1
|
Duess JW, Gosemann JH, Kaskova Gheorghescu A, Puri P, Thompson J. Y-27632 Impairs Angiogenesis on Extra-Embryonic Vasculature in Post-Gastrulation Chick Embryos. TOXICS 2023; 11:134. [PMID: 36851009 PMCID: PMC9962381 DOI: 10.3390/toxics11020134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Y-27632 inhibits Rho-associated coiled-coil-containing protein kinase (ROCK) signaling, which is involved in various embryonic developmental processes, including angiogenesis, by controlling actin cytoskeleton assembly and cell contractility. Administration of Y-27632 impairs cytoskeletal arrangements in post-gastrulation chick embryos, leading to ventral body wall defects (VBWDs). Impaired angiogenesis has been hypothesized to contribute to VBWDs. ROCK is essential in transmitting signals downstream of vascular endothelial growth factor (VEGF). VEGF-mediated angiogenesis induces gene expressions and alterations of the actin cytoskeleton upon binding to VEGF receptors (VEGFRs). The aim of this study was to investigate effects of Y-27632 on angiogenesis in post-gastrulation chick embryos during early embryogenesis. After 60 h incubation, embryos in shell-less culture were treated with Y-27632 or vehicle for controls. Y-27632-treated embryos showed reduced extra-embryonic blood vessel formation with impaired circulation of the yolk sac, confirmed by fractal analysis. Western blot confirmed impaired ROCK downstream signaling by decreased expression of phosphorylated myosin light chain. Interestingly, RT-PCR demonstrated increased gene expression of VEGF and VEGFR-2 1 h post-treatment. Protein levels of VEGF were higher in Y-27632-treated embryos at 8 h following treatment, whereas no difference was seen in membranes. We hypothesize that administration of Y-27632 impairs vessel formation during angiogenesis, which may contribute to failure of VWB closure, causing VBWDs.
Collapse
Affiliation(s)
- Johannes W. Duess
- Department of Pediatric Surgery, University of Leipzig, 04103 Leipzig, Germany
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Jan-Hendrik Gosemann
- Department of Pediatric Surgery, University of Leipzig, 04103 Leipzig, Germany
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland
| | | | - Prem Puri
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Jennifer Thompson
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Belfield, 4 Dublin, Ireland
| |
Collapse
|
2
|
Boylan M, Anderson MJ, Ornitz DM, Lewandoski M. The Fgf8 subfamily (Fgf8, Fgf17 and Fgf18) is required for closure of the embryonic ventral body wall. Development 2020; 147:dev189506. [PMID: 32907848 PMCID: PMC7595690 DOI: 10.1242/dev.189506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/28/2020] [Indexed: 12/26/2022]
Abstract
The closure of the embryonic ventral body wall in amniotes is an important morphogenetic event and is essential for life. Defects in human ventral wall closure are a major class of birth defect and a significant health burden. Despite this, very little is understood about how the ventral body wall is formed. Here, we show that fibroblast growth factor (FGF) ligands FGF8, FGF17 and FGF18 are essential for this process. Conditional mouse mutants for these genes display subtle migratory defects in the abdominal muscles of the ventral body wall and an enlarged umbilical ring, through which the internal organs are extruded. By refining where and when these genes are required using different Cre lines, we show that Fgf8 and Fgf17 are required in the presomitic mesoderm, whereas Fgf18 is required in the somites. This study identifies complex and multifactorial origins of ventral wall defects and has important implications for understanding their origins during embryonic development.
