1
|
Sadeghi N, Mustoe A, Ross CN, McCarrey JR, Hermann BP. Benchmarks defining high-quality sperm in the common marmoset (Callithrix jacchus). Andrology 2024. [PMID: 39436318 DOI: 10.1111/andr.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Common marmosets (Callithrix jacchus) are increasingly recognized as valuable nonhuman primates (NHPs) for biomedical research due to their small size and short reproductive cycle and lifespan relative to other NHP species. Maximizing the utility of captive research marmosets, including genetically manipulated animals, will require the use of assisted reproductive techniques (ART) including manipulation, storage, and sharing of marmoset sperm. Here, we identify characteristics of high-quality semen samples and validate a simple method for selecting high-quality sperm. METHODS Computer-assisted sperm analysis (CASA) was used to evaluate sperm quality in semen samples collected from 44 marmosets and assessed the use of the swim-up method for the selection of high-quality sperm was also tested in half the samples as a potential means to optimize in vitro fertilization or intrauterine insemination. RESULTS For each reference parameter, samples at or below the 5th percentile were categorized as abnormal sperm, while those above the 5th percentile were considered to be normal. Among normal samples, those at or above the 50th percentile were categorized as high-quality. High-quality semen samples exhibited the following characteristics: semen volume ≥ 30 µL; sperm count ≥ 107/ejaculate; total motility ≥ 35%; and normal morphology ≥ 5%. Sperm isolated by swim-up exhibited superior sperm progressive motility (19.7% ± 4.5 vs. 5.6% ± 2.1; P = 0.01) and normal morphology (13.1 ± 1.59 vs. 7.65 ± 1.1; P < 0.001) compared with unselected sperm. CONCLUSION This study defines robust, statistically supported reference values for evaluating marmoset semen samples to assist with the identification of optimal sperm donors and the selection of high-quality sperm samples for assisted reproduction. Ultimately, these reference values combined with a validated selection method will contribute to consistent standards for the international sharing of genetically diverse and/or gene-edited marmoset sperm for research and reproduction.
Collapse
Affiliation(s)
- Niloofar Sadeghi
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Aaryn Mustoe
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Corinna N Ross
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - John R McCarrey
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Brian P Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Baum ML, Bartley CM. Human-derived monoclonal autoantibodies as interrogators of cellular proteotypes in the brain. Trends Neurosci 2024; 47:753-765. [PMID: 39242246 DOI: 10.1016/j.tins.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 09/09/2024]
Abstract
A major aim of neuroscience is to identify and model the functional properties of neural cells whose dysfunction underlie neuropsychiatric illness. In this article, we propose that human-derived monoclonal autoantibodies (HD-mAbs) are well positioned to selectively target and manipulate neural subpopulations as defined by their protein expression; that is, cellular proteotypes. Recent technical advances allow for efficient cloning of autoantibodies from neuropsychiatric patients. These HD-mAbs can be introduced into animal models to gain biological and pathobiological insights about neural proteotypes of interest. Protein engineering can be used to modify, enhance, silence, or confer new functional properties to native HD-mAbs, thereby enhancing their versatility. Finally, we discuss the challenges and limitations confronting HD-mAbs as experimental research tools for neuroscience.
Collapse
Affiliation(s)
- Matthew L Baum
- Brigham and Women's Hospital, Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Department of Psychiatry, Boston, MA, USA
| | - Christopher M Bartley
- Translational Immunopsychiatry Unit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Ha LJ, Yeo HG, Kim YG, Baek I, Baeg E, Lee YH, Won J, Jung Y, Park J, Jeon CY, Kim K, Min J, Song Y, Park JH, Nam KR, Son S, Yoo SBM, Park SH, Choi WS, Lim KS, Choi JY, Cho JH, Lee Y, Choi HJ. Hypothalamic neuronal activation in non-human primates drives naturalistic goal-directed eating behavior. Neuron 2024; 112:2218-2230.e6. [PMID: 38663401 DOI: 10.1016/j.neuron.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/16/2024] [Accepted: 03/28/2024] [Indexed: 06/03/2024]
Abstract
Maladaptive feeding behavior is the primary cause of modern obesity. While the causal influence of the lateral hypothalamic area (LHA) on eating behavior has been established in rodents, there is currently no primate-based evidence available on naturalistic eating behaviors. We investigated the role of LHA GABAergic (LHAGABA) neurons in eating using chemogenetics in three macaques. LHAGABA neuron activation significantly increased naturalistic goal-directed behaviors and food motivation, predominantly for palatable food. Positron emission tomography and magnetic resonance spectroscopy validated chemogenetic activation. Resting-state functional magnetic resonance imaging revealed that the functional connectivity (FC) between the LHA and frontal areas was increased, while the FC between the frontal cortices was decreased after LHAGABA neuron activation. Thus, our study elucidates the role of LHAGABA neurons in eating and obesity therapeutics for primates and humans.
Collapse
Affiliation(s)
- Leslie Jaesun Ha
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; KRIBB School of Bioscience, Korea National University of Science and Technology, Daejeon, Republic of Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; KRIBB School of Bioscience, Korea National University of Science and Technology, Daejeon, Republic of Korea
| | - Inhyeok Baek
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunha Baeg
- Department of Nano-bioengineering, Incheon National University, Incheon, Republic of Korea; Center for Brain-Machine Interface, Incheon National University, Incheon, Republic of Korea
| | - Young Hee Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Yunkyo Jung
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea; National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Jisun Min
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea; National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Youngkyu Song
- Center for Bio-imaging and Translational Research, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jeong-Heon Park
- Center for Bio-imaging and Translational Research, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Kyung Rok Nam
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sangkyu Son
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seng Bum Michael Yoo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sung-Hyun Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Won Seok Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Radiological and Medico-Oncological Sciences, Korea National University of Science and, Technology, Seoul, Republic of Korea.
| | - Jee-Hyun Cho
- Center for Bio-imaging and Translational Research, Korea Basic Science Institute, Cheongju, Republic of Korea.
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; KRIBB School of Bioscience, Korea National University of Science and Technology, Daejeon, Republic of Korea.
