1
|
Zou L, Huang A, Wu K, Zhang X, Zhang K, Wen W, Guan L, Huang Y. Home reading environment, sociometric and demographic factors associated with dyslexia in primary school students in China: A case-control study. Heliyon 2023; 9:e22100. [PMID: 38027564 PMCID: PMC10658363 DOI: 10.1016/j.heliyon.2023.e22100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Background Developmental dyslexia (DD) has been generally recognized as a multifactorial psychological disorder in recent decades. However, studies on reading and learning environment, social and demographic factors affecting Chinese developmental dyslexia (DD) are still scarce in China. This study aims to explore multidimensional home influencing factors associated with DD before and after birth. Methods A total of 60 dyslexic and 252 normal elementary school students graded 2-5 were recruited in Shantou, China. The Least Absolute Shrinkage and Selection Operator (LASSO) regression model was used for the social and demographic variables screening. Odds ratios (ORs) with 95 % confidence intervals (CIs) for associations between DD and related factors were estimated by multivariate logistic regression models. Results Through LASSO regression, we ultimately identified 13 key variables, including maternal education level and family monthly income, among others. The logistic regression analyses showed that the risk of DD was higher in children with lower maternal education levels. Divergent parenting styles may be a risk factor for developing DD as opposed to consistent parenting styles (OR = 4.93, 95%CI: 1.11-21.91). Children whose mothers suffered from malnutrition during pregnancy were more likely to develop DD (OR = 10.31, 95%CI: 1.84-37.86), as well as exposure to second-hand smoking at home every day (OR = 5.33, 95%CI: 1.52-18.66). Interestingly, children's active reading (OR = 0.26, 95%CI: 0.08-0.84; OR = 0.17, 95%CI: 0.04-0.76 for "sometimes" and "often" compared to none, respectively), children having extracurricular reading fairy tale books (OR = 0.37, 95%CI: 0.15-0.90), and children having extracurricular reading composition books (OR = 0.25, 95%CI: 0.09-0.69) were significant protective factors for DD. Conclusions Home reading environment, several educational, sociometric and demographic factors may influence the development of dyslexia. We should pay attention to these factors on the development of dyslexia, so as to provide the well social and familial environment to ensure the healthy development of children.
Collapse
Affiliation(s)
- Lijing Zou
- Mental Health Center of Shantou University, Shantou, Guangdong, China
| | - Anyan Huang
- Mental Health Center of Shantou University, Shantou, Guangdong, China
- Department of Health Care, Shantou Maternal and Child Health Hospital, Shantou, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Xuanzhi Zhang
- Mental Health Center of Shantou University, Shantou, Guangdong, China
- Shantou University Medical College—Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, China
| | - Kaiguo Zhang
- Somatotherapy Department, Shenzhen Mental Health Center, Shenzhen, Guangdong, China
| | - Wanyi Wen
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Liwen Guan
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Yanhong Huang
- Mental Health Center of Shantou University, Shantou, Guangdong, China
- Shantou University Medical College—Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, China
| |
Collapse
|
2
|
Kalashnikova TP, Satyukova MO, Anisimov GV, Karakulova YV. [Genetic background of dyslexia and dysgraphy in children]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:48-52. [PMID: 37315241 DOI: 10.17116/jnevro202312305148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The review is devoted to one of the current problems of pediatric neurology - reading and writing disorders in children as part of a partial developmental disorder. With the development of neuroscience, the paradigm of «brain damage» in the understanding of a number of pathological conditions was replaced by the concept of «evolutionary neurology». The dominance of the ontogenetic approach caused the appearance of a new section in ICD-11 - «Neurodevelopmental disorders». Twenty-one genes associated with the acquisition of reading and writing skills have been identified. Modern studies demonstrate the connection of neuropsychological prerequisites for reading and writing, and clinical phenotypes of dyslexia with changes in specific loci. It is assumed that there are different molecular genetic bases for dyslexia and dysgraphia depending on ethnicity, orthographic features of language, including logographic features. Pleiotropy of genes is a cause of comorbidity of reading and writing disorders with attention deficit and hyperactivity disorder, specific speech articulation disorders, and dyscalculia. A key function of many of the identified genes is their involvement in the processes of neurogenesis. Their dysfunctions cause atypical neuronal migration, ectopic formation, inadequate axonal growth, and dendrite branching at the early stage of brain development. Morphological changes can distort the correct distribution and/or integration of linguistic stimuli in critical brain areas, leading to abnormalities in phonology, semantics, spelling, and general reading comprehension. The knowledge gained can form the basis for the development of risk models for dysgraphia and dyslexia formation and be used as a diagnostic and/or screening tool, which is important for evidence-based correction, optimization of academic performance, and mitigation of psychosocial consequences.
