1
|
Guo X, Luo X, Huang X, Zhang Y, Ji J, Wang X, Wang K, Wang J, Pan X, Chen B, Tan Y, Luo X. The Role of 3' Regulatory Region Flanking Kinectin 1 Gene in Schizophrenia. ALPHA PSYCHIATRY 2024; 25:413-420. [PMID: 39148597 PMCID: PMC11322729 DOI: 10.5152/alphapsychiatry.2024.241616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 08/17/2024]
Abstract
Objective Schizophrenia is often associated with volumetric reductions in cortices and expansions in basal ganglia, particularly the putamen. Recent genome-wide association studies have highlighted the significance of variants in the 3' regulatory region adjacent to the kinectin 1 gene (KTN1) in regulating gray matter volume (GMV) of the putamen. This study aimed to comprehensively investigate the involvement of this region in schizophrenia. Methods We analyzed 1136 single-nucleotide polymorphisms (SNPs) covering the entire 3' regulatory region in 4 independent dbGaP samples (4604 schizophrenia patients vs. 4884 healthy subjects) and 3 independent Psychiatric Genomics Consortium samples (107 240 cases vs. 210 203 controls) to identify consistent associations. Additionally, we examined the regulatory effects of schizophrenia-associated alleles on KTN1 mRNA expression in 16 brain areas among 348 subjects, as well as GMVs of 7 subcortical nuclei in 38 258 subjects, and surface areas (SA) and thickness (TH) of the entire cortex and 34 cortical areas in 36 936 subjects. Results The major alleles (f > 0.5) of 25 variants increased (β > 0) the risk of schizophrenia across 2 to 5 independent samples (8.4 × 10-4 ≤ P ≤ .049). These schizophrenia-associated alleles significantly elevated (β > 0) GMVs of basal ganglia, including the putamen (6.0 × 10-11 ≤ P ≤ 1.1 × 10-4), caudate (8.7 × 10-4 ≤ P ≤ 9.4 × 10-3), pallidum (P = 6.0 × 10-4), and nucleus accumbens (P = 2.7 × 10-5). Moreover, they potentially augmented (β > 0) the SA of posterior cingulate and insular cortices, as well as the TH of frontal (pars triangularis and medial orbitofrontal), parietal (superior, precuneus, and inferior), and temporal (transverse) cortices, but potentially reduced (β < 0) the SA of the whole, frontal (medial orbitofrontal), and temporal (pole, superior, middle, and entorhinal) cortices, as well as the TH of rostral middle frontal and superior frontal cortices (8.9 × 10-4 ≤ P ≤ .050). Conclusion Our findings identify significant and functionally relevant risk alleles in the 3' regulatory region adjacent to KTN1, implicating their crucial roles in the development of schizophrenia.
Collapse
Affiliation(s)
- Xiaoyun Guo
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinqun Luo
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaoyi Huang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Jiawu Ji
- Department of Psychiatry, Fujian Medical University Affiliated Fuzhou Neuropsychiatric Hospital, Fuzhou, Fujian, China
| | - Xiaoping Wang
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Bin Chen
- Department of Cardiovascular Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing, China
| | - Xingguang Luo
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Moore A, Crea PW, Makarious M, Bandres-Ciga S, Blauwendraat C, Diez-Fairen M. A genetic and transcriptomic assessment of the KTN1 gene in Parkinson's disease risk. Neurobiol Aging 2024; 134:66-73. [PMID: 37992546 PMCID: PMC10843739 DOI: 10.1016/j.neurobiolaging.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/29/2023] [Accepted: 11/04/2023] [Indexed: 11/24/2023]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder caused by both genetic and environmental factors. An association has been described between KTN1 genetic variants and changes in its expression in the putamen and substantia nigra brain regions and an increased risk for PD. Here, we examine the link between PD susceptibility and KTN1 using individual-level genotyping data and summary statistics from the most recent genome-wide association studies (GWAS) for PD risk and age at onset from the International Parkinson's Disease Genomics Consortium (IPDGC), as well as whole-genome sequencing data from the Accelerating Medicines Partnership Parkinson's disease (AMP-PD) initiative. To investigate the potential effect of changes in KTN1 expression on PD compared to unaffected individuals, we further assess publicly available expression quantitative trait loci (eQTL) results from GTEx v8 and BRAINEAC and transcriptomics data from AMP-PD. Overall, we found no genetic associations between KTN1 and PD in our cohorts but found potential evidence of differences in mRNA expression, which needs to be further explored.
