V, Lechpammer M, Lott A, Schneider A, Hagerman R. Fragile X-Associated Tremor/Ataxia Syndrome in a Man in His 30s. JAMA Neurol 2015; 72:1070-3. [PMID: 26368352 DOI: 10.1001/jamaneurol.2015.1138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, University of California-Davis2Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento3MIND Institute, University of California-Davis Medical Center
| | - Mirna Lechpammer
- Department of Pathology and Laboratory Medicine, University of California-Davis
| | - Aisha Lott
- MIND Institute, University of California-Davis Medical Center
| | - Andrea Schneider
- MIND Institute, University of California-Davis Medical Center4Department of Pediatrics, University of California-Davis Medical Center
| | - Randi Hagerman
- MIND Institute, University of California-Davis Medical Center4Department of Pediatrics, University of California-Davis Medical Center
| |
Collapse
|
28
|
Muzar Z, Lozano R, Schneider A, Adams PE, Faradz SMH, Tassone F, Hagerman RJ. Methadone use in a male with the FMRI premutation and FXTAS. Am J Med Genet A 2015; 167:1354-9. [PMID: 25900641 DOI: 10.1002/ajmg.a.37030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/08/2015] [Indexed: 01/18/2023]
Abstract
The fragile X-associated tremor ataxia syndrome (FXTAS) is caused by the premutation in FMR1 gene. Recent reports of environmental toxins appear to worsen the progression of FXTAS. Here we present a case of male adult with FXTAS and a long history of methadone use. The patient shows a faster progression in both symptoms of disease and MRI changes compared to what is typically seen in FXTAS. There has been no research regarding the role of narcotics in onset, progression, and severity of FXTAS symptoms. However, research has shown that narcotics can have a negative impact on several neurodegenerative diseases, and we hypothesize that in this particular case, methadone may have contributed to a faster progression of FXTAS as well as exacerbating white matter disease through RNA toxicity seen in premutation carriers.
Collapse
Affiliation(s)
- Zukhrofi Muzar
- Center for Biomedical Research, Faculty of Medicine Diponegoro University Semarang, Central Java, Indonesia.,Medical Investigation of Neurodevelopmental Disorders MIND Institute, University of California Davis Medical Center, Sacramento, California
| | - Reymundo Lozano
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, University of California Davis Medical Center, Sacramento, California.,Department of Pediatrics, UC Davis Medical Center, Sacramento, California
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, University of California Davis Medical Center, Sacramento, California.,Department of Pediatrics, UC Davis Medical Center, Sacramento, California
| | - Patrick E Adams
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, University of California Davis Medical Center, Sacramento, California.,Department of Pediatrics, UC Davis Medical Center, Sacramento, California
| | - Sultana M H Faradz
- Center for Biomedical Research, Faculty of Medicine Diponegoro University Semarang, Central Java, Indonesia
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, University of California Davis Medical Center, Sacramento, California.,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Davis, Califonia
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, University of California Davis Medical Center, Sacramento, California.,Department of Pediatrics, UC Davis Medical Center, Sacramento, California
| |
Collapse
|
29
|
Ariza J, Steward C, Rueckert F, Widdison M, Coffman R, Afjei A, Noctor SC, Hagerman R, Hagerman P, Martínez-Cerdeño V. Dysregulated iron metabolism in the choroid plexus in fragile X-associated tremor/ataxia syndrome. Brain Res 2015; 1598:88-96. [PMID: 25498860 PMCID: PMC4340768 DOI: 10.1016/j.brainres.2014.11.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/25/2014] [Accepted: 11/27/2014] [Indexed: 11/30/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder associated with premutation alleles of the FMR1 gene that is characterized by progressive action tremor, gait ataxia, and cognitive decline. Recent studies of mitochondrial dysfunction in FXTAS have suggested that iron dysregulation may be one component of disease pathogenesis. We tested the hypothesis that iron dysregulation is part of the pathogenic process in FXTAS. We analyzed postmortem choroid plexus from FXTAS and control subjects, and found that in FXTAS iron accumulated in the stroma, transferrin levels were decreased in the epithelial cells, and transferrin receptor 1 distribution was shifted from the basolateral membrane (control) to a predominantly intracellular location (FXTAS). In addition, ferroportin and ceruloplasmin were markedly decreased within the epithelial cells. These alterations have implications not only for understanding the pathophysiology of FXTAS, but also for the development of new clinical treatments that may incorporate selective iron chelation.
