1
|
Patterson SK, Andonov E, Arre AM, Martínez MI, Negron-Del Valle JE, Petersen RM, Phillips D, Rahman A, Ruiz-Lambides A, Villanueva I, Lea AJ, Snyder-Mackler N, Brent LJ, Higham JP. Early life adversity has sex-dependent effects on survival across the lifespan in rhesus macaques. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220456. [PMID: 39463249 PMCID: PMC11513645 DOI: 10.1098/rstb.2022.0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/03/2024] [Accepted: 03/18/2024] [Indexed: 10/29/2024] Open
Abstract
Exposure to early life adversity is linked to detrimental fitness outcomes across taxa. Owing to the challenges of collecting longitudinal data, direct evidence for long-term fitness effects of early life adversity from long-lived species remains relatively scarce. Here, we test the effects of early life adversity on male and female longevity in a free-ranging population of rhesus macaques (Macaca mulatta) on Cayo Santiago, Puerto Rico. We leveraged six decades of data to quantify the relative importance of 10 forms of early life adversity for 6599 macaques. Individuals that experienced more early life adversity died earlier than those that experienced less adversity. Mortality risk was highest during early life, defined as birth to 4 years old, but heightened mortality risk was also present in macaques that survived to adulthood. Females and males were affected differently by some forms of adversity, and these differences might be driven by varying energetic demands and dispersal patterns. Our results show that the fitness consequences of early life adversity are not uniform across individuals but vary as a function of the type of adversity, timing and social context, and thus contribute to our limited but growing understanding of the evolution of early life sensitivities.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Sam K. Patterson
- Department of Anthropology, New York University, New York10003, USA
| | - Ella Andonov
- High School of American Studies at Lehman College, Bronx, New York10468, USA
| | - Alyssa M. Arre
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan00925, Puerto Rico
| | - Melween I. Martínez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan00925, Puerto Rico
| | | | - Rachel M. Petersen
- Department of Biological Sciences, Vanderbilt University, Nashville37235, USA
| | - Daniel Phillips
- Center for Evolution and Medicine, Arizona State University, Tempe85281, USA
| | - Ahaylee Rahman
- Brooklyn Technical High School, Brooklyn, New York11217, USA
| | - Angelina Ruiz-Lambides
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan00925, Puerto Rico
| | | | - Amanda J. Lea
- Department of Biological Sciences, Vanderbilt University, Nashville37235, USA
- Child and Brain Development Program, Canadian Institute for Advanced Study, TorontoM5G 1M1, Canada
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe85281, USA
- School of Life Sciences and School of Human Evolution and Social Change, Arizona State University, Tempe85281, USA
| | - Lauren J.N. Brent
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, ExeterEX4 4QJ, USA
| | - James P. Higham
- Department of Anthropology, New York University, New York10003, USA
| |
Collapse
|
2
|
Covarrubias BV, Kamminga JM, Muchlinski MN, Munds RA, Villero Núñez V, Bauman Surratt S, Martinez MI, Montague MJ, Higham JP, Melin AD, Veilleux CC. Investigating mechanoreceptor variability and morphometric proxies in Rhesus Macaques: Implications for primate precision touch studies. Anat Rec (Hoboken) 2024. [PMID: 39367664 DOI: 10.1002/ar.25587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
The origin of primates has long been associated with an increased emphasis on manual grasping and touch. Precision touch, facilitated by specialized mechanoreceptors in glabrous skin, provides critical sensory feedback for grasping-related tasks and perception of ecologically-relevant stimuli. Despite its importance, studies of mechanoreceptors in primate hands are limited, in part due to challenges of sample availability and histological methods. Dermatoglyphs have been proposed as alternative proxies of mechanoreceptor density. We investigated the relationships between mechanoreceptors (Meissner and Pacinian corpuscles), dermatoglyphs, and demography in the apical finger pads of 15 juvenile to adult rhesus macaques (Macaca mulatta) from a free-ranging population at Cayo Santiago Primate Field Station (Puerto Rico). Our results indicate substantial interindividual variation in mechanoreceptor density (Meissner corpuscles: 11.9-43.3 corpuscles/mm2; Pacinian corpuscles: 0-4.5 corpuscles/mm2). While sex and digit were generally not associated with variation, there was strong evidence of a developmental effect. Specifically, apical pad length, Meissner corpuscle size, and Pacinian corpuscle depth increased while mechanoreceptor densities decreased throughout juvenescence, suggesting that primate mechanoreceptors change as fingers grow during adolescence and then stabilize at physical maturity. We also found Meissner corpuscle density was significantly associated with dermatoglyph ridge width and spacing, such that density predicted by a dermatoglyph model was strongly correlated with observed values. Dermatoglyphs thus offer a useful proxy of relative Meissner corpuscle density in primates, which opens exciting avenues of noninvasive research. Finally, our results underscore the importance of considering demographic factors and methodology in comparative studies of primate touch.
Collapse
Affiliation(s)
| | - Jordan M Kamminga
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, USA
| | - M N Muchlinski
- Anatomical Science Education Center, Oregon Health and Science University, Portland, Oregon, USA
| | - R A Munds
- Department of Anthropology & Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - V Villero Núñez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - S Bauman Surratt
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - M I Martinez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - M J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J P Higham
- Department of Anthropology, New York University, New York, New York, USA
| | - A D Melin
- Department of Anthropology & Archaeology, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - C C Veilleux
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, USA
| |
Collapse
|
3
|
Diaz AA, Hernández-Pacheco R, Rosati AG. Individual differences in sociocognitive traits in semi-free-ranging rhesus monkeys (Macaca mulatta). Am J Primatol 2024:e23660. [PMID: 38961748 DOI: 10.1002/ajp.23660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/02/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Characterizing individual differences in cognition is crucial for understanding the evolution of cognition as well as to test the biological consequences of different cognitive traits. Here, we harnessed the strengths of a uniquely large, naturally-living primate population at the Cayo Santiago Biological Field Station to characterized individual differences in rhesus monkey performance across two social cognitive tasks. A total of n = 204 semi-free-ranging adult rhesus monkeys participated in a data collection procedure, where we aimed to test individuals on both tasks at two time-points that were one year apart. In the socioemotional responses task, we assessed monkeys' attention to conspecific photographs with neutral versus negative emotional expressions. We found that monkeys showed overall declines in interest in conspecific photographs with age, but relative increases in attention to threat stimuli specifically, and further that these responses exhibited long-term stability across repeated testing. In the gaze following task we assessed monkeys' propensity to co-orient with an experimenter. Here, we found no evidence for age-related change in responses, and responses showed only limited repeatability over time. Finally, we found some evidence for common individual variation for performance across the tasks: monkeys that showed greater interest in conspecific photographs were more likely to follow a human's gaze. These results show how studies of comparative cognitive development and aging can provide insights into the evolution of cognition, and identify core primate social cognitive traits that may be related across and within individuals.