Collapse
Affiliation(s)
| | | | - G V Anisimov
- First Medico-Pedagogical Center «Lingua Bona», Perm, Russia
| | | |
Collapse
|
3
|
Wu Y, Cheng Y, Yang X, Yu W, Wan Y. Dyslexia: A Bibliometric and Visualization Analysis. Front Public Health 2022; 10:915053. [PMID: 35812514 PMCID: PMC9260156 DOI: 10.3389/fpubh.2022.915053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Dyslexia is a disorder characterized by an impaired ability to understand written and printed words or phrases. Epidemiological longitudinal data show that dyslexia is highly prevalent, affecting 10-20% of the population regardless of gender. This study aims to provide a detailed overview of research status and development characteristics of dyslexia from types of articles, years, countries, institutions, journals, authors, author keywords, and highly cited papers. A total of 9,166 publications have been retrieved from the Social Sciences Citation Index (SSCI) and Science Citation Index Expanded (SCI-E) from 2000 to 2021. The United States of America, United Kingdom, and Germany were the top three most productive countries in terms of the number of publications. China, Israel, and Japan led the Asia research on dyslexia. University of Oxford had the most publications and won first place in terms of h-index. Dyslexia was the most productive journal in this field and Psychology was the most used subject category. Keywords analysis indicated that "developmental dyslexia," "phonological awareness," children and fMRI were still the main research topics. "Literacy," "rapid automatized naming (RAN)," "assessment," "intervention," "meta-analysis," "Chinese," "executive function," "morphological awareness," "decoding," "dyscalculia," "EEG," "Eye tracking," "rhythm," "bilingualism," and "functional connectivity" might become the new research hotspots.
Collapse
Affiliation(s)
- Yanqi Wu
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
- Library, Zhejiang University of Technology, Hangzhou, China
| | - Yanxia Cheng
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
- Library, Zhejiang University of Technology, Hangzhou, China
| | - Xianlin Yang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
- Library, Zhejiang University of Technology, Hangzhou, China
| | - Wenyan Yu
- Library, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
- Library, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Animal models of developmental dyslexia: Where we are and what we are missing. Neurosci Biobehav Rev 2021; 131:1180-1197. [PMID: 34699847 DOI: 10.1016/j.neubiorev.2021.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental disorder and the most common learning disability among both school-aged children and across languages. Recently, sensory and cognitive mechanisms have been reported to be potential endophenotypes (EPs) for DD, and nine DD-candidate genes have been identified. Animal models have been used to investigate the etiopathological pathways that underlie the development of complex traits, as they enable the effects of genetic and/or environmental manipulations to be evaluated. Animal research designs have also been linked to cutting-edge clinical research questions by capitalizing on the use of EPs. For the present scoping review, we reviewed previous studies of murine models investigating the effects of DD-candidate genes. Moreover, we highlighted the use of animal models as an innovative way to unravel new insights behind the pathophysiology of reading (dis)ability and to assess cutting-edge preclinical models.
Collapse
|
5
|
Unger N, Heim S, Hilger DI, Bludau S, Pieperhoff P, Cichon S, Amunts K, Mühleisen TW. Identification of Phonology-Related Genes and Functional Characterization of Broca's and Wernicke's Regions in Language and Learning Disorders. Front Neurosci 2021; 15:680762. [PMID: 34539327 PMCID: PMC8446646 DOI: 10.3389/fnins.2021.680762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Impaired phonological processing is a leading symptom of multifactorial language and learning disorders suggesting a common biological basis. Here we evaluated studies of dyslexia, dyscalculia, specific language impairment (SLI), and the logopenic variant of primary progressive aphasia (lvPPA) seeking for shared risk genes in Broca's and Wernicke's regions, being key for phonological processing within the complex language network. The identified "phonology-related genes" from literature were functionally characterized using Atlas-based expression mapping (JuGEx) and gene set enrichment. Out of 643 publications from the last decade until now, we extracted 21 candidate genes of which 13 overlapped with dyslexia and SLI, six with dyslexia and dyscalculia, and two with dyslexia, dyscalculia, and SLI. No overlap was observed between the childhood disorders and the late-onset lvPPA often showing symptoms of learning disorders earlier in life. Multiple genes were enriched in Gene Ontology terms of the topics learning (CNTNAP2, CYFIP1, DCDC2, DNAAF4, FOXP2) and neuronal development (CCDC136, CNTNAP2, CYFIP1, DCDC2, KIAA0319, RBFOX2, ROBO1). Twelve genes showed above-average expression across both regions indicating moderate-to-high gene activity in the investigated cortical part of the language network. Of these, three genes were differentially expressed suggesting potential regional specializations: ATP2C2 was upregulated in Broca's region, while DNAAF4 and FOXP2 were upregulated in Wernicke's region. ATP2C2 encodes a magnesium-dependent calcium transporter which fits with reports about disturbed calcium and magnesium levels for dyslexia and other communication disorders. DNAAF4 (formerly known as DYX1C1) is involved in neuronal migration supporting the hypothesis of disturbed migration in dyslexia. FOXP2 is a transcription factor that regulates a number of genes involved in development of speech and language. Overall, our interdisciplinary and multi-tiered approach provided evidence that genetic and transcriptional variation of ATP2C2, DNAAF4, and FOXP2 may play a role in physiological and pathological aspects of phonological processing.