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
4
|
Soman RR, Fabiszak MM, McPhee M, Schade P, Freiwald W, Brivanlou AH. High resolution dynamic ultrasound atlas of embryonic and fetal development of the common marmoset. J Assist Reprod Genet 2024; 41:1319-1328. [PMID: 38446290 PMCID: PMC11143105 DOI: 10.1007/s10815-024-03072-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
PURPOSE The common marmoset (Callithrix jacchus) provides an ideal model to study early development of primates, and an in vivo platform to validate conclusions from in vitro studies of human embryos and embryo models. Currently, however, no established staging atlas of marmoset embryonic development exists. Using high-resolution, longitudinal ultrasound scans on live pregnant marmosets, we present the first dynamic in vivo imaging of entire primate gestation beginning with attachment until the last day before birth. METHODS Our study unveils the first dynamic images of an in vivo attached mammalian embryo developing in utero, and the intricacies of the delayed development period unique to the common marmoset amongst primates, revealing a window for somatic interventions. RESULTS Established obstetric and embryologic measurements for each scan were used comparatively with the standardized Carnegie staging of human development to highlight similarities and differences. Our study also allows for tracking the development of major organs. We focus on the ontogeny of the primate heart and brain. Finally, input ultrasound images were used to train deep neural networks to accurately determine the gestational age. All our ultrasounds and staging data recording are posted online so that the atlas can be used as a community resource toward monitoring and managing marmoset breeding colonies. CONCLUSION The temporal and spatial resolution of ultrasound achieved in this study demonstrates the promise of noninvasive imaging in the marmoset for the in vivo study of primate-specific aspects of embryonic and fetal development.
Collapse
Affiliation(s)
- Rohan R Soman
- Tri-Institutional MD-PhD Program, Weill Cornell Medical College, New York, NY, USA
- Laboratory of Synthetic Embryology, Rockefeller University, New York, NY, USA
| | - Margaret M Fabiszak
- Tri-Institutional MD-PhD Program, Weill Cornell Medical College, New York, NY, USA
- Laboratory of Neural Systems, Rockefeller University, New York, NY, USA
| | - Michael McPhee
- Laboratory of Neural Systems, Rockefeller University, New York, NY, USA
| | - Peter Schade
- Laboratory of Neural Systems, Rockefeller University, New York, NY, USA
| | - Winrich Freiwald
- Laboratory of Neural Systems, Rockefeller University, New York, NY, USA
| | - Ali H Brivanlou
- Laboratory of Synthetic Embryology, Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Sakai Y, Okabe Y, Itai G, Shiozawa S. An efficient evaluation system for factors affecting the genome editing efficiency in mouse. Exp Anim 2023; 72:526-534. [PMID: 37407493 PMCID: PMC10658088 DOI: 10.1538/expanim.23-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Genome editing technology is widely used in the field of laboratory animal science for the production of genetic disease models and the analysis of gene function. One of the major technical problems in genome editing is the low efficiency of precise knock-in by homologous recombination compared to simple knockout via non-homologous end joining. Many studies have focused on this issue, and various solutions have been proposed; however, they have yet to be fully resolved. In this study, we established a system that can easily determine the genotype at the mouse (Mus musculus) Tyr gene locus for genome editing both in vitro and in vivo. In this genome editing system, by designing the Cas9 cleavage site and donor template, wild-type, knockout, and knock-in genotypes can be distinguished by restriction fragment length polymorphisms of PCR products. Moreover, the introduction of the H420R mutation in tyrosinase allows the determination of knock-in mice with specific coat color patterns. Using this system, we evaluated the effects of small-molecule compounds on the efficiency of genome editing in mouse embryos. Consequently, we successfully identified a small-molecule compound that improves knock-in efficiency in genome editing in mouse embryos. Thus, this genome editing system is suitable for screening compounds that can improve knock-in efficiency.
Collapse
Affiliation(s)
- Yusuke Sakai
- Institute for Disease Modeling, Kurume University School of Medicine, 67 Asahimachi, Kurume city, Fukuoka 830-0011, Japan
| | - Yuri Okabe
- Institute for Disease Modeling, Kurume University School of Medicine, 67 Asahimachi, Kurume city, Fukuoka 830-0011, Japan
| | - Gen Itai
- Center for Integrated Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- JAC Inc., 1-2-7 Higashiyama, Meguro-ku, Tokyo 153-0043, Japan
| | - Seiji Shiozawa
- Institute for Disease Modeling, Kurume University School of Medicine, 67 Asahimachi, Kurume city, Fukuoka 830-0011, Japan
- Center for Integrated Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
6
|
Datta D. Interrogating the Etiology of Sporadic Alzheimer's Disease Using Aging Rhesus Macaques: Cellular, Molecular, and Cortical Circuitry Perspectives. J Gerontol A Biol Sci Med Sci 2023; 78:1523-1534. [PMID: 37279946 PMCID: PMC10460555 DOI: 10.1093/gerona/glad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 06/08/2023] Open
Abstract
Aging is the most significant risk factor for neurodegenerative disorders such as Alzheimer's disease (AD) associated with profound socioeconomic and personal costs. Consequently, there is an urgent need for animal models that recapitulate the age-related spatial and temporal complexity and patterns of pathology identical to human AD. Our research in aging nonhuman primate models involving rhesus macaques has revealed naturally occurring amyloid and tau pathology, including the formation of amyloid plaques and neurofibrillary tangles comprising hyperphosphorylated tau. Moreover, rhesus macaques exhibit synaptic dysfunction in association cortices and cognitive impairments with advancing age, and thus can be used to interrogate the etiological mechanisms that generate neuropathological cascades in sporadic AD. Particularly, unique molecular mechanisms (eg, feedforward cyclic adenosine 3',5'-monophosphate [cAMP]-Protein kinase A (PKA)-calcium signaling) in the newly evolved primate dorsolateral prefrontal cortex are critical for persistent firing required for subserving higher-order cognition. For example, dendritic spines in primate dorsolateral prefrontal cortex contain a specialized repertoire of proteins to magnify feedforward cAMP-PKA-calcium signaling such as N-methyl-d-aspartic acid receptors and calcium channels on the smooth endoplasmic reticulum (eg, ryanodine receptors). This process is constrained by phosphodiesterases (eg, PDE4) that hydrolyze cAMP and calcium-buffering proteins (eg, calbindin) in the cytosol. However, genetic predispositions and age-related insults exacerbate feedforward cAMP-Protein kinase A-calcium signaling pathways that induce a myriad of downstream effects, including the opening of K+ channels to weaken network connectivity, calcium-mediated dysregulation of mitochondria, and activation of inflammatory cascades to eliminate synapses, thereby increasing susceptibility to atrophy. Therefore, aging rhesus macaques provide an invaluable model to explore novel therapeutic strategies in sporadic AD.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Chen A, Sun Y, Lei Y, Li C, Liao S, Meng J, Bai Y, Liu Z, Liang Z, Zhu Z, Yuan N, Yang H, Wu Z, Lin F, Wang K, Li M, Zhang S, Yang M, Fei T, Zhuang Z, Huang Y, Zhang Y, Xu Y, Cui L, Zhang R, Han L, Sun X, Chen B, Li W, Huangfu B, Ma K, Ma J, Li Z, Lin Y, Wang H, Zhong Y, Zhang H, Yu Q, Wang Y, Liu X, Peng J, Liu C, Chen W, Pan W, An Y, Xia S, Lu Y, Wang M, Song X, Liu S, Wang Z, Gong C, Huang X, Yuan Y, Zhao Y, Chai Q, Tan X, Liu J, Zheng M, Li S, Huang Y, Hong Y, Huang Z, Li M, Jin M, Li Y, Zhang H, Sun S, Gao L, Bai Y, Cheng M, Hu G, Liu S, Wang B, Xiang B, Li S, Li H, Chen M, Wang S, Li M, Liu W, Liu X, Zhao Q, Lisby M, Wang J, Fang J, Lin Y, Xie Q, Liu Z, He J, Xu H, Huang W, Mulder J, Yang H, Sun Y, Uhlen M, Poo M, Wang J, Yao J, Wei W, Li Y, Shen Z, Liu L, Liu Z, Xu X, Li C. Single-cell spatial transcriptome reveals cell-type organization in the macaque cortex. Cell 2023; 186:3726-3743.e24. [PMID: 37442136 DOI: 10.1016/j.cell.2023.06.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/24/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Elucidating the cellular organization of the cerebral cortex is critical for understanding brain structure and function. Using large-scale single-nucleus RNA sequencing and spatial transcriptomic analysis of 143 macaque cortical regions, we obtained a comprehensive atlas of 264 transcriptome-defined cortical cell types and mapped their spatial distribution across the entire cortex. We characterized the cortical layer and region preferences of glutamatergic, GABAergic, and non-neuronal cell types, as well as regional differences in cell-type composition and neighborhood complexity. Notably, we discovered a relationship between the regional distribution of various cell types and the region's hierarchical level in the visual and somatosensory systems. Cross-species comparison of transcriptomic data from human, macaque, and mouse cortices further revealed primate-specific cell types that are enriched in layer 4, with their marker genes expressed in a region-dependent manner. Our data provide a cellular and molecular basis for understanding the evolution, development, aging, and pathogenesis of the primate brain.
