1
|
Zhong Y, Tubbs JD, Leung PBM, Zhan N, Hui TCK, Ho KKY, Hung KSY, Cheung EFC, So HC, Lui SSY, Sham PC. Whole-exome sequencing in a Chinese sample provides preliminary evidence for the link between rare/low-frequency immune-related variants and early-onset schizophrenia. Asian J Psychiatr 2024; 96:104046. [PMID: 38663229 DOI: 10.1016/j.ajp.2024.104046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/06/2024] [Indexed: 06/01/2024]
Abstract
Rare and low-frequency variants contribute to schizophrenia (SCZ), and may influence its age-at-onset (AAO). We examined the association of rare or low-frequency deleterious coding variants in Chinese patients with SCZ. We collected DNA samples in 197 patients with SCZ spectrum disorder and 82 healthy controls (HC), and performed exome sequencing. The AAO variable was ascertained in the majority of SCZ participants for identify the early-onset (EOS, AAO<=18) and adult-onset (AOS, AAO>18) subgroups. We examined the overall association of rare/low-frequency, damaging variants in SCZ versus HC, EOS versus HC, and AOS versus HC at the gene and gene-set levels using Sequence Kernel Association Test. The quantitative rare-variant association test of AAO was conducted. Resampling was used to obtain empirical p-values and to control for family-wise error rate (FWER). In binary-trait association tests, we identified 5 potential candidate risk genes and 10 gene ontology biological processes (GOBP) terms, among which PADI2 reached FWER-adjusted significance. In quantitative rare-variant association tests, we found marginally significant correlations of AAO with alterations in 4 candidate risk genes, and 5 GOBP pathways. Together, the biological and functional profiles of these genes and gene sets supported the involvement of perturbations of neural systems in SCZ, and altered immune functions in EOS.
Collapse
Affiliation(s)
- Yuanxin Zhong
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Justin D Tubbs
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Perry B M Leung
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Na Zhan
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Tomy C K Hui
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Karen K Y Ho
- Department of General Adult Psychiatry, Castle Peak Hospital, Hong Kong Special Administrative Region of China
| | - Karen S Y Hung
- Department of General Adult Psychiatry, Castle Peak Hospital, Hong Kong Special Administrative Region of China
| | - Eric F C Cheung
- Department of General Adult Psychiatry, Castle Peak Hospital, Hong Kong Special Administrative Region of China
| | - Hon-Cheong So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China; Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China.
| | - Simon S Y Lui
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Pak C Sham
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Zhong Y, Tubbs JD, Leung PBM, Zhan N, Hui TCK, Ho KKY, Hung KSY, Cheung EFC, So HC, Lui SSY, Sham PC. Early-onset schizophrenia is associated with immune-related rare variants in a Chinese sample. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.21.23298115. [PMID: 38045317 PMCID: PMC10690336 DOI: 10.1101/2023.11.21.23298115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Rare variants are likely to contribute to schizophrenia (SCZ), given the large discrepancy between the heritability estimated from twin and GWAS studies. Furthermore, the nature of the rare-variant contribution to SCZ may vary with the "age-at-onset" (AAO), since early-onset has been suggested as being indicative of neurodevelopment deviance. Objective To examine the association of rare deleterious coding variants in early- and adult-onset SCZ in a Chinese sample. Method Exome sequencing was performed on DNA from 197 patients with SCZ spectrum disorder and 82 healthy controls (HC) of Chinese ancestry recruited in Hong Kong. We also gathered AAO information in the majority of SCZ samples. Patients were classified into early-onset (EOS, AAO<18) and adult-onset (AOS, AAO>18). We collapsed the rare variants to improve statistical power and examined the overall association of rare variants in SCZ versus HC, EOS versus HC, and AOS versus HC at the gene and gene-set levels by Sequence Kernel Association Test. The quantitative rare-variant association test of AAO was also conducted. We focused on variants which were predicted to have a medium or high impact on the protein-encoding process as defined by Ensembl. We applied a 100000-time permutation test to obtain empirical p-values, with significance threshold set at p < 1e -3 to control family-wise error rates. Moreover, we compared the burden of targeted rare variants in significant risk genes and gene sets in cases and controls. Results Based on several binary-trait association tests (i.e., SCZ vs HC, EOS vs HC and AOS vs HC), we identified 7 candidate risk genes and 20 gene ontology biological processes (GOBP) terms, which exhibited higher burdens in SCZ than in controls. Based on quantitative rare-variant association tests, we found that alterations in 5 candidate risk genes and 7 GOBP pathways were significantly correlated with AAO. Based on biological and functional profiles of the candidate risk genes and gene sets, our findings suggested that, in addition to the involvement of perturbations in neural systems in SCZ in general, altered immune responses may be specifically implicated in EOS. Conclusion Disrupted immune responses may exacerbate abnormal perturbations during neurodevelopment and trigger the early onset of SCZ. We provided evidence of rare variants increasing SCZ risk in the Chinese population.
Collapse
|
3
|
Zhan N, Sham PC, So HC, Lui SSY. The genetic basis of onset age in schizophrenia: evidence and models. Front Genet 2023; 14:1163361. [PMID: 37441552 PMCID: PMC10333597 DOI: 10.3389/fgene.2023.1163361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Schizophrenia is a heritable neurocognitive disorder affecting about 1% of the population, and usually has an onset age at around 21-25 in males and 25-30 in females. Recent advances in genetics have helped to identify many common and rare variants for the liability to schizophrenia. Earlier evidence appeared to suggest that younger onset age is associated with higher genetic liability to schizophrenia. Clinical longitudinal research also found that early and very-early onset schizophrenia are associated with poor clinical, neurocognitive, and functional profiles. A recent study reported a heritability of 0.33 for schizophrenia onset age, but the genetic basis of this trait in schizophrenia remains elusive. In the pre-Genome-Wide Association Study (GWAS) era, genetic loci found to be associated with onset age were seldom replicated. In the post-Genome-Wide Association Study era, new conceptual frameworks are needed to clarify the role of onset age in genetic research in schizophrenia, and to identify its genetic basis. In this review, we first discussed the potential of onset age as a characterizing/subtyping feature for psychosis, and as an important phenotypic dimension of schizophrenia. Second, we reviewed the methods, samples, findings and limitations of previous genetic research on onset age in schizophrenia. Third, we discussed a potential conceptual framework for studying the genetic basis of onset age, as well as the concepts of susceptibility, modifier, and "mixed" genes. Fourth, we discussed the limitations of this review. Lastly, we discussed the potential clinical implications for genetic research of onset age of schizophrenia, and how future research can unveil the potential mechanisms for this trait.