Collapse
Affiliation(s)
- Michael Boylan
- Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Matthew J Anderson
- Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Mark Lewandoski
- Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
3
|
Duess JW, Gosemann JH, Puri P, Thompson J. Teratogenesis in the chick embryo following post-gastrulation exposure to Y-27632 -effect of Y-27632 on embryonic development. Toxicol Appl Pharmacol 2020; 409:115277. [PMID: 33049266 DOI: 10.1016/j.taap.2020.115277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023]
Abstract
The pyridine derivative Y-27632 inhibits Rho-associated coiled-coil-containing protein kinase (ROCK) signaling, which is involved in numerous developmental processes during embryogenesis, primarily by controlling actin-cytoskeleton assembly and cell contractility. Somite formation requires rearrangement of the cytoskeleton and assists in major morphological mechanisms, including ventral body wall formation. Administration of Y-27632 impairs cytoskeletal arrangements in post-gastrulation chick embryos leading to ventral body wall defects (VBWD) at later stages of development. The aim of this study was to investigate the effect of Y-27632 on somite development in post-gastrulation chick embryos during early embryogenesis. After 60 h incubation, embryos in shell-less culture were treated with Y-27632 or vehicle for controls. Following administration, abnormality rates were assessed. In treatment groups, embryos showed a kinked longitudinal body axis. Western blot confirmed impaired ROCK downstream signaling by decreased expression of phosphorylated cofilin-2. Histology, Lysotracker studies and RT-PCR demonstrated increased cell death in somites, the neural tube and the ectoderm. RT-PCR and Western blot of factors known to be involved during somitogenesis revealed reduced expression in the treatment group compared to controls. We hypothesize that administration of Y-27632 disrupts somite development causing axial kinking and embryo malformation, which may lead to VBWD.
Collapse
Affiliation(s)
- Johannes W Duess
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jan-Hendrik Gosemann
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jennifer Thompson
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
4
|
Opitz JM, Feldkamp ML, Botto LD. An evolutionary and developmental biology approach to gastroschisis. Birth Defects Res 2019; 111:294-311. [PMID: 30816021 DOI: 10.1002/bdr2.1481] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/29/2019] [Accepted: 02/08/2019] [Indexed: 11/11/2022]
Abstract
Recent advances have now made it possible to speak of gastroschisis narrowly in morphogenetic terms invoking the Rittler-Beaudoin (R-B) model. This proceeds from the appreciation of gastroschisis as a congenital intestinal herniation (without cover or liver) within the primordial umbilical ring, mostly to the right side of a normally formed umbilical cord. Presently, it is unresolved whether this visceral prolapse represents failure of ring closure before return of the physiological hernia into the abdomen or rupture of the delicate amniotic/peritoneal membrane at the ring's edge to the right of the cord. Animal observations and experiments will be required to address this question effectively. If gastroschisis is, in fact, a primary malformation with the primordial umbilical ring as the developmental field involved, then homology implies potential gastroschisis in all amniotes with corresponding nourishment from yolk sac (aka omphalomesenteric) vessels going into the embryo and excretory products out via the ancient umbilical connection. It also implies homology of corresponding morphogenetic signal transduction cascades. We review the history of gastroschisis, its presumed pathogenesis, and the developmental biology of the amniotic umbilical ring from this perspective. Therefore, based on the animal and human evidence to date, we propose that gastroschisis is a primary midline malformation that involves the umbilical canal from amniotic to peritoneal space and its primordial umbilical ring, either through nonclosure or rupture of the membrane covering the area, mostly to the right, between the cord and the edge of the ring.
Collapse
Affiliation(s)
- John M Opitz
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Marcia L Feldkamp
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Lorenzo D Botto
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
5
|
Takahashi M, Tamura M, Sato S, Kawakami K. Mice doubly deficient in Six4 and Six5 show ventral body wall defects reproducing human omphalocele. Dis Model Mech 2018; 11:dmm.034611. [PMID: 30237319 PMCID: PMC6215434 DOI: 10.1242/dmm.034611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/05/2018] [Indexed: 01/11/2023] Open
Abstract
Omphalocele is a human congenital anomaly in ventral body wall closure and may be caused by impaired formation of the primary abdominal wall (PAW) and/or defects in abdominal muscle development. Here, we report that mice doubly deficient in homeobox genes Six4 and Six5 showed the same ventral body wall closure defects as those seen in human omphalocele. SIX4 and SIX5 were localized in surface ectodermal cells and somatic mesoderm-derived mesenchymal and coelomic epithelial cells (CECs) in the PAW. Six4-/-;Six5-/- fetuses exhibited a large omphalocele with protrusion of both the liver and intestine, or a small omphalocele with protrusion of the intestine, with complete penetrance. The umbilical ring of Six4-/-;Six5-/- embryos was shifted anteriorly and its lateral size was larger than that of normal embryos at the E11.5 stage, before the onset of myoblast migration into the PAW. The proliferation rates of surface ectodermal cells in the left and right PAW and somatic mesoderm-derived cells in the right PAW were lower in Six4-/-;Six5-/- embryos than those of wild-type embryos at E10.5. The transition from CECs of the PAW to rounded mesothelial progenitor cells was impaired and the inner coelomic surface of the PAW was relatively smooth in Six4-/-;Six5-/- embryos at E11.25. Furthermore, Six4 overexpression in CECs of the PAW promoted ingression of CECs. Taken together, our results suggest that Six4 and Six5 are required for growth and morphological change of the PAW, and the impairment of these processes is linked to the abnormal positioning and expansion of the umbilical ring, which results in omphalocele.
