1
|
Dominiquini-Moraes B, Bernardes-Ribeiro M, Patrone LGA, Fonseca EM, Frias AT, Silva KSC, Araujo-Lopes R, Szawka RE, Bícego KC, Zangrossi H, Gargaglioni LH. Impact of the estrous cycle on brain monoamines and behavioral and respiratory responses to CO 2 in mice. Pflugers Arch 2024:10.1007/s00424-024-03040-w. [PMID: 39601888 DOI: 10.1007/s00424-024-03040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/28/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024]
Abstract
The prevalence of panic disorder is two to four times higher in women compared to that in men, and hormonal changes during the menstrual cycle play a role in the occurrence of panic attacks. Here, we investigated the effect of the estrous cycle on the ventilatory and behavioral responses to CO2 in mice. Female mice in proestrus, estrus, metestrus, or diestrus were exposed to 20% CO2, and their escape behaviors, brain monoamines, and plasma levels of 17β-estradiol (E2) and progesterone (P4) were measured. Pulmonary ventilation (V̇E), oxygen consumption (V̇O2), and body core temperature (TB) were also measured during normocapnia followed by CO2. Females exposed to 20% CO2 exhibited an escape behavior, but the estrous cycle did not affect this response. Females in all phases of the estrous cycle showed higher V̇E and lower TB during hypercapnia. In diestrus, there was an attenuation of CO2-induced hyperventilation with no change in V̇O2, whereas in estrus, this response was accompanied by a reduction in V̇O2. Hypercapnia also increased the concentration of plasma P4 and central DOPAC, the main dopamine metabolite, in all females. There was an estrous cycle effect on brainstem serotonin, with females in estrus showing a higher concentration than females in the metestrus and diestrus phases. Therefore, our data suggest that hypercapnia induces panic-related behaviors and ventilatory changes that lead to an increase in P4 secretion in female mice, likely originating from the adrenals. The estrous cycle does not affect the behavioral response but interferes in the ventilatory and metabolic responses to CO2 in mice.
Collapse
Affiliation(s)
- Beatriz Dominiquini-Moraes
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil
| | - Mariana Bernardes-Ribeiro
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil
| | - Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil
| | - Elisa M Fonseca
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alana T Frias
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil
| | - Kaoma S Costa Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roberta Araujo-Lopes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil
| | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
2
|
Bendre M, Checknita D, Todkar A, Åslund C, Hodgins S, Nilsson KW. Good parent-child relationship protects against alcohol use in maltreated adolescent females carrying the MAOA-uVNTR susceptibility allele. Front Psychiatry 2024; 15:1375363. [PMID: 39104880 PMCID: PMC11298380 DOI: 10.3389/fpsyt.2024.1375363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Risk-allele carriers of a Monoamine oxidase A (MAOA) gene, short-allele (MAOA-S) in males and long-allele (MAOA-L) in females, in the presence of a negative environment, are associated with alcohol misuse. Whether MAOA-S/L alleles also present susceptibility to a positive environment to mitigate the risk of alcohol misuse is unknown. Thus, we assessed the association of the three-way interaction of MAOA, maltreatment, and positive parent-child relationship with alcohol consumption among adolescents. Methods This prospective study included 1416 adolescents (females: 59.88%) aged 16 - 19 years from Sweden, enrolled in the "Survey of Adolescent Life in Västmanland" in 2012. Adolescents self-reported alcohol consumption, maltreatment by a family (FM) or non-family member (NFM), parent-child relationship, and left saliva for MAOA genotyping. Results and discussion We observed sex-dependent results. Females carrying MAOA-L with FM or NFM and a good parent-child relationship reported lower alcohol consumption than those with an average or poor parent-child relationship. In males, the interactions were not significant. Results suggest MAOA-L in females, conventionally regarded as a "risk", is a "plasticity" allele as it is differentially susceptible to negative and positive environments. Results highlight the importance of a good parent-child relationship in mitigating the risk of alcohol misuse in maltreated individuals carrying genetic risk. However, the interactions were not significant after adjusting to several environmental and behavioural covariates, especially parent's alcohol use, negative parent-child relationship, and nicotine use (smoking and/or snus), suggesting predictor and outcome intersection. Future studies and frameworks for preventive strategies should consider these covariates together with alcohol consumption. More studies with larger sample sizes are needed to replicate the findings.
Collapse
Affiliation(s)
- Megha Bendre
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research, Uppsala University, Västerås, Sweden
| | - David Checknita
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research, Uppsala University, Västerås, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Aniruddha Todkar
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research, Uppsala University, Västerås, Sweden
| | - Cecilia Åslund
- Centre for Clinical Research, Uppsala University, Västerås, Sweden
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Sheilagh Hodgins
- Centre de Recherche Institut national de psychiatrie légale Philippe-Pinel and Département de Psychiatrie, Université de Montréal, Montréal, QC, Canada
| | - Kent W. Nilsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research, Uppsala University, Västerås, Sweden
- School of Health, Care and Social Welfare, Division of Public Health Sciences, Mälardalen University, Västerås, Sweden
| |
Collapse
|
3
|
Moraes ACN, Wijaya C, Freire R, Quagliato LA, Nardi AE, Kyriakoulis P. Neurochemical and genetic factors in panic disorder: a systematic review. Transl Psychiatry 2024; 14:294. [PMID: 39025836 PMCID: PMC11258274 DOI: 10.1038/s41398-024-02966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024] Open
Abstract
This systematic review addresses the complex nature of Panic Disorder (PD), characterized by recurrent episodes of acute fear, with a focus on updating and consolidating knowledge regarding neurochemical, genetic, and epigenetic factors associated with PD. Utilizing the PRISMA methodology, 33 original peer-reviewed studies were identified, comprising 6 studies related to human neurochemicals, 10 related to human genetic or epigenetic alterations, and 17 animal studies. The review reveals patterns of altered expression in various biological systems, including neurotransmission, the Hypothalamic-Pituitary-Adrenal (HPA) axis, neuroplasticity, and genetic and epigenetic factors leading to neuroanatomical modifications. Noteworthy findings include lower receptor binding of GABAA and serotonin neurotransmitters in the amygdala. The involvement of orexin (ORX) neurons in the dorsomedial/perifornical region in triggering panic reactions is highlighted, with systemic ORX-1 receptor antagonists blocking panic responses. Elevated Interleukin 6 and leptin levels in PD patients suggest potential connections between stress-induced inflammatory changes and PD. Brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) signaling are implicated in panic-like responses, particularly in the dorsal periaqueductal gray (dPAG), where BDNF's panicolytic-like effects operate through GABAA-dependent mechanisms. GABAergic neurons' inhibitory influence on dorsomedial and posterior hypothalamus nuclei is identified, potentially reducing the excitability of neurons involved in panic-like responses. The dorsomedial hypothalamus (DMH) is highlighted as a specific hypothalamic nucleus relevant to the genesis and maintenance of panic disorder. Altered brain lactate and glutamate concentrations, along with identified genetic polymorphisms linked to PD, further contribute to the intricate neurochemical landscape associated with the disorder. The review underscores the potential impact of neurochemical, genetic, and epigenetic factors on the development and expression of PD. The comprehensive insights provided by this systematic review contribute to advancing our understanding of the multifaceted nature of Panic Disorder and pave the way for targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Clarissa Wijaya
- School of Psychology, Swinburne University, Melbourne, VIC, Australia
| | - Rafael Freire
- Department of Psychiatry and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | | | | | - Peter Kyriakoulis
- School of Psychology, Swinburne University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Godbersen GM, Murgaš M, Gryglewski G, Klöbl M, Unterholzner J, Rischka L, Spies M, Baldinger-Melich P, Winkler D, Lanzenberger R. Coexpression of Gene Transcripts with Monoamine Oxidase A Quantified by Human In Vivo Positron Emission Tomography. Cereb Cortex 2022; 32:3516-3524. [PMID: 34952543 DOI: 10.1093/cercor/bhab430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The monoamine oxidase A (MAO-A) is integral to monoamine metabolism and is thus relevant to the pathophysiology of various neuropsychiatric disorders; however, associated gene-enzyme relations are not well understood. This study aimed to unveil genes coexpressed with MAO-A. Therefore, 18 179 mRNA expression maps (based on the Allen Human Brain Atlas) were correlated with the cerebral distribution volume (VT) of MAO-A assessed in 36 healthy subjects (mean age ± standard deviation: 32.9 ± 8.8 years, 18 female) using [11C]harmine positron emission tomography scans. Coexpression analysis was based on Spearman's ρ, over-representation tests on Fisher's exact test with false discovery rate (FDR) correction. The analysis revealed 35 genes in cortex (including B-cell translocation gene family, member 3, implicated in neuroinflammation) and 247 genes in subcortex (including kallikrein-related peptidase 10, implicated in Alzheimer's disease). Significantly over-represented Gene Ontology terms included "neuron development", "neuron differentiation", and "cell-cell signaling" as well as "axon" and "neuron projection". In vivo MAO-A enzyme distribution and MAOA expression did not correlate in cortical areas (ρ = 0.08) while correlation was found in subcortical areas (ρ = 0.52), suggesting influences of region-specific post-transcriptional and -translational modifications. The herein reported information could contribute to guide future genetic studies, deepen the understanding of associated pathomechanisms and assist in the pursuit of novel therapeutic targets.
Collapse
Affiliation(s)
- G M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - M Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - G Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - M Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - J Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - L Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - M Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - P Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - D Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
5
|
Carvalho MRS, Barbosa de Carvalho AH, Paiva GM, Andrade Jorge CDC, Dos Santos FC, Koltermann G, de Salles JF, Moeller K, Maia de Oliveira Wood G, Haase VG. MAOA-LPR polymorphism and math anxiety: A marker of genetic susceptibility to social influences in girls? Ann N Y Acad Sci 2022; 1516:135-150. [PMID: 35765118 DOI: 10.1111/nyas.14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Math anxiety (MA) seems to result from an interaction of genetic vulnerability with negative experiences learning mathematics. Although mathematics achievement does not substantially differ between the sexes, MA levels are usually higher in girls. Molecular genetic markers of MA vulnerability have been seldom explored. This article examines the contribution of the monoamine oxidase A gene (MAOA) to MA and to sex differences in MA. Five hundred and sixty-eight third to fifth graders were genotyped for the MAOA-LPR polymorphism (a repetitive element in MAOA promoter that has been associated with MAOA enzymatic activity), and assessed on general cognitive ability, mathematics achievement, and the cognitive and affective dimensions of MA. MAOA-LPR genotypes were classified as high (MAOA-H) or low (MAOA-L) according to their predicted enzymatic activity. Mixed models controlling for effects of school, sex, general cognitive ability, and mathematics achievement were evaluated. The best fitting model included school, math achievement, sex, MAOA-LPR, and the MAOA-LPR by sex interaction. This indicated that under the MAOA-H dominant model, anxiety toward mathematics interacted with the MAOA genotype: girls with an MAOA-L genotype exhibited higher levels of MA, with a small but significant effect. The association between MAOA-L genotype and MA in girls may represent an example of developmental plasticity.
Collapse
Affiliation(s)
- Maria Raquel Santos Carvalho
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Programa de Pós-graduação em Genética, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André Henrique Barbosa de Carvalho
- Programa de Pós-graduação em Genética, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Giulia Moreira Paiva
- Programa de Pós graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carolina de Castro Andrade Jorge
- Programa de Pós-graduação em Genética, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Caroline Dos Santos
- Programa de Pós-graduação em Genética, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriella Koltermann
- Programa de Pós-graduação em Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jerusa Fumagalli de Salles
- Programa de Pós-graduação em Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Psicologia do Desenvolvimento e da Personalidade, Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Korbinian Moeller
- Centre for Mathematical Cognition, Loughborough University, Loughborough, UK.,Leibniz-Institut fuer Wissensmedien, Tuebingen, Germany.,LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany.,Individual Differences and Adaptive Education Centre, Frankfurt am Main, Germany
| | | | - Vitor Geraldi Haase
- Programa de Pós graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Psicologia, Faculdade de Filosofia e Ciências Humanas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Programa de Pós-graduação em Psicologia: Cognição e Comportamento, Faculdade de Filosofia e Ciências Humanas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Wagels L, Votinov M, Hüpen P, Jung S, Montag C, Habel U. Single-Dose of Testosterone and the MAOA VNTR Polymorphism Influence Emotional and Behavioral Responses in Men During a Non-social Frustration Task. Front Behav Neurosci 2020; 14:93. [PMID: 32670031 PMCID: PMC7330109 DOI: 10.3389/fnbeh.2020.00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Previous studies suggest that testosterone and several neurotransmitters might interactively influence human aggression. The current study aimed to test potential interactions of a genetic variation linked to the catabolism of serotonin, dopamine, and norepinephrine and exogenous testosterone on the reaction towards non-social provocation. In total, 146 male participants were genotyped for a prominent polymorphism of the monoamine oxidase A (MAOA) gene resulting in a short and long variant. Participants completed a non-social frustration task after receiving either testosterone or a placebo gel in a double-blind set-up. Participants performed a non-social frustration task, where they had to direct a virtually moving ball into a barrel by pulling a joystick (neutral block). During a frustration block, the joystick repeatedly did not respond to participants' reactions thereby causing failed trials to which participants reacted with increased anger and stronger pulling of the joystick. We analyzed the effect of testosterone administration on emotion and behavior in individuals who either carried a low (L) or high (H) activity MAOA variant. Testosterone administration increased provocation-related self-reported anger and abolished the association between trait aggression and joystick deflection in the frustration block. In MAOA-H carriers endogenous testosterone levels at baseline were associated with increased joystick deflection in both blocks. There was, however, no interaction of testosterone administration and genotype. Although preliminary, the results rather indicate independent influences of exogenous testosterone administration and MAOA, but support an interaction of endogenous testosterone levels and MAOA genetics in a frustration task. The administration of testosterone seems to act on the subjective emotional experience in a provoking situation, while endogenous testosterone levels increased pulling impulses only in carriers of the MAOA-H variant.