Collapse
Affiliation(s)
- Na Zhan
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Pak C. Sham
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre of PanorOmic Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hon-Cheong So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Branch of the Chinese Academy of Sciences Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Simon S. Y. Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Sada-Fuente E, Aranda S, Papiol S, Heilbronner U, Moltó MD, Aguilar EJ, González-Peñas J, Andreu-Bernabeu Á, Arango C, Crespo-Facorro B, González-Pinto A, Fañanás L, Arias B, Bobes J, Costas J, Martorell L, Schulze TG, Kalman JL, Vilella E, Muntané G. Common genetic variants contribute to heritability of age at onset of schizophrenia. Transl Psychiatry 2023; 13:201. [PMID: 37308478 PMCID: PMC10261125 DOI: 10.1038/s41398-023-02508-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Schizophrenia (SCZ) is a complex disorder that typically arises in late adolescence or early adulthood. Age at onset (AAO) of SCZ is associated with long-term outcomes of the disease. We explored the genetic architecture of AAO with a genome-wide association study (GWAS), heritability, polygenic risk score (PRS), and copy number variant (CNV) analyses in 4 740 subjects of European ancestry. Although no genome-wide significant locus was identified, SNP-based heritability of AAO was estimated to be between 17 and 21%, indicating a moderate contribution of common variants. We also performed cross-trait PRS analyses with a set of mental disorders and identified a negative association between AAO and common variants for SCZ, childhood maltreatment and attention-deficit/hyperactivity disorder. We also investigated the role of copy number variants (CNVs) in AAO and found an association with the length and number of deletions (P-value = 0.03), whereas the presence of CNVs previously reported in SCZ was not associated with earlier onset. To our knowledge, this is the largest GWAS of AAO of SCZ to date in individuals from European ancestry, and the first study to determine the involvement of common variants in the heritability of AAO. Finally, we evidenced the role played by higher SCZ load in determining AAO but discarded the role of pathogenic CNVs. Altogether, these results shed light on the genetic architecture of AAO, which needs to be confirmed with larger studies.
Collapse
Affiliation(s)
- Ester Sada-Fuente
- Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili (IISPV), Department of Psychiatry, Universitat Rovira i Virgili (URV), Reus, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Selena Aranda
- Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili (IISPV), Department of Psychiatry, Universitat Rovira i Virgili (URV), Reus, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, Ludwig Maximilian University of Munich, 80336, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, 80336, Munich, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, Ludwig Maximilian University of Munich, 80336, Munich, Germany
| | - María Dolores Moltó
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Department of Genetics, Universitat de Valencia, 46100, Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010, Valencia, Spain
| | - Eduardo J Aguilar
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Biomedical Research Institute INCLIVA, 46010, Valencia, Spain
- Department of Psychiatry, Hospital Clínico Universitario de Valencia, 46010, Valencia, Spain
- Faculty of Medicine, Universidad de Valencia, 46010, Valencia, Spain
| | - Javier González-Peñas
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Gregorio Marañón Health Research Institute (IiSGM), Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
| | - Álvaro Andreu-Bernabeu
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Gregorio Marañón Health Research Institute (IiSGM), Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
- Faculty of Medicine, Universidad Complutense, 28007, Madrid, Spain
| | - Celso Arango
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Gregorio Marañón Health Research Institute (IiSGM), Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
- Faculty of Medicine, Universidad Complutense, 28007, Madrid, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Universidad de Cantabria, 39005, Santander, Cantabria, Spain
- Hospital Universitario Marqués de Valdecilla-IDIVAL, 39008, Santander, Cantabria, Spain
- Department of Psychiatry, University Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Ana González-Pinto
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitario Araba, Instituto de Investigación Sanitaria Bioaraba, Universidad del País Vasco, 01009, Vitoria, Spain
| | - Lourdes Fañanás
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - Barbara Arias
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - Julio Bobes
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Faculty of Medicine and Health Sciences - Psychiatry, Universidad de Oviedo, 33006, Oviedo, Spain
- Mental Health Services of Principado de Asturias (SESPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003, Oviedo, Spain
| | - Javier Costas
- Psychiatric Genetics Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servizo Galego de Saúde (SERGAS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706, Santiago de Compostela, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili (IISPV), Department of Psychiatry, Universitat Rovira i Virgili (URV), Reus, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, Ludwig Maximilian University of Munich, 80336, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, 80336, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, US
| | - Janos L Kalman
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, Ludwig Maximilian University of Munich, 80336, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, 80336, Munich, Germany
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili (IISPV), Department of Psychiatry, Universitat Rovira i Virgili (URV), Reus, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| | - Gerard Muntané
- Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili (IISPV), Department of Psychiatry, Universitat Rovira i Virgili (URV), Reus, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Abstract
OBJECTIVE Schizophrenia (SCZ) is a debilitating disease with a complex genetic cause in which age at onset may reflect genetic vulnerability. Though there has been some association between genetic polymorphisms and age of onset, there has been little exploration of the role of epigenetic processes. We sought to explore the influence of DNA methylation, a key epigenetic mechanism, and its association with the age of onset of illness. METHODS One hundred thirty-eight participants aged 18-75 years and previously diagnosed with SCZ spectrum disorders by the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders (SCID DSM-5) were recruited. Venous blood was collected and genome-wide DNA methylation was quantified using the Illumina Infinium HumanMethylation450 BeadChip array. Individual CpG sites and regions of differential methylation were explored by the age of onset; covariates included age, sex, as well as white blood cell composition. RESULTS Binary grouping (early vs. late onset) revealed four intergenic CpG sites on chromosome 2 that were above the expected P-value threshold, with hypermethylation of the CpG site cg10392614 most strongly associated with early-onset SCZ. The four most strongly associated CpG sites, including cg 10392614, were intergenic. Continuous analysis revealed the top CpG site to be cg11723066 , which is linked to the JAM3 gene, with hypomethylation associated with earlier onset; however, results were below the expected P-value threshold. CONCLUSION Studies on DNA methylation in the first-episode psychosis population may help further our understanding of the role of epigenetics in the age of onset of SCZ.