Collapse
Affiliation(s)
- Masanori Takahashi
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Center, 3-1-1, Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
6
|
Haddock C, Skarsgard ED. Understanding gastroschisis and its clinical management: where are we? Expert Rev Gastroenterol Hepatol 2018; 12:405-415. [PMID: 29419329 DOI: 10.1080/17474124.2018.1438890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gastroschisis is the commonest developmental defect of the anterior abdominal wall in both developed and developing countries. The past 30 years have seen transformational improvements in outcome due to advances in neonatal intensive care and enhanced integration between the disciplines of maternal fetal medicine, neonatology and pediatric surgery. A review of gastroschisis, which emphasizes its epidemiology, multidisciplinary care strategies and contemporary outcomes is timely. Areas covered: This review discusses the current state of knowledge related to prevalence and causation, and postulated embryopathologic mechanisms contributing to the development of gastroschisis. Using relevant, current literature with an emphasis on high level evidence where it exists, we review modern techniques of prenatal diagnosis, pre and postnatal risk stratification, preferred timing and method of delivery, options for abdominal wall closure, nutritional management, and short and long term clinical and neurodevelopmental follow-up. Expert commentary: This section explores controversies in contemporary management which contribute to practice and cost variation and discusses the benefits of novel nutritional therapies and care standardization that target unnecessary practice variation and improve overall cost-effectiveness of gastroschisis care. The commentary concludes with a review of fertile areas of gastroschisis research, which represent opportunities for knowledge synthesis and further outcome improvement.
Collapse
Affiliation(s)
- Candace Haddock
- a Department of Surgery , British Columbia Children's Hospital , Vancouver , Canada
| | - Erik D Skarsgard
- a Department of Surgery , British Columbia Children's Hospital , Vancouver , Canada
| |
Collapse
|
7
|
Sharma S, Uggini GK, Patel V, Desai I, Balakrishnan S. Exposure to sub-lethal dose of a combination insecticide during early embryogenesis influences the normal patterning of mesoderm resulting in incomplete closure of ventral body wall of chicks of domestic hen. Toxicol Rep 2018; 5:302-308. [PMID: 29556477 PMCID: PMC5856662 DOI: 10.1016/j.toxrep.2018.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/01/2018] [Accepted: 02/16/2018] [Indexed: 01/12/2023] Open
Abstract
Chlorpyrifos and cypermethrin treatment induced developmental anomalies in chicks. Protrusion of visceral organs and microphthalmia were the major anomalies observed. Treated embryos were conspicuous with incomplete ventral body wall and sternum. Altered expression pattern of E-cadherin, Shh, bmp4, Wnt11 and Pitx2 were recorded. Impairment of major regulators of development is suspected to induce VBWD.
Pesticide exposure to the non target groups especially during embryonic development has quite often resulted in congenital malformations. A commercially available combination insecticide (Ci, 50% chlorpyrifos and 5% cypermethrin) is known to induce ventral body wall defects (VBWDs) wherein abdominal viscera protrude out of the ventral body wall. Herein, an attempt was made to understand the mechanistic insight into Ci induced VBWDs. For this, before incubation, the chick embryos were dosed with the test chemical and then at different developmental stages of incubation, they were monitored for the changes in the expression of certain genes, which are indispensable for the ventral body wall closure since they regulate the cell fate, proliferation and survival. Concurrently, histopathological changes during the embryonic development were examined to corroborate the above observations. The results of mRNA profiling revealed a significant downregulation of Shh on day 4 and upregulation on day 10, while bmp4, Pitx2, E-cadherin, Wnt11, Wnt6, Pxn, MyoD1, Caspase-3, AHR, Cyp3A4, showed a significant upregulation on day 4 and/or on day 10. N-cadherin, fgf8, bmp1 showed no significant changes. The possible means by which these skewed expression patterns of regulatory molecules culminated into the VBWD are discussed.