Collapse
Affiliation(s)
- Ao Chen
- BGI-Shenzhen, Shenzhen 518103, China; Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark; BGI Research-Southwest, BGI, Chongqing 401329, China; JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China
| | - Yidi Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ying Lei
- BGI-Shenzhen, Shenzhen 518103, China; BGI-Hangzhou, Hangzhou 310012, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sha Liao
- BGI-Shenzhen, Shenzhen 518103, China; BGI Research-Southwest, BGI, Chongqing 401329, China; JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China
| | - Juan Meng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yiqin Bai
- Lingang Laboratory, Shanghai 200031, China
| | - Zhen Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhifeng Liang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Nini Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zihan Wu
- Tencent AI Lab, Shenzhen 518057, China
| | - Feng Lin
- BGI-Shenzhen, Shenzhen 518103, China
| | - Kexin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mei Li
- BGI-Shenzhen, Shenzhen 518103, China
| | - Shuzhen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Tianyi Fei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenkun Zhuang
- BGI-Shenzhen, Shenzhen 518103, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yiming Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Zhang
- BGI-Shenzhen, Shenzhen 518103, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yuanfang Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Luman Cui
- BGI-Shenzhen, Shenzhen 518103, China
| | - Ruiyi Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Han
- BGI-Shenzhen, Shenzhen 518103, China
| | - Xing Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | - Baoqian Huangfu
- BGI-Shenzhen, Shenzhen 518103, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | | | - Jianyun Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhao Li
- BGI-Shenzhen, Shenzhen 518103, China
| | - Yikun Lin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - He Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanqing Zhong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huifang Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yaqian Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing Liu
- BGI-Shenzhen, Shenzhen 518103, China
| | - Jian Peng
- BGI-Shenzhen, Shenzhen 518103, China
| | | | - Wei Chen
- BGI-Shenzhen, Shenzhen 518103, China
| | | | - Yingjie An
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shihui Xia
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanbing Lu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingli Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinxiang Song
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuai Liu
- BGI-Shenzhen, Shenzhen 518103, China
| | | | - Chun Gong
- BGI-Shenzhen, Shenzhen 518103, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Xin Huang
- BGI-Shenzhen, Shenzhen 518103, China
| | - Yue Yuan
- BGI-Shenzhen, Shenzhen 518103, China
| | - Yun Zhao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qinwen Chai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing Tan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianfeng Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingyuan Zheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shengkang Li
- BGI-Shenzhen, Shenzhen 518103, China; Guangdong Bigdata Engineering Technology Research Center for Life Sciences, Shenzhen 518083, China
| | | | - Yan Hong
- BGI-Shenzhen, Shenzhen 518103, China
| | | | - Min Li
- BGI-Shenzhen, Shenzhen 518103, China
| | - Mengmeng Jin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Suhong Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Gao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yinqi Bai
- BGI-Shenzhen, Shenzhen 518103, China
| | | | - Guohai Hu
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shiping Liu
- BGI-Shenzhen, Shenzhen 518103, China; BGI-Hangzhou, Hangzhou 310012, China
| | - Bo Wang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Bin Xiang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuting Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huanhuan Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengni Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiwen Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Minglong Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Xin Liu
- BGI-Shenzhen, Shenzhen 518103, China
| | - Qian Zhao
- BGI-Shenzhen, Shenzhen 518103, China
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jing Wang
- BGI-Shenzhen, Shenzhen 518103, China
| | - Jiao Fang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun Lin
- BGI-Shenzhen, Shenzhen 518103, China
| | - Qing Xie
- BGI-Shenzhen, Shenzhen 518103, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huatai Xu
- Lingang Laboratory, Shanghai 200031, China
| | - Wei Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jan Mulder
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 17121, Sweden; Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | | | - Yangang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mathias Uhlen
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 17121, Sweden; Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Muming Poo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518103, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | | | - Wu Wei
- Lingang Laboratory, Shanghai 200031, China; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yuxiang Li
- BGI-Shenzhen, Shenzhen 518103, China; BGI Research-Wuhan, BGI, Wuhan 430074, China.
| | - Zhiming Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China.
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen 518103, China; BGI-Hangzhou, Hangzhou 310012, China.
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China.
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518103, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China.
| | - Chengyu Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Sukoff Rizzo SJ, Homanics G, Schaeffer DJ, Schaeffer L, Park JE, Oluoch J, Zhang T, Haber A, Seyfried NT, Paten B, Greenwood A, Murai T, Choi SH, Huhe H, Kofler J, Strick PL, Carter GW, Silva AC. Bridging the rodent to human translational gap: Marmosets as model systems for the study of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12417. [PMID: 37614242 PMCID: PMC10442521 DOI: 10.1002/trc2.12417] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/21/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Introduction Our limited understanding of the mechanisms that trigger the emergence of Alzheimer's disease (AD) has contributed to the lack of interventions that stop, prevent, or fully treat this disease. We believe that the development of a non-human primate model of AD will be an essential step toward overcoming limitations of other model systems and is crucial for investigating primate-specific mechanisms underlying the cellular and molecular root causes of the pathogenesis and progression of AD. Methods A new consortium has been established with funding support from the National Institute on Aging aimed at the generation, characterization, and validation of Marmosets As Research Models of AD (MARMO-AD). This consortium will study gene-edited marmoset models carrying genetic risk for AD and wild-type genetically diverse aging marmosets from birth throughout their lifespan, using non-invasive longitudinal assessments. These include characterizing the genetic, molecular, functional, behavioral, cognitive, and pathological features of aging and AD. Results The consortium successfully generated viable founders carrying PSEN1 mutations in C410Y and A426P using CRISPR/Cas9 approaches, with germline transmission demonstrated in the C410Y line. Longitudinal characterization of these models, their germline offspring, and normal aging outbred marmosets is ongoing. All data and resources from this consortium will be shared with the greater AD research community. Discussion By establishing marmoset models of AD, we will be able to investigate primate-specific cellular and molecular root causes that underlie the pathogenesis and progression of AD, overcome limitations of other model organisms, and support future translational studies to accelerate the pace of bringing therapies to patients.