Collapse
|
6
|
Almodóvar-Payá C, Guardiola-Ripoll M, Giralt-López M, Gallego C, Salgado-Pineda P, Miret S, Salvador R, Muñoz MJ, Lázaro L, Guerrero-Pedraza A, Parellada M, Carrión MI, Cuesta MJ, Maristany T, Sarró S, Fañanás L, Callado LF, Arias B, Pomarol-Clotet E, Fatjó-Vilas M. NRN1 Gene as a Potential Marker of Early-Onset Schizophrenia: Evidence from Genetic and Neuroimaging Approaches. Int J Mol Sci 2022; 23:ijms23137456. [PMID: 35806464 PMCID: PMC9267632 DOI: 10.3390/ijms23137456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
Included in the neurotrophins family, the Neuritin 1 gene (NRN1) has emerged as an attractive candidate gene for schizophrenia (SZ) since it has been associated with the risk for the disorder and general cognitive performance. In this work, we aimed to further investigate the association of NRN1 with SZ by exploring its role on age at onset and its brain activity correlates. First, we developed two genetic association analyses using a family-based sample (80 early-onset (EO) trios (offspring onset ≤ 18 years) and 71 adult-onset (AO) trios) and an independent case–control sample (120 healthy subjects (HS), 87 EO and 138 AO patients). Second, we explored the effect of NRN1 on brain activity during a working memory task (N-back task; 39 HS, 39 EO and 39 AO; matched by age, sex and estimated IQ). Different haplotypes encompassing the same three Single Nucleotide Polymorphisms(SNPs, rs3763180–rs10484320–rs4960155) were associated with EO in the two samples (GCT, TCC and GTT). Besides, the GTT haplotype was associated with worse N-back task performance in EO and was linked to an inefficient dorsolateral prefrontal cortex activity in subjects with EO compared to HS. Our results show convergent evidence on the NRN1 association with EO both from genetic and neuroimaging approaches, highlighting the role of neurotrophins in the pathophysiology of SZ.
Collapse
Affiliation(s)
- Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Barcelona, Spain; (C.A.-P.); (M.G.-R.); (P.S.-P.); (R.S.); (A.G.-P.); (S.S.)
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
| | - Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Barcelona, Spain; (C.A.-P.); (M.G.-R.); (P.S.-P.); (R.S.); (A.G.-P.); (S.S.)
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
| | - Maria Giralt-López
- Departament de Psiquiatria, Hospital Universitari Germans Trias i Pujol (HUGTP), 08916 Badalona, Barcelona, Spain;
- Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Carme Gallego
- Department of Cell Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), 08028 Barcelona, Barcelona, Spain;
| | - Pilar Salgado-Pineda
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Barcelona, Spain; (C.A.-P.); (M.G.-R.); (P.S.-P.); (R.S.); (A.G.-P.); (S.S.)
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
| | - Salvador Miret
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
- Centre de Salut Mental d’Adults de Lleida, Servei de Psiquiatria, Salut Mental i Addiccions, Hospital Universitari Santa Maria de Lleida, 25198 Lleida, Lleida, Spain
- Institut de Recerca Biomèdica (IRB), 25198 Lleida, Lleida, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Barcelona, Spain; (C.A.-P.); (M.G.-R.); (P.S.-P.); (R.S.); (A.G.-P.); (S.S.)
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
| | - María J. Muñoz
- Complex Assistencial en Salut Mental Benito Menni, 08830 Sant Boi de Llobregat, Barcelona, Spain;
| | - Luisa Lázaro
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, 08036 Barcelona, Barcelona, Spain
- Departament de Medicina, Universitat de Barcelona (UB), 08036 Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Barcelona, Spain
| | - Amalia Guerrero-Pedraza
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Barcelona, Spain; (C.A.-P.); (M.G.-R.); (P.S.-P.); (R.S.); (A.G.-P.); (S.S.)
- Complex Assistencial en Salut Mental Benito Menni, 08830 Sant Boi de Llobregat, Barcelona, Spain;
| | - Mara Parellada
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
- Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), 28007 Madrid, Madrid, Spain
- Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Madrid, Spain
| | | | - Manuel J. Cuesta
- Servicio de Psiquiatría, Hospital Universitario de Navarra, 31008 Pamplona, Navarra, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Navarra, Spain
| | - Teresa Maristany
- Departament de Diagnòstic per la Imatge, Hospital Sant Joan de Déu Fundació de Recerca, 08950 Esplugues de Llobregat, Barcelona, Spain;
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Barcelona, Spain; (C.A.-P.); (M.G.-R.); (P.S.-P.); (R.S.); (A.G.-P.); (S.S.)
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
| | - Lourdes Fañanás
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
- Departament de Biologia Evolutiva, Ecología i Ciències Ambientals, Universitat de Barcelona (UB), 08028 Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Barcelona, Spain
| | - Luis F. Callado
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Bizkaia, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Bárbara Arias
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
- Departament de Biologia Evolutiva, Ecología i Ciències Ambientals, Universitat de Barcelona (UB), 08028 Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Barcelona, Spain; (C.A.-P.); (M.G.-R.); (P.S.-P.); (R.S.); (A.G.-P.); (S.S.)
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
- Correspondence: (E.P.-C.); (M.F.-V.)
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Barcelona, Spain; (C.A.-P.); (M.G.-R.); (P.S.-P.); (R.S.); (A.G.-P.); (S.S.)