Collapse
Affiliation(s)
- Shashikant Sharma
- Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India
| | - Gowri K Uggini
- Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India
| | - Venus Patel
- Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India
| | - Isha Desai
- N V. Patel College of Pure and Applied Sciences, Vallabh Vidyanagar, Anand, 388120, Gujarat, India
| | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India
| |
Collapse
|
8
|
Reutter H, Keppler-Noreuil K, E Keegan C, Thiele H, Yamada G, Ludwig M. Genetics of Bladder-Exstrophy-Epispadias Complex (BEEC): Systematic Elucidation of Mendelian and Multifactorial Phenotypes. Curr Genomics 2016; 17:4-13. [PMID: 27013921 PMCID: PMC4780475 DOI: 10.2174/1389202916666151014221806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
The Bladder-Exstrophy-Epispadias Complex (BEEC) represents the severe end of the uro-rectal malformation spectrum, and has a profound impact on continence, and on sexual and renal function. While previous reports of familial occurrence, in-creased recurrence among first-degree relatives, high concordance rates among monozygotic twins, and chromosomal aberra-tions were suggestive of causative genetic factors, the recent identification of copy number variations (CNVs), susceptibility regions and genes through the systematic application of array based analysis, candidate gene and genome-wide association studies (GWAS) provide strong evidence. These findings in human BEEC cohorts are underscored by the recent description of BEEC(-like) murine knock-out models. Here, we discuss the current knowledge of the potential molecular mechanisms, mediating abnormal uro-rectal development leading to the BEEC, demonstrating the importance of ISL1-pathway in human and mouse and propose SLC20A1 and CELSR3 as the first BEEC candidate genes, identified through systematic whole-exome sequencing (WES) in BEEC patients.
Collapse
Affiliation(s)
- Heiko Reutter
- Department of Neonatology and Pediatric Intensive Care; Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Kim Keppler-Noreuil
- Human Development Section, National Human Genome Research Institute, Bethesda, MD, USA
| | - Catherine E Keegan
- Department of Pediatric Genetics, University of Michigan Medical Center, Michigan, USA
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Gen Yamada
- Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Japan
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Feldkamp ML, Botto LD, Byrne JLB, Krikov S, Carey JC. Clinical presentation and survival in a population-based cohort of infants with gastroschisis in Utah, 1997-2011. Am J Med Genet A 2015; 170A:306-315. [DOI: 10.1002/ajmg.a.37437] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Marcia L. Feldkamp
- Division of Medical Genetics; Department of Pediatrics; University of Utah School of Medicine; Salt Lake City Utah
| | - Lorenzo D. Botto
- Division of Medical Genetics; Department of Pediatrics; University of Utah School of Medicine; Salt Lake City Utah
| | - Janice L. B. Byrne
- Division of Medical Genetics; Department of Pediatrics; University of Utah School of Medicine; Salt Lake City Utah
- Division of Maternal-Fetal Medicine; Department of Obstetrics and Gynecology; University of Utah School of Medicine; Salt Lake City Utah
| | - Sergey Krikov
- Division of Medical Genetics; Department of Pediatrics; University of Utah School of Medicine; Salt Lake City Utah
| | - John C. Carey
- Division of Medical Genetics; Department of Pediatrics; University of Utah School of Medicine; Salt Lake City Utah
| |
Collapse
|
10
|
Oberholzer HM, Van Der Schoor C, Taute H, Bester MJ. A descriptive study to provide evidence of the teratogenic and cellular effects of sibutramine and ephedrine on cardiac- and liver-tissue of chick embryos. Microsc Res Tech 2015; 78:737-46. [PMID: 26138360 DOI: 10.1002/jemt.22539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/29/2015] [Accepted: 06/14/2015] [Indexed: 11/07/2022]
Abstract
Exposure to drugs during pregnancy is a major concern, as some teratogenic compounds can influence normal foetal development. Although the use of drugs during pregnancy should generally be avoided, exposure of the developing foetus to teratogens may occur unknowingly since these compounds may be hidden in products that are being marketed as "all natural." The aim of the current study was to investigate the possible teratogenic and cellular effects of sibutramine-a serotonin-norepinephrine reuptake inhibitor used in the treatment of obesity-on the heart and liver tissue of chick embryos. Ephedrine was used as a positive control. The chick embryo model was chosen because it has been used in studying developmental and experimental biology and teratology with great success. The embryos were exposed to three different concentrations of sibutramine and ephedrine respectively. The results obtained revealed that both compounds exhibited embryotoxicity when compared to the control groups. Liver and heart tissue of the exposed embryos was severely affected by these compounds in a dose-related manner. Morphology similar to that of muscle dystrophy was observed in the heart, where the muscle tissue was infiltrated by adipose and connective tissue. Severe liver steatosis was also noted. A more in-depth investigation into the molecular pathways involved might provide more information on the exact mechanism of toxicity of these products influencing embryonic development.