Collapse
Affiliation(s)
- Jeanelle Ariza
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA; Department of Pathology and Laboratory Medicine, University of California, Davis 4400 V Street, Sacramento, CA 95817, USA
| | - Craig Steward
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Flora Rueckert
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Matt Widdison
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Robert Coffman
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Atiyeh Afjei
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Stephen C Noctor
- Department of Psychiatry, University of California, Davis, 2805 50th St., Sacramento, CA 95817, USA; MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA
| | - Randi Hagerman
- MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA; Department of Pediatrics, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA
| | - Paul Hagerman
- MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA; Department of Biochemistry and Molecular Medicine, University of California, Davis, One Shields Avenue, CA 95616, USA
| | - Verónica Martínez-Cerdeño
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California, Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA; Department of Pathology and Laboratory Medicine, University of California, Davis 4400 V Street, Sacramento, CA 95817, USA; MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA.
| |
Collapse
|
30
|
Muzar Z, Adams PE, Schneider A, Hagerman RJ, Lozano R. Addictive substances may induce a rapid neurological deterioration in fragile X-associated tremor ataxia syndrome: A report of two cases. Intractable Rare Dis Res 2014; 3:162-5. [PMID: 25606366 PMCID: PMC4298646 DOI: 10.5582/irdr.2014.01023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/28/2014] [Indexed: 12/13/2022] Open
Abstract
A debilitating late-onset disorder of the premutation in the FMR1 gene is the neurodegenerative disorder fragile X-associated tremor ataxia syndrome (FXTAS). We report two patients with FXTAS who have a history of substance abuse (opiates, alcohol, and cocaine) which may have exacerbated their rapid neurological deterioration with FXTAS. There has been no case report regarding the role of substance abuse in onset, progression, and severity of FXTAS symptoms. However, research has shown that substance abuse can have a negative impact on several neurodegenerative diseases, and we propose that in these cases, substance abuse contributed to a faster progression of FXTAS as well as exacerbated white matter disease.
Collapse
Affiliation(s)
- Zukhrofi Muzar
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, Sacramento, CA, USA
| | - Patrick E. Adams
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, Sacramento, CA, USA
- Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, Sacramento, CA, USA
- Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
| | - Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, Sacramento, CA, USA
- Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
- Address correspondence to: Dr. Randi J. Hagerman, MIND Institute, UC Davis Health System, 2825 50th Street, Sacramento, CA 95817, USA. E-mail:
| | - Reymundo Lozano
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, Sacramento, CA, USA
- Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
31
|
Qin M, Huang T, Liu Z, Kader M, Burlin T, Xia Z, Zeidler Z, Hukema RK, Smith CB. Cerebral protein synthesis in a knockin mouse model of the fragile X premutation. ASN Neuro 2014; 6:6/5/1759091414551957. [PMID: 25290064 PMCID: PMC4187003 DOI: 10.1177/1759091414551957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The (CGG)n-repeat in the 5′-untranslated region of the fragile X mental retardation gene (FMR1) gene is polymorphic and may become unstable on transmission to the next generation. In fragile X syndrome, CGG repeat lengths exceed 200, resulting in silencing of FMR1 and absence of its protein product, fragile X mental retardation protein (FMRP). CGG repeat lengths between 55 and 200 occur in fragile X premutation (FXPM) carriers and have a high risk of expansion to a full mutation on maternal transmission. FXPM carriers have an increased risk for developing progressive neurodegenerative syndromes and neuropsychological symptoms. FMR1 mRNA levels are elevated in FXPM, and it is thought that clinical symptoms might be caused by a toxic gain of function due to elevated FMR1 mRNA. Paradoxically, FMRP levels decrease moderately with increasing CGG repeat length in FXPM. Lowered FMRP levels may also contribute to the appearance of clinical problems. We previously reported increases in regional rates of cerebral protein synthesis (rCPS) in the absence of FMRP in an Fmr1 knockout mouse model and in a FXPM knockin (KI) mouse model with 120 to 140 CGG repeats in which FMRP levels are profoundly reduced (80%–90%). To explore whether the concentration of FMRP contributes to the rCPS changes, we measured rCPS in another FXPM KI model with a similar CGG repeat length and a 50% reduction in FMRP. In all 24 brain regions examined, rCPS were unaffected. These results suggest that even with 50% reductions in FMRP, normal protein synthesis rates are maintained.
Collapse
Affiliation(s)
- Mei Qin
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Tianjian Huang
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Zhonghua Liu
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Michael Kader
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Burlin
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Zengyan Xia
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Zachary Zeidler
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Carolyn B Smith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Galloway JN, Shaw C, Yu P, Parghi D, Poidevin M, Jin P, Nelson DL. CGG repeats in RNA modulate expression of TDP-43 in mouse and fly models of fragile X tremor ataxia syndrome. Hum Mol Genet 2014; 23:5906-15. [PMID: 24986919 DOI: 10.1093/hmg/ddu314] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Determining the molecular mechanism(s) leading to Purkinje neuron loss in the neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS) is limited by the complex morphology of this cell type. Purkinje neurons are notoriously difficult to isolate and maintain in culture presenting considerable difficultly to identify molecular changes in response to expanded CGG repeat (rCGG)-containing mRNA that induces neurotoxicity in FXTAS. Several studies have uncovered a number of RNA-binding proteins involved in translation that aberrantly interact with the CGG-containing RNA; however, whether these interactions alter the translational profile of cells has not been investigated. Here we employ bacTRAP translational profiling to demonstrate that Purkinje neurons ectopically expressing 90 CGG repeats exhibit a dramatic change in their translational profile even prior to the onset of rCGG-induced phenotypes. This approach identified ∼500 transcripts that are differentially associated with ribosomes in r(CGG)₉₀-expressing mice. Functional annotation cluster analysis revealed broad ontologies enriched in the r(CGG)₉₀ list, including RNA binding and response to stress. Intriguingly, a transcript for the Tardbp gene, implicated in a number of other neurodegenerative disorders, exhibits altered association with ribosomes in the presence of r(CGG)₉₀ repeats. We therefore tested and showed that reduced association of Tardbp mRNA with the ribosomes results in a loss of TDP-43 protein expression in r(CGG)₉₀-expressing Purkinje neurons. Furthermore, we showed that TDP-43 could modulate the rCGG repeat-mediated toxicity in a Drosophila model that we developed previously. These findings together suggest that translational dysregulation may be an underlying mechanism of rCGG-induced neurotoxicity in FXTAS.