Collapse
Affiliation(s)
- Anni Moore
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Building 35, Bethesda, MD 20892, USA
| | - Peter Wild Crea
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Building 35, Bethesda, MD 20892, USA
| | - Mary Makarious
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Building 35, Bethesda, MD 20892, USA; UCL Movement Disorders Centre, University College London, 33 Queen Square, 6th floor, WC1N 3BG Box 146, London, UK
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Building 35, Bethesda, MD 20892, USA; Center for Alzheimer's and Related Dementias, National Institute on Aging, 9000 Rockville Pike, Building T44, Bethesda, MD 20892, USA.
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Building 35, Bethesda, MD 20892, USA; Center for Alzheimer's and Related Dementias, National Institute on Aging, 9000 Rockville Pike, Building T44, Bethesda, MD 20892, USA
| | - Monica Diez-Fairen
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Building 35, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Wang Z, Lin X, Luo X, Xiao J, Zhang Y, Xu J, Wang S, Zhao F, Wang H, Zheng H, Zhang W, Lin C, Tan Z, Cao L, Wang Z, Tan Y, Chen W, Cao Y, Guo X, Pittenger C, Luo X. Pleiotropic Association of CACNA1C Variants With Neuropsychiatric Disorders. Schizophr Bull 2023; 49:1174-1184. [PMID: 37306960 PMCID: PMC10483336 DOI: 10.1093/schbul/sbad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Neuropsychiatric disorders are highly heritable and have overlapping genetic underpinnings. Single nucleotide polymorphisms (SNPs) in the gene CACNA1C have been associated with several neuropsychiatric disorders, across multiple genome-wide association studies. METHOD A total of 70,711 subjects from 37 independent cohorts with 13 different neuropsychiatric disorders were meta-analyzed to identify overlap of disorder-associated SNPs within CACNA1C. The differential expression of CACNA1C mRNA in five independent postmortem brain cohorts was examined. Finally, the associations of disease-sharing risk alleles with total intracranial volume (ICV), gray matter volumes (GMVs) of subcortical structures, cortical surface area (SA), and average cortical thickness (TH) were tested. RESULTS Eighteen SNPs within CACNA1C were nominally associated with more than one neuropsychiatric disorder (P < .05); the associations shared among schizophrenia, bipolar disorder, and alcohol use disorder survived false discovery rate correction (five SNPs with P < 7.3 × 10-4 and q < 0.05). CACNA1C mRNA was differentially expressed in brains from individuals with schizophrenia, bipolar disorder, and Parkinson's disease, relative to controls (three SNPs with P < .01). Risk alleles shared by schizophrenia, bipolar disorder, substance dependence, and Parkinson's disease were significantly associated with ICV, GMVs, SA, or TH (one SNP with P ≤ 7.1 × 10-3 and q < 0.05). CONCLUSION Integrating multiple levels of analyses, we identified CACNA1C variants associated with multiple psychiatric disorders, and schizophrenia and bipolar disorder were most strongly implicated. CACNA1C variants may contribute to shared risk and pathophysiology in these conditions.
