1
|
Bishop JR, Zhou C, Gaedigk A, Krone B, Kittles R, Cook EH, Newcorn JH, Stein MA. Dopamine Transporter and CYP2D6 Gene Relationships with Attention-Deficit/Hyperactivity Disorder Treatment Response in the Methylphenidate and Atomoxetine Crossover Study. J Child Adolesc Psychopharmacol 2024; 34:458-469. [PMID: 39387268 DOI: 10.1089/cap.2024.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background: Few biological or clinical predictors guide medication selection and/or dosing for attention-deficit/hyperactivity disorder (ADHD). Accumulating data suggest that genetic factors may contribute to clinically relevant pharmacodynamic (e.g., dopamine transporter-SLC6A3 also commonly known as DAT1) or pharmacokinetic (e.g., the drug metabolizing enzyme Cytochrome P450 2D6 CYP2D6) effects of methylphenidate (stimulant) and atomoxetine (non-stimulant), which are commonly prescribed medications. This is the first study of youth with ADHD exposed to both medications examining the clinical relevance of genetic variation on treatment response. Methods: Genetic variations in DAT1 and CYP2D6 were examined to determine how they modified time relationships with changes in ADHD symptoms over a 4-week period in 199 youth participating in a double-blind crossover study following a stepped titration dose optimization protocol. Results: Our results identified trends in the modification effect from CYP2D6 phenotype and the time-response relationship between ADHD total symptoms for both medications (atomoxetine [ATX]: p = 0.058, Methylphenidate [MPH]: p = 0.044). There was also a trend for the DAT1 3' untranslated region (UTR) variable number of tandem repeat (VNTR) genotype to modify dose relationships with ADHD-RS total scores for atomoxetine (p = 0.029). Participants with DAT1 9/10 repeat genotypes had a more rapid dose-response to ATX compared to 10/10, while those with 9/9 genotypes did not respond as doses were increased. Regardless of genotype, ADHD symptoms and doses were similar across CYP2D6 metabolizer groups after 4 weeks of treatment. Conclusions: Most children with ADHD who were CYP2D6 normal metabolizers or had DAT1 10/10 or 9/10 genotypes responded well to both medications. While we observed some statistically significant effects of CYP2D6 and DAT1 with treatment response over time, our data indicate that genotyping for clinical purposes may have limited utility to guide treatment decisions for ATX or MPH because both medications were generally effective in the studied cohort after 3 weeks of titration to higher doses. The potential DAT1 association with ATX treatment is a novel finding, consistent with prior reports suggesting an association of the DAT1 in 9/9 genotypes with lower responsive rates to treatment at low and moderate doses.
Collapse
Affiliation(s)
- Jeffrey R Bishop
- College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chuan Zhou
- Seattle Children's, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| | - Andrea Gaedigk
- Children's Mercy Research Institute (CMRI), Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Beth Krone
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rick Kittles
- Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Edwin H Cook
- University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | | | - Mark A Stein
- University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Chatterjee M, Saha S, Maitra S, Ray A, Sinha S, Mukhopadhyay K. Post-treatment symptomatic improvement of the eastern Indian ADHD probands is influenced by CYP2D6 genetic variations. Drug Metab Pers Ther 2023; 38:45-56. [PMID: 36169235 DOI: 10.1515/dmpt-2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Symptomatic remediation from attention deficit hyperactivity disorder (ADHD)-associated traits is achieved by treatment with methylphenidate (MPH)/atomoxetine (ATX). We have analyzed the association of functional CYP2D6 variations, rs1065852, rs3892097, rs1135840, and rs1058164, with ADHD in the Indian subjects. METHODS Subjects were recruited following the Diagnostic and Statistical Manual for Mental Disorders. Trait scores were obtained from the Conner's Parents Rating Scale-Revised. After obtaining informed consent, blood was collected for DNA isolation, and genotyping was performed by PCR or TaqMan-based methods. Probands were treated with MPH or ATX based on age, symptoms, and drug availability. Treatment outcome was assessed using a structured questionnaire. Data obtained was analyzed to identify the association of CYP2D6 variations and the SLC6A3 rs28363170 with the treatment outcome. RESULTS The frequency of rs1135840 "G" and rs1065852 "G" was higher in the male ADHD probands. Bias in parental transmission (p=0.007) and association with higher trait scores were observed for rs1065852 "A". Independent influence of rs1065852 on ADHD was also observed. Probands carrying rs1065852 'GG', rs1135840 'CG', and rs28363170 10R exhibited significant symptomatic improvement with MPH, while probands with rs1135840 'CC' and rs28363170 9R showed improvement after ATX treatment. CONCLUSIONS ADHD probands having specific CYP2D6 genetic variations respond differentially to pharmaceutical intervention.
Collapse
Affiliation(s)
- Mahasweta Chatterjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| | - Sharmistha Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| | | | - Anirban Ray
- Department of Psychiatry, Institute of Psychiatry, Kolkata, West Bengal, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Dutta CN, Christov-Moore L, Ombao H, Douglas PK. Neuroprotection in late life attention-deficit/hyperactivity disorder: A review of pharmacotherapy and phenotype across the lifespan. Front Hum Neurosci 2022; 16:938501. [PMID: 36226261 PMCID: PMC9548548 DOI: 10.3389/fnhum.2022.938501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
For decades, psychostimulants have been the gold standard pharmaceutical treatment for attention-deficit/hyperactivity disorder (ADHD). In the United States, an astounding 9% of all boys and 4% of girls will be prescribed stimulant drugs at some point during their childhood. Recent meta-analyses have revealed that individuals with ADHD have reduced brain volume loss later in life (>60 y.o.) compared to the normal aging brain, which suggests that either ADHD or its treatment may be neuroprotective. Crucially, these neuroprotective effects were significant in brain regions (e.g., hippocampus, amygdala) where severe volume loss is linked to cognitive impairment and Alzheimer's disease. Historically, the ADHD diagnosis and its pharmacotherapy came about nearly simultaneously, making it difficult to evaluate their effects in isolation. Certain evidence suggests that psychostimulants may normalize structural brain changes typically observed in the ADHD brain. If ADHD itself is neuroprotective, perhaps exercising the brain, then psychostimulants may not be recommended across the lifespan. Alternatively, if stimulant drugs are neuroprotective, then this class of medications may warrant further investigation for their therapeutic effects. Here, we take a bottom-up holistic approach to review the psychopharmacology of ADHD in the context of recent models of attention. We suggest that future studies are greatly needed to better appreciate the interactions amongst an ADHD diagnosis, stimulant treatment across the lifespan, and structure-function alterations in the aging brain.
Collapse
Affiliation(s)
- Cintya Nirvana Dutta
- Biostatistics Group, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- School of Modeling, Simulation, and Training, and Computer Science, University of Central Florida, Orlando, FL, United States
| | - Leonardo Christov-Moore
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Hernando Ombao
- Biostatistics Group, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pamela K. Douglas
- School of Modeling, Simulation, and Training, and Computer Science, University of Central Florida, Orlando, FL, United States
- Department of Psychiatry and Biobehavioral Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
4
|
Markowitz JS, Melchert PW. The Pharmacokinetics and Pharmacogenomics of Psychostimulants. Child Adolesc Psychiatr Clin N Am 2022; 31:393-416. [PMID: 35697392 DOI: 10.1016/j.chc.2022.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The psychostimulants-amphetamine and methylphenidate-have been in clinical use for well more than 60 years. In general, both stimulants are rapidly absorbed with relatively poor bioavailability and short half-lives. The pharmacokinetics of both stimulants are generally linear and dose proportional although substantial interindividual variability in pharmacokinetics is in evidence. Amphetamine (AMP) is highly metabolized by several oxidative enzymes forming multiple metabolites while methylphenidate (MPH) is primarily metabolized by hydrolysis to the inactive metabolite ritalinic acid. At present, pharmacogenomic testing as an aid to guide dosing and personalized treatment cannot be recommended for either agent. Few pharmacokinetically based drug-drug interactions (DDIs) have been documented for either stimulant.