Collapse
Affiliation(s)
- Alexis A Diaz
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Biological Sciences, California State University, Long Beach, California, USA
| | | | - Alexandra G Rosati
- Departments of Psychology and Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Wang Q, Francis G. Coming to the Caribbean: Eighty-five years of rhesus macaques (Macaca mulatta) at Cayo Santiago-A rare nonhuman primate model for the studies of adaptation, diseases, genetics, natural disasters, and resilience. Am J Primatol 2024:e23659. [PMID: 38961812 DOI: 10.1002/ajp.23659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/16/2024] [Indexed: 07/05/2024]
Abstract
The Cayo Santiago rhesus macaque colony represents one of the most important nonhuman primate resources since their introduction to the Caribbean area in 1938. The 85 years of continuing existence along with the comprehensive database of the rhesus colony and the derived skeletal collections have provided and will continue to provide a powerful tool to test hypotheses about adaptive and evolutionary mechanisms in both biology and medicine.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, Texas, USA
| | - George Francis
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, Texas, USA
| |
Collapse
|
5
|
Turcotte CM, Choi AM, Spear JK, Hernandez-Janer EM, Taboada HG, Stock MK, Villamil CI, Bauman SE, Martinez MI, Brent LJN, Snyder-Mackler N, Montague MJ, Platt ML, Williams SA, Higham JP, Antón SC. Quantifying the relationship between bone and soft tissue measures within the rhesus macaques of Cayo Santiago. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24920. [PMID: 38447005 DOI: 10.1002/ajpa.24920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVES Interpretations of the primate and human fossil record often rely on the estimation of somatic dimensions from bony measures. Both somatic and skeletal variation have been used to assess how primates respond to environmental change. However, it is unclear how well skeletal variation matches and predicts soft tissue. Here, we empirically test the relationship between tissues by comparing somatic and skeletal measures using paired measures of pre- and post-mortem rhesus macaques from Cayo Santiago, Puerto Rico. MATERIALS AND METHODS Somatic measurements were matched with skeletal dimensions from 105 rhesus macaque individuals to investigate paired signals of variation (i.e., coefficients of variation, sexual dimorphism) and bivariate codependence (reduced major axis regression) in measures of: (1) limb length; (2) joint breadth; and (3) limb circumference. Predictive models for the estimation of soft tissue dimensions from skeletons were built from Ordinary Least Squares regressions. RESULTS Somatic and skeletal measurements showed statistically equivalent coefficients of variation and sexual dimorphism as well as high epiphyses-present ordinary least square (OLS) correlations in limb lengths (R2 >0.78, 0.82), joint breadths (R2 >0.74, 0.83) and, to a lesser extent, limb circumference (R2 >0.53, 0.68). CONCLUSION Skeletal measurements are good substitutions for somatic values based on population signals of variation. OLS regressions indicate that skeletal correlates are highly predictive of somatic dimensions. The protocols and regression equations established here provide a basis for reliable reconstruction of somatic dimension from catarrhine fossils and validate our ability to compare or combine results of studies based on population data of either hard or soft tissue proxies.
Collapse
Affiliation(s)
- Cassandra M Turcotte
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
- Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Audrey M Choi
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Jeffrey K Spear
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Eva M Hernandez-Janer
- Department of Evolutionary Anthropology, Rutgers University, New Brunswick, New Jersey, USA
| | - Hannah G Taboada
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Michala K Stock
- Department of Sociology and Anthropology, Metropolitan State University of Denver, Denver, Colorado, USA
| | - Catalina I Villamil
- Doctor of Chiropractic Program, School of Health Sciences and Technologies, Universidad Central del Caribe, Bayamón, Puerto Rico, USA
| | - Samuel E Bauman
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Melween I Martinez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico, USA
| | | | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- School for Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott A Williams
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - James P Higham
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Susan C Antón
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| |
Collapse
|
6
|
Gonzalez SJ, Sherer AJ, Hernández‐Pacheco R. Differential effects of early life adversity on male and female rhesus macaque lifespan. Ecol Evol 2023; 13:e10689. [PMID: 37937273 PMCID: PMC10626128 DOI: 10.1002/ece3.10689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
Early life adversity predicts shorter adult lifespan in several animal taxa. Yet, work on long-lived primate populations suggests the evolution of mechanisms that contribute to resiliency and long lives despite early life insults. Here, we tested associations between individual and cumulative early life adversity and lifespan on rhesus macaques at the Cayo Santiago Biological Field Station using 50 years of demographic data. We performed sex-specific survival analyses at different life stages to contrast short-term effects of adversity (i.e., infant survival) with long-term effects (i.e., adult survival). Female infants showed vulnerability to multiple adversities at birth, but affected females who survived to adulthood experienced a reduced risk later in life. In contrast, male infants showed vulnerability to a lower number of adversities at birth, but those who survived to adulthood were negatively affected by both early life individual and cumulative adversity. Our study shows profound immediate effects of insults on female infant cohorts and suggests that affected female adults are more robust. In contrast, adult males who experienced harsh conditions early in life showed an increased mortality risk at older ages as expected from hypotheses within the life course perspective. Our analysis suggests sex-specific selection pressures on life histories and highlights the need for studies addressing the effects of early life adversity across multiple life stages.
Collapse
Affiliation(s)
- Stephanie J. Gonzalez
- Department of Biological SciencesCalifornia State UniversityLong BeachCaliforniaUSA
- Department of Ecosystem Science and ManagementPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Anthony J. Sherer
- Department of Biological SciencesCalifornia State UniversityLong BeachCaliforniaUSA
| | | |
Collapse
|
7
|
Newman LE, Testard C, DeCasien AR, Chiou KL, Watowich MM, Janiak MC, Pavez-Fox MA, Sanchez Rosado MR, Cooper EB, Costa CE, Petersen RM, Montague MJ, Platt ML, Brent LJN, Snyder-Mackler N, Higham JP. The biology of aging in a social world: Insights from free-ranging rhesus macaques. Neurosci Biobehav Rev 2023; 154:105424. [PMID: 37827475 PMCID: PMC10872885 DOI: 10.1016/j.neubiorev.2023.105424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Social adversity can increase the age-associated risk of disease and death, yet the biological mechanisms that link social adversities to aging remain poorly understood. Long-term naturalistic studies of nonhuman animals are crucial for integrating observations of social behavior throughout an individual's life with detailed anatomical, physiological, and molecular measurements. Here, we synthesize the body of research from one such naturalistic study system, Cayo Santiago, which is home to the world's longest continuously monitored free-ranging population of rhesus macaques (Macaca mulatta). We review recent studies of age-related variation in morphology, gene regulation, microbiome composition, and immune function. We also discuss ecological and social modifiers of age-markers in this population. In particular, we summarize how a major natural disaster, Hurricane Maria, affected rhesus macaque physiology and social structure and highlight the context-dependent and domain-specific nature of aging modifiers. Finally, we conclude by providing directions for future study, on Cayo Santiago and elsewhere, that will further our understanding of aging across different domains and how social adversity modifies aging processes.