Collapse
Affiliation(s)
- Nina Unger
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Heim
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Dominique I. Hilger
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Peter Pieperhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Thomas W. Mühleisen
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
The Polygenic Nature and Complex Genetic Architecture of Specific Learning Disorder. Brain Sci 2021; 11:brainsci11050631. [PMID: 34068951 PMCID: PMC8156942 DOI: 10.3390/brainsci11050631] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Specific Learning Disorder (SLD) is a multifactorial, neurodevelopmental disorder which may involve persistent difficulties in reading (dyslexia), written expression and/or mathematics. Dyslexia is characterized by difficulties with speed and accuracy of word reading, deficient decoding abilities, and poor spelling. Several studies from different, but complementary, scientific disciplines have investigated possible causal/risk factors for SLD. Biological, neurological, hereditary, cognitive, linguistic-phonological, developmental and environmental factors have been incriminated. Despite worldwide agreement that SLD is highly heritable, its exact biological basis remains elusive. We herein present: (a) an update of studies that have shaped our current knowledge on the disorder’s genetic architecture; (b) a discussion on whether this genetic architecture is ‘unique’ to SLD or, alternatively, whether there is an underlying common genetic background with other neurodevelopmental disorders; and, (c) a brief discussion on whether we are at a position of generating meaningful correlations between genetic findings and anatomical data from neuroimaging studies or specific molecular/cellular pathways. We conclude with open research questions that could drive future research directions.
Collapse
|
7
|
Grimm T, Garshasbi M, Puettmann L, Chen W, Ullmann R, Müller-Myhsok B, Klopocki E, Herbst L, Haug J, Jensen LR, Fischer C, Nöthen M, Ludwig K, Warnke A, Ott J, Schulte-Körne G, Ropers HH, Kuss AW. A Novel Locus and Candidate Gene for Familial Developmental Dyslexia on Chromosome 4q. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2020; 48:478-489. [PMID: 33172359 DOI: 10.1024/1422-4917/a000758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective: Developmental dyslexia is a highly heritable specific reading and writing disability. To identify a possible new locus and candidate gene for this disability, we investigated a four-generation pedigree where transmission of dyslexia is consistent with an autosomal dominant inheritance pattern. Methods: We performed genome wide array-based SNP genotyping and parametric linkage analysis and sequencing analysis of protein-coding exons, exon-intron boundaries and conserved extragenic regions within the haplotype cosegregating with dyslexia in DNA from one affected and one unaffected family member. Cosegregation was confirmed by sequencing all available family members. Additionally, we analyzed 96 dyslexic individuals who had previously shown positive LOD scores on chromosome 4q28 as well as an even larger sample (n = 2591). Results: We found a single prominent linkage interval on chromosome 4q, where sequence analysis revealed a nucleotide variant in the 3' UTR of brain expressed SPRY1 in the dyslexic family member that cosegregated with dyslexia. This sequence alteration might affect the binding efficiency of the IGF2BP1 RNA-binding protein and thus influence the expression level of the SPRY1 gene product. An analysis of 96 individuals from a cohort of dyslexic individuals revealed a second heterozygous variant in this gene, which was absent in the unaffected sister of the proband. An investigation of the region in a much larger sample further found a nominal p-value of 0.0016 for verbal short-term memory (digit span) in 2,591 individuals for a neighboring SNV. After correcting for the local number of analyzed SNVs, and after taking into account linkage disequilibrium, we found this corresponds to a p-value of 0.0678 for this phenotype. Conclusions: We describe a new locus for familial dyslexia and discuss the possibility that SPRY1 might play a role in the etiology of a monogenic form of dyslexia.
Collapse
Affiliation(s)
- Tiemo Grimm
- Department of Human Genetics, Biozentrum, University of Würzburg, Germany
| | - Masoud Garshasbi
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lucia Puettmann
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Wei Chen
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Reinhard Ullmann
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Eva Klopocki
- Department of Human Genetics, Biozentrum, University of Würzburg, Germany
| | - Lina Herbst
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Janina Haug
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Lars R Jensen
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | | | - Markus Nöthen
- Institute of Human Genetics, University of Bonn, Germany
| | - Kerstin Ludwig
- Institute of Human Genetics, University of Bonn, Germany
| | - Andreas Warnke
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Würzburg, Germany
| | - Jürg Ott
- Laboratory of Statistical Genetics, Rockefeller University, New York, USA
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Munich, Germany
| | - Hans-Hilger Ropers
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Andreas W Kuss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| |
Collapse
|
8
|
Becker N, Vasconcelos M, Oliveira V, Santos FCD, Bizarro L, Almeida RMMD, Salles JFD, Carvalho MRS. Genetic and environmental risk factors for developmental dyslexia in children: systematic review of the last decade. Dev Neuropsychol 2017; 42:423-445. [PMID: 29068706 DOI: 10.1080/87565641.2017.1374960] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Despite advances in the characterization of developmental dyslexia (DD), several questions regarding the interplay between DD-susceptibility genes and environmental risk factors remain open. This systematic review aimed at answering the following questions: What has been the impact of new resources on the knowledge about DD? Which questions remain open? What is the investigative agenda for the short term? Forty-six studies were analyzed. Despite the growing literature on DD candidate genes, most studies have not been replicated. We found large effects on causative genes and smaller environmental contributions, involving maternal smoking during pregnancy, SES and the DYX1C1-1259C/G marker. Implications are discussed.