- Instituto de Salud Carlos III, Biomedical Research Network in Mental Health (CIBERSAM), 28029 Madrid, Madrid, Spain; (S.M.); (L.L.); (M.P.); (L.F.); (L.F.C.); (B.A.)
- Departament de Biologia Evolutiva, Ecología i Ciències Ambientals, Universitat de Barcelona (UB), 08028 Barcelona, Barcelona, Spain
- Correspondence: (E.P.-C.); (M.F.-V.)
| |
Collapse
|
7
|
Fang R, Yang H, Gao Y, Cao H, Goode EL, Cui Y. Gene-based mediation analysis in epigenetic studies. Brief Bioinform 2021; 22:bbaa113. [PMID: 32608480 PMCID: PMC8660163 DOI: 10.1093/bib/bbaa113] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Mediation analysis has been a useful tool for investigating the effect of mediators that lie in the path from the independent variable to the outcome. With the increasing dimensionality of mediators such as in (epi)genomics studies, high-dimensional mediation model is needed. In this work, we focus on epigenetic studies with the goal to identify important DNA methylations that act as mediators between an exposure disease outcome. Specifically, we focus on gene-based high-dimensional mediation analysis implemented with kernel principal component analysis to capture potential nonlinear mediation effect. We first review the current high-dimensional mediation models and then propose two gene-based analytical approaches: gene-based high-dimensional mediation analysis based on linearity assumption between mediators and outcome (gHMA-L) and gene-based high-dimensional mediation analysis based on nonlinearity assumption (gHMA-NL). Since the underlying true mediation relationship is unknown in practice, we further propose an omnibus test of gene-based high-dimensional mediation analysis (gHMA-O) by combing gHMA-L and gHMA-NL. Extensive simulation studies show that gHMA-L performs better under the model linear assumption and gHMA-NL does better under the model nonlinear assumption, while gHMA-O is a more powerful and robust method by combining the two. We apply the proposed methods to two datasets to investigate genes whose methylation levels act as important mediators in the relationship: (1) between alcohol consumption and epithelial ovarian cancer risk using data from the Mayo Clinic Ovarian Cancer Case-Control Study and (2) between childhood maltreatment and comorbid post-traumatic stress disorder and depression in adulthood using data from the Gray Trauma Project.
Collapse
|
8
|
Musket CW, Kuo SS, Rupert PE, Almasy L, Gur RC, Prasad K, Wood J, Roalf DR, Gur RE, Nimgaonkar VL, Pogue-Geile MF. Why does age of onset predict clinical severity in schizophrenia? A multiplex extended pedigree study. Am J Med Genet B Neuropsychiatr Genet 2020; 183:403-411. [PMID: 32812349 PMCID: PMC8728945 DOI: 10.1002/ajmg.b.32814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 05/30/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
Schizophrenia has substantial variation in symptom severity, course of illness, and overall functioning. Earlier age of onset (AOO) is consistently associated with negative outcomes and yet the causes of this association are still unknown. We used a multiplex, extended pedigree design (total N = 771; 636 relatives from 43 multigenerational families with at least 2 relatives diagnosed with schizophrenia and 135 matched controls) to examine among the schizophrenia relatives (N = 103) the relationship between AOO and negative and positive symptom severity, cognition, and community functioning. Most importantly, we assessed whether there are shared genetic effects between AOO and negative symptoms, positive symptoms, cognition, and community functioning. As expected, earlier AOO was significantly correlated with increased severity of negative and positive symptoms and poorer cognition and community functioning among schizophrenia patients. Notably, the genetic correlation between AOO of schizophrenia and negative symptoms was significant (Rg = -1.00, p = .007). Although the genetic correlations between AOO and positive symptoms, cognition, and community functioning were estimated at maximum and in the predicted direction, they were not statistically significant. AOO of schizophrenia itself was modestly heritable, although not significant and negative symptoms, positive symptoms, and cognition were all strongly and significantly heritable. In sum, we replicated prior findings indicating that earlier AOO is associated with increased symptom severity and extended the literature by detecting shared genetic effects between AOO and negative symptoms, suggestive of pleiotropy.
Collapse
Affiliation(s)
- Christie W. Musket
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Susan S. Kuo
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Petra E. Rupert
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Laura Almasy
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ruben C. Gur
- Neuropsychiatry Division, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Konasale Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joel Wood
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David R. Roalf
- Neuropsychiatry Division, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Raquel E. Gur
- Neuropsychiatry Division, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
9
|
Hashimoto N, Michaels TI, Hancock R, Kusumi I, Hoeft F. Maternal cerebellar gray matter volume is associated with daughters' psychotic experience. Psychiatry Clin Neurosci 2020; 74:392-397. [PMID: 32353195 PMCID: PMC7424852 DOI: 10.1111/pcn.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 11/30/2022]
Abstract
AIM A substantial portion of children and adolescents show subthreshold psychotic symptoms called psychotic experience (PE). Because PE shares its biological and environmental risk factors with psychotic spectrum disorders, parental neuroanatomical variation could reflect a heritable biological underpinning of PE that may predict an offspring's PE. METHODS A total of 94 participants from 35 families without a diagnosis of major neuropsychiatric disorders were examined, including 14 mother-daughter, 17 mother-son, 12 father-daughter, and 16 father-son dyads. An offspring's PE was assessed with the Atypicality subscale of the Behavior Assessment System for Children - 2nd Edition, Self-Report of Personality form (BASCaty). We examined correlations between voxel-by-voxel parental gray matter volume and their offspring's BASCaty score. RESULTS Maternal cerebellar gray matter volume using voxel-based morphometry was positively correlated with their daughters' BASCaty scores. The findings were significant in a more robust approach using cerebellum-specific normalization known. We did not find significant correlation between paternal gray matter volume and BASCaty scores or between offspring gray matter volumes and their BASCaty scores. CONCLUSION Expanding upon parent-of-origin effects in psychosis, maternal neuroanatomical variation was associated with daughters' PE. The nature of this sex-specific intergenerational effect is unknown, but maternally transmitted genes may relate cerebellum development to PE pathogenesis.