Collapse
Affiliation(s)
| | - Ciska Van Der Schoor
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Helena Taute
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Megan Jean Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| |
Collapse
|
11
|
Torres US, Portela-Oliveira E, Braga FDCB, Werner H, Daltro PAN, Souza AS. When Closure Fails: What the Radiologist Needs to Know About the Embryology, Anatomy, and Prenatal Imaging of Ventral Body Wall Defects. Semin Ultrasound CT MR 2015; 36:522-36. [PMID: 26614134 DOI: 10.1053/j.sult.2015.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ventral body wall defects (VBWDs) are one of the main categories of human congenital malformations, representing a wide and heterogeneous group of defects sharing a common feature, that is, herniation of one or more viscera through a defect in the anterior body wall. Gastroschisis and omphalocele are the 2 most common congenital VBWDs. Other uncommon anomalies include ectopia cordis and pentalogy of Cantrell, limb-body wall complex, and bladder and cloacal exstrophy. Although VBWDs are associated with multiple abnormalities with distinct embryological origins and that may affect virtually any system organs, at least in relation to anterior body wall defects, they are thought (except for omphalocele) to share a common embryologic mechanism, that is, a failure involving the lateral body wall folds responsible for closing the thoracic, abdominal, and pelvic portions of the ventral body wall during the fourth week of development. Additionally, many of the principles of diagnosis and management are similar for these conditions. Fetal ultrasound (US) in prenatal care allows the diagnosis of most of such defects with subsequent opportunities for parental counseling and optimal perinatal management. Fetal magnetic resonance imaging may be an adjunct to US, providing global and detailed anatomical information, assessing the extent of defects, and also helping to confirm the diagnosis in equivocal cases. Prenatal imaging features of VBWDs may be complex and challenging, often requiring from the radiologist a high level of suspicion and familiarity with the imaging patterns. Because an appropriate management is dependent on an accurate diagnosis and assessment of defects, radiologists should be able to recognize and distinguish between the different VBWDs and their associated anomalies. In this article, we review the relevant embryology of VBWDs to facilitate understanding of the pathologic anatomy and diagnostic imaging approach. Features will be illustrated with prenatal US and magnetic resonance imaging and correlated with postnatal and clinical imaging.
Collapse
Affiliation(s)
- Ulysses S Torres
- Department of Radiology, Hospital de Base, São José do Rio Preto Medical School, São Paulo, Brazil.