Collapse
Affiliation(s)
| | - Gregg Homanics
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | | - Lauren Schaeffer
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Jung Eun Park
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Julia Oluoch
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Tingting Zhang
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | | | | - Benedict Paten
- University of California Santa Cruz Genomics InstituteUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | | | - Takeshi Murai
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Sang Ho Choi
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Hasi Huhe
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Julia Kofler
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Peter L. Strick
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | | - Afonso C. Silva
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
9
|
Prasad T, Iyer S, Chatterjee S, Kumar M. In vivo models to study neurogenesis and associated neurodevelopmental disorders-Microcephaly and autism spectrum disorder. WIREs Mech Dis 2023:e1603. [PMID: 36754084 DOI: 10.1002/wsbm.1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/14/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023]
Abstract
The genesis and functioning of the central nervous system are one of the most intricate and intriguing aspects of embryogenesis. The big lacuna in the field of human CNS development is the lack of accessibility of the human brain for direct observation during embryonic and fetal development. Thus, it is imperative to establish alternative animal models to gain deep mechanistic insights into neurodevelopment, establishment of neural circuitry, and its function. Neurodevelopmental events such as neural specification, differentiation, and generation of neuronal and non-neuronal cell types have been comprehensively studied using a variety of animal models and in vitro model systems derived from human cells. The experimentations on animal models have revealed novel, mechanistic insights into neurogenesis, formation of neural networks, and function. The models, thus serve as indispensable tools to understand the molecular basis of neurodevelopmental disorders (NDDs) arising from aberrations during embryonic development. Here, we review the spectrum of in vivo models such as fruitfly, zebrafish, frog, mice, and nonhuman primates to study neurogenesis and NDDs like microcephaly and Autism Spectrum Disorder. We also discuss nonconventional models such as ascidians and the recent technological advances in the field to study neurogenesis, disease mechanisms, and pathophysiology of human NDDs. This article is categorized under: Cancer > Stem Cells and Development Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development Congenital Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Tuhina Prasad
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sharada Iyer
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sayoni Chatterjee
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Induced Pluripotent Stem Cells, a Stepping Stone to In Vitro Human Models of Hearing Loss. Cells 2022; 11:cells11203331. [PMID: 36291196 PMCID: PMC9600035 DOI: 10.3390/cells11203331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Hearing loss is the most prevalent sensorineural impairment in humans. Yet despite very active research, no effective therapy other than the cochlear implant has reached the clinic. Main reasons for this failure are the multifactorial nature of the disorder, its heterogeneity, and a late onset that hinders the identification of etiological factors. Another problem is the lack of human samples such that practically all the work has been conducted on animals. Although highly valuable data have been obtained from such models, there is the risk that inter-species differences exist that may compromise the relevance of the gathered data. Human-based models are therefore direly needed. The irruption of human induced pluripotent stem cell technologies in the field of hearing research offers the possibility to generate an array of otic cell models of human origin; these may enable the identification of guiding signalling cues during inner ear development and of the mechanisms that lead from genetic alterations to pathology. These models will also be extremely valuable when conducting ototoxicity analyses and when exploring new avenues towards regeneration in the inner ear. This review summarises some of the work that has already been conducted with these cells and contemplates future possibilities.
Collapse
|
11
|
Haverkamp S, Mietsch M, Briggman KL. Developmental errors in the common marmoset retina. Front Neuroanat 2022; 16:1000693. [PMID: 36204677 PMCID: PMC9531312 DOI: 10.3389/fnana.2022.1000693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Although retinal organization is remarkably conserved, morphological anomalies can be found to different extents and varieties across animal species with each presenting unique characteristics and patterns of displaced and misplaced neurons. One of the most widely used non-human primates in research, the common marmoset (Callithrix jaccus) could potentially also be of interest for visual research, but is unfortunately not well characterized in this regard. Therefore, the aim of our study was to provide a first time description of structural retinal layering including morphological differences and distinctive features in this species. Retinas from animals (n = 26) of both sexes and different ages were immunostained with cell specific antibodies to label a variety of bipolar, amacrine and ganglion cells. Misplaced ganglion cells with somata in the outermost part of the inner nuclear layer and rod bipolar cells with axon terminals projecting into the outer plexiform layer instead of the inner plexiform layer independent of age or sex of the animals were the most obvious findings, whereas misplaced amacrine cells and misplaced cone bipolar axon terminals occurred to a lesser extent. With this first time description of developmental retinal errors over a wide age range, we provide a basic characterization of the retinal system of the common marmosets, which can be taken into account for future studies in this and other animal species. The finding of misplaced ganglion cells and misplaced bipolar cell axon terminals was not reported before and displays an anatomic variation worthwhile for future analyzes of their physiological and functional impact.
Collapse
Affiliation(s)
- Silke Haverkamp
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior – caesar, Bonn, Germany
- *Correspondence: Silke Haverkamp
| | - Matthias Mietsch
- Laboratory Animal Science Unit, German Primate Center, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Kevin L. Briggman
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior – caesar, Bonn, Germany
| |
Collapse
|
12
|
Haverkamp S, Reinhard K, Peichl L, Mietsch M. No evidence for age-related alterations in the marmoset retina. Front Neuroanat 2022; 16:945295. [PMID: 36120100 PMCID: PMC9479465 DOI: 10.3389/fnana.2022.945295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/13/2022] [Indexed: 12/19/2022] Open
Abstract
The physiological aging process of the retina is accompanied by various and sometimes extensive changes: Macular degeneration, retinopathies and glaucoma are the most common findings in the elderly and can potentially lead to irreversible visual disablements up to blindness. To study the aging process and to identify possible therapeutic targets to counteract these diseases, the use of appropriate animal models is mandatory. Besides the most commonly used rodent species, a non-human primate, the common marmoset (Callithrix jacchus) emerged as a promising animal model of human aging over the last years. However, the visual aging process in this species is only partially characterized, especially with regard to retinal aberrations. Therefore, we assessed here for the first time potential changes in retinal morphology of the common marmoset of different age groups. By cell type specific immunolabeling, we analyzed different cell types and distributions, potential photoreceptor and ganglion cell loss, and structural reorganization. We detected no signs of age-related differences in staining patterns or densities of various cell populations. For example, there were no signs of photoreceptor degeneration, and there was only minimal sprouting of rod bipolar cells in aged retinas. Altogether, we describe here the maintenance of a stable neuronal architecture, distribution and number of different cell populations with only mild aberrations during the aging process in the common marmoset retina. These findings are in stark contrast to previously reported findings in rodent species and humans and deserve further investigations to identify the underlying mechanisms and possible therapeutic targets.