Collapse
Affiliation(s)
- Natalia Becker
- a Cognitive Neuropsychology Research Center (Neurocog), Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Mailton Vasconcelos
- b Experimental Psychology, Neuroscience and Behavior Lab, Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Vanessa Oliveira
- b Experimental Psychology, Neuroscience and Behavior Lab, Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Fernanda Caroline Dos Santos
- c Departamento de Biologia Geral , Post-Graduation Program in Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG) , Pampulha, Belo Horizonte , Minas Gerais , Brazil
| | - Lisiane Bizarro
- b Experimental Psychology, Neuroscience and Behavior Lab, Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Rosa M M De Almeida
- b Experimental Psychology, Neuroscience and Behavior Lab, Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Jerusa Fumagalli De Salles
- a Cognitive Neuropsychology Research Center (Neurocog), Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Maria Raquel Santos Carvalho
- c Departamento de Biologia Geral , Post-Graduation Program in Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG) , Pampulha, Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
9
|
Peter B, Lancaster H, Vose C, Middleton K, Stoel-Gammon C. Sequential processing deficit as a shared persisting biomarker in dyslexia and childhood apraxia of speech. CLINICAL LINGUISTICS & PHONETICS 2017; 32:316-346. [PMID: 28933620 PMCID: PMC6085870 DOI: 10.1080/02699206.2017.1375560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The purpose of this study was to investigate the hypothesis that individuals with dyslexia and individuals with childhood apraxia of speech share an underlying persisting deficit in processing sequential information. Levels of impairment (sensory encoding, memory, retrieval, and motor planning/programming) were also investigated. Participants were 22 adults with dyslexia, 10 adults with a probable history of childhood apraxia of speech (phCAS), and 22 typical controls. All participants completed nonword repetition, multisyllabic real word repetition, and nonword decoding tasks. Using phonological process analysis, errors were classified as sequence or substitution errors. Adults with dyslexia and adults with phCAS showed evidence of persisting nonword repetition deficits. In all three tasks, the adults in the two disorder groups produced more errors of both classes than the controls, but disproportionally more sequencing than substitution errors during the nonword repetition task. During the real word repetition task, the phCAS produced the most sequencing errors, whereas during the nonword decoding task, the dyslexia group produced the most sequencing errors. Performance during multisyllabic motor speech tasks, relative to monosyllabic conditions, was correlated with the sequencing error component during nonword repetition. The results provide evidence for a shared persisting sequential processing deficit in the dyslexia and phCAS groups during linguistic and motor speech tasks. Evidence for impairments in sensory encoding, short-term memory, and motor planning/programming was found in both disorder groups. Future studies should investigate clinical applications regarding preventative and targeted interventions towards cross-modal treatment effects.
Collapse
Affiliation(s)
- Beate Peter
- Dpt. of Speech and Hearing Science, Arizona State University
- Dpt. of Communication Sciences and Disorders, Saint Louis University
| | - Hope Lancaster
- Dpt. of Speech and Hearing Science, Arizona State University
| | - Caitlin Vose
- Dpt. of Speech and Hearing Science, Arizona State University
| | - Kyle Middleton
- Dpt. of Speech and Hearing Sciences, University of Washington
| | | |
Collapse
|
10
|
Mascheretti S, Gori S, Trezzi V, Ruffino M, Facoetti A, Marino C. Visual motion and rapid auditory processing are solid endophenotypes of developmental dyslexia. GENES BRAIN AND BEHAVIOR 2017; 17:70-81. [PMID: 28834383 DOI: 10.1111/gbb.12409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/19/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022]
Abstract
Although a genetic component is known to have an important role in the etiology of developmental dyslexia (DD), we are far from understanding the molecular etiopathogenetic pathways. Reduced measures of neurobiological functioning related to reading (dis)ability, i.e. endophenotypes (EPs), are promising targets for gene finding and the elucidation of the underlying mechanisms. In a sample of 100 nuclear families with DD (229 offspring) and 83 unrelated typical readers, we tested whether a set of well-established, cognitive phenotypes related to DD [i.e. rapid auditory processing (RAP), rapid automatized naming (RAN), multisensory nonspatial attention and visual motion processing] fulfilled the criteria of the EP construct. Visual motion and RAP satisfied all testable criteria (i.e. they are heritable, associate with the disorder, co-segregate with the disorder within a family and represent reproducible measures) and are therefore solid EPs of DD. Multisensory nonspatial attention satisfied three of four criteria (i.e. it associates with the disorder, co-segregates with the disorder within a family and represents a reproducible measure) and is therefore a potential EP for DD. Rapid automatized naming is heritable but does not meet other criteria of the EP construct. We provide the first evidence of a methodologically and statistically sound approach for identifying EPs for DD to be exploited as a solid alternative basis to clinical phenotypes in neuroscience.