Collapse
Affiliation(s)
- John S Markowitz
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610-0486, USA; Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610-0486, USA.
| | - Philip W Melchert
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610-0486, USA
| |
Collapse
|
5
|
Jannati A, Ryan MA, Kaye HL, Tsuboyama M, Rotenberg A. Biomarkers Obtained by Transcranial Magnetic Stimulation in Neurodevelopmental Disorders. J Clin Neurophysiol 2022; 39:135-148. [PMID: 34366399 PMCID: PMC8810902 DOI: 10.1097/wnp.0000000000000784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SUMMARY Transcranial magnetic stimulation (TMS) is a method for focal brain stimulation that is based on the principle of electromagnetic induction where small intracranial electric currents are generated by a powerful fluctuating magnetic field. Over the past three decades, TMS has shown promise in the diagnosis, monitoring, and treatment of neurological and psychiatric disorders in adults. However, the use of TMS in children has been more limited. We provide a brief introduction to the TMS technique; common TMS protocols including single-pulse TMS, paired-pulse TMS, paired associative stimulation, and repetitive TMS; and relevant TMS-derived neurophysiological measurements including resting and active motor threshold, cortical silent period, paired-pulse TMS measures of intracortical inhibition and facilitation, and plasticity metrics after repetitive TMS. We then discuss the biomarker applications of TMS in a few representative neurodevelopmental disorders including autism spectrum disorder, fragile X syndrome, attention-deficit hyperactivity disorder, Tourette syndrome, and developmental stuttering.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary A. Ryan
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Harper Lee Kaye
- Behavioral Neuroscience Program, Division of Medical Sciences, Boston University School of Medicine, Boston, USA
| | - Melissa Tsuboyama
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Tang Girdwood SC, Rossow KM, Van Driest SL, Ramsey LB. Perspectives from the Society for Pediatric Research: pharmacogenetics for pediatricians. Pediatr Res 2022; 91:529-538. [PMID: 33824446 PMCID: PMC8492778 DOI: 10.1038/s41390-021-01499-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/12/2021] [Indexed: 12/26/2022]
Abstract
This review evaluates the pediatric evidence for pharmacogenetic associations for drugs that are commonly prescribed by or encountered by pediatric clinicians across multiple subspecialties, organized from most to least pediatric evidence. We begin with the pharmacogenetic research that led to the warning of increased risk of death in certain pediatric populations ("ultrarapid metabolizers") who are prescribed codeine after tonsillectomy or adenoidectomy. We review the evidence for genetic testing for thiopurine metabolism, which has become routine in multiple pediatric subspecialties. We discuss the pharmacogenetic research in proton pump inhibitors, for which clinical guidelines have recently been made available. With an increase in the prevalence of behavioral health disorders including attention deficit hyperactivity disorder (ADHD), we review the pharmacogenetic literature on selective serotonin reuptake inhibitors, selective norepinephrine reuptake inhibitors, and ADHD medications. We will conclude this section on the current pharmacogenetic data on ondansetron. We also provide our perspective on how to integrate the current research on pharmacogenetics into clinical care and what further research is needed. We discuss how institutions are managing pharmacogenetic test results and implementing them clinically, and how the electronic health record can be leveraged to ensure testing results are available and taken into consideration when prescribing medications. IMPACT: While many reviews of pharmacogenetics literature are available, there are few focused on pediatrics. Pediatricians across subspecialties will become more comfortable with pharmacogenetics terminology, know resources they can use to help inform their prescribing habits for drugs with known pharmacogenetic associations, and understand the limitations of testing and where further research is needed.
Collapse
Affiliation(s)
- Sonya C Tang Girdwood
- Division of Hospital Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Clinical Pharmacology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Katelyn M Rossow
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara L Van Driest
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura B Ramsey
- Division of Clinical Pharmacology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
7
|
|
8
|
Bolat H, Ercan ES, Ünsel-Bolat G, Tahillioğlu A, Yazici KU, Bacanli A, Pariltay E, Aygüneş Jafari D, Kosova B, Özgül S, Rohde LA, Akin H. DRD4 genotyping may differentiate symptoms of attention-deficit/hyperactivity disorder and sluggish cognitive tempo. ACTA ACUST UNITED AC 2020; 42:630-637. [PMID: 32491038 PMCID: PMC7678899 DOI: 10.1590/1516-4446-2019-0630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/17/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Studies to reduce the heterogeneity of attention-deficit/hyperactivity disorder (ADHD) have increased interest in the concept of sluggish cognitive tempo (SCT). The aim of this study was to investigate if the prevalence of two variable-number tandem repeats (VNTRs) located within the 3'-untranslated region of the DAT1 gene and in exon 3 of the dopamine D4 receptor (DRD4) gene differ among four groups (31 subjects with SCT but no ADHD, 146 individuals with ADHD but no SCT, 67 subjects with SCT + ADHD, and 92 healthy controls). METHODS We compared the sociodemographic profiles, neurocognitive domains, and prevalence of two VNTRs in SCT and ADHD subjects versus typically developing (TD) controls. RESULTS The SCT without ADHD group had a higher proportion of females and lower parental educational attainment. Subjects in this group performed worse on neuropsychological tests, except for psychomotor speed and commission errors, compared to controls. However, the ADHD without SCT group performed significantly worse on all neuropsychological domains than controls. We found that 4R homozygosity for the DRD4 gene was most prevalent in the ADHD without SCT group. The SCT without ADHD group had the highest 7R allele frequency, differing significantly from the ADHD without SCT group. CONCLUSION The 7R allele of DRD4 gene was found to be significantly more prevalent in SCT cases than in ADHD cases. No substantial neuropsychological differences were found between SCT and ADHD subjects.