Collapse
Affiliation(s)
- Silke Haverkamp
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior—Caesar, Bonn, Germany
| | - Katja Reinhard
- Retinal Circuits and Optogenetics, Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Leo Peichl
- Institute of Clinical Neuroanatomy, Dr. Senckenbergische Anatomie, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Matthias Mietsch
- Laboratory Animal Science Unit, German Primate Center, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Srikulnath K, Ahmad SF, Panthum T, Malaivijitnond S. Importance of Thai macaque bioresources for biological research and human health. J Med Primatol 2021; 51:62-72. [PMID: 34806191 DOI: 10.1111/jmp.12555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/25/2023]
Abstract
During the past century, macaque bioresources have provided remarkable scientific and biomedical discoveries related to the understanding of human physiology, neuroanatomy, reproduction, development, cognition, and pathology. Considerable progress has been made, and an urgent need has arisen to develop infrastructure and viable settings to meet the current global demand in research models during the so-called new normal after COVID-19 era. This review highlights the critical need for macaque bioresources and proposes the establishment of a designated primate research center to integrate research in primate laboratories for the rescue and rehabilitation of wild macaques. Key areas where macaque models have been and continue to be essential for advancing fundamental knowledge in biomedical and biological research are outlined. Detailed genetic studies on macaque bioresources of Thai origin can further facilitate the rapid pace of vaccine discovery.
Collapse
Affiliation(s)
- Kornsorn Srikulnath
- National Primate Research Center of Thailand-Chulalongkorn University, Saraburi, Thailand.,Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, Bangkok, Thailand.,Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, Bangkok, Thailand.,Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, Bangkok, Thailand.,Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand-Chulalongkorn University, Saraburi, Thailand.,Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Park J, Khan S, Yun DH, Ku T, Villa KL, Lee JE, Zhang Q, Park J, Feng G, Nedivi E, Chung K. Epitope-preserving magnified analysis of proteome (eMAP). SCIENCE ADVANCES 2021; 7:eabf6589. [PMID: 34767453 PMCID: PMC8589305 DOI: 10.1126/sciadv.abf6589] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/24/2021] [Indexed: 05/28/2023]
Abstract
Synthetic tissue-hydrogel methods have enabled superresolution investigation of biological systems using diffraction-limited microscopy. However, chemical modification by fixatives can cause loss of antigenicity, limiting molecular interrogation of the tissue gel. Here, we present epitope-preserving magnified analysis of proteome (eMAP) that uses purely physical tissue-gel hybridization to minimize the loss of antigenicity while allowing permanent anchoring of biomolecules. We achieved success rates of 96% and 94% with synaptic antibodies for mouse and marmoset brains, respectively. Maximal preservation of antigenicity allows imaging of nanoscopic architectures in 1000-fold expanded tissues without additional signal amplification. eMAP-processed tissue gel can endure repeated staining and destaining without epitope loss or structural damage, enabling highly multiplexed proteomic analysis. We demonstrated the utility of eMAP as a nanoscopic proteomic interrogation tool by investigating molecular heterogeneity in inhibitory synapses in the mouse brain neocortex and characterizing the spatial distributions of synaptic proteins within synapses in mouse and marmoset brains.
Collapse
Affiliation(s)
- Joha Park
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
| | - Sarim Khan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Department of Chemical Engineering, Indian Institute of Technology (IIT), Roorkee, Uttarakhand 247667, India
| | - Dae Hee Yun
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Taeyun Ku
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
| | - Katherine L. Villa
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Jiachen E. Lee
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Qiangge Zhang
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Juhyuk Park
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02142, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Elly Nedivi
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Kwanghun Chung
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02142, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Lehmann SJ, Corneil BD. Completing the puzzle: Why studies in non-human primates are needed to better understand the effects of non-invasive brain stimulation. Neurosci Biobehav Rev 2021; 132:1074-1085. [PMID: 34742722 DOI: 10.1016/j.neubiorev.2021.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/29/2021] [Accepted: 10/31/2021] [Indexed: 11/27/2022]
Abstract
Brain stimulation is a core method in neuroscience. Numerous non-invasive brain stimulation (NIBS) techniques are currently in use in basic and clinical research, and recent advances promise the ability to non-invasively access deep brain structures. While encouraging, there is a surprising gap in our understanding of precisely how NIBS perturbs neural activity throughout an interconnected network, and how such perturbed neural activity ultimately links to behaviour. In this review, we will consider why non-human primate (NHP) models of NIBS are ideally situated to address this gap in knowledge, and why the oculomotor network that moves our line of sight offers a particularly valuable platform in which to empirically test hypothesis regarding NIBS-induced changes in brain and behaviour. NHP models of NIBS will enable investigation of the complex, dynamic effects of brain stimulation across multiple hierarchically interconnected brain areas, networks, and effectors. By establishing such links between brain and behavioural output, work in NHPs can help optimize experimental and therapeutic approaches, improve NIBS efficacy, and reduce side-effects of NIBS.
Collapse
Affiliation(s)
- Sebastian J Lehmann
- Department of Physiology and Pharmacology, Western University, London, Ontario, N6A 5B7, Canada.
| | - Brian D Corneil
- Department of Physiology and Pharmacology, Western University, London, Ontario, N6A 5B7, Canada; Department of Psychology, Western University, London, Ontario, N6A 5B7, Canada; Robarts Research Institute, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
16
|
Peterson C, Plunkard J, Johanson A, Izzi J, Gabrielson K. Immunohistochemical Characterization of a Duodenal Adenocarcinoma with Pulmonary, Hepatic and Parapatellar Metastases in a Common Marmoset (Callithrixjacchus). J Comp Pathol 2021; 189:1-7. [PMID: 34886977 PMCID: PMC8669625 DOI: 10.1016/j.jcpa.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/09/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
An 11-year-old male common marmoset (Callithrix jacchus) presented with chronic, progressive weight loss and diarrhoea. Response to treatment with nutritional supplementation, antibiotics and immunosuppressants was modest and transient, and the animal was humanely euthanized. At necropsy, the proximal 8 cm of small intestine was diffusely pale with transmural thickening. The lungs contained coalescing tan, firm nodules measuring up to 4 mm in diameter. Histological examination revealed infiltrative mucinous adenocarcinoma of the duodenum with extensive metastases to the lungs, liver and left parapatellar adipose tissue. The mucinous matrix secreted by the primary and metastatic lesions was strongly periodic acid-Schiff positive. Warthin Starry staining for spirochaetes was negative. Pancytokeratin expression was attenuated in the primary tumour as well as in the metastases, which correlated to a poorly differentiated phenotype. To the authors' knowledge, this is the first report of a proximal duodenal adenocarcinoma with extensive metastatic disease in a common marmoset.