Collapse
Affiliation(s)
- Zuxing Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Provincial Cancer Hospital, the Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, China
| | - Xinqun Luo
- Department of Neurosurgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350001, China
| | - Jun Xiao
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yong Zhang
- Tianjin Mental Health Center, Tianjin 300180, China
| | - Jianying Xu
- Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong 519000, China
| | - Shibin Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Fen Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Huifen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Hangxiao Zheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Wei Zhang
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, 050017, P. R. China
| | - Chen Lin
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing 100096, China
| | - Zewen Tan
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Liping Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing 100096, China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing 100096, China
| | - Wenzhong Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Yuping Cao
- Department of Psychiatry, Second Xiangya Hospital, Central South University; China National Clinical Research Center on Mental Disorders, China National Technology Institute on Mental Disorders, Changsha, Hunan 410011, China
| | - Xiaoyun Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, US
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, US
| | - Xingguang Luo
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing 100096, China
| |
Collapse
|
4
|
Mao Q, Lin X, Yin Q, Liu P, Zhang Y, Qu S, Xu J, Cheng W, Luo X, Kang L, Taximaimaiti R, Zheng C, Zhang H, Wang X, Ren H, Cao Y, Lin J, Luo X. A significant, functional and replicable risk KTN1 variant block for schizophrenia. Sci Rep 2023; 13:3890. [PMID: 36890161 PMCID: PMC9995530 DOI: 10.1038/s41598-023-27448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 03/10/2023] Open
Abstract
Cortical and subcortical structural alteration has been extensively reported in schizophrenia, including the unusual expansion of gray matter volumes (GMVs) of basal ganglia (BG), especially putamen. Previous genome-wide association studies pinpointed kinectin 1 gene (KTN1) as the most significant gene regulating the GMV of putamen. In this study, the role of KTN1 variants in risk and pathogenesis of schizophrenia was explored. A dense set of SNPs (n = 849) covering entire KTN1 was analyzed in three independent European- or African-American samples (n = 6704) and one mixed European and Asian Psychiatric Genomics Consortium sample (n = 56,418 cases vs. 78,818 controls), to identify replicable SNP-schizophrenia associations. The regulatory effects of schizophrenia-associated variants on the KTN1 mRNA expression in 16 cortical or subcortical regions in two European cohorts (n = 138 and 210, respectively), the total intracranial volume (ICV) in 46 European cohorts (n = 18,713), the GMVs of seven subcortical structures in 50 European cohorts (n = 38,258), and the surface areas (SA) and thickness (TH) of whole cortex and 34 cortical regions in 50 European cohorts (n = 33,992) and eight non-European cohorts (n = 2944) were carefully explored. We found that across entire KTN1, only 26 SNPs within the same block (r2 > 0.85) were associated with schizophrenia across ≥ 2 independent samples (7.5 × 10-5 ≤ p ≤ 0.048). The schizophrenia-risk alleles, which increased significantly risk for schizophrenia in Europeans (q < 0.05), were all minor alleles (f < 0.5), consistently increased (1) the KTN1 mRNA expression in 12 brain regions significantly (5.9 × 10-12 ≤ p ≤ 0.050; q < 0.05), (2) the ICV significantly (6.1 × 10-4 ≤ p ≤ 0.008; q < 0.05), (3) the SA of whole (9.6 × 10-3 ≤ p ≤ 0.047) and two regional cortices potentially (2.5 × 10-3 ≤ p ≤ 0.042; q > 0.05), and (4) the TH of eight regional cortices potentially (0.006 ≤ p ≤ 0.050; q > 0.05), and consistently decreased (1) the BG GMVs significantly (1.8 × 10-19 ≤ p ≤ 0.050; q < 0.05), especially putamen GMV (1.8 × 10-19 ≤ p ≤ 1.0 × 10-4; q < 0.05, (2) the SA of four regional cortices potentially (0.010 ≤ p ≤ 0.048), and (3) the TH of four regional cortices potentially (0.015 ≤ p ≤ 0.049) in Europeans. We concluded that we identified a significant, functional, and robust risk variant block covering entire KTN1 that might play a critical role in the risk and pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Qiao Mao
- Department of Psychosomatic Medicine, People's Hospital of Deyang City, Deyang, 618000, Sichuan, China
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Provincial Cancer Hospital, the Teaching Hospital of Fujian Medical University, Fuzhou, 350014, Fujian, China
| | - Qin Yin
- Department of Respiratory and Critical Care Medicine, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430000, Hubei, China
| | - Ping Liu
- Department of Psychosomatic Medicine, People's Hospital of Deyang City, Deyang, 618000, Sichuan, China
| | - Yong Zhang
- Tianjin Mental Health Center, Tianjin, 300222, China
| | - Shihao Qu
- Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, 519001, China
| | - Jianying Xu
- Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong, 519001, China
| | - Wenhong Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xinqun Luo
- Department of Neurosurgery, The First Hospital, Fujian Medical University, Fuzhou, 350004, Fujian, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research On High Altitude Diseases of Tibet Autonomous Region, Xizang Minzu University School of Medicine, Xiangyang, 712082, Shaanxi, China
| | - Reyisha Taximaimaiti
- Department of Neurology, Shanghai Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Chengchou Zheng
- Minqing Psychiatric Hospital, Minqing, 350800, Fujian, China
| | - Huihao Zhang
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350001, China
| | - Xiaoping Wang
- Department of Neurology, The 1st People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, USA
| | - Honggang Ren
- Department of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Cao
- Department of Psychiatry, Second Xiangya Hospital, Central South University, China National Clinical Research Center On Mental Disorders, China National Technology Institute On Mental Disorders, Changsha, 410011, Hunan, China.