Collapse
Affiliation(s)
| | - Chad Shaw
- Department of Human and Molecular Genetics and
| | - Peng Yu
- Department of Human and Molecular Genetics and
| | - Deena Parghi
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA and
| | - Mickael Poidevin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David L Nelson
- Interdepartmental Program in Cell and Molecular Biology, Department of Human and Molecular Genetics and
| |
Collapse
|
33
|
Wong LM, Goodrich-Hunsaker NJ, McLennan Y, Tassone F, Zhang M, Rivera SM, Simon TJ. Eye movements reveal impaired inhibitory control in adult male fragile X premutation carriers asymptomatic for FXTAS. Neuropsychology 2014; 28:571-584. [PMID: 24773414 DOI: 10.1037/neu0000066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Fragile X premutation carriers (fXPCs) have an expansion of 55-200 CGG repeats in the FMR1 gene. Male fXPCs are at risk for developing a neurodegenerative motor disorder (FXTAS) often accompanied by inhibitory control impairments, even in fXPCs without motor symptoms. Inhibitory control impairments might precede, and thus indicate elevated risk for motor impairment associated with FXTAS. We tested whether inhibitory impairments are observable in fXPCs by assessing oculomotor performance. METHOD Participants were males aged 18-48 years asymptomatic for FXTAS. FXPCs (n = 21) and healthy age-matched controls (n = 22) performed four oculomotor tasks. In a Fixation task, participants fixated on a central cross and maintained gaze position when a peripheral stimulus appeared. In a Pursuit task, participants maintained gaze on a square moving at constant velocity. In a Prosaccade task, participants fixated on a central cross, then looked at a peripheral stimulus. An Antisaccade task was identical to the Prosaccade task, except participants looked in the direction opposite the stimulus. Inhibitory cost was the difference in saccade latency between the Antisaccade and Prosaccade tasks. RESULTS Relative to controls, fXPCs had longer saccade latency in the Antisaccade task. In fXPCs, inhibitory cost was positively associated with vermis area in lobules VI-VII. CONCLUSION Antisaccades require inhibitory control to inhibit reflexive eye movements. We found that eye movements are sensitive to impaired inhibitory control in fXPCs asymptomatic for FXTAS. Thus, eye movements may be useful in assessing FXTAS risk or disease progression.
Collapse
Affiliation(s)
- Ling M Wong
- Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center
| | | | - Yingratana McLennan
- Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis Medical Center
| | - Melody Zhang
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis
| | - Susan M Rivera
- Department of Psychology, University of California, Davis
| | - Tony J Simon
- Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center
| |
Collapse
|
34
|
Reiner P, Taifas I, Massiou H, Jouvent E. Pure psychiatric presentation of Fragile X-associated tremor/ataxia syndrome. Eur J Neurol 2014; 20:e113-4. [PMID: 23889896 DOI: 10.1111/ene.12206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/30/2013] [Indexed: 11/30/2022]
|
35
|
Besterman AD, Wilke SA, Mulligan TE, Allison SC, Hagerman R, Seritan AL, Bourgeois JA. Towards an Understanding of Neuropsychiatric Manifestations in Fragile X Premutation Carriers. FUTURE NEUROLOGY 2014; 9:227-239. [PMID: 25013385 DOI: 10.2217/fnl.14.11] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fragile X-associated disorders (FXD) are a group of disorders caused by expansion of non-coding CGG repeat elements in the fragile X (FMR1) gene. One of these disorders, fragile X syndrome (FXS), is the most common heritable cause of intellectual disability, and is caused by large CGG repeat expansions (>200) resulting in silencing of the FMR1 gene. An increasingly recognized number of neuropsychiatric FXD have recently been identified that are caused by 'premutation' range expansions (55-200). These disorders are characterized by a spectrum of neuropsychiatric manifestations ranging from an increased risk of neurodevelopmental, mood and anxiety disorders to neurodegenerative phenotypes such as the fragile X-associated tremor ataxia syndrome (FXTAS). Here, we review advances in the clinical understanding of neuropsychiatric disorders in premutation carriers across the lifespan and offer guidance for the detection of such disorders by practicing psychiatrists and neurologists.