Collapse
Affiliation(s)
- Cornelia Peterson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, Maryland, USA.
| | - Jessica Plunkard
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Johanson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jessica Izzi
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Hvitved AN. Engaging Ethicists in Animal Research Policymaking. ILAR J 2021; 60:318-323. [PMID: 31836879 DOI: 10.1093/ilar/ilz023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 11/12/2022] Open
Abstract
The significance of ethical considerations for animal research policy has long been acknowledged, but the role of philosophical ethics in the policymaking process has been less clear. By comparing the ethical framework of animal research policy with that for human subjects research, this article considers how the legacies of these two policy areas influence current policy and suggests that ethicists and ethical scholarship have been underutilized in developing animal research policy. An important aspect of policymaking is gathering and responding to input provided by various stakeholders. Given their expertise in a highly relevant area, ethicists should be considered key stakeholders in animal research policy deliberations. This article explores the role of ethicists and ethical scholarship in influencing animal research policy and suggests that a more robust engagement with the professional ethics community throughout the deliberative process is vital for policymakers to adequately account for ethical considerations.
Collapse
Affiliation(s)
- Angela N Hvitved
- William H. Miller III Department of Philosophy, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Song X, García-Saldivar P, Kindred N, Wang Y, Merchant H, Meguerditchian A, Yang Y, Stein EA, Bradberry CW, Ben Hamed S, Jedema HP, Poirier C. Strengths and challenges of longitudinal non-human primate neuroimaging. Neuroimage 2021; 236:118009. [PMID: 33794361 PMCID: PMC8270888 DOI: 10.1016/j.neuroimage.2021.118009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 01/20/2023] Open
Abstract
Longitudinal non-human primate neuroimaging has the potential to greatly enhance our understanding of primate brain structure and function. Here we describe its specific strengths, compared to both cross-sectional non-human primate neuroimaging and longitudinal human neuroimaging, but also its associated challenges. We elaborate on factors guiding the use of different analytical tools, subject-specific versus age-specific templates for analyses, and issues related to statistical power.
Collapse
Affiliation(s)
- Xiaowei Song
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Pamela García-Saldivar
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230, México
| | - Nathan Kindred
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, United Kingdom
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230, México
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, UMR7290, Université Aix-Marseille/CNRS, Institut Language, Communication and the Brain 13331 Marseille, France
| | - Yihong Yang
- Neuroimaging Research Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Elliot A Stein
- Neuroimaging Research Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Charles W Bradberry
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Université de Lyon - CNRS, France
| | - Hank P Jedema
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA.
| | - Colline Poirier
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle University, United Kingdom.
| |
Collapse
|
19
|
The Moral Status of Cognitively Enhanced Monkeys and Other Novel Beings. Camb Q Healthc Ethics 2021; 30:492-503. [PMID: 34109929 DOI: 10.1017/s0963180120001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The discussion about the moral status of novel beings tends to focus on artificial intelligence, robots, and other man-made systems. We should, however, also consider a likelier kind of novel beings: animals that are genetically modified to develop human-like cognitive capabilities. This paper focuses on the possibility of conferring human characteristics on nonhuman primates (NHPs) in the context of neuroscientific research. It first discusses the use of NHPs for neuroscientific research and then, second, describes recent developments that promise to revolutionize the field and how that may lead to NHPs attaining human-like cognitive capabilities. Third, an account of moral status is developed to ground the central claim, that making the NHP brain more human-like is unproblematic as long as the NHPs do not become persons. In conclusion, this paper discusses the implications for the moral status of cognitively enhanced NHPs, as well as the implications for other novel beings.
Collapse
|
20
|
Chen X, Zhang S, Zhang J, Chen L, Wang R, Zhou Y. Noninvasive quantification of nonhuman primate dynamic 18F-FDG PET imaging. Phys Med Biol 2021; 66:064005. [PMID: 33709956 DOI: 10.1088/1361-6560/abe83b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
18F-FDG uptake rate constant Ki is the main physiology parameter measured in dynamic PET studies. A model-independent graphical analysis using Patlak plot with plasma input function (PIF) is a standard approach used to estimate Ki . The PIF is the 18F-FDG time activity curve (TAC) in plasma that is obtained by serial arterial blood sampling. The purpose of the study is to evaluate a Patlak plot-based optimization approach with reduced blood samples for noninvasive quantification of dynamic 18F-FDG PET imaging. Eight 60 min rhesus monkey brain dynamic 18F-FDG PET scans with arterial blood samples were collected. The measured PIF (mPIF) was determined by arterial blood samples. TACs of seven cerebral regions of interest were generated from each study. With a given number of blood samples, the population-based PIF (pPIF) was determined by either interpolation or extrapolation method using scale calibrated population mean of normalized PIF. The optimal sampling scheme with given blood sample size was determined by maximizing the correlations between the Ki estimated from pPIF and those obtained by mPIF. A leave-two-out cross-validation method was used for evaluation. The linear correlations between the Ki estimates from pPIF with optimal sampling schemes and those from mPIF were: Ki (pPIF 1 sample at 40 min) = 1.015 Ki (mPIF) - 0.000, R 2 = 0.974; Ki (pPIF 2 samples at 35 and 50 min) = 1.052 Ki (mPIF) - 0.001, R 2 = 0.976; Ki (pPIF 3 samples at 12, 40, and 50 min) = 1.030 Ki (mPIF) - 0.000, R 2 = 0.985; and Ki (pPIF 4 samples at 10, 20, 40, and 50 min) = 1.016 Ki (mPIF)- 0.000, R 2 = 0.993. As the sample size became greater or equal to 4, the Ki estimates from pPIF with the optimal protocol were almost identical to those from mPIF. The Patlak plot-based optimization approach is a reliable method to estimate PIF for noninvasive quantification of non-human primate dynamic 18F-FDG PET imaging and is potentially extendable to further translational human studies.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku St., West District, Beijing, 100034, People's Republic of China
| | - Sulei Zhang
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku St., West District, Beijing, 100034, People's Republic of China
| | - Jianhua Zhang
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku St., West District, Beijing, 100034, People's Republic of China
| | - Lixin Chen
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku St., West District, Beijing, 100034, People's Republic of China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku St., West District, Beijing, 100034, People's Republic of China
| | - Yun Zhou
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku St., West District, Beijing, 100034, People's Republic of China.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kinshighway Blvd., Campus Box 8225, St Louis, MO 63110, United States of America.,Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, 201807, People's Republic of China
| |
Collapse
|
21
|