Collapse
Affiliation(s)
- Hilmi Bolat
- Department of Medical Genetics, Balikesir Atatürk City Hospital, Balikesir, Turkey
| | - Eyüp S Ercan
- Department of Child and Adolescent Psychiatry, Ege University, Izmir, Turkey
| | - Gül Ünsel-Bolat
- Department of Child and Adolescent Psychiatry, Balikesir University Faculty of Medicine, Balikesir, Turkey
| | - Akin Tahillioğlu
- Department of Child and Adolescent Psychiatry, Ege University, Izmir, Turkey
| | - Kemal U Yazici
- Department of Child and Adolescent Psychiatry, Firat University, Izmir, Turkey
| | - Ali Bacanli
- Department of Child and Adolescent Psychiatry, Baskent University, Izmir, Turkey
| | - Erhan Pariltay
- Department of Medical Genetics, Ege University, Izmir, Turkey
| | | | - Buket Kosova
- Department of Medical Biology, Ege University, Izmir, Turkey
| | - Semiha Özgül
- Department of Bioistatistics and Medical Informatics, Ege University, Izmir, Turkey
| | - Luis A Rohde
- Programa de Transtornos de Déficit de Atenção/Hiperatividade (ProDAH), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Instituto Nacional de Psiquiatria do Desenvolvimento para Crianças e Adolescentes, São Paulo, SP, Brazil
| | - Haluk Akin
- Department of Medical Genetics, Ege University, Izmir, Turkey
| |
Collapse
|
9
|
Mehta T, Mannem N, Yarasi NK, Bollu PC. Biomarkers for ADHD: the Present and Future Directions. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2020. [DOI: 10.1007/s40474-020-00196-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Elsayed NA, Yamamoto KM, Froehlich TE. Genetic Influence on Efficacy of Pharmacotherapy for Pediatric Attention-Deficit/Hyperactivity Disorder: Overview and Current Status of Research. CNS Drugs 2020; 34:389-414. [PMID: 32133580 PMCID: PMC8083895 DOI: 10.1007/s40263-020-00702-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple stimulant and non-stimulant medications are approved for the treatment of attention-deficit/hyperactivity disorder (ADHD), one of the most prevalent childhood neurodevelopmental disorders. Choosing among the available agents and determining the most effective ADHD medication for a given child can be a time-consuming process due to the high inter-individual variability in treatment efficacy. As a result, there is growing interest in identifying predictors of ADHD medication response in children through the burgeoning field of pharmacogenomics. This article reviews childhood ADHD pharmacogenomics efficacy studies published during the last decade (2009-2019), which have largely focused on pharmacodynamic candidate gene investigations of methylphenidate and atomoxetine response, with a smaller number investigating pharmacokinetic candidate genes and genome-wide approaches. Findings from studies which have advanced the field of ADHD pharmacogenomics through investigation of meta-analytic approaches and gene-gene interactions are also overviewed. Despite recent progress, no one genetic variant or currently available pharmacogenomics test has demonstrated clinical utility in pinpointing the optimal ADHD medication for a given individual patient, highlighting the need for further investigation.
Collapse
Affiliation(s)
- Nada A Elsayed
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kaila M Yamamoto
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA
| | - Tanya E Froehlich
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Wolraich ML, Hagan JF, Allan C, Chan E, Davison D, Earls M, Evans SW, Flinn SK, Froehlich T, Frost J, Holbrook JR, Lehmann CU, Lessin HR, Okechukwu K, Pierce KL, Winner JD, Zurhellen W. Clinical Practice Guideline for the Diagnosis, Evaluation, and Treatment of Attention-Deficit/Hyperactivity Disorder in Children and Adolescents. Pediatrics 2019; 144:e20192528. [PMID: 31570648 PMCID: PMC7067282 DOI: 10.1542/peds.2019-2528] [Citation(s) in RCA: 624] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is 1 of the most common neurobehavioral disorders of childhood and can profoundly affect children's academic achievement, well-being, and social interactions. The American Academy of Pediatrics first published clinical recommendations for evaluation and diagnosis of pediatric ADHD in 2000; recommendations for treatment followed in 2001. The guidelines were revised in 2011 and published with an accompanying process of care algorithm (PoCA) providing discrete and manageable steps by which clinicians could fulfill the clinical guideline's recommendations. Since the release of the 2011 guideline, the Diagnostic and Statistical Manual of Mental Disorders has been revised to the fifth edition, and new ADHD-related research has been published. These publications do not support dramatic changes to the previous recommendations. Therefore, only incremental updates have been made in this guideline revision, including the addition of a key action statement related to diagnosis and treatment of comorbid conditions in children and adolescents with ADHD. The accompanying process of care algorithm has also been updated to assist in implementing the guideline recommendations. Throughout the process of revising the guideline and algorithm, numerous systemic barriers were identified that restrict and/or hamper pediatric clinicians' ability to adopt their recommendations. Therefore, the subcommittee created a companion article (available in the Supplemental Information) on systemic barriers to the care of children and adolescents with ADHD, which identifies the major systemic-level barriers and presents recommendations to address those barriers; in this article, we support the recommendations of the clinical practice guideline and accompanying process of care algorithm.
Collapse
Affiliation(s)
- Mark L. Wolraich
- Section of Developmental and Behavioral Pediatrics, University of Oklahoma, Oklahoma City, Oklahoma
| | - Joseph F. Hagan
- Department of Pediatrics, The Robert Larner, MD, College of Medicine, The University of Vermont, Burlington, Vermont
- Hagan, Rinehart, and Connolly Pediatricians, PLLC, Burlington, Vermont
| | - Carla Allan
- Division of Developmental and Behavioral Health, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, Missouri
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | - Eugenia Chan
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Dale Davison
- Children and Adults with Attention-Deficit/Hyperactivity Disorder, Lanham, Maryland
- Dale Davison, LLC, Skokie, Illinois
| | - Marian Earls
- Community Care of North Carolina, Raleigh, North Carolina
- School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Steven W. Evans
- Department of Psychology, Ohio University, Athens, Ohio
- Center for Intervention Research in Schools, Ohio University, Athens, Ohio
| | | | - Tanya Froehlich
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Jennifer Frost
- Swope Health Services, Kansas City, Kansas
- American Academy of Family Physicians, Leawood, Kansas
| | - Joseph R. Holbrook
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christoph Ulrich Lehmann
- Departments of Biomedical Informatics and Pediatrics, Vanderbilt University, Nashville, Tennessee
| | | | | | - Karen L. Pierce
- American Academy of Child and Adolescent Psychiatry, Washington, District of Columbia
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | | | | |
Collapse
|
12
|
Genetic risk factors and gene–environment interactions in adult and childhood attention-deficit/hyperactivity disorder. Psychiatr Genet 2019; 29:63-78. [DOI: 10.1097/ypg.0000000000000220] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Treatment strategies for ADHD: an evidence-based guide to select optimal treatment. Mol Psychiatry 2019; 24:390-408. [PMID: 29955166 DOI: 10.1038/s41380-018-0116-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/20/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and impairing disorder affecting children, adolescents, and adults. Several treatment strategies are available that can successfully ameliorate symptoms, ranging from pharmacological to dietary interventions. Due to the increasing range of available options, an informed selection or prioritization of treatments is becoming harder for clinicians. This review aims to provide an evidence-based appraisal of the literature on ADHD treatment, supplemented by expert opinion on plausibility. We outline proposed mechanisms of action of established pharmacologic and non-pharmacologic treatments, and we review targets of novel treatments. The most relevant evidence supporting efficacy and safety of each treatment strategy is discussed. We review the individualized features of the patient that should guide the selection of treatments in a shared decision-making continuum. We provide guidance for optimizing initiation of treatment and follow-up of patients in clinical settings.