Collapse
Affiliation(s)
- Lisa Wagels
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik, RWTH Aachen, Aachen, Germany.,Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany
| | - Mikhail Votinov
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik, RWTH Aachen, Aachen, Germany.,Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany
| | - Philippa Hüpen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik, RWTH Aachen, Aachen, Germany
| | - Sonja Jung
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik, RWTH Aachen, Aachen, Germany.,Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany
| |
Collapse
|
7
|
Schiele MA, Gottschalk MG, Domschke K. The applied implications of epigenetics in anxiety, affective and stress-related disorders - A review and synthesis on psychosocial stress, psychotherapy and prevention. Clin Psychol Rev 2020; 77:101830. [PMID: 32163803 DOI: 10.1016/j.cpr.2020.101830] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Abstract
Mental disorders are highly complex and multifactorial in origin, comprising an elaborate interplay of genetic and environmental factors. Epigenetic mechanisms such as DNA modifications (e.g. CpG methylation), histone modifications (e.g. acetylation) and microRNAs function as a translator between genes and the environment. Indeed, environmental influences such as exposure to stress shape epigenetic patterns, and lifetime experiences continue to alter the function of the genome throughout the lifespan. Here, we summarize the recently burgeoning body of research regarding the involvement of aberrant epigenetic signatures in mediating an increased vulnerability to a wide range of mental disorders. We review the current knowledge of epigenetic changes to constitute useful markers predicting the clinical response to psychotherapeutic interventions, and of psychotherapy to alter - and potentially reverse - epigenetic risk patterns. Given first evidence pointing to a transgenerational transmission of epigenetic information, epigenetic alterations arising from successful psychotherapy might be transferred to future generations and thus contribute to the prevention of mental disorders. Findings are integrated into a multi-level framework highlighting challenges pertaining to the mechanisms of action and clinical implications of epigenetic research. Promising future directions regarding the prediction, prevention, and personalized treatment of mental disorders in line with a 'precision medicine' approach are discussed.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany
| | - Michael G Gottschalk
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, D-79106 Freiburg, Germany.
| |
Collapse
|
8
|
Manca M, Pessoa V, Myers P, Pickles A, Hill J, Sharp H, Murgatroyd C, Bubb VJ, Quinn JP. Distinct chromatin structures at the monoamine oxidase-A promoter correlate with allele-specific expression in SH-SY5Y cells. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12483. [PMID: 29667298 PMCID: PMC6617726 DOI: 10.1111/gbb.12483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/19/2018] [Accepted: 04/13/2018] [Indexed: 11/30/2022]
Abstract
Monoamine oxidase-A (MAOA) metabolises monoamines and is implicated in the pathophysiology of psychiatric disorders. A polymorphic repetitive DNA domain, termed the uVNTR (upstream variable number tandem repeat), located at the promoter of the MAOA gene is a risk factor for many of these disorders. MAOA is on the X chromosome suggesting gender could play a role in regulation. We analysed MAOA regulation in the human female cell line, SH-SY5Y, which is polymorphic for the uVNTR. This heterozygosity allowed us to correlate allele-specific gene expression with allele-specific transcription factor binding and epigenetic marks for MAOA. Gene regulation was analysed under basal conditions and in response to the mood stabiliser sodium valproate. Both alleles were transcriptionally active under basal growth conditions; however, the alleles showed distinct transcription factor binding and epigenetic marks at their respective promoters. Exposure of the cells to sodium valproate resulted in differential allelic expression which correlated with allele-specific changes in distinct transcription factor binding and epigenetic marks at the region encompassing the uVNTR. Biochemically our model for MAOA promoter function has implications for gender differences in gene × environment responses in which the uVNTR has been implicated as a genetic risk.
Collapse
Affiliation(s)
- M. Manca
- Department of Molecular and Clinical Pharmacology, Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK
- Institute of Psychology, Health and SocietyUniversity of LiverpoolLiverpoolUK
| | - V. Pessoa
- Department of Molecular and Clinical Pharmacology, Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK
- Institute of Psychology, Health and SocietyUniversity of LiverpoolLiverpoolUK
| | - P. Myers
- Department of Molecular and Clinical Pharmacology, Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK
| | - A. Pickles
- King's College London, MRC Social Genetic and Developmental Psychiatry Research CentreInstitute of PsychiatryLondonUK
| | - J. Hill
- School for Psychology and Clinical Language SciencesUniversity of ReadingReadingUK
| | - H. Sharp
- Institute of Psychology, Health and SocietyUniversity of LiverpoolLiverpoolUK
| | - C. Murgatroyd
- School of Healthcare ScienceManchester Metropolitan UniversityManchesterUK
| | - V. J. Bubb
- Department of Molecular and Clinical Pharmacology, Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK
| | - J. P. Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
9
|
Chistiakov DA, Chekhonin VP. Early-life adversity-induced long-term epigenetic programming associated with early onset of chronic physical aggression: Studies in humans and animals. World J Biol Psychiatry 2019; 20:258-277. [PMID: 28441915 DOI: 10.1080/15622975.2017.1322714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objectives: To examine whether chronic physical aggression (CPA) in adulthood can be epigenetically programmed early in life due to exposure to early-life adversity. Methods: Literature search of public databases such as PubMed/MEDLINE and Scopus. Results: Children/adolescents susceptible for CPA and exposed to early-life abuse fail to efficiently cope with stress that in turn results in the development of CPA later in life. This phenomenon was observed in humans and animal models of aggression. The susceptibility to aggression is a complex trait that is regulated by the interaction between environmental and genetic factors. Epigenetic mechanisms mediate this interaction. Subjects exposed to stress early in life exhibited long-term epigenetic programming that can influence their behaviour in adulthood. This programming affects expression of many genes not only in the brain but also in other systems such as neuroendocrine and immune. Conclusions: The propensity to adult CPA behaviour in subjects experienced to early-life adversity is mediated by epigenetic programming that involves long-term systemic epigenetic alterations in a whole genome.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- a Department of Fundamental and Applied Neurobiology , Serbsky Federal Medical Research Center of Psychiatry and Narcology , Moscow , Russia
| | - Vladimir P Chekhonin
- a Department of Fundamental and Applied Neurobiology , Serbsky Federal Medical Research Center of Psychiatry and Narcology , Moscow , Russia.,b Department of Medical Nanobiotechnology , Pirogov Russian State Medical University (RSMU) , Moscow , Russia
| |
Collapse
|
10
|
Does prior traumatization affect the treatment outcome of CBT for panic disorder? The potential role of the MAOA gene and depression symptoms. Eur Arch Psychiatry Clin Neurosci 2019; 269:161-170. [PMID: 28712090 DOI: 10.1007/s00406-017-0823-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 07/09/2017] [Indexed: 01/27/2023]
Abstract
Although cognitive behavioral therapy (CBT) is highly effective in the treatment of anxiety disorders, many patients still do not benefit. This study investigates whether a history of traumatic event experience is negatively associated with outcomes of CBT for panic disorder. The moderating role of the monoamine oxidase A (MAOA) gene and depression symptoms as well as the association between trauma history and fear reactivity as a potential mechanism are further analyzed. We conducted a post-hoc analysis of 172 male and 60 female patients with panic disorder treated with CBT in a multi-center study. Treatment outcome was assessed at post-treatment using self-report and clinician rating scales. Fear reactivity before treatment was assessed via heart rate and self-reported anxiety during a behavioral avoidance test. Among females, we did not find any differences in treatment response between traumatized and non-traumatized individuals or any two-way interaction trauma history × MAOA genotype. There was a significant three-way interaction trauma history × MAOA genotype × depression symptoms on all treatment outcomes indicating that in traumatized female patients carrying the low-activity allele, treatment effect sizes decreased with increasing depression symptoms at baseline. No such effects were observed for males. In conclusion, we found no evidence for a differential treatment response in traumatized and non-traumatized individuals. There is preliminary evidence for poorer treatment outcomes in a subgroup of female traumatized individuals carrying the low-active variant of the MAOA gene. These patients also report more symptoms of depression symptomatology and exhibit a dampened fear response before treatment which warrants further investigation.
Collapse
|
11
|
Matsusue A, Kubo SI, Ikeda T, Tani N, Maeda T, Kashiwagi M, Hara K, Waters B, Takayama M, Ikematsu N, Ishikawa T. VNTR polymorphism in the monoamine oxidase A promoter region and cerebrospinal fluid catecholamine concentrations in forensic autopsy cases. Neurosci Lett 2019; 701:71-76. [PMID: 30794821 DOI: 10.1016/j.neulet.2019.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 01/01/2023]
Abstract
Monoamine oxidase A (MAOA) plays important roles in the metabolism of catecholamines and modulates adrenergic, noradrenergic, and dopaminergic signaling. A polymorphic promoter variable number tandem repeat (VNTR) locus (MAOA-uVNTR) is located approximately 1.2 kb upstream from MAOA exon 1. Functional studies revealed that MAOA-uVNTR affects gene expression. In the present study, we examined the frequencies of MAOA-uVNTR alleles in Japanese autopsy cases, in which amphetamines or psychotropic drugs were not detected. In total, 87 males and 35 females were evaluated and investigated for the possible effect of MAOA-uVNTR polymorphisms on cerebrospinal fluid (CSF) catecholamine concentrations. In males, there was no significant association between MAOA-uVNTR polymorphisms and CSF adrenaline (Adr), noradrenaline (Nad), or dopamine (DA) levels. In contrast, females who were homozygous for the 3-repeat allele (i.e., 3/3 genotype carriers) had higher CSF levels of Adr (p = 0.024) and DA (p = 0.035) than individuals who were heterozygous or homozygous for the 4-repeat allele (3/4 and 4/4, respectively). We found no significant association between MAOA-uVNTR polymorphisms and CSF Nad levels in females. Thus, the results of the present study indicated that MAOA-uVNTR polymorphism influences CSF Adr and DA levels in females.