Collapse
Affiliation(s)
- S. Mascheretti
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
| | - S. Gori
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
- Department of Human and Social Sciences; University of Bergamo; Bergamo Italy
| | - V. Trezzi
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
| | - M. Ruffino
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
| | - A. Facoetti
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
- Developmental Cognitive Neuroscience Lab, Department of General Psychology; University of Padua; Padua Italy
| | - C. Marino
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
- Centre for Addiction and Mental Health; University of Toronto; ON Canada
| |
Collapse
|
11
|
Identification of NCAN as a candidate gene for developmental dyslexia. Sci Rep 2017; 7:9294. [PMID: 28839234 PMCID: PMC5570950 DOI: 10.1038/s41598-017-10175-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/04/2017] [Indexed: 01/22/2023] Open
Abstract
A whole-genome linkage analysis in a Finnish pedigree of eight cases with developmental dyslexia (DD) revealed several regions shared by the affected individuals. Analysis of coding variants from two affected individuals identified rs146011974G > A (Ala1039Thr), a rare variant within the NCAN gene co-segregating with DD in the pedigree. This variant prompted us to consider this gene as a putative candidate for DD. The RNA expression pattern of the NCAN gene in human tissues was highly correlated (R > 0.8) with that of the previously suggested DD susceptibility genes KIAA0319, CTNND2, CNTNAP2 and GRIN2B. We investigated the association of common variation in NCAN to brain structures in two data sets: young adults (Brainchild study, Sweden) and infants (FinnBrain study, Finland). In young adults, we found associations between a common genetic variant in NCAN, rs1064395, and white matter volume in the left and right temporoparietal as well as the left inferior frontal brain regions. In infants, this same variant was found to be associated with cingulate and prefrontal grey matter volumes. Our results suggest NCAN as a new candidate gene for DD and indicate that NCAN variants affect brain structure.
Collapse
|
12
|
Carrion-Castillo A, Maassen B, Franke B, Heister A, Naber M, van der Leij A, Francks C, Fisher SE. Association analysis of dyslexia candidate genes in a Dutch longitudinal sample. Eur J Hum Genet 2017; 25:452-460. [PMID: 28074887 PMCID: PMC5386414 DOI: 10.1038/ejhg.2016.194] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 11/03/2016] [Accepted: 11/22/2016] [Indexed: 11/08/2022] Open
Abstract
Dyslexia is a common specific learning disability with a substantive genetic component. Several candidate genes have been proposed to be implicated in dyslexia susceptibility, such as DYX1C1, ROBO1, KIAA0319, and DCDC2. Associations with variants in these genes have also been reported with a variety of psychometric measures tapping into the underlying processes that might be impaired in dyslexic people. In this study, we first conducted a literature review to select single nucleotide polymorphisms (SNPs) in dyslexia candidate genes that had been repeatedly implicated across studies. We then assessed the SNPs for association in the richly phenotyped longitudinal data set from the Dutch Dyslexia Program. We tested for association with several quantitative traits, including word and nonword reading fluency, rapid naming, phoneme deletion, and nonword repetition. In this, we took advantage of the longitudinal nature of the sample to examine if associations were stable across four educational time-points (from 7 to 12 years). Two SNPs in the KIAA0319 gene were nominally associated with rapid naming, and these associations were stable across different ages. Genetic association analysis with complex cognitive traits can be enriched through the use of longitudinal information on trait development.
Collapse
Affiliation(s)
- Amaia Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Ben Maassen
- Centre for Language and Cognition Groningen, University of Groningen, Groningen, The Netherlands
- School of Behavioral and Cognitive Neurosciences, University Medical Centre Groningen, Groningen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Angelien Heister
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Marlies Naber
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Aryan van der Leij
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, The Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl Psychiatry 2017; 7:e987. [PMID: 28045463 PMCID: PMC5545717 DOI: 10.1038/tp.2016.240] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental deficit characterized by impaired reading acquisition, in spite of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. Despite the successful characterization of DD-susceptibility genes, we are far from understanding the molecular etiological pathways underlying the development of reading (dis)ability. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed results. More optimally reduced measures of functioning, that is, intermediate phenotypes (IPs), represent a target for researching disease-associated genetic variants and for elucidating the underlying mechanisms. Imaging data provide a viable IP for complex neurobehavioral disorders and have been extensively used to investigate both morphological, structural and functional brain abnormalities in DD. Performing joint genetic and neuroimaging studies in humans is an emerging strategy to link DD-candidate genes to the brain structure and function. A limited number of studies has already pursued the imaging-genetics integration in DD. However, the results are still not sufficient to unravel the complexity of the reading circuit due to heterogeneous study design and data processing. Here, we propose an interdisciplinary, multilevel, imaging-genetic approach to disentangle the pathways from genes to behavior. As the presence of putative functional genetic variants has been provided and as genetic associations with specific cognitive/sensorial mechanisms have been reported, new hypothesis-driven imaging-genetic studies must gain momentum. This approach would lead to the optimization of diagnostic criteria and to the early identification of 'biologically at-risk' children, supporting the definition of adequate and well-timed prevention strategies and the implementation of novel, specific remediation approach.