| | - Eduardo Portela-Oliveira
- Department of Radiology, Hospital de Base, São José do Rio Preto Medical School, São Paulo, Brazil
| | | | - Heron Werner
- Clínica de Diagnóstico por Imagem, CDPI, Rio de Janeiro, Brazil
| | | | - Antônio Soares Souza
- Department of Radiology, Hospital de Base, São José do Rio Preto Medical School, São Paulo, Brazil
| |
Collapse
|
12
|
Lin CJ, Amano T, Tang Y, Tian X. Improved derivation efficiency and pluripotency of stem cells from the refractory inbred C57BL/6 mouse strain by small molecules. PLoS One 2014; 9:e106916. [PMID: 25211343 PMCID: PMC4161378 DOI: 10.1371/journal.pone.0106916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/02/2014] [Indexed: 12/29/2022] Open
Abstract
The ability of small molecules to maintain self-renewal and to inhibit differentiation of pluripotent stem cells has been well-demonstrated. Two widely used molecules are PD 98059 (PD), an inhibitor of extracellular-signal-regulated kinase 1 (ERK), and SC1 (Pluripotin), which inhibits the RasGAP and ERK pathways. However, no studies have been conducted to compare their effects on the pluripotency and derivation of embryonic stem (ES) cells from inbred mice C57BL/6, an important mouse strain frequently used to model behavior, cognitive functions, immune system, and metabolic disorders in humans and also the first mouse strain chosen to be sequenced for its entire genome. We found significantly increased derivation efficiency of ES cells from in vivo fertilized embryos (fES) of C57BL/6 with the use of PD (71.4% over the control of 35.3%). Because fES and ES from cloned embryos (ntES) are not distinguishable in transcription or translation profiles, we used ntES cells to compare the effect of small molecules on their in vitro characteristics, in vitro differentiation ability, and the ability to generate full-term ntES-4N pups by tetraploid complementation. NtES cells exhibited typical ES characteristics and up-regulated Sox2 expression in media with either small-molecule. Higher rates of full term ntES-4N pup were generated by the supplementation of PD or SC1. We obtained the highest efficiency of ntES-4N pup generation ever reported from this strain by supplementing ES medium with SC1. Lastly, we compared the pluripotency of fES, ntES and induced pluripotent stem (iPS) cells of C57BL/6 background using the tetraploid complementation assay. A significant increase in implantation sites and the number of full-term pups were obtained when fES, ntES, and iPS cells were cultured with SC1 compared to the control ES medium. In conclusion, supplementing ES cell culture medium with PD and SC1 increases the derivation efficiency and pluripotency, respectively, of stem cells derived from the refractory inbred C57BL/6 strain.
Collapse
Affiliation(s)
- Chih-Jen Lin
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, United States of America
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, Connecticut, United States of America
| | - Tomokazu Amano
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, Connecticut, United States of America
| | - Yong Tang
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, United States of America
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, Connecticut, United States of America
| | - Xiuchun Tian
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, United States of America
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
13
|
Gavrilov S, Lacy E. Genetic dissection of ventral folding morphogenesis in mouse: embryonic visceral endoderm-supplied BMP2 positions head and heart. Curr Opin Genet Dev 2013; 23:461-9. [PMID: 23706163 DOI: 10.1016/j.gde.2013.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/03/2013] [Indexed: 01/08/2023]
Abstract
Ventral folding morphogenesis (VFM), a vital morphogenetic process in amniotes, mediates gut endoderm internalization, linear heart tube formation, ventral body wall closure and encasement of the fetus in extraembryonic membranes. Aberrant VFM underlies a number of birth defects such as gastroschisis and ectopia cordis in human and misplacement of head and heart in mouse. Recent cell lineage-specific mouse mutant analyses identified the Bone Morphogenetic Protein (BMP) pathway and Anterior Visceral Endoderm (AVE) as key regulators of anterior VFM. Loss of BMP2 expression solely from embryonic visceral endoderm (EmVE) and the AVE blocks formation of foregut invagination, and simultaneously, aberrantly positions the heart anterior/dorsal to the head, suggesting a mechanistic link between foregut and head/heart morphogenesis.