Collapse
Affiliation(s)
- Aya Matsusue
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Shin-Ichi Kubo
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Tomoya Ikeda
- Department of Legal Medicine, Osaka City University Medical School, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Naoto Tani
- Department of Legal Medicine, Osaka City University Medical School, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Toshiki Maeda
- Department of Preventive Medicine and Public Health,Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Masayuki Kashiwagi
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kenji Hara
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Brian Waters
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Mio Takayama
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Natsuki Ikematsu
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Takaki Ishikawa
- Department of Legal Medicine, Osaka City University Medical School, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| |
Collapse
|
12
|
Gottschalk MG, Richter J, Ziegler C, Schiele MA, Mann J, Geiger MJ, Schartner C, Homola GA, Alpers GW, Büchel C, Fehm L, Fydrich T, Gerlach AL, Gloster AT, Helbig-Lang S, Kalisch R, Kircher T, Lang T, Lonsdorf TB, Pané-Farré CA, Ströhle A, Weber H, Zwanzger P, Arolt V, Romanos M, Wittchen HU, Hamm A, Pauli P, Reif A, Deckert J, Neufang S, Höfler M, Domschke K. Orexin in the anxiety spectrum: association of a HCRTR1 polymorphism with panic disorder/agoraphobia, CBT treatment response and fear-related intermediate phenotypes. Transl Psychiatry 2019; 9:75. [PMID: 30718541 PMCID: PMC6361931 DOI: 10.1038/s41398-019-0415-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/06/2019] [Accepted: 01/17/2019] [Indexed: 12/23/2022] Open
Abstract
Preclinical studies point to a pivotal role of the orexin 1 (OX1) receptor in arousal and fear learning and therefore suggest the HCRTR1 gene as a prime candidate in panic disorder (PD) with/without agoraphobia (AG), PD/AG treatment response, and PD/AG-related intermediate phenotypes. Here, a multilevel approach was applied to test the non-synonymous HCRTR1 C/T Ile408Val gene variant (rs2271933) for association with PD/AG in two independent case-control samples (total n = 613 cases, 1839 healthy subjects), as an outcome predictor of a six-weeks exposure-based cognitive behavioral therapy (CBT) in PD/AG patients (n = 189), as well as with respect to agoraphobic cognitions (ACQ) (n = 483 patients, n = 2382 healthy subjects), fMRI alerting network activation in healthy subjects (n = 94), and a behavioral avoidance task in PD/AG pre- and post-CBT (n = 271). The HCRTR1 rs2271933 T allele was associated with PD/AG in both samples independently, and in their meta-analysis (p = 4.2 × 10-7), particularly in the female subsample (p = 9.8 × 10-9). T allele carriers displayed a significantly poorer CBT outcome (e.g., Hamilton anxiety rating scale: p = 7.5 × 10-4). The T allele count was linked to higher ACQ sores in PD/AG and healthy subjects, decreased inferior frontal gyrus and increased locus coeruleus activation in the alerting network. Finally, the T allele count was associated with increased pre-CBT exposure avoidance and autonomic arousal as well as decreased post-CBT improvement. In sum, the present results provide converging evidence for an involvement of HCRTR1 gene variation in the etiology of PD/AG and PD/AG-related traits as well as treatment response to CBT, supporting future therapeutic approaches targeting the orexin-related arousal system.
Collapse
Affiliation(s)
- Michael G. Gottschalk
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany ,0000 0001 1378 7891grid.411760.5Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Jan Richter
- grid.5603.0Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Christiane Ziegler
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam A. Schiele
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Mann
- 0000 0001 1378 7891grid.411760.5Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Maximilian J. Geiger
- 0000 0001 1378 7891grid.411760.5Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany ,grid.5963.9Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Schartner
- 0000 0001 1378 7891grid.411760.5Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany ,0000 0001 2297 6811grid.266102.1Department of Physiology, University of California San Francisco, San Francisco, CA USA
| | - György A. Homola
- 0000 0001 1958 8658grid.8379.5Department of Neuroradiology, University of Würzburg, Würzburg, Germany
| | - Georg W. Alpers
- 0000 0001 0943 599Xgrid.5601.2Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Christian Büchel
- 0000 0001 2180 3484grid.13648.38Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lydia Fehm
- 0000 0001 2248 7639grid.7468.dDepartment of Psychology, Humboldt University, Berlin, Germany
| | - Thomas Fydrich
- 0000 0001 2248 7639grid.7468.dDepartment of Psychology, Humboldt University, Berlin, Germany
| | - Alexander L. Gerlach
- 0000 0000 8580 3777grid.6190.eDepartment of Clinical Psychology and Psychotherapy, University of Cologne, Cologne, Germany
| | - Andrew T. Gloster
- 0000 0001 2111 7257grid.4488.0Department of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany ,0000 0004 1937 0642grid.6612.3Division of Clinical Psychology and Intervention Science, University of Basel, Basel, Switzerland
| | - Sylvia Helbig-Lang
- 0000 0001 2111 7257grid.4488.0Department of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany ,0000 0001 2287 2617grid.9026.dDepartment of Psychology and Psychotherapy, University of Hamburg, Hamburg, Germany
| | - Raffael Kalisch
- grid.410607.4Neuroimaging Center (NIC) und Deutsches Resilienz-Zentrum (DRZ), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Tilo Kircher
- 0000 0004 1936 9756grid.10253.35Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Thomas Lang
- 0000 0001 2111 7257grid.4488.0Department of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany ,0000 0001 2287 2617grid.9026.dDepartment of Psychology and Psychotherapy, University of Hamburg, Hamburg, Germany ,Christoph-Dornier-Foundation for Clinical Psychology, Bremen, Germany
| | - Tina B. Lonsdorf
- 0000 0001 2180 3484grid.13648.38Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane A. Pané-Farré
- grid.5603.0Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heike Weber
- 0000 0001 1378 7891grid.411760.5Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany ,0000 0004 0578 8220grid.411088.4Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| | - Peter Zwanzger
- 0000 0004 0551 4246grid.16149.3bDepartment of Psychiatry and Psychotherapy, University Hospital of Münster, Münster, Germany ,kbo-Inn-Salzach-Hospital, Wasserburg, Germany ,0000 0004 1936 973Xgrid.5252.0Department of Psychiatry und Psychotherapy, Ludwig Maximilians University, Munich, Germany
| | - Volker Arolt
- 0000 0004 0551 4246grid.16149.3bDepartment of Psychiatry and Psychotherapy, University Hospital of Münster, Münster, Germany
| | - Marcel Romanos
- 0000 0001 1378 7891grid.411760.5Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Hans-Ulrich Wittchen
- 0000 0001 2111 7257grid.4488.0Department of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany ,0000 0004 1936 973Xgrid.5252.0Department of Psychiatry und Psychotherapy, Ludwig Maximilians University, Munich, Germany
| | - Alfons Hamm
- grid.5603.0Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Paul Pauli
- 0000 0001 1958 8658grid.8379.5Department of Psychology, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Andreas Reif
- 0000 0004 0578 8220grid.411088.4Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| | - Jürgen Deckert
- 0000 0001 1378 7891grid.411760.5Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Susanne Neufang
- 0000 0001 1378 7891grid.411760.5Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany ,0000 0001 2176 9917grid.411327.2Department of Psychiatry and Psychotherapy, Medical Faculty Heinrich-Heine University, Duesseldorf, Germany
| | - Michael Höfler
- 0000 0001 2111 7257grid.4488.0Department of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Center for NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Youdim MBH. Monoamine oxidase inhibitors, and iron chelators in depressive illness and neurodegenerative diseases. J Neural Transm (Vienna) 2018; 125:1719-1733. [PMID: 30341696 DOI: 10.1007/s00702-018-1942-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022]
Abstract
In early 1920s, tyramine oxidase was discovered that metabolized tyramine and in 1933 Blaschko demonstrated that this enzyme also metabolized adrenaline, noradrenaline and dopamine. Zeller gave it the name monoamine oxidase (MAO) to distinguish it from the enzyme that oxidatively deaminated diamines. MAO was recognized as an enzyme of crucial interest to pharmacologists because it catalyzed the major inactivation pathway for the catecholamines (and, later, 5-hydroxytryptamine, as well). Within the few decade, the inhibitors of MAO were discovered and introduced for the treatment of depressive illness which was established clinically. However, the first clinical use exposed serious side effects, pharmacological interest in, and investigation of, MAO continued, resulting in the characterization of two forms, distinct forms, MAO-A and -B, and selective inhibitors for them. Selective inhibitors of MAO-B (selegiline, rasagiline and safinamide) have found a therapeutic role in the treatment of Parkinson's disease and reversible inhibitors of MAO-A offered antidepressant activity without the serious side effects of the earlier nonselective MAO inhibitors. Subsequent molecular pharmacological have also generated the concept of neuroprotection, reflecting the possibility of slowing, halting and maybe reversing, neurodegeneration in Parkinson's or Alzheimer's diseases. Increased levels of oxidative stress through the accumulation of iron in the Parkinsonian and Alzheimer brains has been suggested to be critical for the initiation and progress of neurodegeneration. Selective inhibition of brain MAO could contribute importantly to lowering such stress, preventing the formation of hydrogen peroxide. Interaction of Iron with hydrogen peroxide and lead to Fenton reaction and production of the most reactive radical, namely hydroxyl radical. There are complex interactions between free iron levels in brain and MAO, and cascade of neurotoxic events may have practical outcomes for depressive disorders and neurodegenerative diseases. As consequence recent novel therapeutic drugs for neurodegenerative diseases has led to the development of multi target drugs, that possess selective brain MAO A and B inhibitory moiety, iron chelating and antioxidant activities and the ability to increase brain levels of endogenous neurotrophins, such as BDNF, GDNF VEGF and erythropoietin and induce mitochondrial biogenesis.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Technion-Bruce Rappaport Faculty of Medicine, Rappaport Family Research Institute, Haifa, Israel. .,, Yokneam, Israel.
| |
Collapse
|
14
|
Asselmann E, Hertel J, Beesdo-Baum K, Schmidt CO, Homuth G, Nauck M, Grabe HJ, Pané-Farré CA. Interplay between COMT Val158Met, childhood adversities and sex in predicting panic pathology: Findings from a general population sample. J Affect Disord 2018; 234:290-296. [PMID: 29574383 DOI: 10.1016/j.jad.2018.02.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/30/2018] [Accepted: 02/19/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND The single nucleotide polymorphism rs4680 of the catechol-O-methyltransferase (COMT) gene has been implicated to be involved in the etiopathogenesis of panic. However, it remains unresolved whether rs4680 modifies the risk-association between early life stress and subsequent development of panic pathology. METHODS The genotype of rs4680 was determined for n = 2242 adults with European ancestry from the Study of Health in Pomerania (SHIP, a regional longitudinal cohort study from northeastern Germany). Lifetime fearful spells, panic attacks and panic disorder were assessed according to DSM-IV in 2007-2010 (when participants were aged 29-89) using the Munich Composite International Diagnostic Interview (DIA-X/M-CIDI). Childhood adversities were assessed with the Childhood Trauma Questionnaire (CTQ). RESULTS Logistic regressions with interaction terms (adjusted for sex and age) revealed that rs4680 interacted with total childhood adversity, emotional abuse and physical abuse in predicting panic disorder: Respective childhood adversities predicted panic disorder in carriers of the Val/Met or Met/Met genotype, but not Val/Val genotype. Moreover, a 3-way interaction was found between rs4680, emotional abuse and sex in predicting panic attacks: Emotional abuse predicted panic attacks among male carriers of the Val/Val genotype and female carriers of the Val/Met or Met/Met genotype, but not among male carriers of the Val/Met or Met/Met genotype or female carriers of the Val/Val genotype. LIMITATIONS Genotype data were derived by imputation. Childhood adversities and panic were assessed retrospectively. CONCLUSIONS Especially (female) carriers of the Val/Met or Met/Met genotype of rs4680 might profit from targeted early interventions to prevent the onset of panic after childhood adversities.
Collapse
Affiliation(s)
- Eva Asselmann
- Behavioral Epidemiology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Chemnitzer Str. 46, 01187 Dresden, Germany; Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Johannes Hertel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Katja Beesdo-Baum
- Behavioral Epidemiology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Chemnitzer Str. 46, 01187 Dresden, Germany
| | | | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Hans-Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Christiane A Pané-Farré
- Department of Physiological and Clinical Psychology, University of Greifswald, Greifswald Germany
| |
Collapse
|
15
|
Fite PJ, Brown S, Hossain W, Manzardo A, Butler MG, Bortolato M. Tobacco and cannabis use in college students are predicted by sex-dimorphic interactions between MAOA genotype and child abuse. CNS Neurosci Ther 2018; 25:101-111. [PMID: 29952131 DOI: 10.1111/cns.13002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/06/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Postsecondary students in Western countries exhibit a high prevalence of cannabis and tobacco use disorders. The etiology of these problems is contributed by several psychosocial factors, including childhood adversity and trauma; however, the mechanisms whereby these environmental determinants predispose to the use of these substances remain elusive, due to our poor knowledge of genetic and biological moderators. Converging evidence points to the monoamine oxidase A (MAOA) gene as a moderator of the effects of lifetime stress on the initiation of substance use. AIMS Building on these premises, in this study, we analyzed whether MAOA upstream variable number tandem repeat (uVNTR) alleles interact with child maltreatment history to predict for lifetime cannabis and tobacco consumption. MATERIALS AND METHODS Five hundred college students (age: 18-25 years) from a large Midwestern University were surveyed for their child maltreatment history (encompassing emotional, physical, and sexual abuse, as well as emotional and physical neglect) and lifetime consumption of cannabis and tobacco. Saliva samples were obtained to determine the MAOA uVNTR genotype of each participant. RESULTS In female students, lifetime tobacco and cannabis use was predicted by the interaction of physical and emotional abuse with high-activity MAOA allelic variants; conversely, in males, the interaction of low-activity MAOA alleles and physical abuse was associated with lifetime use of tobacco, but not cannabis. DISCUSSION These findings collectively suggest that the vulnerability to smoke tobacco and cannabis is predicted by sex-dimorphic interactions of MAOA gene with childhood abuse. CONCLUSION These biosocial underpinnings of tobacco and cannabis use may prove important in the development of novel personalized preventive strategies for substance use disorders in adolescents.