Collapse
Affiliation(s)
- Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Timothy I Michaels
- Brain Imaging Research Center, University of Connecticut, Storrs, USA.,Department of Psychological Sciences, University of Connecticut, Storrs, USA.,Department of Pediatrics, University of California, Davis, Medical Center, Sacramento, USA
| | - Roeland Hancock
- Brain Imaging Research Center, University of Connecticut, Storrs, USA.,Department of Psychological Sciences, University of Connecticut, Storrs, USA
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Fumiko Hoeft
- Brain Imaging Research Center, University of Connecticut, Storrs, USA.,Department of Psychological Sciences, University of Connecticut, Storrs, USA.,Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, USA.,Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Reiterer M, Schmidt-Kastner R, Milton SL. Methionine sulfoxide reductase (Msr) dysfunction in human brain disease. Free Radic Res 2019; 53:1144-1154. [PMID: 31775527 DOI: 10.1080/10715762.2019.1662899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extensive research has shown that oxidative stress is strongly associated with aging, senescence and several diseases, including neurodegenerative and psychiatric disorders. Oxidative stress is caused by the overproduction of reactive oxygen species (ROS) that can be counteracted by both enzymatic and nonenzymatic antioxidants. One of these antioxidant mechanisms is the widely studied methionine sulfoxide reductase system (Msr). Methionine is one of the most easily oxidized amino acids and Msr can reverse this oxidation and restore protein function, with MsrA and MsrB reducing different stereoisomers. This article focuses on experimental and genetic research performed on Msr and its link to brain diseases. Studies on several model systems as well as genome-wide association studies are compiled to highlight the role of MSRA in schizophrenia, Alzheimer's disease, and Parkinson's disease. Genetic variation of MSRA may also contribute to the risk of psychosis, personality traits, and metabolic factors.
Collapse
Affiliation(s)
- Melissa Reiterer
- Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Sarah L Milton
- Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
11
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
12
|
Hsiung A, Naya FJ, Chen X, Shiang R. A schizophrenia associated CMYA5 allele displays differential binding with desmin. J Psychiatr Res 2019; 111:8-15. [PMID: 30658136 PMCID: PMC6467702 DOI: 10.1016/j.jpsychires.2019.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/28/2018] [Accepted: 01/07/2019] [Indexed: 11/17/2022]
Abstract
CMYA5 is a candidate gene for schizophrenia because of the genetic association of variant rs10043986 (C > T) to this severe mental disorder. Studies of CMYA5 and its gene product, myospryn, in the brain and neuronal cells have not been previously reported. The SNP rs10043986 changes the 4,063rd amino acid from Pro to Leu, which is likely to alter protein function. To understand its potential role in the brain, we examined the neuronal expression of myospryn and its binding partner, desmin, an intermediate filament (IF) protein, and investigated how the two alleles of myospryn affect its binding to desmin. Myospryn and desmin are shown to be expressed in the brain and myospryn is shown to localize to the cytoplasm and nucleus of myoblast, neuroblastoma, and glioblastoma cell lines. Peripherin and vimentin, known brain IF proteins, have high protein similarity to desmin but were found not to interact with myospryn using yeast two-hybrid (Y2H). Using a quantitative Y2H assay and surface plasmon resonance, the T allele (Leu) of rs10043986 was found to have stronger binding to desmin than the C allele (Pro). Based on findings described in this report, we hypothesize that the interaction between myospryn to IF provides structural support and efficient rearrangement of the cytoskeleton network during early neuritogenesis.
Collapse
Affiliation(s)
- Anting Hsiung
- Department of Human and Molecular Genetics, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA, 23298-0033, USA.
| | - Francisco J Naya
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
| | - Xiangning Chen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA, 23298-0033, USA; Department of Psychiatry, Virginia Commonwealth University, 1200 East Broad Street, Richmond, VA, 23298-0710, USA; Nevada Institute of Personalized Medicine and Department of Psychology, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV, 89154-4009, USA.
| | - Rita Shiang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA, 23298-0033, USA.
| |
Collapse
|
13
|
Folts CJ, Giera S, Li T, Piao X. Adhesion G Protein-Coupled Receptors as Drug Targets for Neurological Diseases. Trends Pharmacol Sci 2019; 40:278-293. [PMID: 30871735 DOI: 10.1016/j.tips.2019.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 01/06/2023]
Abstract
The family of adhesion G protein-coupled receptors (aGPCRs) consists of 33 members in humans. Although the majority are orphan receptors with unknown functions, many reports have demonstrated critical functions for some members of this family in organogenesis, neurodevelopment, myelination, angiogenesis, and cancer progression. Importantly, mutations in several aGPCRs have been linked to human diseases. The crystal structure of a shared protein domain, the GPCR Autoproteolysis INducing (GAIN) domain, has enabled the discovery of a common signaling mechanism - a tethered agonist - for this class of receptors. A series of recent reports has shed new light on their biological functions and disease relevance. This review focuses on these recent advances in our understanding of aGPCR biology in the nervous system and the untapped potential of aGPCRs as novel therapeutic targets for neurological disease.