Collapse
Affiliation(s)
- Aaron D Besterman
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| | - Scott A Wilke
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| | - Tua-Elisabeth Mulligan
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| | - Stephen C Allison
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| | - Randi Hagerman
- Department of Pediatrics and MIND Institute, University of California Davis, Sacramento, California 95817 USA
| | - Andreea L Seritan
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis, Sacramento, California 95817 USA
| | - James A Bourgeois
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| |
Collapse
|
36
|
Polussa J, Schneider A, Hagerman R. Molecular Advances Leading to Treatment Implications for Fragile X Premutation Carriers. BRAIN DISORDERS & THERAPY 2014; 3:1000119. [PMID: 25436181 PMCID: PMC4245015 DOI: 10.4172/2168-975x.1000119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is the most common single gene cause of intellectual disability and it is characterized by a CGG expansion of more than 200 repeats in the FMR1 gene, leading to methylation of the promoter and gene silencing. The fragile X premutation, characterized by a 55 to 200 CGG repeat expansion, causes health problems and developmental difficulties in some, but not all, carriers. The premutation causes primary ovarian insufficiency in approximately 20% of females, psychiatric problems (including depression and/or anxiety) in approximately 50% of carriers and a neurodegenerative disorder, the fragile X-associated tremor ataxia syndrome (FXTAS), in approximately 40% of males and 16% of females later in life. Recent clinical studies in premutation carriers have expanded the health problems that may be seen. Advances in the molecular pathogenesis of the premutation have shown significant mitochondrial dysfunction and oxidative stress in neurons which may be amenable to treatment. Here we review the clinical problems of carriers and treatment recommendations.
Collapse
Affiliation(s)
- Jonathan Polussa
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| |
Collapse
|
37
|
Seritan AL, Ortigas M, Seritan S, Bourgeois JA, Hagerman RJ. PSYCHIATRIC DISORDERS ASSOCIATED WITH FXTAS. ACTA ACUST UNITED AC 2013; 9:59-64. [PMID: 25620899 DOI: 10.2174/157340013805289699] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carriers of the FMR1 premutation (with 55-200 CGG repeats) may present with multiple medical and psychiatric disorders. Middle-aged carriers (males more often than females) may suffer from fragile X-associated tremor/ataxia syndrome (FXTAS). FXTAS is a newly discovered neurodegenerative disease characterized by intention tremor and ataxia, along with several other neurological features. Psychiatric manifestations are common in premutation carriers of both genders and include attention deficits, anxiety, depression, irritability, impulse dyscontrol, and substance abuse or dependence. Major depressive disorder, panic disorder with or without agoraphobia, generalized anxiety disorder, social phobia, and specific phobia are among the psychiatric diagnoses often encountered in premutation carriers, including those with FXTAS. Later in the course of the illness, cognitive deficits (including dementia) may occur. In this paper, we discuss common psychiatric phenotypes in FXTAS, based on a thorough review of the literature, as well as our own research experience. Symptomatic pharmacologic treatments are available, although disease modifying agents have not yet been developed.
Collapse
Affiliation(s)
- Andreea L Seritan
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, California ; Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis Medical Center, Sacramento, California
| | - Melina Ortigas
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis Medical Center, Sacramento, California
| | - Stefan Seritan
- University of California Santa Barbara, College for Creative Studies, Santa Barbara, California
| | - James A Bourgeois
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis Medical Center, Sacramento, California ; Department of Pediatrics, University of California Davis Medical Center, Sacramento, California
| |
Collapse
|
38
|
Abstract
Premutation carriers of the fragile X mental retardation gene (especially men) older than 50 may develop a neurodegenerative disease, the fragile X-associated tremor/ataxia syndrome (FXTAS). Carriers may present with varied cognitive impairments. Attention, working memory, declarative and procedural learning, information processing speed, and recall are among the cognitive domains affected. Executive dysfunction is a prominent deficit, which has been demonstrated mostly in men with FXTAS. In more advanced stages of FXTAS, both men and women may develop a mixed cortical-subcortical dementia, manifested by psychomotor slowing and deficits in attention, retrieval, recall, visuospatial skills, occasional apraxia, as well as overt personality changes. Studies have shown dementia rates as high as 37-42% in older men with FXTAS, although more research is needed to understand the prevalence and risk factors of dementia in women with FXTAS. Neuropsychiatric symptoms are common and reflect the dysfunction of underlying frontal-subcortical neural circuits, along with components of the cerebellar cognitive affective syndrome. These include labile or depressed mood, anxiety, disinhibition, impulsivity, and (rarely) psychotic symptoms. In this paper we review the information available to date regarding the prevalence and clinical picture of FXTAS dementia. Differential diagnosis may be difficult, given overlapping motor and non-motor signs with several other neurodegenerative diseases. Anecdotal response to cholinesterase inhibitors and memantine has been reported, while symptomatic treatments can address the neuropsychiatric manifestations of FXTAS dementia.