Collapse
Affiliation(s)
- Paula J Fite
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| | - Shaquanna Brown
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| | - Waheeda Hossain
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Departments of Psychiatry, Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ann Manzardo
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Departments of Psychiatry, Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Merlin G Butler
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Departments of Psychiatry, Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Marco Bortolato
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA.,Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Schiele MA, Ziegler C, Kollert L, Katzorke A, Schartner C, Busch Y, Gromer D, Reif A, Pauli P, Deckert J, Herrmann MJ, Domschke K. Plasticity of Functional MAOA Gene Methylation in Acrophobia. Int J Neuropsychopharmacol 2018; 21:822-827. [PMID: 30169842 PMCID: PMC6119289 DOI: 10.1093/ijnp/pyy050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/30/2018] [Indexed: 12/29/2022] Open
Abstract
Epigenetic mechanisms have been proposed to mediate fear extinction in animal models. Here, MAOA methylation was analyzed via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells before and after a 2-week exposure therapy in a sample of n = 28 female patients with acrophobia as well as in n = 28 matched healthy female controls. Clinical response was measured using the Acrophobia Questionnaire and the Attitude Towards Heights Questionnaire. The functional relevance of altered MAOA methylation was investigated by luciferase-based reporter gene assays. MAOA methylation was found to be significantly decreased in patients with acrophobia compared with healthy controls. Furthermore, MAOA methylation levels were shown to significantly increase after treatment and correlate with treatment response as reflected by decreasing Acrophobia Questionnaire/Attitude Towards Heights Questionnaire scores. Functional analyses revealed decreased reporter gene activity in presence of methylated compared with unmethylated pCpGfree_MAOA reporter gene vector constructs. The present proof-of-concept psychotherapy-epigenetic study for the first time suggests functional MAOA methylation changes as a potential epigenetic correlate of treatment response in acrophobia and fosters further investigation into the notion of epigenetic mechanisms underlying fear extinction.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Christiane Ziegler
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Leonie Kollert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Andrea Katzorke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Christoph Schartner
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany,Department of Physiology, University of California, San Francisco, California
| | - Yasmin Busch
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Daniel Gromer
- Department of Biological Psychology, Clinical Psychology and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt, Germany
| | - Paul Pauli
- Department of Biological Psychology, Clinical Psychology and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany,Correspondence: Katharina Domschke, MA, MD, PhD, Department of Psychiatry and Psychotherapy, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany ()
| |
Collapse
|
17
|
Hwang IW, Lim MH, Kwon HJ, Jin HJ. Association of Monoamine Oxidase A (MAOA) Gene uVNTR and rs6323 Polymorphisms with Attention Deficit and Hyperactivity Disorder in Korean Children. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:E32. [PMID: 30344263 PMCID: PMC6122096 DOI: 10.3390/medicina54030032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022]
Abstract
Objective: Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. The genetic cause of ADHD is still unclear, but the dopaminergic, serotonergic, and noradrenergic pathways have shown a strong association. In particular, monoamine oxidase A (MAOA) plays an important role in the catabolism of these neurotransmitters, suggesting that the MAOA gene is associated with ADHD. Therefore, we evaluated the relationship between the MAOA gene polymorphisms (uVNTR and rs6323) and ADHD. Materials and methods: We collected a total of 472 Korean children (150 ADHD cases and 322 controls) using the Korean version of the Dupaul Attention Deficit Hyperactivity Disorder Rating Scales (K-ARS). Genotyping was performed by PCR and PCR-RFLP. The Behavior Assessment System for Children Second Edition (BASC-2) was used to evaluate the problem behaviors within ADHD children. Results: We observed significant associations between the rs6323 and ADHD in girls (p < 0.05) and the TT genotype was observed as a protective factor against ADHD in the recessive model (OR 0.31, 95% CI 0.100⁻0.950, p = 0.022). The 3.5R-G haplotype showed a significant association in ADHD boys (p = 0.043). The analysis of subtype also revealed that the 4.5R allele of uVNTR was a risk factor for the development of ADHD in the combined symptom among girls (OR 1.87, 95% CI 1.014⁻3.453, p = 0.031). In the BASC-2 analysis, the MAOA uVNTR polymorphism was associated with activities of daily living in ADHD boys (p = 0.017). Conclusion: These results suggest the importance of the MAOA gene polymorphisms in the development of ADHD in Korean children. A larger sample set and functional studies are required to further elucidate of our findings.
Collapse
Affiliation(s)
- In Wook Hwang
- Environmental Health Center, Dankook Medical Hospital, Cheonan, 31116, Korea.
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, 31116, Korea.
| | - Myung Ho Lim
- Environmental Health Center, Dankook Medical Hospital, Cheonan, 31116, Korea.
- Department of Psychology, College of Public Welfare, Dankook University, Cheonan, 31116, Korea.
| | - Ho Jang Kwon
- Environmental Health Center, Dankook Medical Hospital, Cheonan, 31116, Korea.
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, 31116, Korea.
| | - Han Jun Jin
- Environmental Health Center, Dankook Medical Hospital, Cheonan, 31116, Korea.
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, 31116, Korea.
| |
Collapse
|
18
|
Gureev AS, Ananieva ED, Rubanovich AV, Inglehart RF, Ponarin ED, Borinskaya SA. Association of MAOA-uVNTR Polymorphism with Subjective Well-Being in Men. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418050058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
The interaction between monoamine oxidase A ( MAOA) and childhood maltreatment as a predictor of personality pathology in females: Emotional reactivity as a potential mediating mechanism. Dev Psychopathol 2018; 31:361-377. [PMID: 29467046 DOI: 10.1017/s0954579417001900] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Research consistently demonstrates that common polymorphic variation in monoamine oxidase A (MAOA) moderates the influence of childhood maltreatment on later antisocial behavior, with growing evidence that the "risk" allele (high vs. low activity) differs for females. However, little is known about how this Gene × Environment interaction functions to increase risk, or if this risk pathway is specific to antisocial behavior. Using a prospectively assessed, longitudinal sample of females (n = 2,004), we examined whether changes in emotional reactivity (ER) during adolescence mediated associations between this Gene × Environment and antisocial personality disorder in early adulthood. In addition, we assessed whether this putative risk pathway also conferred risk for borderline personality disorder, a related disorder characterized by high ER. While direct associations between early maltreatment and later personality pathology did not vary by genotype, there was a significant difference in the indirect path via ER during adolescence. Consistent with hypotheses, females with high-activity MAOA genotype who experienced early maltreatment had greater increases in ER during adolescence, and higher levels of ER predicted both antisocial personality disorder and borderline personality disorder symptom severity. Taken together, findings suggest that the interaction between MAOA and early maltreatment places women at risk for a broader range of personality pathology via effects on ER.
Collapse
|
20
|
Kolla NJ, Meyer J, Sanches M, Charbonneau J. Monoamine Oxidase-A Genetic Variants and Childhood Abuse Predict Impulsiveness in Borderline Personality Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2017; 15:343-351. [PMID: 29073746 PMCID: PMC5678484 DOI: 10.9758/cpn.2017.15.4.343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/10/2017] [Accepted: 03/30/2017] [Indexed: 01/01/2023]
Abstract
Objective Impulsivity is a core feature of borderline personality disorder (BPD) and antisocial personality disorder (ASPD) that likely arises from combined genetic and environmental influences. The interaction of the low activity variant of the monoamine oxidase-A (MAOA-L) gene and early childhood adversity has been shown to predict aggression in clinical and non-clinical populations. Although impulsivity is a risk factor for aggression in BPD and ASPD, little research has investigated potential gene-environment (G×E) influences impacting its expression in these conditions. Moreover, G×E interactions may differ by diagnosis. Methods Full factorial analysis of variance was employed to investigate the influence of monoamine oxidase-A (MAO-A) genotype, childhood abuse, and diagnosis on Barratt Impulsiveness Scale-11 (BIS-11) scores in 61 individuals: 20 subjects with BPD, 18 subjects with ASPD, and 23 healthy controls. Results A group×genotype×abuse interaction was present (F(2,49)=4.4, p=0.018), such that the interaction of MAOA-L and childhood abuse predicted greater BIS-11 motor impulsiveness in BPD. Additionally, BPD subjects reported higher BIS-11 attentional impulsiveness versus ASPD participants (t(1,36)=2.3, p=0.025). Conclusion These preliminary results suggest that MAOA-L may modulate the impact of childhood abuse on impulsivity in BPD. Results additionally indicate that impulsiveness may be expressed differently in BPD and ASPD.
Collapse
Affiliation(s)
- Nathan J Kolla
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Jeffrey Meyer
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Marcos Sanches
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - James Charbonneau
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
21
|
Ziegler C, Wolf C, Schiele MA, Feric Bojic E, Kucukalic S, Sabic Dzananovic E, Goci Uka A, Hoxha B, Haxhibeqiri V, Haxhibeqiri S, Kravic N, Muminovic Umihanic M, Cima Franc A, Jaksic N, Babic R, Pavlovic M, Warrings B, Bravo Mehmedbasic A, Rudan D, Aukst-Margetic B, Kucukalic A, Marjanovic D, Babic D, Bozina N, Jakovljevic M, Sinanovic O, Avdibegovic E, Agani F, Dzubur-Kulenovic A, Deckert J, Domschke K. Monoamine Oxidase A Gene Methylation and Its Role in Posttraumatic Stress Disorder: First Evidence from the South Eastern Europe (SEE)-PTSD Study. Int J Neuropsychopharmacol 2017; 21:423-432. [PMID: 29186431 PMCID: PMC5932467 DOI: 10.1093/ijnp/pyx111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/22/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Posttraumatic stress disorder is characterized by an overactive noradrenergic system conferring core posttraumatic stress disorder symptoms such as hyperarousal and reexperiencing. Monoamine oxidase A is one of the key enzymes mediating the turnover of noradrenaline. Here, DNA methylation of the monoamine oxidase A gene exonI/intronI region was investigated for the first time regarding its role in posttraumatic stress disorder risk and severity. METHODS Monoamine oxidase A methylation was analyzed via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells in a total sample of N=652 (441 male) patients with current posttraumatic stress disorder, patients with remitted posttraumatic stress disorder, and healthy probands (comparison group) recruited at 5 centers in Bosnia-Herzegovina, Croatia, and the Republic of Kosovo. Posttraumatic stress disorder severity was measured by means of the Clinician-Administered Posttraumatic Stress Disorder Scale and its respective subscores representing distinct symptom clusters. RESULTS In the male, but not the female sample, patients with current posttraumatic stress disorder displayed hypermethylation of 3 CpGs (CpG3=43656362; CpG12=43656514; CpG13=43656553, GRCh38.p2 Assembly) as compared with remitted Posttraumatic Stress Disorder patients and healthy probands. Symptom severity (Clinician-Administered Posttraumatic Stress Disorder Scale scores) in male patients with current posttraumatic stress disorder significantly correlated with monoamine oxidase A methylation. This applied particularly to symptom clusters related to reexperiencing of trauma (cluster B) and hyperarousal (cluster D). CONCLUSIONS The present findings suggest monoamine oxidase A gene hypermethylation, potentially resulting in enhanced noradrenergic signalling, as a disease status and severity marker of current posttraumatic stress disorder in males. If replicated, monoamine oxidase A hypermethylation might serve as a surrogate marker of a hyperadrenergic subtype of posttraumatic stress disorder guiding personalized treatment decisions on the use of antiadrenergic agents.