Collapse
Affiliation(s)
- Christopher J Folts
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Current address: Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210, USA
| | - Stefanie Giera
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Current address: Sanofi S.A., 49 New York Avenue, Framingham, MA 01701, USA
| | - Tao Li
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Newborn Brain Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
14
|
Calabrò M, Porcelli S, Crisafulli C, Wang SM, Lee SJ, Han C, Patkar AA, Masand PS, Albani D, Raimondi I, Forloni G, Bin S, Cristalli C, Mantovani V, Pae CU, Serretti A. Genetic Variants Within Molecular Targets of Antipsychotic Treatment: Effects on Treatment Response, Schizophrenia Risk, and Psychopathological Features. J Mol Neurosci 2018; 64:62-74. [PMID: 29164477 DOI: 10.1007/s12031-017-1002-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022]
Abstract
Schizophrenia (SCZ) is a common and severe mental disorder. Genetic factors likely play a role in its pathophysiology as well as in treatment response. In the present study, we investigated the effects of several single nucleotide polymorphisms (SNPs) within 9 genes involved with antipsychotic (AP) mechanisms of action. Two independent samples were recruited. The Korean sample included 176 subjects diagnosed with SCZ and 326 healthy controls, while the Italian sample included 83 subjects and 194 controls. AP response as measured by the positive and negative syndrome scale (PANSS) was the primary outcome, while the secondary outcome was the SCZ risk. Exploratory analyses were performed on (1) symptom clusters response (as measured by PANSS subscales); (2) age of onset; (3) family history; and (4) suicide history. Associations evidenced in the primary analyses did not survive to the FDR correction. Concerning SCZ risk, we partially confirmed the associations among COMT and MAPK1 genetic variants and SCZ. Finally, our exploratory analysis suggested that CHRNA7 and HTR2A genes may modulate both positive and negative symptoms responses, while PLA2G4A and SIGMAR1 may modulate respectively positive and negative symptoms responses. Moreover, GSK3B, HTR2A, PLA2G4A, and S100B variants may determine an anticipation of SCZ age of onset. Our results did not support a primary role for the genes investigated in AP response as a whole. However, our exploratory findings suggested that these genes may be involved in symptom clusters response.
Collapse
Affiliation(s)
- Marco Calabrò
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | - Stefano Porcelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | - Sheng-Min Wang
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Soo-Jung Lee
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Changsu Han
- Department of Psychiatry, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Ashwin A Patkar
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Prakash S Masand
- Global Medical Education, New York, NY, USA
- Academic Medicine Education Institute, Duke-NUS Medical School, Singapore, Singapore
| | - Diego Albani
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Ilaria Raimondi
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Sofia Bin
- Center for Applied Biomedical Research (CRBA, St. Orsola University Hospital, Bologna, Italy
| | - Carlotta Cristalli
- Center for Applied Biomedical Research (CRBA, St. Orsola University Hospital, Bologna, Italy
| | - Vilma Mantovani
- Center for Applied Biomedical Research (CRBA, St. Orsola University Hospital, Bologna, Italy
| | - Chi-Un Pae
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea.
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
- Department of Psychiatry, Bucheon St. Mary's Hospital, The Catholic University of Korea College of Medicine, 2 Sosa-Dong, Wonmi-Gu, Bucheon, Kyeonggi-Do, 420-717, Republic of Korea.
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Genetic loci associated with an earlier age at onset in multiplex schizophrenia. Sci Rep 2017; 7:6486. [PMID: 28744025 PMCID: PMC5527118 DOI: 10.1038/s41598-017-06795-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/16/2017] [Indexed: 11/28/2022] Open
Abstract
An earlier age at onset (AAO) has been associated with greater genetic loadings in schizophrenia. This study aimed to identify modifier loci associated with an earlier AAO of schizophrenia. A genome-wide association analysis (GWAS) was conducted in 94 schizophrenia probands with the earliest AAO and 91 with the latest AAO. Candidate single nucleotide polymorphisms (SNPs) were then genotyped in the co-affected siblings and unrelated probands. Multi-SNP genetic risk scores (GRS) composed of the candidate loci were used to distinguish patients with an early or late AAO. The 14-SNP GRS could distinguish the co-affected siblings (n = 90) of the earliest probands from those (n = 91) of the latest probands. When 132 patients with an earlier AAO and 158 patients with a later AAO were included, a significant trend in the 14-SNP GRS was detected among those unrelated probands from 4 family groups with the earliest, earlier, later, and latest AAO. The overall effect of the 14 SNPs on an AAO in schizophrenia was verified using co-affected siblings of the GWAS probands and trend effect across unrelated patients. Preliminary network analysis of these loci revealed the involvement of PARK2, a gene intensively reported in Parkinson’s disease and schizophrenia research.
Collapse
|
16
|
Heithaus JL, Twyman KA, Batanian JR. A Rare Recurrent 4q25 Proximal Deletion Not Involving the PITX2 Gene: A Genomic Disorder Distinct from Axenfeld-Rieger Syndrome. Mol Syndromol 2016; 7:138-43. [PMID: 27587989 DOI: 10.1159/000447077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 12/12/2022] Open
Abstract
Haploinsufficient microdeletions within chromosome 4q25 are often associated with Axenfeld-Rieger syndrome. A de novo 4q25 deletion, 675 kb proximal to PITX2, has previously been reported once in an adult patient. The patient did not have Axenfeld-Rieger anomaly, but instead had intellectual disability and a complex behavioral phenotype with withdrawn, stereotypic, and ritualistic behavior. Array comparative genome hybridization demonstrated a smaller, overlapping 4q25 deletion in a 2-year-old patient and his mother, both having significant phenotypic overlap with the initially reported patient. All 3 patients have distinct facial features (including mild hypotelorism and subtle mandibular asymmetry), developmental delay, and complex behavioral difficulties. A genotype-phenotype correlation narrows the shared phenotype to a common COL25A1 gene aberration and proposes that the concurrent EGF gene loss has a significant impact on the phenotypic severity. Overall, our patients provide data to support the existence of a novel 4q25 proximal deletion syndrome.