Collapse
Affiliation(s)
- Svetlana Gavrilov
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | |
Collapse
|
14
|
Duess JW, Fujiwara N, Corcionivoschi N, Puri P, Thompson J. ROCK inhibitor (Y-27632) disrupts somitogenesis in chick embryos. Pediatr Surg Int 2013; 29:13-8. [PMID: 23124130 DOI: 10.1007/s00383-012-3202-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM In chick embryos, administration of cadmium (Cd) induces ventral body wall defects (VBWD) similar to human omphalocele. It has been shown that failure of proper VBW formation may be due to disruption of somite development during early embryogenesis. In the VBWD chick model, Cd causes abnormal cell death in the somitic region resulting in improperly developed somites and tortuosity of the neural tube. However, the exact molecular mechanisms leading to VBWD still remain unclear. Wnt signaling is crucial during embryogenesis and plays a key role in normal somite formation. The Rho-associated coiled-coil containing protein kinase (ROCK) is involved in the non-canonical Wnt pathway which controls actin cytoskeleton assembly and cell contractility, and contributes to several developmental processes including somitogenesis. ROCK gene expression levels have recently been reported to be significantly decreased in the Cd-induced VBWD chick model. We designed this study to investigate the hypothesis that administration of ROCK inhibitor (Y-27632) in the absence of Cd disrupts somitogenesis and could contribute to the development of VBWD during early embryogenesis. METHODS After 60 h of incubation chick embryos were transferred from eggs to culture dishes containing 20 μM of Y-27632 for experimental group (Y-27, n = 22) or chick saline for controls (n = 14). Following 24 h in the incubator they were assessed for stage development and gross abnormalities in morphology using the dissecting microscope. Western blot was performed to confirm Y-27632 inhibition of ROCK downstream signaling using an antibody against phosphorylated cofilin-2. RESULTS 20 (90.9 %) embryos from Y-27 group and all controls were alive at examination. Morphological abnormalities were detected in 14 (70 %) Y-27 embryos. Somites appeared improperly developed, flattened in the cranio-caudal direction, and elongated in transverse direction in relation to controls. Chick embryos in Y-27 also presented with tortuosity of the neural tube in the lumbosacral region. Western blot analysis showed inhibition of cofilin-2 phosphorylation in affected embryos in comparison to controls. CONCLUSION Our study provides evidence that ROCK inhibitor results in the disruption of normal somitogenesis in chick embryos which may contribute to the failure of fusion of the anterior abdominal wall causing VBWD.
Collapse
Affiliation(s)
- Johannes W Duess
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | | | | | | | | |
Collapse
|
15
|
Feldkamp ML, Bowles NE, Botto LD. AEBP1gene variants in infants with gastroschisis. ACTA ACUST UNITED AC 2012; 94:738-42. [DOI: 10.1002/bdra.23041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 01/16/2023]
|
16
|
Matsumaru D, Haraguchi R, Miyagawa S, Motoyama J, Nakagata N, Meijlink F, Yamada G. Genetic analysis of Hedgehog signaling in ventral body wall development and the onset of omphalocele formation. PLoS One 2011; 6:e16260. [PMID: 21283718 PMCID: PMC3024424 DOI: 10.1371/journal.pone.0016260] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 12/12/2010] [Indexed: 01/03/2023] Open
Abstract
Background An omphalocele is one of the major ventral body wall malformations and
is characterized by abnormally herniated viscera from the body trunk. It has
been frequently found to be associated with other structural malformations,
such as genitourinary malformations and digit abnormalities. In spite of its
clinical importance, the etiology of omphalocele formation is still controversial.
Hedgehog (Hh) signaling is one of the essential growth factor signaling pathways
involved in the formation of the limbs and urogenital system. However, the
relationship between Hh signaling and ventral body wall formation remains
unclear. Methodology/Principal Findings To gain insight into the roles of Hh signaling in ventral body wall formation
and its malformation, we analyzed phenotypes of mouse mutants of Sonic
hedgehog (Shh), GLI-Kruppel family member
3 (Gli3) and Aristaless-like homeobox 4
(Alx4). Introduction of additional Alx4Lst
mutations into the Gli3Xt/Xt background resulted
in various degrees of severe omphalocele and pubic diastasis. In addition,
loss of a single Shh allele restored the omphalocele and
pubic symphysis of Gli3Xt/+; Alx4Lst/Lst
embryos. We also observed ectopic Hh activity in the ventral body wall region
of Gli3Xt/Xt embryos. Moreover, tamoxifen-inducible
gain-of-function experiments to induce ectopic Hh signaling revealed Hh signal
dose-dependent formation of omphaloceles. Conclusions/Significance We suggest that one of the possible causes of omphalocele and pubic diastasis
is ectopically-induced Hh signaling. To our knowledge, this would be the first
demonstration of the involvement of Hh signaling in ventral body wall malformation
and the genetic rescue of omphalocele phenotypes.