Collapse
Affiliation(s)
- Christiane Ziegler
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany,Correspondence: Christiane Ziegler, PhD, Department of Psychiatry, University of Freiburg, Hauptstraße 5, D-79104 Freiburg, Germany ()
| | - Christiane Wolf
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Elma Feric Bojic
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Sabina Kucukalic
- Department of Psychiatry, University Clinical Center, Sarajevo, Bosnia and Herzegovina
| | | | - Aferdita Goci Uka
- Department of Psychiatry, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Blerina Hoxha
- Department of Psychiatry, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Valdete Haxhibeqiri
- Department of Medical Biochemistry, University Clinical Center of Kosovo, Prishtina, Kosovo,Institute of Kosovo Forensic Psychiatry, University Clinical Center of Kosovo, Prishtina, Kosovo
| | | | - Nermina Kravic
- Department of Psychiatry, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | | | - Ana Cima Franc
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
| | - Nenad Jaksic
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
| | - Romana Babic
- Department of Psychiatry, University Clinical Center of Mostar, Mostar, Bosnia and Herzegovina
| | - Marko Pavlovic
- Department of Psychiatry, University Clinical Center of Mostar, Mostar, Bosnia and Herzegovina
| | - Bodo Warrings
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | | | - Dusko Rudan
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
| | | | - Abdulah Kucukalic
- Department of Psychiatry, University Clinical Center, Sarajevo, Bosnia and Herzegovina
| | - Damir Marjanovic
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina,Institute for Anthropological Researches, Zagreb, Croatia
| | - Dragan Babic
- Department of Psychiatry, University Clinical Center of Mostar, Mostar, Bosnia and Herzegovina
| | - Nada Bozina
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Miro Jakovljevic
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
| | - Osman Sinanovic
- Department of Neurology, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Esmina Avdibegovic
- Department of Psychiatry, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Ferid Agani
- Faculty of Medicine, University Hasan Prishtina, Prishtina, Kosovo
| | - Alma Dzubur-Kulenovic
- Department of Psychiatry, University Clinical Center, Sarajevo, Bosnia and Herzegovina
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
22
|
Perry LM, Goldstein-Piekarski AN, Williams LM. Sex differences modulating serotonergic polymorphisms implicated in the mechanistic pathways of risk for depression and related disorders. J Neurosci Res 2017; 95:737-762. [PMID: 27870440 DOI: 10.1002/jnr.23877] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/27/2022]
Abstract
Despite consistent observations of sex differences in depression and related emotional disorders, we do not yet know how these sex differences modulate the effects of genetic polymorphisms implicated in risk for these disorders. This Mini-Review focuses on genetic polymorphisms of the serotonergic system to illustrate how sex differences might modulate the neurobiological pathways involved in the development of depression. We consider the interacting role of environmental factors such as early-life stress. Given limited current knowledge about this topic, we highlight methodological considerations, challenges, and guidelines for future research. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- LeeAnn M Perry
- Neurosciences Program, Stanford University, Stanford, California
| | - Andrea N Goldstein-Piekarski
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.,Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.,Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
23
|
GLRB allelic variation associated with agoraphobic cognitions, increased startle response and fear network activation: a potential neurogenetic pathway to panic disorder. Mol Psychiatry 2017; 22:1431-1439. [PMID: 28167838 DOI: 10.1038/mp.2017.2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 01/13/2023]
Abstract
The molecular genetics of panic disorder (PD) with and without agoraphobia (AG) are still largely unknown and progress is hampered by small sample sizes. We therefore performed a genome-wide association study with a dimensional, PD/AG-related anxiety phenotype based on the Agoraphobia Cognition Questionnaire (ACQ) in a sample of 1370 healthy German volunteers of the CRC TRR58 MEGA study wave 1. A genome-wide significant association was found between ACQ and single non-coding nucleotide variants of the GLRB gene (rs78726293, P=3.3 × 10-8; rs191260602, P=3.9 × 10-8). We followed up on this finding in a larger dimensional ACQ sample (N=2547) and in independent samples with a dichotomous AG phenotype based on the Symptoms Checklist (SCL-90; N=3845) and a case-control sample with the categorical phenotype PD/AG (Ncombined =1012) obtaining highly significant P-values also for GLRB single-nucleotide variants rs17035816 (P=3.8 × 10-4) and rs7688285 (P=7.6 × 10-5). GLRB gene expression was found to be modulated by rs7688285 in brain tissue, as well as cell culture. Analyses of intermediate PD/AG phenotypes demonstrated increased startle reflex and increased fear network, as well as general sensory activation by GLRB risk gene variants rs78726293, rs191260602, rs17035816 and rs7688285. Partial Glrb knockout mice demonstrated an agoraphobic phenotype. In conjunction with the clinical observation that rare coding GLRB gene mutations are associated with the neurological disorder hyperekplexia characterized by a generalized startle reaction and agoraphobic behavior, our data provide evidence that non-coding, although functional GLRB gene polymorphisms may predispose to PD by increasing startle response and agoraphobic cognitions.
Collapse
|
24
|
Putnam SP, Gartstein MA. Aggregate temperament scores from multiple countries: Associations with aggregate personality traits, cultural dimensions, and allelic frequency. JOURNAL OF RESEARCH IN PERSONALITY 2017. [DOI: 10.1016/j.jrp.2016.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Sobanski T, Wagner G. Functional neuroanatomy in panic disorder: Status quo of the research. World J Psychiatry 2017; 7:12-33. [PMID: 28401046 PMCID: PMC5371170 DOI: 10.5498/wjp.v7.i1.12] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/16/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To provide an overview of the current research in the functional neuroanatomy of panic disorder.
METHODS Panic disorder (PD) is a frequent psychiatric disease. Gorman et al (1989; 2000) proposed a comprehensive neuroanatomical model of PD, which suggested that fear- and anxiety-related responses are mediated by a so-called “fear network” which is centered in the amygdala and includes the hippocampus, thalamus, hypothalamus, periaqueductal gray region, locus coeruleus and other brainstem sites. We performed a systematic search by the electronic database PubMed. Thereby, the main focus was laid on recent neurofunctional, neurostructural, and neurochemical studies (from the period between January 2012 and April 2016). Within this frame, special attention was given to the emerging field of imaging genetics.
RESULTS We noted that many neuroimaging studies have reinforced the role of the “fear network” regions in the pathophysiology of panic disorder. However, recent functional studies suggest abnormal activation mainly in an extended fear network comprising brainstem, anterior and midcingulate cortex (ACC and MCC), insula, and lateral as well as medial parts of the prefrontal cortex. Interestingly, differences in the amygdala activation were not as consistently reported as one would predict from the hypothesis of Gorman et al (2000). Indeed, amygdala hyperactivation seems to strongly depend on stimuli and experimental paradigms, sample heterogeneity and size, as well as on limitations of neuroimaging techniques. Advanced neurochemical studies have substantiated the major role of serotonergic, noradrenergic and glutamatergic neurotransmission in the pathophysiology of PD. However, alterations of GABAergic function in PD are still a matter of debate and also their specificity remains questionable. A promising new research approach is “imaging genetics”. Imaging genetic studies are designed to evaluate the impact of genetic variations (polymorphisms) on cerebral function in regions critical for PD. Most recently, imaging genetic studies have not only confirmed the importance of serotonergic and noradrenergic transmission in the etiology of PD but also indicated the significance of neuropeptide S receptor, CRH receptor, human TransMEMbrane protein (TMEM123D), and amiloride-sensitive cation channel 2 (ACCN2) genes.
CONCLUSION In light of these findings it is conceivable that in the near future this research will lead to the development of clinically useful tools like predictive biomarkers or novel treatment options.
Collapse
|
26
|
Ozen F, Yegin Z, Yavlal F, Saglam ZA, Koc H, Berber I. Lack of association between MAOA-uVNTR variants and excessive daytime sleepiness. Neurol Sci 2017; 38:769-774. [DOI: 10.1007/s10072-017-2836-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
|
27
|
Watanabe T, Ishiguro S, Aoki A, Ueda M, Hayashi Y, Akiyama K, Kato K, Shimoda K. Genetic Polymorphism of 1019C/G (rs6295) Promoter of Serotonin 1A Receptor and Catechol-O-Methyltransferase in Panic Disorder. Psychiatry Investig 2017; 14:86-92. [PMID: 28096880 PMCID: PMC5240452 DOI: 10.4306/pi.2017.14.1.86] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Family and twin studies have suggested genetic liability for panic disorder (PD) and therefore we sought to determine the role of noradrenergic and serotonergic candidate genes for susceptibility for PD in a Japanese population. METHODS In this age- and gender-matched case-control study involving 119 PD patients and 119 healthy controls, we examined the genotype distributions and allele frequencies of the serotonin transporter gene linked polymorphic region (5-HTTLPR), -1019C/G (rs6295) promoter polymorphism of the serotonin receptor 1A (5-HT1A), and catechol-O-methyltransferase (COMT) gene polymorphism (rs4680) and their association with PD. RESULTS No significant differences were evident in the allele frequencies or genotype distributions of the COMT (rs4680), 5-HTTLPR polymorphisms or the -1019C/G (rs6295) promoter polymorphism of 5-HT1A between PD patients and controls. Although there were no significant associations of these polymorphisms with in subgroups of PD patients differentiated by gender or in subgroup comorbid with agoraphobia (AP), significant difference was observed in genotype distributions of the -1019C/G (rs6295) promoter polymorphism of 5-HT1A between PD patients without AP and controls (p=0.047). CONCLUSION In this association study, the 1019C/G (rs6295) promoter polymorphism of the 5-HT1A receptor G/G genotype was associated with PD without AP in a Japanese population.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| | - Shin Ishiguro
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| | - Akiko Aoki
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| | - Mikito Ueda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| | - Yuki Hayashi
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| | - Kazufumi Akiyama
- Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| | - Kazuko Kato
- Sakura La Mental Clinic, Utsunomiya, Tochigi, Japan
| | - Kazutaka Shimoda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| |
Collapse
|
28
|
Chen MH, Tsai SJ. Treatment-resistant panic disorder: clinical significance, concept and management. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:219-26. [PMID: 26850787 DOI: 10.1016/j.pnpbp.2016.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
Abstract
Panic disorder is commonly prevalent in the population, but the treatment response for panic disorder in clinical practice is much less effective than that in our imagination. Increasing evidence suggested existence of a chronic or remitting-relapsing clinical course in panic disorder. In this systematic review, we re-examine the definition of treatment-resistant panic disorder, and present the potential risk factors related to the treatment resistance, including the characteristics of panic disorder, other psychiatric and physical comorbidities, and psychosocial stresses. Furthermore, we summarize the potential pathophysiologies, such as genetic susceptibility, altered brain functioning, brain-derived neurotrophic factor, and long-term inflammation, to explain the treatment resistance. Finally, we conclude the current therapeutic strategies for treating treatment-resistant panic disorder from pharmacological and non-pharmacological views.
Collapse
Affiliation(s)
- Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
29
|
Harro J, Oreland L. The role of MAO in personality and drug use. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:101-11. [PMID: 26964906 DOI: 10.1016/j.pnpbp.2016.02.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 02/04/2023]
Abstract
Monoamine oxidases, both MAO-A and MAO-B, have been implicated in personality traits and complex behaviour, including drug use. Findings supporting the involvement of MAO-A and MAO-B in shaping personality and in the development of strategies of making behavioural choices come from a variety of studies that have examined either prevalence of gene variants in clinical groups or population-derived samples, estimates of enzyme activity in blood or, by positron emission tomography, in the brain and, most recently, measurement of methylation of the gene. Most of the studies converge in associating MAO-A and MAO-B with impulsive, aggressive or antisocial personality traits or behaviours, including alcohol-related problems, and for MAO-A available evidence strongly supports interaction with adverse environmental exposures in childhood. What is known about genotype effects, and on expression and activity of the enzyme in the brain and in blood has not yet been possible to unite into a mechanistic model of the role of monoamine systems, but the reason for this low degree of generalization is likely caused by the cross-sectional nature of investigation that has not incorporated the developmental effects of MAO-s in critical time windows, including the foetal period. The "risk variants" of both MAO-s appear to increase behavioural plasticity, as supportive environments may particularly well enhance the hidden potential of their carriers. Importantly, male and female brain and behaviours have been found very different with regard to MAO×life events interaction. Future studies need to take into consideration these developmental aspects and sex/gender, as well as to specify the role of different types of environmental factors.
Collapse
Affiliation(s)
- Jaanus Harro
- Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Estonia; Psychiatry Clinic, North Estonia Medical Centre, Tallinn, Estonia.
| | - Lars Oreland
- Department of Neuroscience, Pharmacology, University of Uppsala, Biomedical Centre, Uppsala, Sweden
| |
Collapse
|
30
|
Bandelow B, Baldwin D, Abelli M, Altamura C, Dell'Osso B, Domschke K, Fineberg NA, Grünblatt E, Jarema M, Maron E, Nutt D, Pini S, Vaghi MM, Wichniak A, Zai G, Riederer P. Biological markers for anxiety disorders, OCD and PTSD - a consensus statement. Part I: Neuroimaging and genetics. World J Biol Psychiatry 2016; 17:321-65. [PMID: 27403679 DOI: 10.1080/15622975.2016.1181783] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Biomarkers are defined as anatomical, biochemical or physiological traits that are specific to certain disorders or syndromes. The objective of this paper is to summarise the current knowledge of biomarkers for anxiety disorders, obsessive-compulsive disorder (OCD) and post-traumatic stress disorder (PTSD). METHODS Findings in biomarker research were reviewed by a task force of international experts in the field, consisting of members of the World Federation of Societies for Biological Psychiatry Task Force on Biological Markers and of the European College of Neuropsychopharmacology Anxiety Disorders Research Network. RESULTS The present article (Part I) summarises findings on potential biomarkers in neuroimaging studies, including structural brain morphology, functional magnetic resonance imaging and techniques for measuring metabolic changes, including positron emission tomography and others. Furthermore, this review reports on the clinical and molecular genetic findings of family, twin, linkage, association and genome-wide association studies. Part II of the review focuses on neurochemistry, neurophysiology and neurocognition. CONCLUSIONS Although at present, none of the putative biomarkers is sufficient and specific as a diagnostic tool, an abundance of high-quality research has accumulated that will improve our understanding of the neurobiological causes of anxiety disorders, OCD and PTSD.