| | - Jie Lin
- Fujian Center for Disease Control and Prevention, Fuzhou, 350012, Fujian, China.
- Fujian Institute of Preventive Medicine, Fuzhou, 350012, Fujian, China.
| | - Xingguang Luo
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing, 100096, China.
| |
Collapse
|
5
|
Luo X, Lin X, Ide JS, Luo X, Zhang Y, Xu J, Wang L, Chen Y, Cheng W, Zheng J, Wang Z, Yu T, Taximaimaiti R, Jing X, Wang X, Cao Y, Tan Y, Li CSR. Male-specific, replicable and functional roles of genetic variants and cerebral gray matter volumes in ADHD: a gene-wide association study across KTN1 and a region-wide functional validation across brain. Child Adolesc Psychiatry Ment Health 2023; 17:4. [PMID: 36609385 PMCID: PMC9824933 DOI: 10.1186/s13034-022-00536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/23/2022] [Indexed: 01/07/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is associated with reduction of cortical and subcortical gray matter volumes (GMVs). The kinectin 1 gene (KTN1) has recently been reported to significantly regulate GMVs and ADHD risk. In this study, we aimed to identify sex-specific, replicable risk KTN1 alleles for ADHD and to explore their regulatory effects on mRNA expression and cortical and subcortical GMVs. We examined a total of 1020 KTN1 SNPs in one discovery sample (ABCD cohort: 5573 males and 5082 females) and three independent replication European samples (Samples #1 and #2 each with 802/122 and 472/141 male/female offspring with ADHD; and Sample #3 with 14,154/4945 ADHD and 17,948/16,246 healthy males/females) to identify replicable associations within each sex. We examined the regulatory effects of ADHD-risk alleles on the KTN1 mRNA expression in two European brain cohorts (n = 348), total intracranial volume (TIV) in 46 European cohorts (n = 18,713) and the ABCD cohort, as well as the GMVs of seven subcortical structures in 50 European cohorts (n = 38,258) and of 118 cortical and subcortical regions in the ABCD cohort. We found that four KTN1 variants significantly regulated the risk of ADHD with the same direction of effect in males across discovery and replication samples (0.003 ≤ p ≤ 0.041), but none in females. All four ADHD-risk alleles significantly decreased KTN1 mRNA expression in all brain regions examined (1.2 × 10-5 ≤ p ≤ 0.039). The ADHD-risk alleles significantly increased basal ganglia (2.8 × 10-22 ≤ p ≤ 0.040) and hippocampus (p = 0.010) GMVs but reduced amygdala GMV (p = 0.030) and TIV (0.010 < p ≤ 0.013). The ADHD-risk alleles also significantly reduced some cortical (right superior temporal pole, right rectus) and cerebellar but increased other cortical (0.007 ≤ p ≤ 0.050) GMVs. To conclude, we identified a set of replicable and functional risk KTN1 alleles for ADHD, specifically in males. KTN1 may play a critical role in the pathogenesis of ADHD, and the reduction of specific cortical and subcortical, including amygdalar but not basal ganglia or hippocampal, GMVs may serve as a neural marker of the genetic effects.