Collapse
Affiliation(s)
- Andreea Seritan
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, California
| | - Jennifer Cogswell
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis Medical Center, Sacramento, California
| | - Jim Grigsby
- Departments of Psychology and Medicine, University of Colorado Denver, Denver, Colorado
| |
Collapse
|
39
|
Iliff AJ, Renoux AJ, Krans A, Usdin K, Sutton MA, Todd PK. Impaired activity-dependent FMRP translation and enhanced mGluR-dependent LTD in Fragile X premutation mice. Hum Mol Genet 2012; 22:1180-92. [PMID: 23250915 DOI: 10.1093/hmg/dds525] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fragile X premutation-associated disorders, including Fragile X-associated Tremor Ataxia Syndrome, result from unmethylated CGG repeat expansions in the 5' untranslated region (UTR) of the FMR1 gene. Premutation-sized repeats increase FMR1 transcription but impair rapid translation of the Fragile X mental retardation protein (FMRP), which is absent in Fragile X Syndrome (FXS). Normally, FMRP binds to RNA and regulates metabotropic glutamate receptor (mGluR)-mediated synaptic translation, allowing for dendritic synthesis of several proteins. FMRP itself is also synthesized at synapses in response to mGluR activation. However, the role of activity-dependent translation of FMRP in synaptic plasticity and Fragile X-premutation-associated disorders is unknown. To investigate this question, we utilized a CGG knock-in mouse model of the Fragile X premutation with 120-150 CGG repeats in the mouse Fmr1 5' UTR. These mice exhibit increased Fmr1 mRNA production but impaired FMRP translational efficiency, leading to a modest reduction in basal FMRP expression. Cultured hippocampal neurons and synaptoneurosomes derived from CGG KI mice demonstrate impaired FMRP translation in response to the group I mGluR agonist 3,5-dihydroxyphenylglycine. Electrophysiological analysis reveals enhanced mGluR-mediated long-term depression (mGluR-LTD) at CA3-CA1 synapses in acute hippocampal slices prepared from CGG KI mice relative to wild-type littermates, similar to Fmr1 knockout mice. However, unlike mGluR-LTD in mice completely lacking FMRP, mGluR-LTD in CGG knock-in mice remains dependent on new protein synthesis. These studies demonstrate partially overlapping synaptic plasticity phenotypes in mouse models of FXS and Fragile X premutation disorders and support a role for activity-dependent synthesis of FMRP in enduring forms of synaptic plasticity.
Collapse
Affiliation(s)
- Adam J Iliff
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
40
|
Marek D, Papin S, Ellefsen K, Niederhauser J, Isidor N, Ransijn A, Poupon L, Spertini F, Pantaleo G, Bergmann S, Beckmann JS, Jacquemont S, Tanackovic G. Carriers of the fragile X mental retardation 1 (FMR1) premutation allele present with increased levels of cytokine IL-10. J Neuroinflammation 2012; 9:238. [PMID: 23062006 PMCID: PMC3528457 DOI: 10.1186/1742-2094-9-238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/01/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Fragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited late-onset neurodegenerative disorder, characterized both by neurological and cognitive deficits. It is caused by the expansion of CGG repeats (55 to 200 repeats) in the noncoding region of the fragile X mental retardation 1 (FMR1) gene. Abnormal immunological patterns are often associated with neurodegenerative disorders and implicated in their etiology. We therefore investigated the immune status of FXTAS patients, which had not been assessed prior to this study. METHOD Peripheral blood mononuclear cells (PBMCs) were collected from 15 asymptomatic FMR1 premutation carriers and 20 age-matched controls. Concentrations of three cytokines (IL-6, IL-8, IL-10) were measured in PBMC supernatants using ELISA assays. RESULTS We found a significant increase in the concentration of the major anti-inflammatory cytokine IL-10 in supernatants of PBMCs derived from premutation carriers, when compared with controls (P = 0.019). This increase correlated significantly with the number of CGG repeats (P = 0.002). CONCLUSIONS Elevated IL-10 levels were observed in all premutation carriers, before appearance of the classical neurological symptoms; therefore, IL-10 may be one of the early biomarkers of FXTAS.
Collapse
Affiliation(s)
- Diana Marek
- Department of Medical Genetics, University of Lausanne, Rue du Bugnon 27, Lausanne, 1005, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Seltzer MM, Baker MW, Hong J, Maenner M, Greenberg J, Mandel D. Prevalence of CGG expansions of the FMR1 gene in a US population-based sample. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:589-97. [PMID: 22619118 PMCID: PMC3391968 DOI: 10.1002/ajmg.b.32065] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 04/26/2012] [Indexed: 11/09/2022]
Abstract
The primary goal of this study was to calculate the prevalence of the premutation of the FMR1 gene and of the "gray zone" using a population-based sample of older adults in Wisconsin (n = 6,747 samples screened). Compared with past research, prevalence was relatively high (1 in 151 females and 1 in 468 males for the premutation and 1 in 35 females and 1 in 42 males for the gray zone as defined by 45-54 CGG repeats). A secondary study goal was to describe characteristics of individuals found to have the premutation (n = 30, 7 males and 23 females). We found that premutation carriers had a significantly higher rate of divorce than controls, as well as higher rates of symptoms that might be indicative of fragile X-associated tremor ataxia syndrome (FXTAS; numbness, dizziness/faintness) and fragile X primary ovarian insufficiency (FXPOI; age at last menstrual period). Although not statistically significant, premutation carriers were twice as likely to have a child with disability.