Collapse
Affiliation(s)
- Borwin Bandelow
- a Department of Psychiatry and Psychotherapy , University of Göttingen , Germany
| | - David Baldwin
- b Faculty of Medicine , University of Southampton , Southampton , UK
| | - Marianna Abelli
- c Department of Clinical and Experimental Medicine , Section of Psychiatry, University of Pisa , Italy
| | - Carlo Altamura
- d Department of Psychiatry , University of Milan; Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - Bernardo Dell'Osso
- d Department of Psychiatry , University of Milan; Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - Katharina Domschke
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany
| | - Naomi A Fineberg
- f Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire , Rosanne House, Parkway , Welwyn Garden City , UK
| | - Edna Grünblatt
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany ;,g Neuroscience Center Zurich , University of Zurich and the ETH Zurich , Zürich , Switzerland ;,h Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zurich , Zürich , Switzerland ;,i Zurich Center for Integrative Human Physiology , University of Zurich , Switzerland
| | - Marek Jarema
- j Third Department of Psychiatry , Institute of Psychiatry and Neurology , Warszawa , Poland
| | - Eduard Maron
- k North Estonia Medical Centre, Department of Psychiatry , Tallinn , Estonia ;,l Department of Psychiatry , University of Tartu , Estonia ;,m Faculty of Medicine, Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences , Imperial College London , UK
| | - David Nutt
- m Faculty of Medicine, Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences , Imperial College London , UK
| | - Stefano Pini
- c Department of Clinical and Experimental Medicine , Section of Psychiatry, University of Pisa , Italy
| | - Matilde M Vaghi
- n Department of Psychology and Behavioural and Clinical Neuroscience Institute , University of Cambridge , UK
| | - Adam Wichniak
- j Third Department of Psychiatry , Institute of Psychiatry and Neurology , Warszawa , Poland
| | - Gwyneth Zai
- n Department of Psychology and Behavioural and Clinical Neuroscience Institute , University of Cambridge , UK ;,o Neurogenetics Section, Centre for Addiction & Mental Health , Toronto , Canada ;,p Frederick W. Thompson Anxiety Disorders Centre, Department of Psychiatry, Sunnybrook Health Sciences Centre , Toronto , Canada ;,q Institute of Medical Science and Department of Psychiatry, University of Toronto , Toronto , Canada
| | - Peter Riederer
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany ;,g Neuroscience Center Zurich , University of Zurich and the ETH Zurich , Zürich , Switzerland ;,h Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zurich , Zürich , Switzerland
| |
Collapse
|
31
|
A Test-Replicate Approach to Candidate Gene Research on Addiction and Externalizing Disorders: A Collaboration Across Five Longitudinal Studies. Behav Genet 2016; 46:608-626. [PMID: 27444553 DOI: 10.1007/s10519-016-9800-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
This study presents results from a collaboration across five longitudinal studies seeking to test and replicate models of gene-environment interplay in the development of substance use and externalizing disorders (SUDs, EXT). We describe an overview of our conceptual models, plan for gene-environment interplay analyses, and present main effects results evaluating six candidate genes potentially relevant to SUDs and EXT (MAOA, 5-HTTLPR, COMT, DRD2, DAT1, and DRD4). All samples included rich longitudinal and phenotypic measurements from childhood/adolescence (ages 5-13) through early adulthood (ages 25-33); sample sizes ranged from 3487 in the test sample, to ~600-1000 in the replication samples. Phenotypes included lifetime symptom counts of SUDs (nicotine, alcohol and cannabis), adult antisocial behavior, and an aggregate externalizing disorder composite. Covariates included the first 10 ancestral principal components computed using all autosomal markers in subjects across the data sets, and age at the most recent assessment. Sex, ancestry, and exposure effects were thoroughly evaluated. After correcting for multiple testing, only one significant main effect was found in the test sample, but it was not replicated. Implications for subsequent gene-environment interplay analyses are discussed.
Collapse
|
32
|
Allelic variation in CRHR1 predisposes to panic disorder: evidence for biased fear processing. Mol Psychiatry 2016; 21:813-22. [PMID: 26324098 DOI: 10.1038/mp.2015.125] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/23/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022]
Abstract
Corticotropin-releasing hormone (CRH) is a major regulator of the hypothalamic-pituitary-adrenal axis. Binding to its receptor CRHR1 triggers the downstream release of the stress response-regulating hormone cortisol. Biochemical, behavioral and genetic studies revealed CRHR1 as a possible candidate gene for mood and anxiety disorders. Here we aimed to evaluate CRHR1 as a risk factor for panic disorder (PD). Allelic variation of CRHR1 was captured by 9 single-nucleotide polymorphisms (SNPs), which were genotyped in 531 matched case/control pairs. Four SNPs were found to be associated with PD, in at least one sub-sample. The minor allele of rs17689918 was found to significantly increase risk for PD in females after Bonferroni correction and furthermore decreased CRHR1 mRNA expression in human forebrains and amygdalae. When investigating neural correlates underlying this association in patients with PD using functional magnetic resonance imaging, risk allele carriers of rs17689918 showed aberrant differential conditioning predominantly in the bilateral prefrontal cortex and safety signal processing in the amygdalae, arguing for predominant generalization of fear and hence anxious apprehension. Additionally, the risk allele of rs17689918 led to less flight behavior during fear-provoking situations but rather increased anxious apprehension and went along with increased anxiety sensitivity. Thus reduced gene expression driven by CRHR1 risk allele leads to a phenotype characterized by fear sensitization and hence sustained fear. These results strengthen the role of CRHR1 in PD and clarify the mechanisms by which genetic variation in CRHR1 is linked to this disorder.
Collapse
|
33
|
Candidate genes in panic disorder: meta-analyses of 23 common variants in major anxiogenic pathways. Mol Psychiatry 2016; 21:665-79. [PMID: 26390831 DOI: 10.1038/mp.2015.138] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/22/2015] [Accepted: 08/05/2015] [Indexed: 12/13/2022]
Abstract
The utilization of molecular genetics approaches in examination of panic disorder (PD) has implicated several variants as potential susceptibility factors for panicogenesis. However, the identification of robust PD susceptibility genes has been complicated by phenotypic diversity, underpowered association studies and ancestry-specific effects. In the present study, we performed a succinct review of case-control association studies published prior to April 2015. Meta-analyses were performed for candidate gene variants examined in at least three studies using the Cochrane Mantel-Haenszel fixed-effect model. Secondary analyses were also performed to assess the influences of sex, agoraphobia co-morbidity and ancestry-specific effects on panicogenesis. Meta-analyses were performed on 23 variants in 20 PD candidate genes. Significant associations after correction for multiple testing were observed for three variants, TMEM132D rs7370927 (T allele: odds ratio (OR)=1.27, 95% confidence interval (CI): 1.15-1.40, P=2.49 × 10(-6)), rs11060369 (CC genotype: OR=0.65, 95% CI: 0.53-0.79, P=1.81 × 10(-5)) and COMT rs4680 (Val (G) allele: OR=1.27, 95% CI: 1.14-1.42, P=2.49 × 10(-5)) in studies with samples of European ancestry. Nominal associations that did not survive correction for multiple testing were observed for NPSR1 rs324891 (T allele: OR=1.22, 95% CI: 1.07-1.38, P=0.002), TPH1 rs1800532 (AA genotype: OR=1.46, 95% CI: 1.14-1.89, P=0.003) and HTR2A rs6313 (T allele: OR=1.19, 95% CI: 1.07-1.33, P=0.002) in studies with samples of European ancestry and for MAOA-uVNTR in female PD (low-active alleles: OR=1.21, 95% CI: 1.07-1.38, P=0.004). No significant associations were observed in the secondary analyses considering sex, agoraphobia co-morbidity and studies with samples of Asian ancestry. Although these findings highlight a few associations, PD likely involves genetic variation in a multitude of biological pathways that is diverse among populations. Future studies must incorporate larger sample sizes and genome-wide approaches to further quantify the observed genetic variation among populations and subphenotypes of PD.
Collapse
|
34
|
MAOA gene hypomethylation in panic disorder-reversibility of an epigenetic risk pattern by psychotherapy. Transl Psychiatry 2016; 6:e773. [PMID: 27045843 PMCID: PMC4872399 DOI: 10.1038/tp.2016.41] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/01/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022] Open
Abstract
Epigenetic signatures such as methylation of the monoamine oxidase A (MAOA) gene have been found to be altered in panic disorder (PD). Hypothesizing temporal plasticity of epigenetic processes as a mechanism of successful fear extinction, the present psychotherapy-epigenetic study for we believe the first time investigated MAOA methylation changes during the course of exposure-based cognitive behavioral therapy (CBT) in PD. MAOA methylation was compared between N=28 female Caucasian PD patients (discovery sample) and N=28 age- and sex-matched healthy controls via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells. MAOA methylation was furthermore analyzed at baseline (T0) and after a 6-week CBT (T1) in the discovery sample parallelized by a waiting time in healthy controls, as well as in an independent sample of female PD patients (N=20). Patients exhibited lower MAOA methylation than healthy controls (P<0.001), and baseline PD severity correlated negatively with MAOA methylation (P=0.01). In the discovery sample, MAOA methylation increased up to the level of healthy controls along with CBT response (number of panic attacks; T0-T1: +3.37±2.17%), while non-responders further decreased in methylation (-2.00±1.28%; P=0.001). In the replication sample, increases in MAOA methylation correlated with agoraphobic symptom reduction after CBT (P=0.02-0.03). The present results support previous evidence for MAOA hypomethylation as a PD risk marker and suggest reversibility of MAOA hypomethylation as a potential epigenetic correlate of response to CBT. The emerging notion of epigenetic signatures as a mechanism of action of psychotherapeutic interventions may promote epigenetic patterns as biomarkers of lasting extinction effects.
Collapse
|
35
|
Won E, Choi S, Kang J, Lee MS, Ham BJ. Regional cortical thinning of the orbitofrontal cortex in medication-naïve female patients with major depressive disorder is not associated with MAOA-uVNTR polymorphism. Ann Gen Psychiatry 2016; 15:26. [PMID: 27752275 PMCID: PMC5062832 DOI: 10.1186/s12991-016-0116-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Orbitofrontal cortex alterations have been suggested to underlie the impaired mood regulation in depression. MAOA-uVNTR (monoamine oxidase A-upstream variable number of tandem repeats) polymorphism has been reported to be associated with major depressive disorder by various studies. The influence of MAOA-uVNTR genotype on function and structure of the orbitofrontal cortex has previously been reported. In this study, we investigated the difference in orbitofrontal cortex thickness between medication-naïve female patients with major depressive disorder and healthy controls, and the influence of MAOA-uVNTR genotype on orbitofrontal cortex thickness in depression. METHODS Thirty-one patients with major depressive disorder and 43 healthy controls were included. All participants were subjected to T1-weighted structural magnetic resonance imaging and genotyped for MAOA-uVNTR polymorphism. An automated procedure of FreeSurfer was used to analyze difference in orbitofrontal cortex thickness. RESULTS Patients showed a significantly thinner left orbitofrontal cortex (F(1,71) = 7.941, p = 0.006) and right orbitofrontal cortex (F(1,71) = 17.447, p < 0.001). For the orbitofrontal cortex sub-region analysis, patients showed a significantly thinner left medial orbitofrontal cortex (F(1,71) = 8.117, p = 0.006), right medial orbitofrontal cortex (F(1,71) = 21.795, p < 0.001) and right lateral orbitofrontal cortex (F(1,71) = 9.932, p = 0.002) compared to healthy controls. No significant interaction of diagnosis and MAOA-uVNTR genotype on orbitofrontal cortex thickness was revealed. CONCLUSIONS Our results suggest that structural alterations of the orbitofrontal cortex may be associated with the pathophysiology of major depressive disorder. Future studies with larger sample sizes are needed to detect a possible association between MAOA-uVNTR genotype and orbitofrontal cortex thickness in depression.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 136-705 Republic of Korea
| | - Sunyoung Choi
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Science, Korea University, Seoul, Republic of Korea
| | - Min-Soo Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 136-705 Republic of Korea
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The present review aims to deliver a systematic overview of current developments and trends in (epi)genetics of anxiety and to identify upcoming challenges and opportunities. RECENT FINDINGS Genes related to peptide and hormone signaling have been suggested for anxiety-related phenotypes, e.g., the NPSR1 gene, which has been associated predominantly with panic disorder in women, and shown to interact with environmental factors and to influence psychometric, neurophysiological, and neuroimaging correlates of anxiety. Similar multi-level results have been reported for genetic and epigenetic variation in the OXTR gene, especially in social anxiety disorder (SAD), and for CRHR1 gene variation in women with panic disorder. Variants in RGS2 and ASIC1 genes were linked to panic disorder, with the latter also being implicated in SAD treatment response. Finally, monoaminergic 'risk' genes (SLC6A4, MAOA, HTR1A) were related to SAD, generalized anxiety disorder and women with panic disorder, anxiety traits and response to psychopharmacological and psychotherapeutic interventions. SUMMARY Converging evidence for potential genetic and epigenetic risk markers has been gathered and future studies call for independent replications and multi-level integration of dimensional approaches, environmental factors, and biological readouts, while considering sex-specific substratification. Particularly, epigenetic variation appears promising for disease course and treatment response predictions.