Park JE, Sasaki E. Assisted Reproductive Techniques and Genetic Manipulation in the Common Marmoset. ILAR J 2021; 61:286-303. [PMID: 33693670 PMCID: PMC8918153 DOI: 10.1093/ilar/ilab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Genetic modification of nonhuman primate (NHP) zygotes is a useful method for the development of NHP models of human diseases. This review summarizes the recent advances in the development of assisted reproductive and genetic manipulation techniques in NHP, providing the basis for the generation of genetically modified NHP disease models. In this study, we review assisted reproductive techniques, including ovarian stimulation, in vitro maturation of oocytes, in vitro fertilization, embryo culture, embryo transfer, and intracytoplasmic sperm injection protocols in marmosets. Furthermore, we review genetic manipulation techniques, including transgenic strategies, target gene knock-out and knock-in using gene editing protocols, and newly developed gene-editing approaches that may potentially impact the production of genetically manipulated NHP models. We further discuss the progress of assisted reproductive and genetic manipulation techniques in NHP; future prospects on genetically modified NHP models for biomedical research are also highlighted.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Neurobiology, University of Pittsburgh, School of Medicine in Pittsburgh, Pennsylvania, USA
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals in Kawasaki, Kanagawa, Japan
| |
Collapse
|
22
|
de Jong S, Gagliardi G, Garanto A, de Breuk A, Lechanteur YTE, Katti S, van den Heuvel LP, Volokhina EB, den Hollander AI. Implications of genetic variation in the complement system in age-related macular degeneration. Prog Retin Eye Res 2021; 84:100952. [PMID: 33610747 DOI: 10.1016/j.preteyeres.2021.100952] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/23/2022]
Abstract
Age-related macular degeneration (AMD) is the main cause of vision loss among the elderly in the Western world. While AMD is a multifactorial disease, the complement system was identified as one of the main pathways contributing to disease risk. The strong link between the complement system and AMD was demonstrated by genetic associations, and by elevated complement activation in local eye tissue and in the systemic circulation of AMD patients. Several complement inhibitors have been and are being explored in clinical trials, but thus far with limited success, leaving the majority of AMD patients without treatment options to date. This indicates that there is still a gap of knowledge regarding the functional implications of the complement system in AMD pathogenesis and how to bring these towards clinical translation. Many different experimental set-ups and disease models have been used to study complement activation in vivo and in vitro, and recently emerging patient-derived induced pluripotent stem cells and genome-editing techniques open new opportunities to study AMD disease mechanisms and test new therapeutic strategies in the future. In this review we provide an extensive overview of methods employed to understand the molecular processes of complement activation in AMD pathogenesis. We discuss the findings, advantages and challenges of each approach and conclude with an outlook on how recent, exciting developments can fill in current knowledge gaps and can aid in the development of effective complement-targeting therapeutic strategies in AMD.
Collapse
Affiliation(s)
- Sarah de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Giuliana Gagliardi
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Pediatrics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Anita de Breuk
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Yara T E Lechanteur
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Suresh Katti
- Gemini Therapeutics Inc., Cambridge, MA, 02139, USA
| | - Lambert P van den Heuvel
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Laboratory Medicine, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Elena B Volokhina
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Laboratory Medicine, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands.
| |
Collapse
|
23
|
Colman RJ, Capuano S, Bakker J, Keeley J, Nakamura K, Ross C. Marmosets: Welfare, Ethical Use, and IACUC/Regulatory Considerations. ILAR J 2020; 61:167-178. [PMID: 33620069 PMCID: PMC9214643 DOI: 10.1093/ilar/ilab003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/13/2020] [Accepted: 12/20/2020] [Indexed: 11/12/2022] Open
Abstract
Use of marmosets in biomedical research has increased dramatically in recent years due, in large part, to their suitability for transgenic applications and utility as models for neuroscience investigations. This increased use includes the establishment of new colonies and involvement of people new to marmoset research. To facilitate the use of the marmoset as a research model, we provide an overview of issues surrounding the ethics and regulations associated with captive marmoset research, including discussion of the history of marmosets in research, current uses of marmosets, ethical considerations related to marmoset use, issues related to importation of animals, and recommendations for regulatory oversight of gene-edited marmosets. To understand the main concerns that oversight bodies have regarding captive biomedical research with marmosets, we developed a brief, 15-question survey that was then sent electronically to academic and biomedical research institutions worldwide that were believed to house colonies of marmosets intended for biomedical research. The survey included general questions regarding the individual respondent's colony, status of research use of the colony and institutional oversight of both the colony itself and the research use of the colony. We received completed surveys from a total of 18 institutions from North America, Europe, and Asia. Overall, there appeared to be no clear difference in regulatory oversight body concerns between countries/regions. One difference that we were able to appreciate was that while biomedical research with marmosets was noted to be either stable or decreasing in Europe, use was clearly increasing elsewhere.
Collapse
Affiliation(s)
- Ricki J Colman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jaco Bakker
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Jo Keeley
- University of Cambridge, Cambridge, United Kingdom
| | | | - Corinna Ross
- Department of Life Sciences, Texas A&M University, San Antonio, Texas, USA; and Population Health, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
24
|
Sorby-Adams AJ, Schneider WT, Goncalves RP, Knolle F, Morton AJ. Measuring executive function in sheep (Ovis aries) using visual stimuli in a semi-automated operant system. J Neurosci Methods 2020; 351:109009. [PMID: 33340554 DOI: 10.1016/j.jneumeth.2020.109009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cognitive impairment is a distinguishing feature of many neurodegenerative diseases. The intra-dimensional (ID) extra-dimensional (ED) attentional set shift task is part of a clinical battery of tests used to evaluate executive function in Huntington's and Alzheimer's disease patients. The IDED task, however, has not translated well to pre-clinical rodent models of neurological disease. NEW METHOD The ability to perform executive tasks coupled with a long lifespan makes sheep (Ovis aries) an ideal species for modelling cognitive decline in progressive neurodegenerative conditions. We describe the methodology for testing the performance of sheep in the IDED task using a semi-automated system in which visual stimuli are presented as coloured letters on computer screens. RESULTS During each stage of IDED testing, all sheep (n = 12) learned successfully to discriminate between different colours and letters. Sheep were quick to learn the rules of acquisition at each stage. They required significantly more trials to reach criterion (p < 0.05) and made more errors (p < 0.05) following stimulus reversal, with the exception of the ED shift (p > 0.05). COMPARISON WITH EXISTING METHOD(S) Previous research shows that sheep can perform IDED set shifting in a walk-through maze using solid objects with two changeable dimensions (colour and shape) as the stimuli. Presenting the stimuli on computer screens provides better validity, greater task flexibility and higher throughput than the walk-through maze. CONCLUSION All sheep completed each stage of the task, with a range of abilities expected in an outbred population. The IDED task described is ideally suited as a quantifiable and clinically translatable measure of executive function in sheep.