Collapse
Affiliation(s)
- Laura E Newman
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA.
| | - Camille Testard
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
| | - Alex R DeCasien
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
| | - Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Marina M Watowich
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA; Department of Biology, University of Washington, Seattle, WA, USA
| | - Mareike C Janiak
- Department of Anthropology, New York University, New York, NY, USA
| | - Melissa A Pavez-Fox
- Centre for Research in Animal Behaviour, University of Exeter, United Kingdom
| | | | - Eve B Cooper
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Christina E Costa
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Rachel M Petersen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA; Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, United Kingdom
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
8
|
Pontzer H. The provisioned primate: patterns of obesity across lemurs, monkeys, apes and humans. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220218. [PMID: 37661747 PMCID: PMC10475869 DOI: 10.1098/rstb.2022.0218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Non-human primates are potentially informative but underutilized species for investigating obesity. I examined patterns of obesity across the Primate order, calculating the ratio of body mass in captivity to that in the wild. This index, relative body mass, for n = 40 non-human primates (mean ± s.d.: females: 1.28 ± 0.30, range 0.67-1.78, males: 1.24 ± 0.28, range 0.70-1.97) overlapped with a reference value for humans (women: 1.52, men: 1.44). Among non-human primates, relative body mass was unrelated to dietary niche, and was marginally greater among female cohorts of terrestrial species. Males and females had similar relative body masses, but species with greater sexual size dimorphism (male/female mass) in wild populations had comparatively larger female body mass in captivity. Provisioned populations in wild and free-ranging settings had similar relative body mass to those in research facilities and zoos. Compared to the wild, captive diets are unlikely to be low in protein or fat, or high in carbohydrate, suggesting these macronutrients are not driving overeating in captive populations. Several primate species, including chimpanzees, a sister-species to humans, had relative body masses similar to humans. Humans are not unique in the propensity to overweight and obesity. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.
Collapse
Affiliation(s)
- Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Duke Global Health Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
9
|
Chiou KL, Huang X, Bohlen MO, Tremblay S, DeCasien AR, O’Day DR, Spurrell CH, Gogate AA, Zintel TM, Andrews MG, Martínez MI, Starita LM, Montague MJ, Platt ML, Shendure J, Snyder-Mackler N. A single-cell multi-omic atlas spanning the adult rhesus macaque brain. SCIENCE ADVANCES 2023; 9:eadh1914. [PMID: 37824616 PMCID: PMC10569716 DOI: 10.1126/sciadv.adh1914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Cataloging the diverse cellular architecture of the primate brain is crucial for understanding cognition, behavior, and disease in humans. Here, we generated a brain-wide single-cell multimodal molecular atlas of the rhesus macaque brain. Together, we profiled 2.58 M transcriptomes and 1.59 M epigenomes from single nuclei sampled from 30 regions across the adult brain. Cell composition differed extensively across the brain, revealing cellular signatures of region-specific functions. We also identified 1.19 M candidate regulatory elements, many previously unidentified, allowing us to explore the landscape of cis-regulatory grammar and neurological disease risk in a cell type-specific manner. Altogether, this multi-omic atlas provides an open resource for investigating the evolution of the human brain and identifying novel targets for disease interventions.
Collapse
Affiliation(s)
- Kenneth L. Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Xingfan Huang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Martin O. Bohlen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sébastien Tremblay
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex R. DeCasien
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
| | - Diana R. O’Day
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Cailyn H. Spurrell
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Aishwarya A. Gogate
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Trisha M. Zintel
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Cayo Biobank Research Unit
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, PR, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Madeline G. Andrews
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Melween I. Martínez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, PR, USA
| | - Lea M. Starita
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Michael J. Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
10
|
Diaz AA, Steiner UK, Tuljapurkar S, Zuo W, Hernández-Pacheco R. Hurricanes affect diversification among individual life courses of a primate population. J Anim Ecol 2023; 92:1404-1415. [PMID: 37190852 PMCID: PMC10550793 DOI: 10.1111/1365-2656.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Extreme climatic events may influence individual-level variability in phenotypes, survival and reproduction, and thereby drive the pace of evolution. Climate models predict increases in the frequency of intense hurricanes, but no study has measured their impact on individual life courses within animal populations. We used 45 years of demographic data of rhesus macaques to quantify the influence of major hurricanes on reproductive life courses using multiple metrics of dynamic heterogeneity accounting for life course variability and life-history trait variances. To reduce intraspecific competition, individuals may explore new reproductive stages during years of major hurricanes, resulting in higher temporal variation in reproductive trajectories. Alternatively, individuals may opt for a single optimal life-history strategy due to trade-offs between survival and reproduction. Our results show that heterogeneity in reproductive life courses increased by 4% during years of major hurricanes, despite a 2% reduction in the asymptotic growth rate due to an average decrease in mean fertility and survival by that is, shortened life courses and reduced reproductive output. In agreement with this, the population is expected to achieve stable population dynamics faster after being perturbed by a hurricane (ρ = 1.512 ; 95% CI: 1.488, 1.538), relative to ordinary yearsρ = 1.482 ; 1.475 , 1.490 . Our work suggests that natural disasters force individuals into new demographic roles to potentially reduce competition during unfavourable environments where mean reproduction and survival are compromised. Variance in lifetime reproductive success and longevity are differently affected by hurricanes, and such variability is mostly driven by survival.
Collapse
Affiliation(s)
- Alexis A. Diaz
- California State University-Long Beach, Long Beach, California, USA
| | | | | | - Wenyun Zuo
- Stanford University, Stanford, California, USA
| | | |
Collapse
|
11
|
Newman LE, Testard C, DeCasien AR, Chiou KL, Watowich MM, Janiak MC, Pavez-Fox MA, Rosado MRS, Cooper EB, Costa CE, Petersen RM, Montague MJ, Platt ML, Brent LJ, Snyder-Mackler N, Higham JP. The biology of aging in a social world:insights from free-ranging rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.525893. [PMID: 36747827 PMCID: PMC9900930 DOI: 10.1101/2023.01.28.525893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Social adversity can increase the age-associated risk of disease and death, yet the biological mechanisms that link social adversities to aging remain poorly understood. Long-term naturalistic studies of nonhuman animals are crucial for integrating observations of social behavior throughout an individual's life with detailed anatomical, physiological, and molecular measurements. Here, we synthesize the body of research from one such naturalistic study system, Cayo Santiago Island, which is home to the world's longest continuously monitored free-ranging population of rhesus macaques. We review recent studies of age-related variation in morphology, gene regulation, microbiome composition, and immune function. We also discuss ecological and social modifiers of age-markers in this population. In particular, we summarize how a major natural disaster, Hurricane Maria, affected rhesus macaque physiology and social structure and highlight the context-dependent and domain-specific nature of aging modifiers. Finally, we conclude by providing directions for future study, on Cayo Santiago and elsewhere, that will further our understanding of aging across different domains and how social adversity modifies aging processes.