Collapse
|
14
|
Genetic Candidate Variants in Two Multigenerational Families with Childhood Apraxia of Speech. PLoS One 2016; 11:e0153864. [PMID: 27120335 PMCID: PMC4847873 DOI: 10.1371/journal.pone.0153864] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/05/2016] [Indexed: 12/31/2022] Open
Abstract
Childhood apraxia of speech (CAS) is a severe and socially debilitating form of speech sound disorder with suspected genetic involvement, but the genetic etiology is not yet well understood. Very few known or putative causal genes have been identified to date, e.g., FOXP2 and BCL11A. Building a knowledge base of the genetic etiology of CAS will make it possible to identify infants at genetic risk and motivate the development of effective very early intervention programs. We investigated the genetic etiology of CAS in two large multigenerational families with familial CAS. Complementary genomic methods included Markov chain Monte Carlo linkage analysis, copy-number analysis, identity-by-descent sharing, and exome sequencing with variant filtering. No overlaps in regions with positive evidence of linkage between the two families were found. In one family, linkage analysis detected two chromosomal regions of interest, 5p15.1-p14.1, and 17p13.1-q11.1, inherited separately from the two founders. Single-point linkage analysis of selected variants identified CDH18 as a primary gene of interest and additionally, MYO10, NIPBL, GLP2R, NCOR1, FLCN, SMCR8, NEK8, and ANKRD12, possibly with additive effects. Linkage analysis in the second family detected five regions with LOD scores approaching the highest values possible in the family. A gene of interest was C4orf21 (ZGRF1) on 4q25-q28.2. Evidence for previously described causal copy-number variations and validated or suspected genes was not found. Results are consistent with a heterogeneous CAS etiology, as is expected in many neurogenic disorders. Future studies will investigate genome variants in these and other families with CAS.
Collapse
|
15
|
Eicher JD, Stein CM, Deng F, Ciesla AA, Powers NR, Boada R, Smith SD, Pennington BF, Iyengar SK, Lewis BA, Gruen JR. The DYX2 locus and neurochemical signaling genes contribute to speech sound disorder and related neurocognitive domains. GENES BRAIN AND BEHAVIOR 2015; 14:377-85. [PMID: 25778907 PMCID: PMC4492462 DOI: 10.1111/gbb.12214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 12/17/2022]
Abstract
A major milestone of child development is the acquisition and use of speech and language. Communication disorders, including speech sound disorder (SSD), can impair a child's academic, social and behavioral development. Speech sound disorder is a complex, polygenic trait with a substantial genetic component. However, specific genes that contribute to SSD remain largely unknown. To identify associated genes, we assessed the association of the DYX2 dyslexia risk locus and markers in neurochemical signaling genes (e.g., nicotinic and dopaminergic) with SSD and related endophenotypes. We first performed separate primary associations in two independent samples - Cleveland SSD (210 affected and 257 unaffected individuals in 127 families) and Denver SSD (113 affected individuals and 106 unaffected individuals in 85 families) - and then combined results by meta-analysis. DYX2 markers, specifically those in the 3' untranslated region of DCDC2 (P = 1.43 × 10(-4) ), showed the strongest associations with phonological awareness. We also observed suggestive associations of dopaminergic-related genes ANKK1 (P = 1.02 × 10(-2) ) and DRD2 (P = 9.22 × 10(-3) ) and nicotinic-related genes CHRNA3 (P = 2.51 × 10(-3) ) and BDNF (P = 8.14 × 10(-3) ) with case-control status and articulation. Our results further implicate variation in putative regulatory regions in the DYX2 locus, particularly in DCDC2, influencing language and cognitive traits. The results also support previous studies implicating variation in dopaminergic and nicotinic neural signaling influencing human communication and cognitive development. Our findings expand the literature showing genetic factors (e.g., DYX2) contributing to multiple related, yet distinct neurocognitive domains (e.g., dyslexia, language impairment, and SSD). How these factors interactively yield different neurocognitive and language-related outcomes remains to be elucidated.
Collapse
Affiliation(s)
- J D Eicher
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rubenstein K, Raskind WH, Berninger VW, Matsushita MM, Wijsman EM. Genome scan for cognitive trait loci of dyslexia: Rapid naming and rapid switching of letters, numbers, and colors. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:345-56. [PMID: 24807833 PMCID: PMC4053475 DOI: 10.1002/ajmg.b.32237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/14/2014] [Indexed: 12/14/2022]
Abstract
Dyslexia, or specific reading disability, is a common developmental disorder that affects 5-12% of school-aged children. Dyslexia and its component phenotypes, assessed categorically or quantitatively, have complex genetic bases. The ability to rapidly name letters, numbers, and colors from rows presented visually correlates strongly with reading in multiple languages and is a valid predictor of reading and spelling impairment. Performance on measures of rapid naming and switching, RAN and RAS, is stable throughout elementary school years, with slowed performance persisting in adults who still manifest dyslexia. Targeted analyses of dyslexia candidate regions have included RAN measures, but only one other genome-wide linkage study has been reported. As part of a broad effort to identify genetic contributors to dyslexia, we performed combined oligogenic segregation and linkage analyses of measures of RAN and RAS in a family-based cohort ascertained through probands with dyslexia. We obtained strong evidence for linkage of RAN letters to the DYX3 locus on chromosome 2p and RAN colors to chromosome 10q, but were unable to confirm the chromosome 6p21 linkage detected for a composite measure of RAN colors and objects in the previous genome-wide study.