Collapse
|
14
|
Sutoko S, Monden Y, Tokuda T, Ikeda T, Nagashima M, Kiguchi M, Maki A, Yamagata T, Dan I. Distinct Methylphenidate-Evoked Response Measured Using Functional Near-Infrared Spectroscopy During Go/No-Go Task as a Supporting Differential Diagnostic Tool Between Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Comorbid Children. Front Hum Neurosci 2019; 13:7. [PMID: 30800062 PMCID: PMC6375904 DOI: 10.3389/fnhum.2019.00007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) has been frequently reported as co-occurring with autism spectrum disorder (ASD). However, ASD-comorbid ADHD is difficult to diagnose since clinically significant symptoms are similar in both disorders. Therefore, we propose a classification method of differentially recognizing the ASD-comorbid condition in ADHD children. The classification method was investigated based on functional brain imaging measured by near-infrared spectroscopy (NIRS) during a go/no-go task. Optimization and cross-validation of the classification method was carried out in medicated-naïve and methylphenidate (MPH) administered ADHD and ASD-comorbid ADHD children (randomized, double-blind, placebo-controlled, and crossover design) to select robust parameters and cut-off thresholds. The parameters could be defined as either single or averaged multi-channel task-evoked activations under an administration condition (i.e., pre-medication, post-MPH, and post-placebo). The ADHD children were distinguished by significantly high MPH-evoked activation in the right hemisphere near the midline vertex. The ASD-comorbid ADHD children tended to have low activation responses in all regions. High specificity (86 ± 4.1%; mean ± SD), sensitivity (93 ± 7.3%), and accuracy (82 ± 1.6%) were obtained using the activation of oxygenated-hemoglobin concentration change in right middle frontal, angular, and precentral gyri under MPH medication. Therefore, the significantly differing MPH-evoked responses are potentially effective features and as supporting differential diagnostic tools.
Collapse
Affiliation(s)
- Stephanie Sutoko
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., Saitama, Japan
| | - Yukifumi Monden
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
- Department of Pediatrics, International University of Health and Welfare Hospital, Nasushiobara, Japan
| | - Tatsuya Tokuda
- Research and Development Initiatives, Applied Cognitive Neuroscience Laboratory, Chuo University, Tokyo, Japan
| | - Takahiro Ikeda
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Masako Nagashima
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Masashi Kiguchi
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., Saitama, Japan
| | - Atsushi Maki
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., Saitama, Japan
| | - Takanori Yamagata
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Ippeita Dan
- Research and Development Initiatives, Applied Cognitive Neuroscience Laboratory, Chuo University, Tokyo, Japan
- Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
15
|
Efficacy and safety of drugs for attention deficit hyperactivity disorder in children and adolescents: a network meta-analysis. Eur Child Adolesc Psychiatry 2018; 27:1335-1345. [PMID: 29460165 DOI: 10.1007/s00787-018-1125-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/09/2018] [Indexed: 12/12/2022]
Abstract
The aim of this study is to gather evidence of head-to-head double-blind randomized-controlled trials on the efficacy and safety of available treatments for attention deficit hyperactivity disorder (ADHD) in children and adolescents. A systematic review was conducted by two independent reviewers in ten electronic databases (PROSPERO register CRD42016043239). Methodological quality of included studies was evaluated according to the Jadad scale. Network meta-analyses were performed including double-blinded head-to-head trials comparing active allopathic drugs in patients (0-18 years old) diagnosed with ADHD. The results of efficacy and safety of atomoxetine (ATX), bupropion, buspirone (BSP), dexamphetamine, edivoxetine (EDX), guanfacine (GXR), lisdexamfetamine (LDX), methylphenidate (MPH), mixed amphetamine salts, modafinil, pindolol (PDL), reboxetine (RBX), selegiline, and venlafaxine were analyzed using ADDIS software v.1.16.5. Forty-eight trials were identified (n = 4169 participants), of which 12 were used for efficacy analysis and 33 for safety analysis. On the CGI-I scale, the analysis revealed that MPH was more effective than ATX and GXR. For the safety outcomes, according to drug ranks, LDX was more likely to cause sleep disorders (39%) as well as loss of appetite (65%) and behavior problems such as irritability (60%). BSP (71%) and EDX (44%) caused less appetite decrease. For behavioral effects, PDL was considered safest (50%). For any adverse events, RBX (89%) was the safest alternative. The lack of head-to-head trials properly reporting outcomes of interest limited some comparisons. Network meta-analysis offered a broader overview on the available treatments for ADHD, especially for safety issues, and contributes towards evidence gathering and clinical practice decisions. A core outcome set for ADHD should be designed to guide the conduction and report of clinical trials.
Collapse
|
16
|
Durand G. Influence of allelic variations in relation to norepinephrine and mineralocorticoid receptors on psychopathic traits: a pilot study. PeerJ 2018; 6:e4528. [PMID: 29576985 PMCID: PMC5863705 DOI: 10.7717/peerj.4528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/02/2018] [Indexed: 11/20/2022] Open
Abstract
Background
Past findings support a relationship between abnormalities in the amygdala and the presence of psychopathic traits. Among other genes and biomarkers relevant to the amygdala, norepinephrine and mineralocorticoid receptors might both play a role in psychopathy due to their association with traits peripheral to psychopathy. The purpose is to examine if allelic variations in single nucleotide polymorphisms related to norepinephrine and mineralocorticoid receptors play a role in the display of psychopathic traits and executive functions.
Methods
Fifty-seven healthy participants from the community provided a saliva sample for SNP sampling of rs5522 and rs5569. Participants then completed the Psychopathic Personality Inventory–Short Form (PPI-SF) and the Tower of Hanoi.
Results
Allelic variations of both rs5522 and rs5569 were significant when compared to PPI-SF total score and the fearless dominance component of the PPI-SF. A significant result was also obtained between rs5522 and the number of moves needed to complete the 5-disk Tower of Hanoi.
Conclusion
This pilot study offers preliminary results regarding the effect of allelic variations in SNPs related to norepinephrine and mineralocorticoid receptors on the presence of psychopathic traits. Suggestions are provided to enhance the reliability and validity of a larger-scale study.
Collapse
Affiliation(s)
- Guillaume Durand
- Department of Psychiatry & Neuropsychology, University of Maastricht, Netherlands
| |
Collapse
|
17
|
Salatino-Oliveira A, Rohde LA, Hutz MH. The dopamine transporter role in psychiatric phenotypes. Am J Med Genet B Neuropsychiatr Genet 2018; 177:211-231. [PMID: 28766921 DOI: 10.1002/ajmg.b.32578] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 01/06/2023]
Abstract
The dopamine transporter (DAT) is one of the most relevant and investigated neurotransmitter transporters. DAT is a plasma membrane protein which plays a homeostatic role, controlling both extracellular and intracellular concentrations of dopamine (DA). Since unbalanced DA levels are known to be involved in numerous mental disorders, a wealth of investigations has provided valuable insights concerning DAT role into normal brain functioning and pathological processes. Briefly, this extensive but non-systematic review discusses what is recently known about the role of SLC6A3 gene which encodes the dopamine transporter in psychiatric phenotypes. DAT protein, SLC6A3 gene, animal models, neuropsychology, and neuroimaging investigations are also concisely discussed. To conclude, current challenges are reviewed in order to provide perspectives for future studies.