Collapse
Affiliation(s)
- Laura E. Newman
- Department of Anthropology, New York University, New York, New York, USA
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
| | - Camille Testard
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex R. DeCasien
- Section on Developmental Neurogenomics, National Institutes of Mental Health, Bethesda, Maryland, USA
| | - Kenneth L. Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Marina M. Watowich
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Mareike C. Janiak
- Department of Anthropology, New York University, New York, New York, USA
| | | | | | - Eve B. Cooper
- Department of Anthropology, New York University, New York, New York, USA
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
| | - Christina E. Costa
- Department of Anthropology, New York University, New York, New York, USA
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
| | - Rachel M. Petersen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Michael J. Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren J.N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, United Kingdom
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - James P. Higham
- Department of Anthropology, New York University, New York, New York, USA
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
| |
Collapse
|
12
|
Chiou KL, DeCasien AR, Rees KP, Testard C, Spurrell CH, Gogate AA, Pliner HA, Tremblay S, Mercer A, Whalen CJ, Negrón-Del Valle JE, Janiak MC, Bauman Surratt SE, González O, Compo NR, Stock MK, Ruiz-Lambides AV, Martínez MI, Wilson MA, Melin AD, Antón SC, Walker CS, Sallet J, Newbern JM, Starita LM, Shendure J, Higham JP, Brent LJN, Montague MJ, Platt ML, Snyder-Mackler N. Multiregion transcriptomic profiling of the primate brain reveals signatures of aging and the social environment. Nat Neurosci 2022; 25:1714-1723. [PMID: 36424430 PMCID: PMC10055353 DOI: 10.1038/s41593-022-01197-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022]
Abstract
Aging is accompanied by a host of social and biological changes that correlate with behavior, cognitive health and susceptibility to neurodegenerative disease. To understand trajectories of brain aging in a primate, we generated a multiregion bulk (N = 527 samples) and single-nucleus (N = 24 samples) brain transcriptional dataset encompassing 15 brain regions and both sexes in a unique population of free-ranging, behaviorally phenotyped rhesus macaques. We demonstrate that age-related changes in the level and variance of gene expression occur in genes associated with neural functions and neurological diseases, including Alzheimer's disease. Further, we show that higher social status in females is associated with younger relative transcriptional ages, providing a link between the social environment and aging in the brain. Our findings lend insight into biological mechanisms underlying brain aging in a nonhuman primate model of human behavior, cognition and health.
Collapse
Affiliation(s)
- Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Department of Psychology, University of Washington, Seattle, WA, USA.
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Washington, Seattle, WA, USA.
| | - Alex R DeCasien
- Department of Anthropology, New York University, New York, NY, USA.
- New York Consortium in Evolutionary Primatology, New York, NY, USA.
| | - Katherina P Rees
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Camille Testard
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Aishwarya A Gogate
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Hannah A Pliner
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Sébastien Tremblay
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Arianne Mercer
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Connor J Whalen
- Department of Anthropology, New York University, New York, NY, USA
| | | | - Mareike C Janiak
- School of Science, Engineering, & Environment, University of Salford, Salford, UK
| | | | - Olga González
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Nicole R Compo
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, PR, USA
| | - Michala K Stock
- Department of Sociology and Anthropology, Metropolitan State University of Denver, Denver, CO, USA
| | | | - Melween I Martínez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, PR, USA
| | - Melissa A Wilson
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Susan C Antón
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Christopher S Walker
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jérôme Sallet
- Stem Cell and Brain Research Institute, Université Lyon, Lyon, France
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Lea M Starita
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Department of Psychology, University of Washington, Seattle, WA, USA.
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Washington, Seattle, WA, USA.
- Center for Studies in Demography & Ecology, University of Washington, Seattle, WA, USA.
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA.
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
13
|
Munds RA, Cooper EB, Janiak MC, Lam LG, DeCasien AR, Bauman Surratt S, Montague MJ, Martinez MI, Research Unit CB, Kawamura S, Higham JP, Melin AD. Variation and heritability of retinal cone ratios in a free-ranging population of rhesus macaques. Evolution 2022; 76:1776-1789. [PMID: 35790204 PMCID: PMC9544366 DOI: 10.1111/evo.14552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 01/22/2023]
Abstract
A defining feature of catarrhine primates is uniform trichromacy-the ability to distinguish red (long; L), green (medium; M), and blue (short; S) wavelengths of light. Although the tuning of photoreceptors is conserved, the ratio of L:M cones in the retina is variable within and between species, with human cone ratios differing from other catarrhines. Yet, the sources and structure of variation in cone ratios are poorly understood, precluding a broader understanding of color vision variability. Here, we report a large-scale study of a pedigreed population of rhesus macaques (Macaca mulatta). We collected foveal RNA and analyzed opsin gene expression using cDNA and estimated additive genetic variance of cone ratios. The average L:M ratio and standard error was 1.03:1 ± 0.02. There was no age effect, and genetic contribution to variation was negligible. We found marginal sex effects with females having larger ratios than males. S cone ratios (0.143:1 ± 0.002) had significant genetic variance with a heritability estimate of 43% but did not differ between sexes or age groups. Our results contextualize the derived human condition of L-cone dominance and provide new information about the heritability of cone ratios and variation in primate color vision.
Collapse
Affiliation(s)
- Rachel A. Munds
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Eve B. Cooper
- Department of AnthropologyNew York UniversityNew YorkNew York10003,New York Consortium in Evolutionary PrimatologyNew YorkNew York10460
| | - Mareike C. Janiak
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABT2N 1N4Canada,Department of AnthropologyNew York UniversityNew YorkNew York10003,School of Science, Engineering and EnvironmentUniversity of SalfordSalfordM5 4NTUnited Kingdom
| | - Linh Gia Lam
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Alex R. DeCasien
- Department of AnthropologyNew York UniversityNew YorkNew York10003,New York Consortium in Evolutionary PrimatologyNew YorkNew York10460,Section on Developmental NeurogenomicsNational Institute of Mental HealthBethesdaMaryland20892
| | | | - Michael J. Montague
- Department of NeuroscienceUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
| | - Melween I. Martinez
- Caribbean Primate Research CenterUniversity of Puerto RicoSan JuanPuerto Rico00936
| | | | - Shoji Kawamura
- Department of Integrated BiosciencesUniversity of TokyoKashiwa277‐8562Japan
| | - James P. Higham
- Department of AnthropologyNew York UniversityNew YorkNew York10003,New York Consortium in Evolutionary PrimatologyNew YorkNew York10460
| | - Amanda D. Melin
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABT2N 1N4Canada,Department of Medical GeneticsUniversity of CalgaryCalgaryABT2N 1N4Canada,Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryABT2N 1N4Canada
| |
Collapse
|
14
|
Testard C, Brent LJN, Andersson J, Chiou KL, Negron-Del Valle JE, DeCasien AR, Acevedo-Ithier A, Stock MK, Antón SC, Gonzalez O, Walker CS, Foxley S, Compo NR, Bauman S, Ruiz-Lambides AV, Martinez MI, Skene JHP, Horvath JE, Unit CBR, Higham JP, Miller KL, Snyder-Mackler N, Montague MJ, Platt ML, Sallet J. Social connections predict brain structure in a multidimensional free-ranging primate society. SCIENCE ADVANCES 2022; 8:eabl5794. [PMID: 35417242 PMCID: PMC9007502 DOI: 10.1126/sciadv.abl5794] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Reproduction and survival in most primate species reflects management of both competitive and cooperative relationships. Here, we investigated the links between neuroanatomy and sociality in free-ranging rhesus macaques. In adults, the number of social partners predicted the volume of the mid-superior temporal sulcus and ventral-dysgranular insula, implicated in social decision-making and empathy, respectively. We found no link between brain structure and other key social variables such as social status or indirect connectedness in adults, nor between maternal social networks or status and dependent infant brain structure. Our findings demonstrate that the size of specific brain structures varies with the number of direct affiliative social connections and suggest that this relationship may arise during development. These results reinforce proposed links between social network size, biological success, and the expansion of specific brain circuits.