Collapse
Affiliation(s)
- Xingguang Luo
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical School of Medicine, Beijing, 100096, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Jaime S Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Xinqun Luo
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, Fujian, China
| | - Yong Zhang
- Tianjin Mental Health Center, Tianjin, 300222, China
| | - Jianying Xu
- Zhuhai Center for Maternal and Child Health Care, Zhuhai, 519000, Guangdong, China
| | - Leilei Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical School of Medicine, Beijing, 100096, China
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Wenhong Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jianming Zheng
- National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University School of Medicine, Shanghai, 200030, China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical School of Medicine, Beijing, 100096, China
| | - Ting Yu
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical School of Medicine, Beijing, 100096, China
| | - Reyisha Taximaimaiti
- Department of Neurology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Xiaozhong Jing
- Department of Neurology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Xiaoping Wang
- Department of Neurology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yuping Cao
- Department of Psychiatry, Second Xiangya Hospital, Central South University; China National Clinical Research Center On Mental Disorders, China National Technology Institute On Mental Disorders, Changsha, 410011, Hunan, China.
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical School of Medicine, Beijing, 100096, China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
6
|
Chen J, Luo Q, Li Y, Wu Z, Lin X, Yao J, Yu H, Nie H, Du Y, Peng H, Wu H. Intrinsic brain abnormalities in female major depressive disorder patients with childhood trauma: A resting-state functional magnetic resonance imaging study. Front Neurosci 2022; 16:930997. [PMID: 36017185 PMCID: PMC9395929 DOI: 10.3389/fnins.2022.930997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Childhood trauma is a strong predictor of major depressive disorder (MDD). Women are more likely to develop MDD than men. However, the neural basis of female MDD patients with childhood trauma remains unclear. We aimed to identify the specific brain regions that are associated with female MDD patients with childhood trauma. Methods We recruited 16 female MDD patients with childhood trauma, 16 female MDD patients without childhood trauma, and 20 age- and education level-matched healthy controls. All participants underwent resting-state functional magnetic resonance imaging (MRI). Regional brain activity was evaluated as the amplitude of low-frequency fluctuation (ALFF). Furthermore, functional connectivity (FC) analyses were performed on areas with altered ALFF to explore alterations in FC patterns. Results There was increased ALFF in the left middle frontal gyrus (MFG) and the right postcentral gyrus (PoCG) in MDD with childhood trauma compared with MDD without childhood trauma. The areas with significant ALFF discrepancies were selected as seeds for the FC analyses. There was increased FC between the left MFG and the bilateral putamen gyrus. Moreover, ALFF values were correlated with childhood trauma severity. Conclusion Our findings revealed abnormal intrinsic brain activity and FC patterns in female MDD patients with childhood trauma, which provides new possibilities for exploring the pathophysiology of this disorder in women.