Collapse
Affiliation(s)
| | - Mei Wang Baker
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jinkuk Hong
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Matthew Maenner
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jan Greenberg
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Daniel Mandel
- Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
42
|
Hunter JE, Leslie M, Novak G, Hamilton D, Shubeck L, Charen K, Abramowitz A, Epstein MP, Lori A, Binder E, Cubells JF, Sherman SL. Depression and anxiety symptoms among women who carry the FMR1 premutation: impact of raising a child with fragile X syndrome is moderated by CRHR1 polymorphisms. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:549-59. [PMID: 22573456 PMCID: PMC3696495 DOI: 10.1002/ajmg.b.32061] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/18/2012] [Indexed: 11/11/2022]
Abstract
The fragile X mental retardation gene, FMR1, contains a polymorphic CGG repeat in the 5'-untranslated region of exon 1. Once unstable, this repeat is capable of expansion across generations. Women who carry a premutation allele (55-199 repeats) are at risk of passing on a full mutation allele (>200 repeats) to their offspring. A full mutation leads to the most common form of inherited intellectual disability, fragile X syndrome (FXS). Mounting evidence suggests that premutation carriers may be vulnerable to symptoms of anxiety and depression. The goal of this study was to test the hypothesis that among women who carry a premutation, the stress of raising a child with FXS would be moderated by genetic factors influencing endogenous cortisol responses, which could in turn modulate anxiety and depression symptoms. To this end, we genotyped single nucleotide polymorphisms (SNPs) at the corticotrophin releasing hormone receptor 1 locus (CRHR1) in 460 women. Participants completed self-report questionnaires assessing symptoms of depression [Centers for Epidemiological Studies Depression Scale (CESD)], anxiety [State-Trait Anxiety Inventory (STAI) and Social Phobia and Anxiety Inventory (SPAI)], and mood [Positive and Negative Affect Schedule (PANAS)]. Results indicate a statistically significant interaction between CRHR1 genotype and the status of raising a child with FXS to predict social anxiety symptoms reported on the SPAI (rs7209436, P = 0.0001). Our data suggest that genetic variants in CRHR1 that associate with differential cortisol activation may also modulate levels of anxiety related to the stress of raising a child with FXS among women who carry an FMR1 premutation.
Collapse
Affiliation(s)
| | - Mary Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Gloria Novak
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Debra Hamilton
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Lisa Shubeck
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Krista Charen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Ann Abramowitz
- Department of Clinical Psychology, Emory University, Atlanta, Georgia
| | - Michael P. Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Adriana Lori
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Elisabeth Binder
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Joseph F. Cubells
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Stephanie L. Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia,Correspondence to: Stephanie L. Sherman, Ph.D., Department of Human Genetics, Emory University 615 Michael Street, Whitehead Biomedical Research Building, Suite 301 Atlanta, GA 30322.
| |
Collapse
|
43
|
Hocking DR, Kogan CS, Cornish KM. Selective spatial processing deficits in an at-risk subgroup of the fragile X premutation. Brain Cogn 2012; 79:39-44. [PMID: 22417865 DOI: 10.1016/j.bandc.2012.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 11/26/2022]
Abstract
Until a decade ago, it was assumed that males with the fragile X premutation were unaffected by any cognitive phenotype. Here we examined the extent to which CGG repeat toxicity extends to visuospatial functioning in male fragile X premutation carriers who are asymptomatic for a late-onset neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS). Thirty-three premutation males aged 20-68 years [divided into two groups: 16 low-repeat carriers (CGG ≥ 55 ≤ 100) and 17 high-repeat carriers (CGG>100)] with a family history of fragile X syndrome and 62 non-affected adult males with normal FMR1 alleles were recruited. Subjects underwent neuropsychological tests of visuospatial and visual working memory functioning and visuoperceptual processing. On measures of visuospatial processing, the high-repeat carriers performed significantly worse than the normal allele group when age and IQ were covaried out. With increasing age and only in carriers of a larger (>100 repeats) premutation allele was there a greater decrement in visuospatial working memory functioning. Performance on spatial and perceptual judgement tasks failed to show similar specificity in males within the upper premutation range. We conclude that identification of selective visuospatial impairments in carriers of a larger premutation allele indicates greater CGG repeat toxicity in specific neural regions. Longitudinal follow-up studies will be needed to determine whether subtle decline in visuospatial functioning is associated with the later onset of motor symptoms of FXTAS.