Collapse
|
37
|
Shimada-Sugimoto M, Otowa T, Hettema JM. Genetics of anxiety disorders: Genetic epidemiological and molecular studies in humans. Psychiatry Clin Neurosci 2015; 69:388-401. [PMID: 25762210 DOI: 10.1111/pcn.12291] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2015] [Indexed: 12/30/2022]
Abstract
This review provides a broad overview of the state of research in the genetics of anxiety disorders (AD). Genetic epidemiological studies report a moderate level of familial aggregation (odds ratio: 4-6) and heritability estimates are about 30-50%. Twin studies suggest that the genetic architecture of AD is not isomorphic with their classifications, sharing risk factors with each other. So far, linkage and association studies of AD have produced inconclusive results. Genome-wide association studies of AD can provide an unbiased survey of common genetic variations across the entire genome. Given the shared causes of AD that transcend our current diagnostic classifications, clustering anxiety phenotypes into broader groups may be a powerful approach to identifying susceptibility locus for AD. Using such a shared genetic risk factor, meta-analyses of genome-wide association studies of AD conducted by large consortia are needed. Environmental factors also make a substantial contribution to the cause of AD. Although candidate gene studies of gene by environmental (G × E) interaction have appeared recently, no genome-wide search for G × E interactions have been performed. Epigenetic modification of DNA appears to have important effects on gene expression mediating environmental influences on disease risk. Given that G × E can be linked to an epigenetic modification, a combination analysis of genome-wide G × E interaction and methylation could be an alternative method to find risk variants for AD. This genetic research will enable us to utilize more effective strategies for the prevention and treatment of AD in the near future.
Collapse
Affiliation(s)
- Mihoko Shimada-Sugimoto
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Otowa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - John M Hettema
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, USA
| |
Collapse
|
38
|
Hommers L, Raab A, Bohl A, Weber H, Scholz CJ, Erhardt A, Binder E, Arolt V, Gerlach A, Gloster A, Kalisch R, Kircher T, Lonsdorf T, Ströhle A, Zwanzger P, Mattheisen M, Cichon S, Lesch KP, Domschke K, Reif A, Lohse MJ, Deckert J. MicroRNA hsa-miR-4717-5p regulates RGS2 and may be a risk factor for anxiety-related traits. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:296-306. [PMID: 25847876 DOI: 10.1002/ajmg.b.32312] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/17/2015] [Indexed: 12/30/2022]
Abstract
Regulator of G-protein Signaling 2 (RGS2) is a key regulator of G-protein-coupled signaling pathways involved in fear and anxiety. Data from rodent models and genetic analysis of anxiety-related traits and disorders in humans suggest down-regulation of RGS2 expression to be a risk factor for anxiety. Here we investigated, whether genetic variation in microRNAs mediating posttranscriptional down-regulation of RGS2 may be a risk factor for anxiety as well. 75 microRNAs predicted to regulate RGS2 were identified by four bioinformatic algorithms and validated experimentally by luciferase reporter gene assays. Specificity was confirmed for six microRNAs (hsa-miR-1271-5p, hsa-miR-22-3p, hsa-miR-3591-3p, hsa-miR-377-3p, hsa-miR-4717-5p, hsa-miR-96-5p) by disrupting their seed sequence at the 3' untranslated region of RGS2. Hsa-miR-4717-5p showed the most robust effect on RGS2 and regulated two other candidate genes of anxiety disorders (CNR1 and IKBKE) as well. Two SNPs (rs150925, rs161427) within and 1,000 bp upstream of the hostgene of hsa-miR-4717-5p (MIR4717) show a minor allele frequency greater than 0.05. Both were in high linkage disequilibrium (r(2) = 1, D' = 1) and both major (G) alleles showed a trend for association with panic disorder with comorbid agoraphobia in one of two patient/control samples (combined n(patients) = 497). Dimensional anxiety traits, as described by Anxiety Sensitivity Index (ASI) and Agoraphobic Cognitions Questionnaire (ACQ) were significantly higher among carriers of both major (G) alleles in a combined patient/control sample (n(combined) = 831). Taken together, data indicate that MIR4717 regulates human RGS2 and contributes to the genetic risk towards anxiety-related traits.
Collapse
Affiliation(s)
- Leif Hommers
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Würzburg, Germany
| | - Annette Raab
- Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Würzburg, Germany
| | - Alexandra Bohl
- Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Würzburg, Germany
| | - Heike Weber
- Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Würzburg, Germany
| | - Claus-Jürgen Scholz
- Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Würzburg, Germany
| | | | | | - Volker Arolt
- Department of Psychiatry, University of Muenster, Muenster, Germany
| | - Alexander Gerlach
- Department of Clinical Psychology and Psychotherapy, University of Cologne, Cologne, Germany
| | - Andrew Gloster
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Raffael Kalisch
- Neuroimaging Center Mainz, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
| | - Tina Lonsdorf
- Institute for Systems Neuroscience, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Zwanzger
- Department of Psychiatry, University of Muenster, Muenster, Germany
| | - Manuel Mattheisen
- Department of Biomedicine and Centre for integrative Sequencing (iSEQ), Aarhus University, Aarhus C, Denmark
| | - Sven Cichon
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Switzerland.,Institute of Human Genetics, Department of Genomics, Life & Brain Center, University of Bonn, Germany.,Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Germany
| | - Klaus-Peter Lesch
- Center of Mental Health, Division of Molecular Psychiatry, University Hospital of Würzburg, Würzburg, Germany
| | - Katharina Domschke
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Andreas Reif
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Martin J Lohse
- Department of Pharmacology, University of Würzburg, Würzburg, Germany
| | - Jürgen Deckert
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
39
|
Voltas N, Aparicio E, Arija V, Canals J. Association study of monoamine oxidase-A gene promoter polymorphism (MAOA-uVNTR) with self-reported anxiety and other psychopathological symptoms in a community sample of early adolescents. J Anxiety Disord 2015; 31:65-72. [PMID: 25747527 DOI: 10.1016/j.janxdis.2015.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 01/13/2023]
Abstract
The polymorphism upstream of the gene for monoamine oxidase A (MAOA-uVNTR) is reported to be an important enzyme involved in human physiology and behavior. With a sample of 228 early-adolescents from a community sample (143 girls) and adjusting for environmental variables, we examined the influence of MAOA-uVNTR alleles on the scores obtained in the Screen for Childhood Anxiety and Related Emotional Disorders and in the Child Symptom Inventory-4. Our results showed that girls with the high-activity MAOA allele had higher scores for generalized and total anxiety than their low-activity peers, whereas boys with the low-activity allele had higher social phobia scores than boys with the high-activity allele. Results for conduct disorder symptoms did not show a significant relationship between the MAOA alleles and the presence of these symptoms. Our findings support a possible association, depending on gender, between the MAOA-uVNTR polymorphism and psychopathological disorders such as anxiety, which affects high rates of children and adolescents.
Collapse
Affiliation(s)
- Núria Voltas
- Research Center for Behavioral Assessment (CRAMC), Department of Psychology, Universitat Rovira i Virgili, Facultat de Ciències de l'Educació i Psicologia, Crta/ de Valls, s/n, 43007 Tarragona, Spain; Nutrition and Mental Health Research Group (NUTRISAM), Universitat Rovira i Virgili, Spain
| | - Estefania Aparicio
- Nutrition and Public Health Unit, Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, C/ Sant Llorenç, 21, 43201 Reus, Spain; Nutrition and Mental Health Research Group (NUTRISAM), Universitat Rovira i Virgili, Spain
| | - Victoria Arija
- Nutrition and Public Health Unit, Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, C/ Sant Llorenç, 21, 43201 Reus, Spain; Nutrition and Mental Health Research Group (NUTRISAM), Universitat Rovira i Virgili, Spain
| | - Josefa Canals
- Research Center for Behavioral Assessment (CRAMC), Department of Psychology, Universitat Rovira i Virgili, Facultat de Ciències de l'Educació i Psicologia, Crta/ de Valls, s/n, 43007 Tarragona, Spain; Nutrition and Mental Health Research Group (NUTRISAM), Universitat Rovira i Virgili, Spain.
| |
Collapse
|
40
|
Hohoff C, Weber H, Richter J, Domschke K, Zwanzger PM, Ohrmann P, Bauer J, Suslow T, Kugel H, Baumann C, Klauke B, Jacob CP, Fritze J, Bandelow B, Gloster AT, Gerlach AL, Kircher T, Lang T, Alpers GW, Ströhle A, Fehm L, Wittchen HU, Arolt V, Pauli P, Hamm A, Reif A, Deckert J. RGS2 ggenetic variation: association analysis with panic disorder and dimensional as well as intermediate phenotypes of anxiety. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:211-22. [PMID: 25740197 DOI: 10.1002/ajmg.b.32299] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 01/14/2015] [Indexed: 11/08/2022]
Abstract
Accumulating evidence from mouse models points to the G protein-coupled receptor RGS2 (regulator of G-protein signaling 2) as a promising candidate gene for anxiety in humans. Recently, RGS2 polymorphisms were found to be associated with various anxiety disorders, e.g., rs4606 with panic disorder (PD), but other findings have been negative or inconsistent concerning the respective risk allele. To further examine the role of RGS2 polymorphisms in the pathogenesis of PD, we genotyped rs4606 and five additional RGS2 tag single nucleotide polymorphisms (SNPs; rs16834831, rs10801153, rs16829458, rs1342809, rs1890397) in two independent PD samples, comprising 531 matched case/control pairs. The functional SNP rs4606 was nominally associated with PD when both samples were combined. The upstream SNP rs10801153 displayed a Bonferroni-resistant significant association with PD in the second and the combined sample (P = 0.006 and P = 0.017). We furthermore investigated the effect of rs10801153 on dimensional anxiety traits, a behavioral avoidance test (BAT), and an index for emotional processing in the respective subsets of the total sample. In line with categorical results, homozygous risk (G) allele carriers displayed higher scores on the Agoraphobic Cognitions Questionnaire (ACQ; P = 0.015) and showed significantly more defensive behavior during fear provoking situations (P = 0.001). Furthermore, significant effects on brain activation in response to angry (P = 0.013), happy (P = 0.042) and neutral faces (P = 0.032) were detected. Taken together, these findings provide further evidence for the potential role of RGS2 as a candidate gene for PD.
Collapse
Affiliation(s)
- Christa Hohoff
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Konishi Y, Tanii H, Otowa T, Sasaki T, Motomura E, Fujita A, Umekage T, Tochigi M, Kaiya H, Okazaki Y, Okada M. Gender-specific association between the COMT Val158Met polymorphism and openness to experience in panic disorder patients. Neuropsychobiology 2015; 69:165-74. [PMID: 24852514 DOI: 10.1159/000360737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 02/19/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Because major depression and panic disorder are both more prevalent among females and since several lines of evidence suggest that genetic factors might influence an individual's vulnerability to panic disorder, gene-gender interactions are being examined in such psychiatric disorders and mental traits. A number of studies have suggested that specific genes, e.g. catechol-O-methyltransferase (COMT), might lead to distinct clinical characteristics of panic disorder. METHOD We compared gender-specific personality-related psychological factors of 470 individuals with panic disorder and 458 healthy controls in terms of their COMT Val158Met polymorphism and their scores on the Revised NEO Personality Inventory (NEO PI-R) and State-Trait Anxiety Inventory (STAI) with a 1-way analysis of covariance. RESULTS In the male panic disorder patients, the NEO PI-R score for openness to experience was significantly lower in the Met/Met carrier group, whereas there was no such association among the female panic disorder patients or the male or female control groups. CONCLUSION The gender-specific effect of the COMT genotype suggests that the COMT Val/Met genotype may influence a personality trait, openness to experience, in males with panic disorder.