Collapse
Affiliation(s)
- Juran Chen
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuhong Li
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiyao Wu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinyi Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiazheng Yao
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiwen Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiqin Nie
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingying Du
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Hongjun Peng,
| | - Huawang Wu
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Huawang Wu,
| |
Collapse
|
7
|
Li CS, Chen Y, Ide JS. Gray matter volumetric correlates of attention deficit and hyperactivity traits in emerging adolescents. Sci Rep 2022; 12:11367. [PMID: 35790754 PMCID: PMC9256746 DOI: 10.1038/s41598-022-15124-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
Previous research has demonstrated reduction in cortical and subcortical, including basal ganglia (BG), gray matter volumes (GMV) in individuals with attention deficit hyperactivity disorder (ADHD), a neurodevelopmental condition that is more prevalent in males than in females. However, the volumetric deficits vary across studies. Whether volumetric reductions are more significant in males than females; to what extent these neural markers are heritable and relate to cognitive dysfunction in ADHD remain unclear. To address these questions, we followed published routines and performed voxel-based morphometry analysis of a data set (n = 11,502; 5,464 girls, 9-10 years) curated from the Adolescent Brain Cognition Development project, a population-based study of typically developing children. Of the sample, 634 and 2,826 were identified as monozygotic twins and dizygotic twins/siblings, respectively. In linear regressions, a cluster in the hypothalamus showed larger GMV, and bilateral caudate and putamen, lateral orbitofrontal and occipital cortex showed smaller GMVs, in correlation with higher ADHD scores in girls and boys combined. When examined separately, boys relative to girls showed more widespread (including BG) and stronger associations between GMV deficits and ADHD scores. ADHD traits and the volumetric correlates demonstrated heritability estimates (a2) between 0.59 and 0.79, replicating prior findings of the genetic basis of ADHD. Further, ADHD traits and the volumetric correlates (except for the hypothalamus) were each negatively and positively correlated with N-back performance. Together, these findings confirm volumetric deficits in children with more prominent ADHD traits. Highly heritable in both girls and boys and potentially more significant in boys than in girls, the structural deficits underlie diminished capacity in working memory and potentially other cognitive deficits in ADHD.
Collapse
Affiliation(s)
- Clara S Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- Smith College, Northampton, MA, 06492, USA
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| | - Jaime S Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
8
|
Luo X, Fang W, Lin X, Guo X, Chen Y, Tan Y, Wang L, Jing X, Wang X, Zhang Y, Yu T, Ide J, Cao Y, Yang L, Li CSR. Sex-different interrelationships of rs945270, cerebral gray matter volumes, and attention deficit hyperactivity disorder: a region-wide study across brain. Transl Psychiatry 2022; 12:225. [PMID: 35654767 PMCID: PMC9163172 DOI: 10.1038/s41398-022-02007-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
Previous genome-wide association studies (GWAS) reported that the allele C of rs945270 of the kinectin 1 gene (KTN1) most significantly increased the gray matter volume (GMV) of the putamen and modestly regulated the risk for attention deficit hyperactivity disorder (ADHD). On the other hand, ADHD is known to be associated with a reduction in subcortical and cortical GMVs. Here, we examined the interrelationships of the GMVs, rs945270 alleles, and ADHD symptom scores in the same cohort of children. With data of rs945270 genotypes, GMVs of 118 brain regions, and ADHD symptom scores of 3372 boys and 3129 girls of the Adolescent Brain Cognition Development project, we employed linear regression analyses to examine the pairwise correlations adjusted for the third of the three traits and other relevant covariates, and examine their mediation effects. We found that the major allele C of rs945270 modestly increased risk for ADHD in males only when controlling for the confounding effects of the GMV of any one of the 118 cerebral regions (0.026 ≤ p ≤ 0.059: Top two: left and right putamen). This allele also significantly increased putamen GMV in males alone (left p = 2.8 × 10-5, and right p = 9.4 × 10-5; α = 2.1 × 10-4) and modestly increased other subcortical and cortical GMVs in both sexes (α < p < 0.05), whether or not adjusted for ADHD symptom scores. Both subcortical and cortical GMVs were significantly or suggestively reduced in ADHD when adjusted for rs945270 alleles, each more significantly in females (3.6 × 10-7 ≤ p < α; Top two: left pallidum and putamen) and males (3.5 × 10-6 ≤ p < α), respectively. Finally, the left and right putamen GMVs reduced 14.0% and 11.7% of the risk effects of allele C on ADHD, and allele C strengthened 4.5% (left) and 12.2% (right) of the protective effects of putamen GMVs on ADHD risk, respectively. We concluded that the rs945270-GMVs-ADHD relationships were sex-different. In males, the major allele C of rs945270 increased risk for ADHD, which was compromised by putamen GMVs; this allele also but only significantly increased putamen GMVs that then significantly protected against ADHD risk. In females, the top two GMVs significantly decreasing ADHD risk were left pallidum and putamen GMVs. Basal ganglia the left putamen in particular play the most critical role in the pathogenesis of ADHD.