Collapse
Affiliation(s)
- Darren R Hocking
- Monash Institute for Brain Development and Repair, Monash University, School of Psychology and Psychiatry, Faculty of Medicine, Melbourne, Australia
| | | | | |
Collapse
|
44
|
Hunsaker MR. Comprehensive neurocognitive endophenotyping strategies for mouse models of genetic disorders. Prog Neurobiol 2012; 96:220-41. [PMID: 22266125 PMCID: PMC3289520 DOI: 10.1016/j.pneurobio.2011.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/06/2011] [Accepted: 12/20/2011] [Indexed: 01/21/2023]
Abstract
There is a need for refinement of the current behavioral phenotyping methods for mouse models of genetic disorders. The current approach is to perform a behavioral screen using standardized tasks to define a broad phenotype of the model. This phenotype is then compared to what is known concerning the disorder being modeled. The weakness inherent in this approach is twofold: First, the tasks that make up these standard behavioral screens do not model specific behaviors associated with a given genetic mutation but rather phenotypes affected in various genetic disorders; secondly, these behavioral tasks are insufficiently sensitive to identify subtle phenotypes. An alternate phenotyping strategy is to determine the core behavioral phenotypes of the genetic disorder being studied and develop behavioral tasks to evaluate specific hypotheses concerning the behavioral consequences of the genetic mutation. This approach emphasizes direct comparisons between the mouse and human that facilitate the development of neurobehavioral biomarkers or quantitative outcome measures for studies of genetic disorders across species.
Collapse
Affiliation(s)
- Michael R Hunsaker
- Department of Neurological Surgery, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
45
|
Loesch D, Hagerman R. Unstable Mutations in the FMR1 Gene and the Phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 769:78-114. [DOI: 10.1007/978-1-4614-5434-2_6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
46
|
Fragile X syndrome: lifespan developmental implications for those without as well as with intellectual disability. Curr Opin Psychiatry 2011; 24:387-97. [PMID: 21825875 DOI: 10.1097/yco.0b013e328349bb77] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Advances in developmental neuropsychiatry and the mental health needs of people with intellectual disability are creating ever greater understanding of the critical associations between human genome variations and psychological functioning throughout lifespan and across the entire intellectual ability spectrum. This review highlights the recent developments and their clinical implications for people with fragile X syndrome. RECENT FINDINGS There is substantial evidence for individuals of all ages and intellectual abilities being prone to psychological profiles determined not only by having a fragile X gene full mutation, but also by having premutations and intermediate alleles. The importance of these genetic contributors to mental life, if anything, increases with age. Premutation carriers are prone to neurodegenerative mid-life fragile X tremor-ataxia syndrome. Women with premutations experience premature ovarian insufficiency. Imbalances in the (gamma amino butyrie acid)-glutamate mediated postsynaptic cascade central neuronal pathways are a current focus of psychopharmacological enquiry, giving the hope of syndrome-specific medical treatments. SUMMARY Findings from genetic, neurological, biochemical, psychological and pharmacological research are combining to revolutionize understanding of the pathogenesis of developmental and psychological disabilities affecting individuals with fragile X syndrome irrespective of age, intelligence level and gene mutation status. Results of syndrome-specific medication trials are awaited.
Collapse
|
47
|
Cornish KM, Hocking DR, Moss SA, Kogan CS. Selective executive markers of at-risk profiles associated with the fragile X premutation. Neurology 2011; 77:618-22. [PMID: 21775729 DOI: 10.1212/wnl.0b013e3182299e59] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE This study determined whether CGG repeat length moderates the relationship between age and performance on selective measures of executive function in premutation carriers (PM) who are asymptomatic for a recently described late-onset neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS). METHODS Forty PM men aged 18-69 years with a family history of fragile X syndrome underwent neuropsychological tests of inhibition and working memory. We examined only men who are asymptomatic for FXTAS. Multiple regression analyses were conducted to examine the moderating role of CGG repeat length on the relation between age and performance on inhibition and working memory tasks. RESULTS With increasing age and only in men with an FMR1 expansion in the upper premutation range (>100 CGG repeats) was there an association between age and poorer task performance on selective executive function measures involving inhibition (p < 0.05) and executive working memory (p < 0.01). Men in the lower premutation range (<100 CGG repeats) were relatively risk-free from any cognitive aging effects associated with CGG repeat expansions. CONCLUSIONS We conclude that neural networks in the prefrontal cortex may be highly susceptible to age-related neurotoxic effects in the upper size range of the FMR1 premutation. Future longitudinal studies will be needed to determine whether specific executive markers may serve to distinguish those at greatest risk for severe cognitive decline or dementia associated with FXTAS.
Collapse
Affiliation(s)
- Kim M Cornish
- Developmental Neuroscience and Genetic Disorders Laboratory, School of Psychology and Psychiatry, Faculty of Medicine, Monash University, Melbourne, Australia.