Collapse
Affiliation(s)
- Yoshiaki Konishi
- Department of Psychiatry, Division of Neuroscience, Graduate School of Medicine, Brain Science and Animal Model Research Center, Mie University, Tsu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Geiger MJ, Neufang S, Stein DJ, Domschke K. Arousal and the attentional network in panic disorder. Hum Psychopharmacol 2014; 29:599-603. [PMID: 25311787 DOI: 10.1002/hup.2436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 12/30/2022]
Abstract
Although a great deal of information about the neurobiology of panic disorder is now available, there is a need for an updated etiological model integrating recent findings on the neurobiology of the arousal system and its relationship with higher cortical functions in panic disorder. The current mini-review presents psychophysiological, molecular biological/genetic and functional neuroimaging evidence for dysfunction in major arousal systems of the brain. Such dysfunction may influence the development of panic disorder by precipitating autonomic bodily symptoms and at the same time increasing vigilance to these sensations by modulating cortical attentional networks. A multilevel model of arousal, attention and anxiety-including the norepinephrine, orexin, neuropeptide S and caffeine-related adenosine systems-may be useful in integrating a range of data available on the pathogenesis of panic disorder.
Collapse
|
43
|
Holz N, Boecker R, Buchmann AF, Blomeyer D, Baumeister S, Hohmann S, Jennen-Steinmetz C, Wolf I, Rietschel M, Witt SH, Plichta MM, Meyer-Lindenberg A, Schmidt MH, Esser G, Banaschewski T, Brandeis D, Laucht M. Evidence for a Sex-Dependent MAOA× Childhood Stress Interaction in the Neural Circuitry of Aggression. Cereb Cortex 2014; 26:904-14. [PMID: 25331606 DOI: 10.1093/cercor/bhu249] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Converging evidence emphasizes the role of an interaction between monoamine oxidase A (MAOA) genotype, environmental adversity, and sex in the pathophysiology of aggression. The present study aimed to clarify the impact of this interaction on neural activity in aggression-related brain systems. Functional magnetic resonance imaging was performed in 125 healthy adults from a high-risk community sample followed since birth. DNA was genotyped for the MAOA-VNTR (variable number of tandem repeats). Exposure to childhood life stress (CLS) between the ages of 4 and 11 years was assessed using a standardized parent interview, aggression by the Youth/Young Adult Self-Report between the ages of 15 and 25 years, and the VIRA-R (Vragenlijst Instrumentele En Reactieve Agressie) at the age of 15 years. Significant interactions were obtained between MAOA genotype, CLS, and sex relating to amygdala, hippocampus, and anterior cingulate cortex (ACC) response, respectively. Activity in the amygdala and hippocampus during emotional face-matching increased with the level of CLS in male MAOA-L, while decreasing in male MAOA-H, with the reverse pattern present in females. Findings in the opposite direction in the ACC during a flanker NoGo task suggested that increased emotional activity coincided with decreased inhibitory control. Moreover, increasing amygdala activity was associated with higher Y(A)SR aggression in male MAOA-L and female MAOA-H carriers. Likewise, a significant association between amygdala activity and reactive aggression was detected in female MAOA-H carriers. The results point to a moderating role of sex in the MAOA× CLS interaction for intermediate phenotypes of emotional and inhibitory processing, suggesting a possible mechanism in conferring susceptibility to violence-related disorders.
Collapse
Affiliation(s)
- Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy
| | - Regina Boecker
- Department of Child and Adolescent Psychiatry and Psychotherapy
| | | | | | | | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy
| | | | - Isabella Wolf
- Department of Child and Adolescent Psychiatry and Psychotherapy Department of Neuroimaging
| | | | | | - Michael M Plichta
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | | | - Günter Esser
- Department of Psychology, University of Potsdam, Potsdam, Germany
| | | | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Manfred Laucht
- Department of Child and Adolescent Psychiatry and Psychotherapy Department of Psychology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
44
|
Scholz CJ, Jungwirth S, Danielczyk W, Weber H, Wichart I, Tragl KH, Fischer P, Riederer P, Deckert J, Grünblatt E. Investigation of association of serotonin transporter and monoamine oxidase-A genes with Alzheimer's disease and depression in the VITA study cohort: a 90-month longitudinal study. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:184-91. [PMID: 24443391 DOI: 10.1002/ajmg.b.32220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 12/20/2013] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD) and depression (DE) are common psychiatric disorders strongly intertwined with one another. Nevertheless, etiology and early diagnosis of the disorders are still elusive. Several genetic variations have been suggested to associate with AD and DE, particularly in genes involved in the serotonergic system such as the serotonin transporter (SERT/SLC6A4), responsible for the removal from the synaptic cleft, and the monoamine-oxidase-A (MAOA), responsible for the presynaptic degradation of serotonin. Here, we attempt to characterize this pleiotropic effect for the triallelic SERT gene-linked polymorphic region (5HTTLPR) and for the MAOA-uVNTR, in participants in the Vienna-Transdanube-Aging (VITA)-study. The VITA-study is a community-based longitudinal study following a birth cohort (75 years old at baseline examination, n = 606) from Vienna for a period of 90 months with a regular follow-up interval of 30 months. Our main finding, confirming previous reports, is that the 5HTTLPR S-allele is a risk allele for DE (OR = 1.55 CI 95% 1.03-2.32) and its carriers had a steeper increase in SGDS sum score. No association to AD was found. MAOA-uVNTR did not associate with either AD or DE. However, in AD MAOA-uVNTR S-allele carriers a steeper increase of HAMD and STAI1 sum scores (P < 0.05) was observed. Although the VITA-study cohort is rather small with low power to detect gene alterations, the uniqueness of this very thoroughly investigated and homogenous cohort strengthens the results through exceptional data collection. Still, reinvestigation in a larger cohort similar to this, as well as a meta-analysis, is important to confirm these results.
Collapse
Affiliation(s)
- Claus-Jürgen Scholz
- Interdisciplinary Centre for Clinical Research (IZKF), University Hospital of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mitigating aggressiveness through education? The monoamine oxidase A genotype and mental health in general population. Acta Neuropsychiatr 2014; 26:19-28. [PMID: 25142096 DOI: 10.1017/neu.2013.34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Monoamine oxidase A (MAOA) gene promoter region includes a variable number of tandem repeat (VNTR) associated with antisocial behaviour in adverse environment. We have examined the effect of the MAOA-uVNTR on mental health and academic success by using a population representative sample and a longitudinal design. METHODS The data of the older cohort (n = 593, aged 15 years at the original sampling) of the longitudinal Estonian Children Personality, Behaviour and Health Study (ECPBHS) were used. Follow-ups were conducted at ages 18 and 25 years. Aggressiveness, inattention and hyperactivity were reported by class teachers or, at older age, self-reported. Stressful life events, psychological environment in the family and interactions between family members were self-reported. Data of general mental abilities and education were obtained at the age of 25, and lifetime psychiatric disorder assessment was carried out with the Mini-International Neuropsychiatric Interview (MINI) interview. RESULTS MAOA-uVNTR genotype had no independent effect on aggressiveness, hyperactive and inattentive symptoms, and neither was there a genotype interaction with adverse life events. Interestingly, the proportion of male subjects with higher education by the age of 25 was significantly larger among those with MAOA low-activity alleles (χ² = 7.13; p = 0.008). Logistic regression revealed that MAOA low-activity alleles, higher mental abilities, occurrence of anxiety disorders and absence of substance-use disorder were significant independent predictors for higher education in male subjects. CONCLUSIONS In a population representative sample of young subjects, the MAOA-uVNTR 'risk genotype' predicted better life outcomes as expressed in higher level of education.
Collapse
|
46
|
Ernst LH, Lutz E, Ehlis AC, Fallgatter AJ, Reif A, Plichta MM. Genetic variation in MAOA modulates prefrontal cortical regulation of approach-avoidance reactions. Neuropsychobiology 2014; 67:168-80. [PMID: 23548774 DOI: 10.1159/000346582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 12/14/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Regulation of automatic approach and avoidance behavior requires affective and cognitive control, which are both influenced by a genetic variation in the gene encoding Monoamine Oxidase A (termed MAOA-uVNTR). METHODS The current study investigated MAOA genotype as a moderator of prefrontal cortical activation measured with functional near-infrared spectroscopy (fNIRS) in 37 healthy young adults during performance of the approach-avoidance task with positive and negative pictures. RESULTS Carriers of the low- compared to the high-expressing genetic variant (MAOA-L vs. MAOA-H) showed increasing regulatory activity in the right dorsolateral prefrontal cortex (DLPFC) during incompatible conditions (approach negative, avoid positive). This might have been a compensatory mechanism for stronger emotional reactions as shown in previous studies and might have prevented any influence of incompatibility on behavior. In contrast, fewer errors but also lower activity in the right DLPFC during processing of negative compared to positive stimuli indicated MAOA-H carriers to have used other regulatory areas. This resulted in slower reaction times in incompatible conditions, but--in line with the known better cognitive regulation efficiency--allowed them to perform incompatible reactions without activating the DLPFC as the highest control instance. Carriers of one low- and one high-expressing allele lay as an intermediate group between the reactions of the low- and high-expressing groups. CONCLUSIONS The relatively small sample size and restriction to fNIRS for assessment of cortical activity limit our findings. Nevertheless, these first results suggest monoam-inergic mechanisms to contribute to interindividual differences in the two basic behavioral principles of approach and avoidance and their neuronal correlates.
Collapse
Affiliation(s)
- Lena H Ernst
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Anxiety disorders are highly prevalent and debilitating psychiatric disorders. Owing to the complex aetiology of anxiety disorders, translational studies involving multiple approaches, including human and animal genetics, molecular, endocrinological and imaging studies, are needed to get a converging picture of function or dysfunction of anxiety-related circuits. An advantage of anxiety disorders is that the neural circuitry of fear is comparatively well understood, with striking analogies between animal and human models, and this article aims to provide a brief overview of current translational approaches to anxiety. Experimental models that involve similar tasks in animals and humans, such as fear conditioning and extinction, seem particularly promising and can be readily integrated with imaging, behavioural and physiological readouts. The cross-validation between animal and human genetics models is essential to examine the relevance of candidate genes, as well as their neural pathways, for anxiety disorders; a recent example of such cross-validation work is provided by preclinical and clinical work on TMEM132D, which has been identified as a candidate gene for panic disorder. Further integration of epigenetic data and gene × environment interaction are promising approaches, as highlighted by FKPB5 and PACAP, early life trauma and stress-related anxiety disorders. Finally, connecting genetic and epigenetic data with functionally relevant imaging readouts will allow a comparison of overlap and differences across species in mechanistic pathways from genes to brain functioning and behaviour.
Collapse
|
48
|
Baumann C, Klauke B, Weber H, Domschke K, Zwanzger P, Pauli P, Deckert J, Reif A. The interaction of early life experiences with COMT val158met affects anxiety sensitivity. GENES BRAIN AND BEHAVIOR 2013; 12:821-9. [PMID: 24118915 DOI: 10.1111/gbb.12090] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/11/2013] [Accepted: 09/30/2013] [Indexed: 01/12/2023]
Abstract
The pathogenesis of anxiety disorders is considered to be multifactorial with a complex interaction of genetic factors and individual environmental factors. Therefore, the aim of this study was to examine gene-by-environment interactions of the genes coding for catechol-O-methyltransferase (COMT) and monoamine oxidase A (MAOA) with life events on measures related to anxiety. A sample of healthy subjects (N = 782; thereof 531 women; mean age M = 24.79, SD = 6.02) was genotyped for COMT rs4680 and MAOA-uVNTR (upstream variable number of tandem repeats), and was assessed for childhood adversities [Childhood Trauma Questionnaire (CTQ)], anxiety sensitivity [Anxiety Sensitivity Index (ASI)] and anxious apprehension [Penn State Worry Questionnaire (PSWQ)]. Main and interaction effects of genotype, environment and gender on measures related to anxiety were assessed by means of regression analyses. Association analysis showed no main gene effect on either questionnaire score. A significant interactive effect of childhood adversities and COMT genotype was observed: Homozygosity for the low-active met allele and high CTQ scores was associated with a significant increment of explained ASI variance [R(2) = 0.040, false discovery rate (FDR) corrected P = 0.04]. A borderline interactive effect with respect to MAOA-uVNTR was restricted to the male subgroup. Carriers of the low-active MAOA allele who reported more aversive experiences in childhood exhibited a trend for enhanced anxious apprehension (R(2) = 0.077, FDR corrected P = 0.10). Early aversive life experiences therefore might increase the vulnerability to anxiety disorders in the presence of homozygosity for the COMT 158met allele or low-active MAOA-uVNTR alleles.
Collapse
Affiliation(s)
- C Baumann
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy); Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg
| | | | | | | | | | | | | | | |
Collapse
|