Collapse
Affiliation(s)
- Kevin Rubenstein
- Department of Biostatistics University of Washington, Seattle, WA
| | - Wendy H. Raskind
- Division of Medical Genetics, Department of Medicine University of Washington, Seattle, WA
| | | | - Mark M. Matsushita
- Division of Medical Genetics, Department of Medicine University of Washington, Seattle, WA
| | - Ellen M. Wijsman
- Department of Biostatistics University of Washington, Seattle, WA
- Division of Medical Genetics, Department of Medicine University of Washington, Seattle, WA
| |
Collapse
|
17
|
Margari L, Buttiglione M, Craig F, Cristella A, de Giambattista C, Matera E, Operto F, Simone M. Neuropsychopathological comorbidities in learning disorders. BMC Neurol 2013; 13:198. [PMID: 24330722 PMCID: PMC3878726 DOI: 10.1186/1471-2377-13-198] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Learning Disorders (LD) are complex diseases that affect about 2-10% of the school-age population. We performed neuropsychological and psychopathological evaluation, in order to investigate comorbidity in children with LD. METHODS Our sample consisted of 448 patients from 7 to 16 years of age with a diagnosis of LD, divided in two subgroups: Specific Learning Disorders (SLD), including reading, writing, mathematics disorders, and Learning Disorders Not Otherwise Specified (LD NOS). RESULTS Comorbidity with neuropsychopathologies was found in 62.2% of the total sample. In the LSD subgroup, ADHD was present in 33%, Anxiety Disorder in 28.8%, Developmental Coordination Disorder in 17.8%, Language Disorder in 11% and Mood Disorder in 9.4% of patients. In LD NOS subgroup, Language Disorder was present in 28.6%, Developmental Coordination Disorder in 27.5%, ADHD in 25.4%, Anxiety Disorder in 16.4%, Mood Disorder in 2.1% of patients. A statistically significant presence was respectively found for Language and Developmental Coordination Disorder comorbidity in LD NOS and for ADHD, mood and anxiety disorder comorbidity in SLD subgroup. CONCLUSIONS The different findings emerging in this study suggested to promote further investigations to better define the difference between SLD and LD NOS, in order to improve specific interventions to reduce the long range consequences.
Collapse
Affiliation(s)
- Lucia Margari
- Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs of the “Aldo Moro” University of Bari, Piazza Giulio Cesare 1, Bari, Italy
| | - Maura Buttiglione
- Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs of the “Aldo Moro” University of Bari, Piazza Giulio Cesare 1, Bari, Italy
| | - Francesco Craig
- Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs of the “Aldo Moro” University of Bari, Piazza Giulio Cesare 1, Bari, Italy
| | - Arcangelo Cristella
- Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs of the “Aldo Moro” University of Bari, Piazza Giulio Cesare 1, Bari, Italy
| | - Concetta de Giambattista
- Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs of the “Aldo Moro” University of Bari, Piazza Giulio Cesare 1, Bari, Italy
| | - Emilia Matera
- Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs of the “Aldo Moro” University of Bari, Piazza Giulio Cesare 1, Bari, Italy
| | - Francesca Operto
- Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs of the “Aldo Moro” University of Bari, Piazza Giulio Cesare 1, Bari, Italy
| | - Marta Simone
- Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs of the “Aldo Moro” University of Bari, Piazza Giulio Cesare 1, Bari, Italy
| |
Collapse
|
18
|
Peter B, Matsushita M, Raskind WH. Motor sequencing deficit as an endophenotype of speech sound disorder: a genome-wide linkage analysis in a multigenerational family. Psychiatr Genet 2013; 22:226-34. [PMID: 22517379 DOI: 10.1097/ypg.0b013e328353ae92] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES The aim of this pilot study was to investigate a measure of motor sequencing deficit as a potential endophenotype of speech sound disorder (SSD) in a multigenerational family with evidence of familial SSD. METHODS In a multigenerational family with evidence of a familial motor-based SSD, affectation status and a measure of motor sequencing during oral motor testing were obtained. To further investigate the role of motor sequencing as an endophenotype for genetic studies, parametric and nonparametric linkage analyses were carried out using a genome-wide panel of 404 microsatellites. RESULTS In seven of the 10 family members with available data, SSD affectation status and motor sequencing status coincided. Linkage analysis revealed four regions of interest, 6p21, 7q32, 7q36, and 8q24, primarily identified with the measure of motor sequencing ability. The 6p21 region overlaps with a locus implicated in rapid alternating naming in a recent genome-wide dyslexia linkage study. The 7q32 locus contains a locus implicated in dyslexia. The 7q36 locus borders on a gene known to affect the component traits of language impairment. CONCLUSION The results are consistent with a motor-based endophenotype of SSD that would be informative for genetic studies. The linkage results in this first genome-wide study in a multigenerational family with SSD warrant follow-up in additional families and with fine mapping or next-generation approaches to gene identification.
Collapse
Affiliation(s)
- Beate Peter
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
19
|
Button L, Peter B, Stoel-Gammon C, Raskind WH. Associations among measures of sequential processing in motor and linguistics tasks in adults with and without a family history of childhood apraxia of speech: a replication study. CLINICAL LINGUISTICS & PHONETICS 2013; 27:192-212. [PMID: 23339292 PMCID: PMC3875157 DOI: 10.3109/02699206.2012.744097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The purpose of this study was to address the hypothesis that childhood apraxia of speech (CAS) is influenced by an underlying deficit in sequential processing that is also expressed in other modalities. In a sample of 21 adults from five multigenerational families, 11 with histories of various familial speech sound disorders, 3 biologically related adults from a family with familial CAS showed motor sequencing deficits in an alternating motor speech task. Compared with the other adults, these three participants showed deficits in tasks requiring high loads of sequential processing, including nonword imitation, nonword reading and spelling. Qualitative error analyses in real word and nonword imitations revealed group differences in phoneme sequencing errors. Motor sequencing ability was correlated with phoneme sequencing errors during real word and nonword imitation, reading and spelling. Correlations were characterized by extremely high scores in one family and extremely low scores in another. Results are consistent with a central deficit in sequential processing in CAS of familial origin.