Collapse
Affiliation(s)
| | - Luis A Rohde
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Institute for Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Mara H Hutz
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
18
|
Pagerols M, Richarte V, Sánchez-Mora C, Rovira P, Soler Artigas M, Garcia-Martínez I, Calvo-Sánchez E, Corrales M, da Silva BS, Mota NR, Victor MM, Rohde LA, Grevet EH, Bau CHD, Cormand B, Casas M, Ramos-Quiroga JA, Ribasés M. Integrative genomic analysis of methylphenidate response in attention-deficit/hyperactivity disorder. Sci Rep 2018; 8:1881. [PMID: 29382897 PMCID: PMC5789875 DOI: 10.1038/s41598-018-20194-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/15/2018] [Indexed: 12/24/2022] Open
Abstract
Methylphenidate (MPH) is the most frequently used pharmacological treatment in children with attention-deficit/hyperactivity disorder (ADHD). However, a considerable interindividual variability exists in clinical outcome. Thus, we performed a genome-wide association study of MPH efficacy in 173 ADHD paediatric patients. Although no variant reached genome-wide significance, the set of genes containing single-nucleotide polymorphisms (SNPs) nominally associated with MPH response (P < 0.05) was significantly enriched for candidates previously studied in ADHD or treatment outcome. We prioritised the nominally significant SNPs by functional annotation and expression quantitative trait loci (eQTL) analysis in human brain, and we identified 33 SNPs tagging cis-eQTL in 32 different loci (referred to as eSNPs and eGenes, respectively). Pathway enrichment analyses revealed an over-representation of genes involved in nervous system development and function among the eGenes. Categories related to neurological diseases, psychological disorders and behaviour were also significantly enriched. We subsequently meta-analysed the association with clinical outcome for the 33 eSNPs across the discovery sample and an independent cohort of 189 ADHD adult patients (target sample) and we detected 15 suggestive signals. Following this comprehensive strategy, our results provide a better understanding of the molecular mechanisms implicated in MPH treatment effects and suggest promising candidates that may encourage future studies.
Collapse
Affiliation(s)
- Mireia Pagerols
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Paula Rovira
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Iris Garcia-Martínez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Eva Calvo-Sánchez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Montse Corrales
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bruna Santos da Silva
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Nina Roth Mota
- Department of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands.,ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Marcelo Moraes Victor
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luis Augusto Rohde
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eugenio Horacio Grevet
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton Henrique Dotto Bau
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Spain
| | - Miguel Casas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain. .,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain. .,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
19
|
Chaim-Avancini TM, Doshi J, Zanetti MV, Erus G, Silva MA, Duran FLS, Cavallet M, Serpa MH, Caetano SC, Louza MR, Davatzikos C, Busatto GF. Neurobiological support to the diagnosis of ADHD in stimulant-naïve adults: pattern recognition analyses of MRI data. Acta Psychiatr Scand 2017; 136:623-636. [PMID: 29080396 DOI: 10.1111/acps.12824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2017] [Indexed: 02/01/2023]
Abstract
OBJECTIVE In adulthood, the diagnosis of attention-deficit/hyperactivity disorder (ADHD) has been subject of recent controversy. We searched for a neuroanatomical signature associated with ADHD spectrum symptoms in adults by applying, for the first time, machine learning-based pattern classification methods to structural MRI and diffusion tensor imaging (DTI) data obtained from stimulant-naïve adults with childhood-onset ADHD and healthy controls (HC). METHOD Sixty-seven ADHD patients and 66 HC underwent high-resolution T1-weighted and DTI acquisitions. A support vector machine (SVM) classifier with a non-linear kernel was applied on multimodal image features extracted on regions of interest placed across the whole brain. RESULTS The discrimination between a mixed-gender ADHD subgroup and individually matched HC (n = 58 each) yielded area-under-the-curve (AUC) and diagnostic accuracy (DA) values of up to 0.71% and 66% (P = 0.003) respectively. AUC and DA values increased to 0.74% and 74% (P = 0.0001) when analyses were restricted to males (52 ADHD vs. 44 HC). CONCLUSION Although not at the level of clinically definitive DA, the neuroanatomical signature identified herein may provide additional, objective information that could influence treatment decisions in adults with ADHD spectrum symptoms.
Collapse
Affiliation(s)
- T M Chaim-Avancini
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Sao Paulo, Brazil
| | - J Doshi
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - M V Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Sao Paulo, Brazil
| | - G Erus
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - M A Silva
- Program for Attention Deficit Hyperactivity Disorder (PRODATH), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
| | - F L S Duran
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Sao Paulo, Brazil
| | - M Cavallet
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Sao Paulo, Brazil
| | - M H Serpa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Sao Paulo, Brazil
| | - S C Caetano
- Department of Psychiatry, Child and Adolescent Psychiatry Unit (UPIA), Universidade Federal de São Paulo, São Paulo, Brazil
| | - M R Louza
- Program for Attention Deficit Hyperactivity Disorder (PRODATH), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
| | - C Davatzikos
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - G F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
20
|
Gomez-Sanchez CI, Carballo JJ, Riveiro-Alvarez R, Soto-Insuga V, Rodrigo M, Mahillo-Fernandez I, Abad-Santos F, Dal-Ré R, Ayuso C. Pharmacogenetics of methylphenidate in childhood attention-deficit/hyperactivity disorder: long-term effects. Sci Rep 2017; 7:10391. [PMID: 28871191 PMCID: PMC5583388 DOI: 10.1038/s41598-017-10912-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/16/2017] [Indexed: 01/08/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in which a significant proportion of patients do not respond to treatment. The objective of this study was to examine the role of genetic risk variants in the response to treatment with methylphenidate (MPH). The effectiveness of MPH was evaluated based on variations in the CGI-S and CGAS scales over a 12-month treatment period using linear mixed effects models. A total of 208 ADHD patients and 34 polymorphisms were included in the analysis. For both scales, the response was associated with time, extended-release MPH/both formulations, and previous MPH treatment. For the CGI-S scale, response was associated with SLC6A3 rs2550948, DRD4 promoter duplication, SNAP25 rs3746544, and ADGRL3 rs1868790. Interactions between the response over time and SLC6A3 and DRD2 were found in the CGI-S and CGAS scales, respectively. The proportion of the variance explained by the models was 18% for the CGI-S and 22% for the CGAS. In this long-term study, the effects of SLC6A3, DRD4, SNAP25, and ADGRL3 on response to treatment reflect those observed in previous studies. In addition, 2 previously unreported interactions with response to treatment over a 12-month period were found (SLC6A3 and DRD2).
Collapse
Affiliation(s)
- Clara I Gomez-Sanchez
- Department of Genetics, IIS - Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM). Avda. Reyes Católicos, 2, Madrid, 28040, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER). C/ Monforte de Lemos 3-5, Pabellón 11, Madrid, 28029, Spain
| | - Juan J Carballo
- Department of Psychiatry, IIS - Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM). Avda. Reyes Católicos, 2, Madrid, 28040, Spain
| | - Rosa Riveiro-Alvarez
- Department of Genetics, IIS - Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM). Avda. Reyes Católicos, 2, Madrid, 28040, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER). C/ Monforte de Lemos 3-5, Pabellón 11, Madrid, 28029, Spain
| | - Victor Soto-Insuga
- Department of Pediatrics, IIS - Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM). Avda. Reyes Católicos, 2, Madrid, 28040, Spain
| | - Maria Rodrigo
- Department of Pediatrics, IIS - Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM). Avda. Reyes Católicos, 2, Madrid, 28040, Spain
| | - Ignacio Mahillo-Fernandez
- Epidemiology Unit, IIS - Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM). Avda. Reyes Católicos, 2, Madrid, 28040, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, IIS- La Princesa University Hospital (IIS-IP). C/ de Diego Leon, 62, Madrid, 28006, Spain
| | - Rafael Dal-Ré
- Clinical Research, BUC (Biosciences UAM + CSIC) Program, International Campus of Excellence, Universidad Autónoma de Madrid. Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain
| | - Carmen Ayuso
- Department of Genetics, IIS - Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM). Avda. Reyes Católicos, 2, Madrid, 28040, Spain.