Collapse
Affiliation(s)
- Camille Testard
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren J. N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | | | - Kenneth L. Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Josue E. Negron-Del Valle
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Alex R. DeCasien
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, NYCEP, New York, NY, USA
- Section on Developmental Neurogenomics, National Institute of Mental Health, Washington, DC, USA
| | | | - Michala K. Stock
- Department of Sociology and Anthropology, Metropolitan State University of Denver, Denver, CO, USA
| | - Susan C. Antón
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, NYCEP, New York, NY, USA
| | - Olga Gonzalez
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Christopher S. Walker
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Sean Foxley
- Wellcome Integrative Neuroimaging Centre, fMRIB, Oxford, UK
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Nicole R. Compo
- Caribbean Primate Research Center, University of Puerto Rico, Sabana Seca, Puerto Rico
- Comparative Medicine, University of South Florida, Tampa, FL, USA
| | - Samuel Bauman
- Caribbean Primate Research Center, University of Puerto Rico, Sabana Seca, Puerto Rico
| | | | - Melween I. Martinez
- Caribbean Primate Research Center, University of Puerto Rico, Sabana Seca, Puerto Rico
| | - J. H. Pate Skene
- Department of Neurobiology, Duke University, Durham, NC, USA
- Institute of Cognitive Science, University of Colorado, Boulder, CO, USA
| | - Julie E. Horvath
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | | | - James P. Higham
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, NYCEP, New York, NY, USA
| | | | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Michael J. Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
| | - Jérôme Sallet
- Department of Experimental Psychology, Wellcome Integrative Neuroimaging Centre, Oxford, UK
- Stem Cell and Brain Research Institute, Inserm, Université Lyon 1, Bron U1208, France
| |
Collapse
|
15
|
Luevano L, Sutherland C, Gonzalez SJ, Hernández‐Pacheco R. Rhesus macaques compensate for reproductive delay following ecological adversity early in life. Ecol Evol 2022; 12:e8456. [PMID: 35136546 PMCID: PMC8809442 DOI: 10.1002/ece3.8456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 11/11/2022] Open
Abstract
Adversity early in life can shape the reproductive potential of individuals through negative effects on health and life span. However, long-lived populations with multiple reproductive events may present alternative life history strategies to optimize reproductive schedules and compensate for shorter life spans. Here, we quantify the effects of major hurricanes and density dependence as sources of early-life ecological adversity on Cayo Santiago rhesus macaque female reproduction and decompose their effects onto the mean age-specific fertility, reproductive pace, and lifetime reproductive success (LRS). Females experiencing major hurricanes exhibit a delayed reproductive debut but maintain the pace of reproduction past debut and show a higher mean fertility during prime reproductive ages, relative to unaffected females. Increasing density at birth is associated to a decrease in mean fertility and reproductive pace, but such association is absent at intermediate densities. When combined, our study reveals that hurricanes early in life predict a delay-overshoot pattern in mean age-specific fertility that supports the maintenance of LRS. In contrast to predictive adaptive response models of accelerated reproduction, this long-lived population presents a novel reproductive strategy where females who experience major natural disasters early in life ultimately overcome their initial reproductive penalty with no major negative fitness outcomes. Density presents a more complex relation with reproduction that suggests females experiencing a population regulated at intermediate densities early in life will escape density dependence and show optimized reproductive schedules. Our results support hypotheses about life history trade-offs in which adversity-affected females ensure their future reproductive potential by allocating more energy to growth or maintenance processes at younger adult ages.
Collapse
Affiliation(s)
- Logan Luevano
- Department of Biological SciencesCalifornia State University‐Long BeachLong BeachCaliforniaUSA
| | - Chris Sutherland
- The Center for Research into Ecological and Environmental ModelingUniversity of St. AndrewsSt. AndrewsUK
| | - Stephanie J. Gonzalez
- Department of Biological SciencesCalifornia State University‐Long BeachLong BeachCaliforniaUSA
| | - Raisa Hernández‐Pacheco
- Department of Biological SciencesCalifornia State University‐Long BeachLong BeachCaliforniaUSA
| |
Collapse
|
16
|
Abstract
A recent study published in The Lancet predicts a remarkable drop in population numbers following a peak that will be reached by 2064. A unique feature of the upcoming population drop is that it will be almost exclusively caused by decreased reproduction, rather than factors that increase rates of mortality. The reasons for decreased reproduction are also unique, as, unlike previous centuries, limited reproduction today is hardly due to a shortage in resources. In other words, the predicted population drop is almost exclusively due to changes in reproductive behavior and reproductive physiology. Today, global changes in reproductive behavior are mostly explained by social sciences in a framework of demographic transition hypotheses, while changes in reproductive physiology are usually attributed to effects of endocrine-disrupting pollutants. This review outlines a complementary/alternative hypothesis, which connects reproductive trends with population densities. Numerous wildlife and experimental studies of a broad range of animal species have demonstrated that reproductive behavior and reproductive physiology are negatively controlled via endocrine and neural signaling in response to increasing population densities. The causal chain of this control system, although not fully understood, includes suppression of every level of hypothalamic-pituitary-gonadal cascade by hypothalamic-pituitary-adrenal axis, activated in response to increasing stress of social interactions. This paper discusses evidence in support of a hypothesis that current trends in reproductive physiology and behavior may be partly explained by increasing population densities. Better understanding of the causal chain involved in reproduction suppression by population density-related factors may help in developing interventions to treat infertility and other reproductive conditions.