Collapse
Affiliation(s)
- Le Button
- Department of Speech & Hearing Sciences, University of Washington, Seattle, WA 98105, USA
| | | | | | | |
Collapse
|
20
|
Peter B, Button L, Stoel-Gammon C, Chapman K, Raskind WH. Deficits in sequential processing manifest in motor and linguistic tasks in a multigenerational family with childhood apraxia of speech. CLINICAL LINGUISTICS & PHONETICS 2013; 27:163-91. [PMID: 23339324 PMCID: PMC3875160 DOI: 10.3109/02699206.2012.736011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The purpose of this study was to evaluate a global deficit in sequential processing as candidate endophenotypein a family with familial childhood apraxia of speech (CAS). Of 10 adults and 13 children in a three-generational family with speech sound disorder (SSD) consistent with CAS, 3 adults and 6 children had past or present SSD diagnoses. Two preschoolers with unremediated CAS showed a high number of sequencing errors during single-word production. Performance on tasks with high sequential processing loads differentiated between the affected and unaffected family members, whereas there were no group differences in tasks with low processing loads. Adults with a history of SSD produced more sequencing errors during nonword and multisyllabic real word imitation, compared to those without such a history. Results are consistent with a global deficit in sequential processing that influences speech development as well as cognitive and linguistic processing.
Collapse
Affiliation(s)
- Beate Peter
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
21
|
Neurogenetics and auditory processing in developmental dyslexia. Curr Opin Neurobiol 2013; 23:37-42. [PMID: 23040541 DOI: 10.1016/j.conb.2012.09.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/06/2012] [Accepted: 09/16/2012] [Indexed: 01/18/2023]
|
22
|
Raskind WH, Peter B, Richards T, Eckert MM, Berninger VW. The genetics of reading disabilities: from phenotypes to candidate genes. Front Psychol 2013; 3:601. [PMID: 23308072 PMCID: PMC3538356 DOI: 10.3389/fpsyg.2012.00601] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/18/2012] [Indexed: 12/19/2022] Open
Abstract
This article provides an overview of (a) issues in definition and diagnosis of specific reading disabilities at the behavioral level that may occur in different constellations of developmental and phenotypic profiles (patterns); (b) rapidly expanding research on genetic heterogeneity and gene candidates for dyslexia and other reading disabilities; (c) emerging research on gene-brain relationships; and (d) current understanding of epigenetic mechanisms whereby environmental events may alter behavioral expression of genetic variations. A glossary of genetic terms (denoted by bold font) is provided for readers not familiar with the technical terms.
Collapse
Affiliation(s)
- Wendy H Raskind
- Department of Medicine, University of Washington Seattle, WA, USA ; Department of Psychiatry and Behavioral Sciences, University of Washington Seattle, WA, USA
| | | | | | | | | |
Collapse
|
23
|
Szalkowski CE, Fiondella CG, Galaburda AM, Rosen GD, Loturco JJ, Fitch RH. Neocortical disruption and behavioral impairments in rats following in utero RNAi of candidate dyslexia risk gene Kiaa0319. Int J Dev Neurosci 2012; 30:293-302. [PMID: 22326444 PMCID: PMC3516384 DOI: 10.1016/j.ijdevneu.2012.01.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 11/22/2022] Open
Abstract
Within the last decade several genes have been identified as candidate risk genes for developmental dyslexia. Recent research using animal models and embryonic RNA interference (RNAi) has shown that a subset of the candidate dyslexia risk genes--DYX1C1, ROBO1, DCDC2, KIAA0319--regulate critical parameters of neocortical development, such as neuronal migration. For example, embryonic disruption of the rodent homolog of DYX1C1 disrupts neuronal migration and produces deficits in rapid auditory processing (RAP) and working memory--phenotypes that have been reported to be associated with developmental dyslexia. In the current study we used a modified prepulse inhibition paradigm to assess acoustic discrimination abilities of male Wistar rats following in utero RNA interference targeting Kiaa0319. We also assessed spatial learning and working memory using a Morris water maze (MWM) and a radial arm water maze. We found that embryonic interference with this gene resulted in disrupted migration of neocortical neurons leading to formation of heterotopia in white matter, and to formation of hippocampal dysplasia in a subset of animals. These animals displayed deficits in processing complex acoustic stimuli, and those with hippocampal malformations exhibited impaired spatial learning abilities. No significant impairment in working memory was detected in the Kiaa0319 RNAi treated animals. Taken together, these results suggest that Kiaa0319 plays a role in neuronal migration during embryonic development, and that early interference with this gene results in an array of behavioral deficits including impairments in rapid auditory processing and simple spatial learning.
Collapse
Affiliation(s)
- Caitlin E Szalkowski
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, USA.
| | | | | | | | | | | |
Collapse
|