- Centre for Biomedical Research on Rare Diseases (CIBERER). C/ Monforte de Lemos 3-5, Pabellón 11, Madrid, 28029, Spain.
| |
Collapse
|
21
|
Methylphenidate effects in the young brain: friend or foe? Int J Dev Neurosci 2017; 60:34-47. [PMID: 28412445 DOI: 10.1016/j.ijdevneu.2017.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/07/2017] [Accepted: 04/06/2017] [Indexed: 01/17/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is one of the most prevalent neuropsychiatry disorders in children and adolescents, and methylphenidate (MPH) is a first-line stimulant drug available worldwide for its treatment. Despite the proven therapeutic efficacy, concerns have been raised regarding the possible consequences of chronic MPH exposure during childhood and adolescence. Disturbances in the neurodevelopment at these crucial stages are major concerns given the unknown future life consequences. This review is focused on the long-term adverse effects of MPH to the brain biochemistry. Reports conducted with young and/or adolescent animals and studies with humans are reviewed in the context of long-term consequences after early life-exposure. MPH pharmacokinetics is also reviewed as there are differences among laboratory animals and humans that may be relevant to extrapolate the findings. Studies reveal that exposure to MPH in laboratory animals during young and/or adolescent ages can impact the brain, but the outcomes are dependent on MPH dose, treatment period, and animal's age. Importantly, the female sex is largely overlooked in both animal and human studies. Unfortunately, human reports that evaluate adults following adolescent or child exposure to MPH are very scarce. In general, human data indicates that MPH is generally safe, although it can promote several brain changes in early ages. Even so, there is a lack of long course patient evaluation to clearly establish whether MPH-induced changes are friendly or foe to the brain and more human studies are needed to assess the adult brain changes that arise from early MPH treatment.
Collapse
|
22
|
Kim EJ, Kim Y, Seo WS, Lee SH, Park EJ, Bae SM, Shin D. The Revised Korean Practice Parameter for the Treatment of Attention-Deficit Hyperactivity Disorder (I) - Clinical Presentation and Comorbidity -. Soa Chongsonyon Chongsin Uihak 2017. [DOI: 10.5765/jkacap.2017.28.2.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Eun Jin Kim
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Seoul, Korea
| | - Yunsin Kim
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Seoul, Korea
| | - Wan Seok Seo
- Department of Psychiatry, Yeungnam University School of Medicine, Daegu, Korea
| | - So Hee Lee
- Department of Psychiatry, National Medical Center, Seoul, Korea
| | - Eun Jin Park
- Department of Psychiatry, Inje University School of Medicine, Ilsan Paik Hospital, Goyang, Korea
| | - Seung-Min Bae
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Incheon, Korea
| | - Dongwon Shin
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Seoul, Korea
| |
Collapse
|
23
|
Ray A, Maitra S, Chatterjee M, Ghosh P, Karmakar A, Sinha S, Mukhopadhyay K. Dimorphic association of dopaminergic transporter gene variants with treatment outcome: Pilot study in Indian ADHD probands. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
24
|
Abstract
Children/adolescents with attention-deficit/hyperactivity disorder (ADHD) may have a poor or inadequate response to psychostimulants or be unable to tolerate their side-effects; furthermore, stimulants may be inappropriate because of co-existing conditions. Only one non-stimulant ADHD pharmacotherapy, the noradrenaline transporter inhibitor atomoxetine, is currently approved for use in Europe. We review recent advances in understanding of the pathophysiology of ADHD with a focus on the roles of catecholamine receptors in context of the α2A-adrenergic receptor agonist guanfacine extended release (GXR), a new non-stimulant treatment option in Europe. Neuroimaging studies of children/adolescents with ADHD show impaired brain maturation, and structural and functional anomalies in brain regions and networks. Neurobiological studies in ADHD and medication response patterns support involvement of monoaminergic neurotransmitters (primarily dopamine and noradrenaline). Guanfacine is a selective α2A-adrenergic receptor agonist that has been shown to improve prefrontal cortical cognitive function, including working memory. The hypothesized mode of action of guanfacine centres on direct stimulation of post-synaptic α2A-adrenergic receptors to enhance noradrenaline neurotransmission. Preclinical data suggest that guanfacine also influences dendritic spine growth and maturation. Clinical trials have demonstrated the efficacy of GXR in ADHD, and it is approved as monotherapy or adjunctive therapy to stimulants in Canada and the USA (for children and adolescents). GXR was approved recently in Europe for the treatment of ADHD in children and adolescents for whom stimulants are not suitable, not tolerated or have been shown to be ineffective. GXR may provide particular benefit for children/adolescents who have specific co-morbidities such as chronic tic disorders or oppositional defiant disorder (or oppositional symptoms) that have failed to respond to first-line treatment options.
Collapse
|
25
|
Attention-deficit hyperactivity disorder in adults: A systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies. Mol Psychiatry 2016; 21:872-84. [PMID: 27217152 PMCID: PMC5414093 DOI: 10.1038/mp.2016.74] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/09/2016] [Accepted: 04/01/2016] [Indexed: 01/16/2023]
Abstract
The adult form of attention-deficit/hyperactivity disorder has a prevalence of up to 5% and is the most severe long-term outcome of this common disorder. Family studies in clinical samples as well as twin studies suggest a familial liability and consequently different genes were investigated in association studies. Pharmacotherapy with methylphenidate (MPH) seems to be the first-line treatment of choice in adults with attention-deficit hyperactive disorder (ADHD) and some studies were conducted on the genes influencing the response to this drug. Finally some peripheral biomarkers were identified in ADHD adult patients. We believe this work is the first systematic review and meta-analysis of candidate gene association studies, pharmacogenetic and biochemical (metabolomics) studies performed in adults with ADHD to identify potential genetic, predictive and peripheral markers linked specifically to ADHD in adults. After screening 5129 records, we selected 87 studies of which 61 were available for candidate gene association studies, 5 for pharmacogenetics and 21 for biochemical studies. Of these, 15 genetic, 2 pharmacogenetic and 6 biochemical studies were included in the meta-analyses. We obtained an association between adult ADHD and the gene BAIAP2 (brain-specific angiogenesis inhibitor 1-associated protein 2), even after Bonferroni correction, with any heterogeneity in effect size and no publication bias. If we did not apply the Bonferroni correction, a trend was found for the carriers allele 9R of dopamine transporter SLC6A3 40 bp variable tandem repeat polymorphism (VNTR) and for 6/6 homozygotes of SLC6A3 30 bp VNTR. Negative results were obtained for the 9-6 haplotype, the dopamine receptor DRD4 48 bp VNTR, and the enzyme COMT SNP rs4680. Concerning pharmacogenetic studies, no association was found for the SLC6A3 40 bp and response to MPH with only two studies selected. For the metabolomics studies, no differences between ADHD adults and controls were found for salivary cortisol, whereas lower serum docosahexaenoic acid (DHA) levels were found in ADHD adults. This last association was significant even after Bonferroni correction and in absence of heterogeneity. Other polyunsaturated fatty acids (PUFAs) such as AA (arachidonic acid), EPA (eicosapentaenoic acid) and DyLA (dihomogammalinolenic acid) levels were not different between patients and controls. No publication biases were observed for these markers. Genes linked to dopaminergic, serotoninergic and noradrenergic signaling, metabolism (DBH, TPH1, TPH2, DDC, MAOA, MAOB, BCHE and TH), neurodevelopment (BDNF and others), the SNARE system and other forty genes/proteins related to different pathways were not meta-analyzed due to insufficient data. In conclusion, we found that there were not enough genetic, pharmacogenetic and biochemical studies of ADHD in adults and that more investigations are needed. Moreover we confirmed a significant role of BAIAP2 and DHA in the etiology of ADHD exclusively in adults. Future research should be focused on the replication of these findings and to assess their specificity for ADHD.