Collapse
Affiliation(s)
- Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
17
|
Pavez-Fox MA, Negron-Del Valle JE, Thompson IJ, Walker CS, Bauman SE, Gonzalez O, Compo N, Ruiz-Lambides A, Martinez MI, Platt ML, Montague MJ, Higham JP, Snyder-Mackler N, Brent LJN. Sociality predicts individual variation in the immunity of free-ranging rhesus macaques. Physiol Behav 2021; 241:113560. [PMID: 34454245 PMCID: PMC8605072 DOI: 10.1016/j.physbeh.2021.113560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022]
Abstract
Social integration and social status can substantially affect an individual’s health and survival. One route through which this occurs is by altering immune function, which can be highly sensitive to changes in the social environment. However, we currently have limited understanding of how sociality influences markers of immunity in naturalistic populations where social dynamics can be fully realized. To address this gap, we asked if social integration and social status in free-ranging rhesus macaques (Macaca mulatta) predict anatomical and physiological markers of immunity. We used data on agonistic interactions to determine social status, and social network analysis of grooming interactions to generate measures of individual variation in social integration. As measures of immunity, we included the size of two of the major organs involved in the immune response, the spleen and liver, and counts of three types of blood cells (red blood cells, platelets, and white blood cells). Controlling for body mass and age, we found that neither social status nor social integration predicted the size of anatomical markers of immunity. However, individuals that were more socially connected, i.e., with more grooming partners, had lower numbers of white blood cells than their socially isolated counterparts, indicating lower levels of inflammation with increasing levels of integration. These results build upon and extend our knowledge of the relationship between sociality and the immune system in humans and captive animals to free-ranging primates, demonstrating generalizability of the beneficial role of social integration on health.
Collapse
Affiliation(s)
- Melissa A Pavez-Fox
- Centre for Research in Animal Behaviour, University of Exeter, United Kingdom.
| | | | - Indya J Thompson
- Department of Molecular Biomedical Sciences College of Veterinary Medicine, North Carolina State University, NC, United States
| | - Christopher S Walker
- Department of Molecular Biomedical Sciences College of Veterinary Medicine, North Carolina State University, NC, United States
| | - Samuel E Bauman
- Caribbean Primate Research Center, University of Puerto Rico, Puerto Rico
| | - Olga Gonzalez
- Texas Biomedical Research Institute, TX, United States
| | | | | | - Melween I Martinez
- Caribbean Primate Research Center, University of Puerto Rico, Puerto Rico
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, PA, United States; Department of Anthropology, University of Pennsylvania, PA, United States; Department of Psychology, University of Pennsylvania, PA, United States; Department of Marketing, University of Pennsylvania , PA, United States
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, PA, United States
| | - James P Higham
- Department of Anthropology, New York University, NY, United States
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, AZ, United States; School of Life Sciences, Arizona State University, AZ, United States
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, United Kingdom
| |
Collapse
|
18
|
Janiak MC, Montague MJ, Villamil CI, Stock MK, Trujillo AE, DePasquale AN, Orkin JD, Bauman Surratt SE, Gonzalez O, Platt ML, Martínez MI, Antón SC, Dominguez-Bello MG, Melin AD, Higham JP. Age and sex-associated variation in the multi-site microbiome of an entire social group of free-ranging rhesus macaques. MICROBIOME 2021; 9:68. [PMID: 33752735 PMCID: PMC7986251 DOI: 10.1186/s40168-021-01009-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/02/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND An individual's microbiome changes over the course of its lifetime, especially during infancy, and again in old age. Confounding factors such as diet and healthcare make it difficult to disentangle the interactions between age, health, and microbial changes in humans. Animal models present an excellent opportunity to study age- and sex-linked variation in the microbiome, but captivity is known to influence animal microbial abundance and composition, while studies of free-ranging animals are typically limited to studies of the fecal microbiome using samples collected non-invasively. Here, we analyze a large dataset of oral, rectal, and genital swabs collected from 105 free-ranging rhesus macaques (Macaca mulatta, aged 1 month-26 years), comprising one entire social group, from the island of Cayo Santiago, Puerto Rico. We sequenced 16S V4 rRNA amplicons for all samples. RESULTS Infant gut microbial communities had significantly higher relative abundances of Bifidobacterium and Bacteroides and lower abundances of Ruminococcus, Fibrobacter, and Treponema compared to older age groups, consistent with a diet high in milk rather than solid foods. The genital microbiome varied widely between males and females in beta-diversity, taxonomic composition, and predicted functional profiles. Interestingly, only penile, but not vaginal, microbiomes exhibited distinct age-related changes in microbial beta-diversity, taxonomic composition, and predicted functions. Oral microbiome composition was associated with age, and was most distinctive between infants and other age classes. CONCLUSIONS Across all three body regions, with notable exceptions in the penile microbiome, while infants were distinctly different from other age groups, microbiomes of adults were relatively invariant, even in advanced age. While vaginal microbiomes were exceptionally stable, penile microbiomes were quite variable, especially at the onset of reproductive age. Relative invariance among adults, including elderly individuals, is contrary to findings in humans and mice. We discuss potential explanations for this observation, including that age-related microbiome variation seen in humans may be related to changes in diet and lifestyle. Video abstract.
Collapse
Affiliation(s)
- Mareike C Janiak
- Department of Anthropology and Archaeology, University of Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, Alberta, Canada.
- Department of Anthropology, New York University, New York, USA.
- School of Science, Engineering and Environment, University of Salford, Salford, UK.
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Catalina I Villamil
- School of Chiropractic, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Michala K Stock
- Department of Sociology and Anthropology, Metropolitan State University of Denver, Denver, CO, USA
| | - Amber E Trujillo
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Allegra N DePasquale
- Department of Anthropology and Archaeology, University of Calgary, Alberta, Canada
| | - Joseph D Orkin
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona, Spain
| | | | - Olga Gonzalez
- Disease Intervention and Prevention, Southwest National Primate Research Center, San Antonio, TX, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Melween I Martínez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Susan C Antón
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Department of Anthropology, Rutgers University, New Brunswick, NJ, USA
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Alberta, Canada
| | - James P Higham
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
19
|
Morcillo DO, Steiner UK, Grayson KL, Ruiz-Lambides AV, Hernández-Pacheco R. Hurricane-induced demographic changes in a non-human primate population. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200173. [PMID: 32968507 PMCID: PMC7481679 DOI: 10.1098/rsos.200173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/17/2020] [Indexed: 05/05/2023]
Abstract
Major disturbance events can have large impacts on the demography and dynamics of animal populations. Hurricanes are one example of an extreme climatic event, predicted to increase in frequency due to climate change, and thus expected to be a considerable threat to population viability. However, little is understood about the underlying demographic mechanisms shaping population response following these extreme disturbances. Here, we analyse 45 years of the most comprehensive free-ranging non-human primate demographic dataset to determine the effects of major hurricanes on the variability and maintenance of long-term population fitness. For this, we use individual-level data to build matrix population models and perform perturbation analyses. Despite reductions in population growth rate mediated through reduced fertility, our study reveals a demographic buffering during hurricane years. As long as survival does not decrease, our study shows that hurricanes do not result in detrimental effects at the population level, demonstrating the unbalanced contribution of survival and fertility to population fitness in long-lived animal populations.