Collapse
Affiliation(s)
- Xingguang Luo
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical School of Medicine, Beijing, 100096, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Wenhua Fang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Xiaoyun Guo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
- Shanghai Mental Health Center, Shanghai, 200030, China
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical School of Medicine, Beijing, 100096, China
| | - Leilei Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical School of Medicine, Beijing, 100096, China
| | - Xiaozhong Jing
- Department of Neurology, Shanghai Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Xiaoping Wang
- Department of Neurology, Shanghai Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yong Zhang
- Tianjin Mental Health Center, Tianjin, 300222, China
| | - Ting Yu
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical School of Medicine, Beijing, 100096, China
| | - Jaime Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yuping Cao
- Department of Psychiatry, the Second Xiangya Hospital, Central South University; The China National Clinical Research Center for Mental Health Disorders; National Technology Institute of Psychiatry; Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, 410017, China.
| | - Lingli Yang
- Department of Neurology, Shanghai Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
9
|
Jeong HJ, Durham EL, Moore TM, Dupont RM, McDowell M, Cardenas-Iniguez C, Micciche ET, Berman MG, Lahey BB, Kaczkurkin AN. The association between latent trauma and brain structure in children. Transl Psychiatry 2021; 11:240. [PMID: 33895776 PMCID: PMC8068725 DOI: 10.1038/s41398-021-01357-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022] Open
Abstract
The developing brain is marked by high plasticity, which can lead to vulnerability to early life stressors. Previous studies indicate that childhood maltreatment is associated with structural aberrations across a number of brain regions. However, prior work is limited by small sample sizes, heterogeneous age groups, the examination of one structure in isolation, the confounding of different types of early life stressors, and not accounting for socioeconomic status. These limitations may contribute to high variability across studies. The present study aimed to investigate how trauma is specifically associated with cortical thickness and gray matter volume (GMV) differences by leveraging a large sample of children (N = 9270) from the Adolescent Brain Cognitive DevelopmentSM Study (ABCD Study®). A latent measure of trauma exposure was derived from DSM-5 traumatic events, and we related this measure of trauma to the brain using structural equation modeling. Trauma exposure was associated with thinner cortices in the bilateral superior frontal gyri and right caudal middle frontal gyrus (pfdr-values < .001) as well as thicker cortices in the left isthmus cingulate and posterior cingulate (pfdr-values ≤ .027), after controlling age, sex, and race/ethnicity. Furthermore, trauma exposure was associated with smaller GMV in the right amygdala and right putamen (pfdr-values ≤ .048). Sensitivity analyses that controlled for income and parental education were largely consistent with the main findings for cortical thickness. These results suggest that trauma may be an important risk factor for structural aberrations, specifically for cortical thickness differences in frontal and cingulate regions in children.
Collapse
Affiliation(s)
- Hee Jung Jeong
- grid.152326.10000 0001 2264 7217Department of Psychology, Vanderbilt University, Nashville, TN USA
| | - E. Leighton Durham
- grid.152326.10000 0001 2264 7217Department of Psychology, Vanderbilt University, Nashville, TN USA
| | - Tyler M. Moore
- grid.25879.310000 0004 1936 8972Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Randolph M. Dupont
- grid.152326.10000 0001 2264 7217Department of Psychology, Vanderbilt University, Nashville, TN USA
| | - Malerie McDowell
- grid.152326.10000 0001 2264 7217Department of Psychology, Vanderbilt University, Nashville, TN USA
| | - Carlos Cardenas-Iniguez
- grid.170205.10000 0004 1936 7822Department of Psychology, University of Chicago, Chicago, IL USA
| | - Emily T. Micciche
- grid.152326.10000 0001 2264 7217Department of Psychology, Vanderbilt University, Nashville, TN USA
| | - Marc G. Berman
- grid.170205.10000 0004 1936 7822Department of Psychology, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL USA