Collapse
|
26
|
Rubio B, Boes AD, Laganiere S, Rotenberg A, Jeurissen D, Pascual-Leone A. Noninvasive Brain Stimulation in Pediatric Attention-Deficit Hyperactivity Disorder (ADHD): A Review. J Child Neurol 2016; 31:784-96. [PMID: 26661481 PMCID: PMC4833526 DOI: 10.1177/0883073815615672] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/10/2015] [Indexed: 01/08/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is one of the most prevalent neurodevelopmental disorders in the pediatric population. The clinical management of ADHD is currently limited by a lack of reliable diagnostic biomarkers and inadequate therapy for a minority of patients who do not respond to standard pharmacotherapy. There is optimism that noninvasive brain stimulation may help to address these limitations. Transcranial magnetic stimulation and transcranial direct current stimulation are 2 methods of noninvasive brain stimulation that modulate cortical excitability and brain network activity. Transcranial magnetic stimulation can be used diagnostically to probe cortical neurophysiology, whereas daily use of repetitive transcranial magnetic stimulation or transcranial direct current stimulation can induce long-lasting and potentially therapeutic changes in targeted networks. In this review, we highlight research showing the potential diagnostic and therapeutic applications of transcranial magnetic stimulation and transcranial direct current stimulation in pediatric ADHD. We also discuss the safety and ethics of using these tools in the pediatric population.
Collapse
Affiliation(s)
- Belen Rubio
- Child and Adolescent Psychiatry Department, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain Both are co-primary authors
| | - Aaron D Boes
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA Harvard Medical School, Department of Pediatric Neurology, Massachusetts General Hospital, Boston, MA, USA Both are co-primary authors.
| | - Simon Laganiere
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA Pediatric Neuromodulation Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Danique Jeurissen
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
27
|
Hegvik TA, Jacobsen KK, Fredriksen M, Zayats T, Haavik J. A candidate gene investigation of methylphenidate response in adult attention-deficit/hyperactivity disorder patients: results from a naturalistic study. J Neural Transm (Vienna) 2016; 123:859-65. [PMID: 27091191 PMCID: PMC4969350 DOI: 10.1007/s00702-016-1540-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/20/2016] [Indexed: 12/28/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common childhood onset neuropsychiatric disorder with a complex and heterogeneous symptomatology. Persistence of ADHD symptoms into adulthood is common. Methylphenidate (MPH) is a widely prescribed stimulant compound that may be effective against ADHD symptoms in children and adults. However, MPH does not exert satisfactory effect in all patients. Several genetic variants have been proposed to predict either treatment response or adverse effects of stimulants. We conducted a literature search to identify previously reported variants associated with MPH response and additional variants that were biologically plausible candidates for MPH response. The response to MPH was assessed by the treating clinicians in 564 adult ADHD patients and 20 genetic variants were successfully genotyped. Logistic regression was used to test for association between these polymorphisms and treatment response. Nominal associations (p < 0.05) were meta-analysed with published data from previous comparable studies. In our analyses, rs1800544 in the ADRA2A gene was associated with MPH response at a nominal significance level (OR 0.560, 95 % CI 0.329–0.953, p = 0.033). However, this finding was not affirmed in the meta-analysis. No genetic variants revealed significant associations after correction for multiple testing (p < 0.00125). Our results suggest that none of the studied variants are strong predictors of MPH response in adult ADHD as judged by clinician ratings, potentially except for rs1800544. Consequently, pharmacogenetic testing in routine clinical care is not supported by our analyses. Further studies on the pharmacogenetics of adult ADHD are warranted.
Collapse
Affiliation(s)
- Tor-Arne Hegvik
- Department of Biomedicine, University of Bergen, 5009, Bergen, Norway. .,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, 5009, Bergen, Norway.
| | - Kaya Kvarme Jacobsen
- Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, 5009, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021, Bergen, Norway
| | - Mats Fredriksen
- Division of Mental Health and Addiction, Vestfold Hospital Trust, 3101, Tønsberg, Norway.,University of Oslo, 0318, Oslo, Norway
| | - Tetyana Zayats
- Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, 5009, Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, 5009, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, 5021, Bergen, Norway
| |
Collapse
|
28
|
Neuropsychological performance measures as intermediate phenotypes for attention-deficit/hyperactivity disorder: A multiple mediation analysis. Dev Psychopathol 2016; 29:259-272. [PMID: 27049476 DOI: 10.1017/s0954579416000195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Genetic influences on dopaminergic neurotransmission have been implicated in attention-deficit hyperactivity disorder (ADHD) and are theorized to impact cognitive functioning via alterations in frontal-striatal circuitry. Neuropsychological functioning has been proposed to account for the potential associations between dopamine candidate genes and ADHD. However, to date, this mediation hypothesis has not been directly tested. Participants were 498 youth ages 6-17 years (mean M = 10.8 years, SD = 2.4 years, 55.0% male). All youth completed a multistage, multiple-informant assessment procedure to identify ADHD and non-ADHD cases, as well as a comprehensive neuropsychological battery. Youth provided a saliva sample for DNA analyses; the 480 base pair variable number of tandem repeat polymorphism of the dopamine active transporter 1 gene (DAT1) and the 120 base pair promoter polymorphism of the dopamine receptor D4 gene (DRD4) were genotyped. Multiple mediation analysis revealed significant indirect associations between DAT1 genotype and inattention, hyperactivity-impulsivity, and oppositionality, with specific indirect effects through response inhibition. The results highlight the role of neurocognitive task performance, particularly response inhibition, as a potential intermediate phenotype for ADHD, further elucidating the relationship between genetic polymorphisms and externalizing psychopathology.
Collapse
|
29
|
Bruxel EM, Salatino-Oliveira A, Akutagava-Martins GC, Tovo-Rodrigues L, Genro JP, Zeni CP, Polanczyk GV, Chazan R, Schmitz M, Arcos-Burgos M, Rohde LA, Hutz MH. LPHN3 and attention-deficit/hyperactivity disorder: a susceptibility and pharmacogenetic study. GENES BRAIN AND BEHAVIOR 2016; 14:419-27. [PMID: 25989180 DOI: 10.1111/gbb.12224] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/28/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022]
Abstract
Latrophilin 3 (LPHN3) is a brain-specific member of the G-protein coupled receptor family associated to both attention-deficit/hyperactivity disorder (ADHD) genetic susceptibility and methylphenidate (MPH) pharmacogenetics. Interactions of LPHN3 variants with variants harbored in the 11q chromosome improve the prediction of ADHD development and medication response. The aim of this study was to evaluate the role of LPHN3 variants in childhood ADHD susceptibility and treatment response in a naturalistic clinical cohort. The association between LPHN3 and ADHD was evaluated in 523 children and adolescents with ADHD and 132 controls. In the pharmacogenetic study, 172 children with ADHD were investigated. The primary outcome measure was the parent-rated Swanson, Nolan and Pelham Scale - version IV applied at baseline, first and third months of treatment with MPH. The results reported herein suggest the CGC haplotype derived from single nucleotide polymorphisms (SNPs) rs6813183, rs1355368 and rs734644 as an ADHD risk haplotype (P = 0.02, OR = 1.46). Although non-significant after multiple testing correction, its interaction with the 11q chromosome SNP rs965560 slightly increases risk (P = 0.03, OR = 1.55). Homozygous individuals for the CGC haplotype showed faster response to MPH treatment as a significant interaction effect between CGC haplotype and treatment over time was observed (P < 0.001). Homozygous individuals for the GT haplotype derived from SNPs rs6551665 and rs1947275 showed a nominally significant interaction with treatment over time (P = 0.04). Our findings replicate previous findings reporting that LPHN3 confers ADHD susceptibility, and moderates MPH treatment response in children and adolescents with ADHD.