Collapse
Affiliation(s)
- Dana O. Morcillo
- Department of Biology, University of Richmond, Richmond, VA, USA
| | | | | | - Angelina V. Ruiz-Lambides
- Caribbean Primate Research Center, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | | |
Collapse
|
20
|
Lee DS, Mandalaywala TM, Dubuc C, Widdig A, Higham JP. Higher early life mortality with lower infant body mass in a free-ranging primate. J Anim Ecol 2020; 89:2300-2310. [PMID: 32614977 DOI: 10.1111/1365-2656.13291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/04/2020] [Indexed: 11/28/2022]
Abstract
Traits that reflect the amount of energy allocated to offspring by mothers, such as infant body mass, are predicted to have long-lasting effects on offspring fitness. In very long-lived species, such as anthropoid primates, where long-lasting and obligate parental care is required for successful recruitment of offspring, there are few studies on the fitness implications of low body mass among infants. Using body mass data collected from 253 free-ranging rhesus macaque Macaca mulatta infants on Cayo Santiago, Puerto Rico, we examined if lower infant body mass predicts lower chance of survival through to reproductive maturation (4th year of life). We also used data on inter-birth intervals and suckling behaviours to determine whether the duration of maternal care was adjusted to infant body mass. Rhesus macaque infants experienced on average 5% reduced hazard of death for an increase in body mass of 0.1 SD (~100 g) above the mean within their age-sex class. The positive association between body mass and early life survival was most pronounced in the 1st year of life. Infant body mass tended to be lower if mothers were young or old, but the link between infant body mass and early life survival remained after controlling for maternal age. This finding suggests that maternal effects on early life survival such as maternal age may act through their influence on infant body mass. Mothers of heavier infants were less likely to be delayed in subsequent reproduction, but the estimated association slightly overlapped with zero. The timing of the last week of suckling did not differ by infant body mass. Using infant body mass data that has been rarely available from free-ranging primates, our study provides comparative evidence to strengthen the existing body of literature on the fitness implications of variation in infant body mass.
Collapse
Affiliation(s)
- D Susie Lee
- Department of Anthropology, New York University, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Tara M Mandalaywala
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Constance Dubuc
- Department of Anthropology, New York University, New York, NY, USA
| | - Anja Widdig
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max Planck Institute for Evolutionary Primatology, New York, NY, USA.,Behavioral Ecology Research Group, Institute of Biology, University of Leipzig, Leipzig, Germany
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
21
|
Individuals in urban dwelling primate species face unequal benefits associated with living in an anthropogenic environment. Primates 2019; 61:249-255. [PMID: 31773350 DOI: 10.1007/s10329-019-00775-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
Abstract
In primates, living in an anthropogenic environment can significantly improve an individual's fitness, which is likely attributed to access to anthropogenic food resources. However, in non-professionally provisioned groups, few studies have examined whether individual attributes, such as dominance rank and sex, affect primates' ability to access anthropogenic food. Here, we investigated whether rank and sex explain individual differences in the proportion of anthropogenic food consumed by macaques. We observed 319 individuals living in nine urban groups across three macaque species. We used proportion of anthropogenic food in the diet as a proxy of access to those food resources. Males and high-ranking individuals in both sexes had significantly higher proportions of anthropogenic food in their diets than other individuals. We speculate that unequal access to anthropogenic food resources further increases within-group competition, and may limit fitness benefits in an anthropogenic environment to certain individuals.
Collapse
|
22
|
Is There a Link Between Matriline Dominance Rank and Linear Enamel Hypoplasia? An Assessment of Defect Prevalence and Count in Cayo Santiago Rhesus Macaques (Macaca mulatta). INT J PRIMATOL 2019. [DOI: 10.1007/s10764-019-00084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Anderson CJ, Van De Kerk M, Pine WE, Hostetler ME, Heard DJ, Johnson SA. Population estimate and management options for introduced rhesus macaques. J Wildl Manage 2018. [DOI: 10.1002/jwmg.21588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- C. Jane Anderson
- University of Florida, Department of Wildlife Ecology and Conservation110 Newins‐Ziegler Hall, P.O. Box 110430GainesvilleFL32608USA
| | - Madelon Van De Kerk
- University of Washington, School of Environmental and Forest Sciences114 Winkenwerder, P.O. Box 352100SeattleWA98195USA
| | - William E. Pine
- University of Florida, Department of Wildlife Ecology and Conservation110 Newins‐Ziegler Hall, P.O. Box 110430GainesvilleFL32608USA
| | - Mark E. Hostetler
- University of Florida, Department of Wildlife Ecology and Conservation110 Newins‐Ziegler Hall, P.O. Box 110430GainesvilleFL32608USA
| | - Darryl J. Heard
- University of Florida, School of Veterinary MedicineBox 100126GainesvilleFL32610USA
| | - Steve A. Johnson
- University of Florida, Department of Wildlife Ecology and Conservation110 Newins‐Ziegler Hall, P.O. Box 110430GainesvilleFL32608USA
| |
Collapse
|
24
|
Ruiz-Lambides AV, Weiß BM, Kulik L, Widdig A. Which male and female characteristics influence the probability of extragroup paternities in rhesus macaques, Macaca mulatta? Anim Behav 2018; 140:119-127. [PMID: 30455506 PMCID: PMC6238966 DOI: 10.1016/j.anbehav.2018.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Extragroup paternity (EGP) is found across a wide range of species and may entail reproductive benefits, but may also entail costs to both sexes. While population and group parameters affecting the degree of EGPs are relatively well established, less is known about the individual characteristics that make males and females engage in alternative reproductive tactics such as EGP. Applying a combination of long-term demographic and genetic data from the rhesus macaque population of Cayo Santiago (Puerto Rico, U.S.A.), we investigate which male and female characteristics influence the probability of EGP to better understand the circumstances that shape the distribution and occurrence of EGP. Our results show that, against our expectations, higher-ranking females were more likely to produce EGP offspring than lower- ranking females. The probability of producing extragroup offspring was not significantly related to female or male age, male tenure or previous reproductive success. Furthermore, genetic relatedness between the parents did not affect the production of extragroup offspring, but extragroup offspring were more frequently produced early rather than late in a given mating season. Altogether, our analysis suggests that individual attributes and seasonal aspects create different opportunities and preferences for engaging in EGP as an alternative reproductive tactic. The observed patterns of EGP in rhesus macaques appear to be consistent with female mate choice for genetic benefits, which needs to be confirmed in future studies.
Collapse
Affiliation(s)
- Angelina V. Ruiz-Lambides
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Behavioral Ecology Research Group, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- Cayo Santiago Field Station, Caribbean Primate Research Center, University of Puerto Rico, Punta Santiago, Puerto Rico
| | - Brigitte M. Weiß
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Behavioral Ecology Research Group, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Lars Kulik
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Behavioral Ecology Research Group, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Anja Widdig
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Behavioral Ecology Research Group, Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
25
|
Abstract
Heterogeneity in life courses among individuals of a population influences the speed of adaptive evolutionary processes, but it is less clear how biotic and abiotic environmental fluctuations influence such heterogeneity. We investigate principal drivers of variability in sequence of stages during an individual's life in a stage-structured population. We quantify heterogeneity by measuring population entropy of a Markov chain, which computes the rate of diversification of individual life courses. Using individual data of a primate population, we show that density regulates the stage composition of the population but that its entropy and the generating moments of heterogeneity are independent of density. This lack of influence of density on heterogeneity is due to neither low year-to-year variation in entropy nor differences in survival among stages but is rather due to differences in stage transitions. Our analysis thus shows that well-known classical ecological selective forces, such as density regulation, are not linked to potential selective forces governing heterogeneity through underlying stage dynamics. Despite evolution acting heavily on individual variability in fitness components, our understanding is poor whether observed heterogeneity is adaptive and how it evolves and is maintained. Our analysis illustrates how entropy represents a more integrated measure of diversity compared to the population structural composition, giving us new insights about the underlying drivers of individual heterogeneity within populations and potential evolutionary mechanisms.