| | | | | | | |
Collapse
|
48
|
Bourgeois JA, Seritan AL, Casillas EM, Hessl D, Schneider A, Yang Y, Kaur I, Cogswell JB, Nguyen DV, Hagerman RJ. Lifetime prevalence of mood and anxiety disorders in fragile X premutation carriers. J Clin Psychiatry 2011; 72:175-82. [PMID: 20816038 PMCID: PMC4038118 DOI: 10.4088/jcp.09m05407blu] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 08/25/2009] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The authors studied the lifetime prevalence of DSM-IV-TR psychiatric disorders in a population of adults with the fragile X premutation. METHOD The Structured Clinical Interview for DSM-IV was conducted, from 2007-2008, in 85 individuals with the fragile X premutation, 47 with the fragile X-associated tremor/ataxia syndrome (FXTAS; 33 male, 14 female; mean age = 66 years) and 38 without FXTAS (16 male, 22 female; mean age = 52 years). Lifetime prevalence for mood and anxiety disorders among carriers with and without FXTAS was compared to available age-specific population estimates from the National Comorbidity Survey Replication (NCS-R). RESULTS Among participants with FXTAS, 30 (65%) met lifetime DSM-IV-TR criteria for a mood disorder; 24 (52%) met lifetime DSM-IV-TR criteria for an anxiety disorder. Among the non-FXTAS participants, there were 15 instances of lifetime mood disorder (42%) and 18 of lifetime anxiety disorder (47%). When compared to age-specific NCS-R data, the lifetime prevalences of any mood disorder (P < .0001), major depressive disorder (P < .0001), any anxiety disorder (P < .0001), panic disorder (P = .006), specific phobia (P = .0003), and posttraumatic stress disorder (P = .004) were significantly higher in participants with FXTAS. The lifetime rates of social phobia in individuals with the premutation without FXTAS were significantly higher than NCS-R data (P = .001). CONCLUSIONS This sample of carriers of the fragile X premutation had a notably high lifetime risk of mood and anxiety disorders. Mood and anxiety disorders may be part of the clinical phenotype of the fragile X premutation conditions, especially in carriers with FXTAS. Clinicians encountering these patients are advised to consider FXTAS as a neuropsychiatric syndrome as well as a neurologic disorder.
Collapse
Affiliation(s)
- James A. Bourgeois
- Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center, Sacramento, CA
| | - Andreea L. Seritan
- Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center, Sacramento, CA
| | - E. Melina Casillas
- M.I.N.D. Institute, University of California, Davis Medical Center,Department of Pediatrics, University of California, Davis Medical Center
| | - David Hessl
- Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center, Sacramento, CA,M.I.N.D. Institute, University of California, Davis Medical Center
| | - Andrea Schneider
- Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center, Sacramento, CA,M.I.N.D. Institute, University of California, Davis Medical Center
| | - Ying Yang
- Department of Public Health Sciences, University of California, Davis, Davis CA
| | - Inderjeet Kaur
- M.I.N.D. Institute, University of California, Davis Medical Center
| | - Jennifer B. Cogswell
- M.I.N.D. Institute, University of California, Davis Medical Center,Department of Pediatrics, University of California, Davis Medical Center
| | - Danh V. Nguyen
- Department of Public Health Sciences, University of California, Davis, Davis CA
| | - Randi J. Hagerman
- M.I.N.D. Institute, University of California, Davis Medical Center,Department of Pediatrics, University of California, Davis Medical Center
| |
Collapse
|
49
|
Qin M, Entezam A, Usdin K, Huang T, Liu ZH, Hoffman GE, Smith CB. A mouse model of the fragile X premutation: effects on behavior, dendrite morphology, and regional rates of cerebral protein synthesis. Neurobiol Dis 2011; 42:85-98. [PMID: 21220020 DOI: 10.1016/j.nbd.2011.01.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/30/2010] [Accepted: 01/02/2011] [Indexed: 11/24/2022] Open
Abstract
Carriers of FMR1 premutation alleles have 55-200 CGG repeats in the 5' untranslated region of the gene. These individuals are at risk for fragile X associated primary ovarian insufficiency (females) and, in late life, fragile X associated tremor and ataxia syndrome (males, and to a lesser extent, females). Premutation carrier status can also be associated with autism spectrum disorder, attention deficit hyperactivity disorder, and some cognitive deficits. In premutation carriers, FMR1 mRNA levels are often higher than those with normal sized alleles. In contrast, in subjects with full mutation alleles, (>200 repeats) the FMR1 gene is silenced and FMR1 mRNA and its product, FMRP, are absent. We have studied a male knock-in (KI) mouse model of the fragile X premutation (120-140 repeats) during young adulthood. In comparison to wild type, KI mice were hyperactive, exhibited less anxiety in both the open field and the elevated zero maze, were impaired on the passive avoidance test, and showed some subtle deficits on a test of social interaction. Motor learning as assessed by the rotarod test was normal. Dendritic arbors were less complex and spine densities and lengths increased in medial prefrontal cortex, basal lateral amygdala, and hippocampus compared with wild type. Regional rates of cerebral protein synthesis measured in vivo in KI mice were increased. KI mice also had elevated levels of Fmr1 mRNA and decreased levels of FMRP. Our results highlight similarities in phenotype between KI and Fmr1 knockout mice and suggest that the decreased concentration of FMRP contributes to the phenotype in young adult KI mice.
Collapse
Affiliation(s)
- Mei Qin
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Boyle L, Kaufmann WE. The behavioral phenotype of FMR1 mutations. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 154C:469-76. [DOI: 10.1002/ajmg.c.30277] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|