Collapse
Affiliation(s)
- Daisuke Matsumaru
- Global COE "Cell Fate Regulation
Research and Education Unit", Department of Organ Formation, Institute of
Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Ryuma Haraguchi
- Global COE "Cell Fate Regulation
Research and Education Unit", Department of Organ Formation, Institute of
Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Shinichi Miyagawa
- Global COE "Cell Fate Regulation
Research and Education Unit", Department of Organ Formation, Institute of
Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Jun Motoyama
- Department of Medical Life Systems,
Doshisha University, Kyoto, Japan
| | - Naomi Nakagata
- Center for Animal Resources and
Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Frits Meijlink
- Hubrecht Institute, KNAW and University
Medical Center, Utrecht, The Netherlands
| | - Gen Yamada
- Global COE "Cell Fate Regulation
Research and Education Unit", Department of Organ Formation, Institute of
Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
17
|
Saito K, Kakizaki T, Hayashi R, Nishimaru H, Furukawa T, Nakazato Y, Takamori S, Ebihara S, Uematsu M, Mishina M, Miyazaki JI, Yokoyama M, Konishi S, Inoue K, Fukuda A, Fukumoto M, Nakamura K, Obata K, Yanagawa Y. The physiological roles of vesicular GABA transporter during embryonic development: a study using knockout mice. Mol Brain 2010; 3:40. [PMID: 21190592 PMCID: PMC3023674 DOI: 10.1186/1756-6606-3-40] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 12/30/2010] [Indexed: 11/16/2022] Open
Abstract
Background The vesicular GABA transporter (VGAT) loads GABA and glycine from the neuronal cytoplasm into synaptic vesicles. To address functional importance of VGAT during embryonic development, we generated global VGAT knockout mice and analyzed them. Results VGAT knockouts at embryonic day (E) 18.5 exhibited substantial increases in overall GABA and glycine, but not glutamate, contents in the forebrain. Electrophysiological recordings from E17.5-18.5 spinal cord motoneurons demonstrated that VGAT knockouts presented no spontaneous inhibitory postsynaptic currents mediated by GABA and glycine. Histological examination of E18.5 knockout fetuses revealed reductions in the trapezius muscle, hepatic congestion and little alveolar spaces in the lung, indicating that the development of skeletal muscle, liver and lung in these mice was severely affected. Conclusion VGAT is fundamental for the GABA- and/or glycine-mediated transmission that supports embryonic development. VGAT knockout mice will be useful for further investigating the roles of VGAT in normal physiology and pathophysiologic processes.
Collapse
Affiliation(s)
- Kenzi Saito
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Frolov P, Alali J, Klein MD. Clinical risk factors for gastroschisis and omphalocele in humans: a review of the literature. Pediatr Surg Int 2010; 26:1135-48. [PMID: 20809116 DOI: 10.1007/s00383-010-2701-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
Gastroschisis and omphalocele are usually considered together since they are both congenital abdominal wall defects, and yet their anatomy, embryogenesis, and clinical presentation and problems are quite different. In addition, it appears that the risk factors for their occurrence differ. Etiologic factors contributing to the development of these defects are unknown. To investigate this we have reviewed reports of risk factors for each anomaly and report them here. We conducted a literature search using PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) for risk factors implicated in the development of gastroschisis and omphalocele. The data reviewed here from clinical studies in the literature, closely parallels the data in animal studies which we reported earlier. There is little evidence for a genetic cause in the development of gastroschisis and much evidence supporting the possibility that environmental teratogens are important contributors to the development of this defect. On the other hand, in the case of omphalocele, there was little evidence for environmental factors and substantial data indicating that genetic or familial factors may play an important role.
Collapse
Affiliation(s)
- Polina Frolov
- Department of Surgery, Children's Hospital of Michigan, Wayne State University, 3901 Beaubien Street, Detroit, MI 48201-2119, USA
| | | | | |
Collapse
|
19
|
Sadler TW, Rasmussen SA. Examining the evidence for vascular pathogenesis of selected birth defects. Am J Med Genet A 2010; 152A:2426-36. [PMID: 20815034 DOI: 10.1002/ajmg.a.33636] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas W Sadler
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|