| | - Benjamin B. Lahey
- grid.170205.10000 0004 1936 7822Departments of Health Studies and Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL USA
| | - Antonia N. Kaczkurkin
- grid.152326.10000 0001 2264 7217Department of Psychology, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
10
|
Mao Q, Wang X, Chen B, Fan L, Wang S, Zhang Y, Lin X, Cao Y, Wu YC, Ji J, Xu J, Zheng J, Zhang H, Zheng C, Chen W, Cheng W, Luo X, Wang K, Zuo L, Kang L, Li CSR, Luo X. KTN1 Variants Underlying Putamen Gray Matter Volumes and Parkinson's Disease. Front Neurosci 2020; 14:651. [PMID: 32655362 PMCID: PMC7324786 DOI: 10.3389/fnins.2020.00651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/26/2020] [Indexed: 11/13/2022] Open
Abstract
Background Selective loss of dopaminergic neurons and diminished putamen gray matter volume (GMV) represents a central feature of Parkinson’s disease (PD). Recent studies have reported specific effects of kinectin 1 gene (KTN1) variants on the putamen GMV. Objective To examine the relationship of KTN1 variants, KTN1 mRNA expression in the putamen and substantia nigra pars compacta (SNc), putamen GMV, and PD. Methods We examined the associations between PD and a total of 1847 imputed KTN1 single nucleotide polymorphisms (SNPs) in one discovery sample [2,000 subjects with PD vs. 1,986 healthy controls (HC)], and confirmed the nominally significant associations (p < 0.05) in two replication samples (900 PD vs. 867 HC, and 940 PD vs. 801 HC, respectively). The regulatory effects of risk variants on the KTN1 mRNA expression in putamen and SNc and the putamen GMV were tested. We also quantified the expression levels of KTN1 mRNA in the putamen and/or SNc for comparison between PD and HC in five independent cohorts. Results Six replicable and two non-replicable KTN1-PD associations were identified (0.009 ≤ p ≤ 0.049). The major alleles of five SNPs, including rs12880292, rs8017172, rs17253792, rs945270, and rs4144657, significantly increased risk for PD (0.020 ≤ p ≤ 0.049) and putamen GMVs (19.08 ≤ β ≤ 60.38; 2.82 ≤ Z ≤ 15.03; 5.0 × 10–51 ≤ p ≤ 0.018). The risk alleles of five SNPs, including rs8017172, rs17253792, rs945270, rs4144657, and rs1188184 also significantly increased the KTN1 mRNA expression in the putamen or SNc (0.021 ≤ p ≤ 0.046). The KTN1 mRNA was abundant in the putamen and/or SNc across five independent cohorts and differentially expressed in the SNc between PD and HC in one cohort (p = 0.047). Conclusion There was a consistent, significant, replicable, and robust positive relationship among the KTN1 variants, PD risk, KTN1 mRNA expression in putamen, and putamen volumes, and a modest relation between PD risk and KTN1 mRNA expression in SNc, suggesting that KTN1 may play a functional role in the development of PD.
Collapse
Affiliation(s)
- Qiao Mao
- Department of Psychosomatic Medicine, People's Hospital of Deyang, Deyang, China
| | - Xiaoping Wang
- Department of Neurology, Shanghai Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Chen
- Department of Cardiovascular Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Longhua Fan
- Qingpu Branch, Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuhong Wang
- Department of Neurology, Shanghai Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Zhang
- Tianjin Mental Health Center, Tianjin, China
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Provincial Cancer Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, China
| | - Yuping Cao
- Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawu Ji
- Department of Psychiatry, Fuzhou Neuropsychiatric Hospital, Fujian Medical University, Fuzhou, China
| | - Jianying Xu
- Zhuhai Municipal Maternal and Children's Health Hospital, Zhuhai, China
| | - Jianming Zheng
- Huashan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Huihao Zhang
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | | | - Wenzhong Chen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai, China
| | - Wenhong Cheng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai, China
| | - Xingqun Luo
- Department of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Morgantown, WV, United States
| | - Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Diseases of Tibet Autonomous Region, Xizang Minzu University School of Medicine, Xiangyang, China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Xingguang Luo
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|