Collapse
Affiliation(s)
- Jennifer L Heithaus
- Department of Pediatrics, Developmental Pediatrics Division, Saint Louis University School of Medicine, St. Louis, Mo., USA
| | - Kimberly A Twyman
- Department of Pediatrics, Developmental Pediatrics Division, Saint Louis University School of Medicine, St. Louis, Mo., USA
| | - Jacqueline R Batanian
- Department of Pediatrics, Genetics Division, Saint Louis University School of Medicine, St. Louis, Mo., USA; Department of Pediatrics, Molecular Cytogenetics Laboratory, SSM Cardinal Glennon Children's Hospital, St. Louis, Mo., USA
| |
Collapse
|
17
|
Abstract
Over 100 loci are now associated with schizophrenia risk as identified by single nucleotide polymorphisms (SNPs) in genome-wide association studies. These findings mean that 'genes for schizophrenia' have unquestionably been found. However, many questions remain unanswered, including several which affect their therapeutic significance. The SNPs individually have minor effects, and even cumulatively explain only a modest fraction of the genetic predisposition. The remainder likely results from many more loci, from rare variants, and from gene-gene and gene-environment interactions. The risk SNPs are almost all non-coding, meaning that their biological significance is unclear; probably their effects are mediated via an influence on gene regulation, and emerging evidence suggests that some key molecular events occur during early brain development. The loci include novel genes of unknown function as well as genes and pathways previously implicated in the pathophysiology of schizophrenia, e.g. NMDA receptor signalling. Genes in the latter category have the clearer therapeutic potential, although even this will be a challenging process because of the many complexities concerning the genetic architecture and mediating mechanisms. This review summarises recent schizophrenia genetic findings and some key issues they raise, particularly with regard to their implications for identifying and validating novel drug targets.
Collapse
Affiliation(s)
- Paul J Harrison
- University Department of Psychiatry, Warneford Hospital, Oxford, UK
| |
Collapse
|
18
|
Zhang G, Zhang F, Zhu J, Zhang F, Yuan J, Xue Z, Jin C. Association of the angiotensin-converting enzyme gene insertion/deletion polymorphism with schizophrenia: a meta-analysis. Psychiatry Res 2014; 220:1169-71. [PMID: 25262561 DOI: 10.1016/j.psychres.2014.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/24/2014] [Accepted: 08/16/2014] [Indexed: 11/15/2022]
Affiliation(s)
- Guofu Zhang
- Wuxi Mental Health Center Affiliated to Nanjing Medical University, Wuxi 214151, Jiangsu Province, China; Mental Health Institute of The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Feng Zhang
- Wuxi Mental Health Center Affiliated to Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
| | - Jianzhong Zhu
- Wuxi Mental Health Center Affiliated to Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
| | - Fuquan Zhang
- Wuxi Mental Health Center Affiliated to Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
| | - Jianmin Yuan
- Wuxi Mental Health Center Affiliated to Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
| | - Zhimin Xue
- Mental Health Institute of The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| | - Chunhui Jin
- Wuxi Mental Health Center Affiliated to Nanjing Medical University, Wuxi 214151, Jiangsu Province, China.
| |
Collapse
|
19
|
Bergen SE. Genetic Modifiers and Subtypes in Schizophrenia. Curr Behav Neurosci Rep 2014. [DOI: 10.1007/s40473-014-0025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Yuan J, Cheng Z, Zhang F, Zhou Z, Yu S, Jin C. Lack of association between microRNA-137 SNP rs1625579 and schizophrenia in a replication study of Han Chinese. Mol Genet Genomics 2014; 290:297-301. [DOI: 10.1007/s00438-014-0924-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/15/2014] [Indexed: 12/20/2022]
|
21
|
Genetic modifiers and subtypes in schizophrenia: investigations of age at onset, severity, sex and family history. Schizophr Res 2014; 154:48-53. [PMID: 24581549 PMCID: PMC4422643 DOI: 10.1016/j.schres.2014.01.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 12/15/2013] [Accepted: 01/18/2014] [Indexed: 02/08/2023]
Abstract
Schizophrenia is a genetically and clinically heterogeneous disorder. Genetic risk factors for the disorder may differ between the sexes or between multiply affected families compared to cases with no family history. Additionally, limited data support a genetic basis for variation in onset and severity, but specific loci have not been identified. We performed genome-wide association studies (GWAS) examining genetic influences on age at onset (AAO) and illness severity as well as specific risk by sex or family history status using up to 2762 cases and 3187 controls from the International Schizophrenia Consortium (ISC). Subjects with a family history of schizophrenia demonstrated a slightly lower average AAO that was not significant following multiple testing correction (p=.048), but no differences in illness severity were observed by family history status (p=.51). Consistent with prior reports, we observed earlier AAO (p=.005) and a more severe course of illness for men (p=.002). Family history positive analyses showed the greatest association with KIF5C (p=1.96×10(-8)), however, genetic risk burden overall does not differ by family history. Separate association analyses for males and females revealed no significant sex-specific associations. The top GWAS hit for AAO was near the olfactory receptor gene OR2K2 (p=1.52×10(-7)). Analyses of illness severity (episodic vs. continuous) implicated variation in ST18 (p=8.24×10(-7)). These results confirm recognized demographic relationships but do not support a simplified genetic architecture for schizophrenia subtypes based on these variables.
Collapse
|
22
|
Goldstein JM, Cherkerzian S, Tsuang MT, Petryshen TL. Sex differences in the genetic risk for schizophrenia: history of the evidence for sex-specific and sex-dependent effects. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:698-710. [PMID: 24132902 DOI: 10.1002/ajmg.b.32159] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/14/2013] [Indexed: 12/16/2022]
Abstract
Although there is a long history to examinations of sex differences in the familial (and specifically, genetic) transmission of schizophrenia, there have been few investigators who have systematically and rigorously studied this issue. This is true even in light of population and clinical studies identifying significant sex differences in incidence, expression, neuroanatomic and functional brain abnormalities, and course of schizophrenia. This review highlights the history of work in this arena from studies of family transmission patterns, linkage and twin studies to the current molecular genetic strategies of large genome-wide association studies. Taken as a whole, the evidence supports the presence of genetic risks of which some are sex-specific (i.e., presence in one sex and not the other) or sex-dependent (i.e., quantitative differences in risk between the sexes). Thus, a concerted effort to systematically investigate these questions is warranted and, as we argue here, necessary in order to fully understand the etiology of schizophrenia.