Collapse
|
26
|
Abstract
Heterogeneity in life courses among individuals of a population influences the speed of adaptive evolutionary processes, but it is less clear how biotic and abiotic environmental fluctuations influence such heterogeneity. We investigate principal drivers of variability in sequence of stages during an individual's life in a stage-structured population. We quantify heterogeneity by measuring population entropy of a Markov chain, which computes the rate of diversification of individual life courses. Using individual data of a primate population, we show that density regulates the stage composition of the population but that its entropy and the generating moments of heterogeneity are independent of density. This lack of influence of density on heterogeneity is due to neither low year-to-year variation in entropy nor differences in survival among stages but is rather due to differences in stage transitions. Our analysis thus shows that well-known classical ecological selective forces, such as density regulation, are not linked to potential selective forces governing heterogeneity through underlying stage dynamics. Despite evolution acting heavily on individual variability in fitness components, our understanding is poor whether observed heterogeneity is adaptive and how it evolves and is maintained. Our analysis illustrates how entropy represents a more integrated measure of diversity compared to the population structural composition, giving us new insights about the underlying drivers of individual heterogeneity within populations and potential evolutionary mechanisms.
Collapse
|
27
|
Does behavioral flexibility contribute to successful play among juvenile rhesus macaques? Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2377-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Kanthaswamy S, Oldt RF, Ng J, Ruiz-Lambides AV, Maldonado E, Martínez MI, Sariol CA. Population Genetic Structure of the Cayo Santiago Colony of Rhesus Macaques ( Macaca mulatta). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2017; 56:396-401. [PMID: 28724489 PMCID: PMC5517329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/27/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
The rhesus macaque population at Cayo Santiago increases annually and is in urgent need of control. In-depth assessments of the colony's population genetic and pedigree structures provide a starting point for improving the colony's long-term management program. We evaluated the degree of genetic variation and coefficients of inbreeding and kinship of the Cayo Santiago colony by using pedigree and short tandem repeat (STR) data from 4738 rhesus macaques, which represent 7 extant social groups and a group of migrant males. Information on each animal's parentage, sex, birth date, and date of death or removal from the island were used to generate estimates of mean kinship, kinship value, gene value, genome uniqueness (GU), founder equivalents (fe), and founder genome equivalents (fg). Pedigree and STR analyses revealed that the social groups have not differentiated genetically from each other due to male-mediated gene flow (that is, FST estimates were in the negative range) and exhibit sufficient genetic variation, with mean estimates of allele numbers and observed and expected heterozygosity of 6.57, 0.72, and 0.70, respectively. Estimates of GU, fe, and fg show that a high effective number of founders has affected the colony's current genetic structure in a positive manner. As demographic changes occur, genetic and pedigree matrices need to be monitored consistently to ensure the health and wellbeing of the Cayo Santiago colony.
Collapse
Key Words
- fe, founder equivalents
- fg, founder genome equivalents, fst, fixation index
- gu, genome uniqueness
- gv, gene value
- k, kinship
- kv, kinship value
- ssfs, sabana seca field station
- str, short tandem repeat
Collapse
Affiliation(s)
- Sreetharan Kanthaswamy
- California National Primate Research Center, University of California, Davis, California, School of Mathematics and Natural Sciences, Arizona State University (ASU) at the West Campus, Glendale, Arizona, Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, Arizona;,
| | - Robert F Oldt
- School of Mathematics and Natural Sciences, Arizona State University (ASU) at the West Campus, Glendale, Arizona, Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Jillian Ng
- California National Primate Research Center, University of California, Davis, California
| | - Angelina V Ruiz-Lambides
- Caribbean Primate Research Center and Departments of Microbiology and Medical Zoology and Internal Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Elizabeth Maldonado
- Caribbean Primate Research Center and Departments of Microbiology and Medical Zoology and Internal Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Melween I Martínez
- Caribbean Primate Research Center and Departments of Microbiology and Medical Zoology and Internal Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Carlos A Sariol
- Caribbean Primate Research Center and Departments of Microbiology and Medical Zoology and Internal Medicine, Departments of Microbiology and Medical Zoology and Internal Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
29
|
Kanthaswamy S, Ng J, Hernández-Pacheco R, Ruiz-Lambides A, Maldonado E, Martínez MI, Sariol CA. The Population Genetic Composition of Conventional and SPF Colonies of Rhesus Macaques (Macaca mulatta) at the Caribbean Primate Research Center. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2016; 55:147-51. [PMID: 27025804 PMCID: PMC4783631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/22/2015] [Accepted: 07/23/2015] [Indexed: 06/05/2023]
Abstract
The SPF breeding program at the Caribbean Primate Research Center supplies Indian-origin rhesus macaques of known genetic and virologic background for biomedical research. In this study, population genetic analyses using 14 short tandem-repeat sequences showed that the SPF colony has remained genetically homogenous over time, with sufficient amounts of heterozygosity and minimal stratification from its founders. Intergenerational studies indicated that an average of 7 alleles have been retained, inbreeding levels have remained low, and the degree of Indian ancestry is one of the highest among several national primate research centers. The relative low genetic diversity in the free-ranging population as well as in the captive SPF and conventional colonies when compared with that of other primate centers indicates that the free-ranging population, from which the captive-colony animals were derived, has experienced significant founder effects and genetic drift during the years after its establishment. This study supports the historical origin of the free-ranging population and confirms the high value of this resource for biomedical research. Current genetic diversity levels within the SPF colony can be ensured with the practice of colony management approaches such as equalizing male:female ratios in each SPF breeding group and increasing breeding group sizes. Introducing new Indian-origin macaques from other captive colonies might help to maximize the genetic diversity of the breeding stock. Furthermore, genetic estimates must be used to rank breeders according to their genetic value or their genome uniqueness to increase founder-genome representation and curb future genetic bottlenecks and allele loss.
Collapse
Affiliation(s)
- Sreetharan Kanthaswamy
- California National Primate Research Center, University of California, Davis, California, USA; School of Mathematics and Natural Sciences, West Campus, Arizona State University, Glendale, Arizona, USA.
| | - Jillian Ng
- California National Primate Research Center, University of California, Davis, California, USA
| | - Raisa Hernández-Pacheco
- Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Angelina Ruiz-Lambides
- Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Elizabeth Maldonado
- Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Melween I Martínez
- Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Carlos A Sariol
- Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico; Department of Microbiology and Medical Zoology, and Internal Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|