Collapse
Affiliation(s)
- E M Bruxel
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - A Salatino-Oliveira
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | | | - L Tovo-Rodrigues
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - J P Genro
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - C P Zeni
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - G V Polanczyk
- Institute for Developmental Psychiatry for Children and Adolescents, Porto Alegre, RS.,Department of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - R Chazan
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - M Schmitz
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - M Arcos-Burgos
- Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - L A Rohde
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS.,Institute for Developmental Psychiatry for Children and Adolescents, Porto Alegre, RS
| | - M H Hutz
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, RS
| |
Collapse
|
30
|
Connolly JJ, Glessner JT, Elia J, Hakonarson H. ADHD & Pharmacotherapy: Past, Present and Future: A Review of the Changing Landscape of Drug Therapy for Attention Deficit Hyperactivity Disorder. Ther Innov Regul Sci 2015; 49:632-642. [PMID: 26366330 DOI: 10.1177/2168479015599811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most common neurobiological disorder in children, with a prevalence of ~6-7%1,2 that has remained stable for decades2. The social and economic burden associated with patients3, families, and broader systems (healthcare/educational) is substantial, with the annual economic impact of ADHD exceed $30 billion in the US alone4. Efficacy of pharmacotherapy in treating ADHD symptoms has generally been considerable with at least ¾ of individuals benefitting from pharmacotherapy, typically in the form of stimulants5. In this review, we begin by briefly reviewing the history of pharmacotherapy in relation to ADHD, before focusing (primarily) on the state-of-the-field on themes such as biophysiology, pharmacokinetics, and pharmacogenomics. We conclude with a summary of emerging clinical and research studies, particularly the potential role for precision therapy in matching ADHD patients and drug types.
Collapse
Affiliation(s)
- J J Connolly
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - J T Glessner
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - J Elia
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA ; AI Dupont Hospital for Children, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - H Hakonarson
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA ; Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW This article provides an overview of current controversies in attention-deficit/hyperactivity disorder (ADHD) research, with an emphasis on recent findings that are directly relevant to clinical practice. RECENT FINDINGS Over the past few years, a number of studies have added key evidence to ongoing debates about the epidemiology, nosology, and treatment of ADHD. Although the causes of the rising prevalence of ADHD in the USA are still not fully understood, recent research suggests that environmental factors and changes to the diagnostic criteria may have played a role. In addition, there continues to be controversy surrounding the clinical diagnosis of ADHD and newly recognized, related conditions such as sluggish cognitive tempo. Recent studies have also challenged previous assumptions about the long-term effects of stimulant treatment on growth, academic achievement, and substance use. Moreover, although most complementary and alternative therapies for ADHD appear to be ineffective, there is emerging evidence supporting the value of fatty acid supplementation. Although these findings are promising, more research is needed on all fronts. SUMMARY Although research has shed light on unanswered questions about the epidemiology, nosology, and treatment of ADHD, much is still not known. An understanding of the most important current controversies in ADHD research may aid pediatricians in clinical decision making and allow them to counsel patients more effectively.
Collapse
|
32
|
Rovaris DL, Mota NR, da Silva BS, Girardi P, Victor MM, Grevet EH, Bau CH, Contini V. Should we keep on? Looking into pharmacogenomics of ADHD in adulthood from a different perspective. Pharmacogenomics 2015; 15:1365-81. [PMID: 25155937 DOI: 10.2217/pgs.14.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A considerable proportion of adults with attention-deficit/hyperactivity disorder (ADHD) do not respond to the treatment with methylphenidate. This scenario could be due to inherited interindividual differences that may alter pharmacologic treatment response. In this sense, in 2012 we conducted a systematic search on PUBMED-indexed literature for articles containing information about pharmacogenomics of ADHD in adults. Five studies were found on methylphenidate pharmacogenomics and the only significant association was reported by one particular study. However, this single association with the SLC6A3 gene was not replicated in two subsequent reports. In the present review, although we could not find additional pharmacogenomics studies, we discuss these up-to-date findings and suggest new approaches for this field. Additionally, using systeomic-oriented databases, we provide a broad picture of new possible candidate genes as well as potential gene-gene interactions to be investigated in pharmacogenomics of persistent ADHD.
Collapse
Affiliation(s)
- Diego L Rovaris
- Departament of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Does serotonin deficit mediate susceptibility to ADHD? Neurochem Int 2015; 82:52-68. [DOI: 10.1016/j.neuint.2015.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/18/2015] [Accepted: 02/07/2015] [Indexed: 11/21/2022]
|
34
|
Prediction of methylphenidate treatment outcome in adults with attention-deficit/hyperactivity disorder (ADHD). Eur Arch Psychiatry Clin Neurosci 2014; 264 Suppl 1:S35-43. [PMID: 25231833 DOI: 10.1007/s00406-014-0542-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/07/2014] [Indexed: 12/25/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent mental disorder of childhood, which often persists in adulthood. Methylphenidate (MPH) is one of the most effective medications to treat ADHD, but also few adult patients show no sufficient response to this drug. In this paper, we give an overview regarding genetic, neuroimaging, clinical and other studies which have tried to reveal the reasons for non-response in adults with ADHD, based on a systematic literature search. Although MPH is a well-established treatment for adults with ADHD, research regarding the prediction of treatment outcome is still limited and has resulted in inconsistent findings. No reliable neurobiological markers of treatment response have been identified so far. Some findings from clinical studies suggest that comorbidity with substance use disorders and personality disorders has an impact on treatment course and outcome. As MPH is widely used in the treatment of adults with ADHD, much more work is needed regarding positive and negative predictors of long-term treatment outcome in order to optimize the pharmacological treatment of adult ADHD patients.
Collapse
|
35
|
Abstract
The etiology and pathogenesis of attention-deficit/hyperactivity disorder (ADHD) are unclear and a more valid diagnosis would certainly be welcomed. Starting from the literature, we built an hypothetical pyramid representing a putative set of biomarkers where, at the top, variants in DAT1 and DRD4 genes are the best candidates for their associations to neuropsychological tasks, activation in specific brain areas, methylphenidate response and gene expression levels. Interesting data come from the noradrenergic system (norepinephrine transporter, norepinephrine, 3-methoxy-4-hydroxyphenylglycol, monoamine oxidase, neuropeptide Y) for their altered peripheral levels, their association with neuropsychological tasks, symptomatology, drugs effect and brain function. Other minor putative genetic biomarkers could be dopamine beta hydroxylase and catechol-O-methyltransferase. In the bottom, we placed endophenotype biomarkers. A more deep integration of "omics" sciences along with more accurate clinical profiles and new high-throughput computational methods will allow us to identify a better list of biomarkers useful for diagnosis and therapies.
Collapse
Affiliation(s)
- Stephen V Faraone
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | | |
Collapse
|