Collapse
Affiliation(s)
- Jill M Goldstein
- Brigham & Women's Hospital Departments of Psychiatry and Medicine, Division of Women's Health, Connors Center for Women's Health & Gender Biology, Boston, Massachusetts; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, Massachusetts; Division of Psychiatric Neuroscience, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
23
|
Genetic Association Analysis of ITGB3 Polymorphisms with Age at Onset of Schizophrenia. J Mol Neurosci 2013; 51:446-53. [DOI: 10.1007/s12031-013-0059-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/20/2013] [Indexed: 12/24/2022]
|
24
|
Verhoeven WM, Egger JI, Goffin L, van Zutven LJ, Mancini GM. Behavioural phenotype of a patient with a de novo 1.2 Mb chromosome 4q25 microdeletion. Eur J Med Genet 2013; 56:331-5. [DOI: 10.1016/j.ejmg.2013.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/11/2013] [Indexed: 11/27/2022]
|
25
|
Chandler DJ. Something's got to give: psychiatric disease on the rise and novel drug development on the decline. Drug Discov Today 2013; 18:202-6. [DOI: 10.1016/j.drudis.2012.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/20/2012] [Accepted: 08/07/2012] [Indexed: 12/14/2022]
|
26
|
Saetre P, Grove J, Børglum AD, Mors O, Werge T, Andreassen OA, Vares M, Agartz I, Terenius L, Jönsson EG. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and age at onset of schizophrenia: no consistent evidence for an association in the Nordic population. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:981-6. [PMID: 23076983 PMCID: PMC3739001 DOI: 10.1002/ajmg.b.32104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 09/24/2012] [Indexed: 01/16/2023]
Abstract
Methylenetetrahydrofolate reductase (MTHFR) is an enzyme involved in metabolic pathways of importance for nucleotide synthesis and methylation of DNA, membranes, proteins and lipids. The MTHFR gene includes a common polymorphism (rs1801133 or C677T), which is associated with enzyme activity. The T-allele of the C677T polymorphism has been associated with earlier age at onset of schizophrenia in a Scandinavian population, although no association was found in replication attempts in other populations. Extending the study to five Nordic samples consisting of 2,198 patients with schizophrenia, including the original Scandinavian samples, there was no significant association between MTHFR C677T polymorphism and age at onset in schizophrenia. The present results do not suggest that the investigated MTHFR polymorphism has any significant influence on age at onset of schizophrenia in the Nordic population.
Collapse
Affiliation(s)
- Peter Saetre
- Department of Clinical Neuroscience, Karolinska Institutet and HospitalStockholm, Sweden
| | - Jakob Grove
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Bioinformatics Research Centre (BiRC), Aarhus UniversityAarhus, Denmark
- deCODE GeneticsReykjavik, Iceland
| | - Anders D Børglum
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Center for Psychiatric Research, Aarhus University HospitalAarhus, Denmark
| | - Ole Mors
- Center for Psychiatric Research, Aarhus University HospitalAarhus, Denmark
| | - Thomas Werge
- Research Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Copenhagen University HospitalRoskilde, Denmark
| | - Ole A Andreassen
- Institute of Psychiatry, University of OsloOslo, Norway
- Department Psychiatry, Oslo University Hospital—UllevålOslo, Norway
| | - Maria Vares
- Department of Clinical Neuroscience, Karolinska Institutet and HospitalStockholm, Sweden
| | - Ingrid Agartz
- Department of Clinical Neuroscience, Karolinska Institutet and HospitalStockholm, Sweden
- Institute of Psychiatry, University of OsloOslo, Norway
- Department of Psychiatry, Section Vinderen, University of OsloOslo, Norway
| | - Lars Terenius
- Department of Clinical Neuroscience, Karolinska Institutet and HospitalStockholm, Sweden
| | - Erik G Jönsson
- Department of Clinical Neuroscience, Karolinska Institutet and HospitalStockholm, Sweden
| |
Collapse
|
27
|
Veiga-da-Cunha M, Hadi F, Balligand T, Stroobant V, Van Schaftingen E. Molecular identification of hydroxylysine kinase and of ammoniophospholyases acting on 5-phosphohydroxy-L-lysine and phosphoethanolamine. J Biol Chem 2012; 287:7246-55. [PMID: 22241472 DOI: 10.1074/jbc.m111.323485] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The purpose of the present work was to identify the catalytic activity of AGXT2L1 and AGXT2L2, two closely related, putative pyridoxal-phosphate-dependent enzymes encoded by vertebrate genomes. The existence of bacterial homologues (40-50% identity with AGXT2L1 and AGXT2L2) forming bi- or tri-functional proteins with a putative kinase belonging to the family of aminoglycoside phosphotransferases suggested that AGXT2L1 and AGXT2L2 acted on phosphorylated and aminated compounds. Vertebrate genomes were found to encode a homologue (AGPHD1) of these putative bacterial kinases, which was therefore likely to phosphorylate an amino compound bearing a hydroxyl group. These and other considerations led us to hypothesize that AGPHD1 corresponded to 5-hydroxy-L-lysine kinase and that AGXT2L1 and AGXT2L2 catalyzed the pyridoxal-phosphate-dependent breakdown of phosphoethanolamine and 5-phosphohydroxy-L-lysine. The three recombinant human proteins were produced and purified to homogeneity. AGPHD1 was indeed found to catalyze the GTP-dependent phosphorylation of 5-hydroxy-L-lysine. The phosphorylation product made by this enzyme was metabolized by AGXT2L2, which converted it to ammonia, inorganic phosphate, and 2-aminoadipate semialdehyde. AGXT2L1 catalyzed a similar reaction on phosphoethanolamine, converting it to ammonia, inorganic phosphate, and acetaldehyde. AGPHD1 and AGXT2L2 are likely to be the mutated enzymes in 5-hydroxylysinuria and 5-phosphohydroxylysinuria, respectively. The high level of expression of AGXT2L1 in human brain, as well as data in the literature linking AGXT2L1 to schizophrenia and bipolar disorders, suggest that these diseases may involve a perturbation of brain phosphoethanolamine metabolism. AGXT2L1 and AGXT2L2, the first ammoniophospholyases to be identified, belong to a family of aminotransferases acting on ω-amines.
Collapse
Affiliation(s)
- Maria Veiga-da-Cunha
- Laboratory of Physiological Chemistry, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium.
| | | | | | | | | |
Collapse
|