Collapse
Affiliation(s)
- A J Sorby-Adams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - W T Schneider
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - R P Goncalves
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - F Knolle
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom; Department of Neurology, Klinikum recht der Isar, Technical University Munich, Munich, Germany
| | - A J Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom.
| |
Collapse
|
25
|
Prescott MJ. Ethical and Welfare Implications of Genetically Altered Non-Human Primates for Biomedical Research. JOURNAL OF APPLIED ANIMAL ETHICS RESEARCH 2020; 2:151-176. [PMID: 33851094 PMCID: PMC7610575 DOI: 10.1163/25889567-bja10002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Breakthroughs in gene editing technologies have made it feasible to create genetically altered (GA) non-human primate (NHP) models of disease. This area of research is accelerating, particularly in China, Japan and the USA, and could lead to an increase in NHP use globally. The hope is that genetic models in animal species closely related to humans will significantly improve understanding of neurological diseases and validation of potential therapeutic interventions, for which there is a dire need. However, the creation and use of GA NHPS raises serious animal welfare and ethical issues, which are highlighted here. It represents a step change in how these highly sentient animals are used in biomedical research, because of the large numbers required, inherent wastage and the sum of the harms caused to the animals involved. There is little evidence of these important issues being addressed alongside the rapidly advancing science. We are still learning about how gene editing tools work in NHPS, and significant added scientific and medical benefit from GA NHP models has yet to be demonstrated. Together, this suggests that current regulatory and review frameworks, in some jurisdictions at least, are not adequately equipped to deal with this emerging, complex area of NHP use.
Collapse
Affiliation(s)
- Mark J. Prescott
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London, NW1 2BE, UK
| |
Collapse
|
26
|
Tomioka I, Nagai Y, Seki K. Generation of Common Marmoset Model Lines of Spinocerebellar Ataxia Type 3. Front Neurosci 2020; 14:548002. [PMID: 33071733 PMCID: PMC7542094 DOI: 10.3389/fnins.2020.548002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023] Open
Abstract
Animal models are indispensable tools in the development of innovative treatments for rare and incurable diseases. To date, there is almost no effective treatment for neurodegenerative diseases, and animal models that properly simulate human disease pathologies are eagerly anticipated to identify disease biomarkers and develop therapeutic methods and agents. Among experimental animals, non-human primates are the most suitable animal models for the study of neurodegenerative diseases with human-specific higher brain dysfunction and late-onset and slowly progressing symptoms. With the rapid development of novel therapies such as oligonucleotide therapeutics and genome editing technologies, non-human primate models for neurodegenerative diseases will be essential for preclinical studies and active interventional trials. In a previous publication, we reported the generation of the first transgenic marmoset model of spinocerebellar ataxia type 3 and successful obtainment of subsequent generations with stable disease onset. Moreover, we generated transgenic marmosets in which the transgene was controlled by the tetracycline-inducible gene expression system. In this mini-review, we summarize the research on our marmoset model of spinocerebellar ataxia type 3.
Collapse
Affiliation(s)
- Ikuo Tomioka
- Department of Biomedical Engineering, Shinshu University, Nagano, Japan.,Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University, Graduate School of Medicine, Osaka, Japan.,Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
27
|
Akter M, Kaneko N, Sawamoto K. Neurogenesis and neuronal migration in the postnatal ventricular-subventricular zone: Similarities and dissimilarities between rodents and primates. Neurosci Res 2020; 167:64-69. [PMID: 32553727 DOI: 10.1016/j.neures.2020.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
The ventricular-subventricular zone (V-SVZ) is located in the walls of the lateral ventricles and produces new neurons in the postnatal brain of mammals, including humans. Immature new neurons called "neuroblasts" generated by neural stem cells in the V-SVZ migrate toward their final destinations and contribute to brain development and plasticity. In this review, we describe recent progress in understanding the similarities and dissimilarities in postnatal neurogenesis and neuronal migration between rodents and primates. In rodents, most new V-SVZ-derived neurons migrate along the rostral migratory stream towards the olfactory bulb, where they differentiate into interneurons. In contrast, in humans, the extensive migration of new neurons towards the neocortex continues for several months after birth and might be involved in the development of the expanded neocortex. The mode of migration and the fate of neuroblasts seem to change depending on their environment, destination, and roles in the brain. A better understanding of these similarities and differences between rodents and primates will help translate important findings from animal models and may contribute to the development of clinical strategies for brain repair.
Collapse
Affiliation(s)
- Mariyam Akter
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan; Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
28
|
GluA4-Targeted AAV Vectors Deliver Genes Selectively to Interneurons while Relying on the AAV Receptor for Entry. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:252-260. [PMID: 31463334 PMCID: PMC6706527 DOI: 10.1016/j.omtm.2019.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/14/2019] [Indexed: 12/16/2022]
Abstract
Selective gene delivery into subtypes of interneurons remains an important challenge in vector development. Adeno-associated virus (AAV) vector particles are especially promising for intracerebral injections. For cell entry, AAV2 particles are supposed to attach to heparan-sulfate proteoglycans (HSPGs) followed by endocytosis via the AAV receptor (AAVR). Here, we assessed engineered AAV particles deficient in HSPG attachment but competent in recognizing the glutamate receptor 4 (GluA4, also known as GluRD or GRIA4) through a displayed GluA4-specific DARPin (designed ankyrin repeat protein). When injected into the mouse brain, histological evaluation revealed that in various regions, more than 90% of the transduced cells were interneurons, mainly of the parvalbumin-positive subtype. Although part of the selectivity was mediated by the DARPin, the chosen spleen focus-forming virus (SFFV) promoter had contributed as well. Further analysis revealed that the DARPin mediated selective attachment to GluA4-positive cells, whereas gene delivery required expression of AAVR. Our data suggest that cell selectivity of AAV particles can be modified rationally and efficiently through DARPins, but expression of the AAV entry receptor remains essential.
Collapse
|
29
|
Optogenetic approaches to study the mammalian brain. Curr Opin Struct Biol 2019; 57:157-163. [PMID: 31082625 DOI: 10.1016/j.sbi.2019.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/30/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022]
Abstract
Optogenetics has revolutionized neurobiological research by allowing to disentangle intricate neuronal circuits at a spatio-temporal precision unmatched by other techniques. Here, we review current advances of optogenetic applications in mammals, especially focusing on freely moving animals. State-of-the-art strategies allow the targeted expression of opsins in neuronal subpopulations, defined either by genetic cell type or neuronal projection pattern. Optogenetic manipulations of these subpopulations become particularly powerful when combined with behavioral paradigms and neurophysiological readout techniques. Thereby, specific roles can be assigned to identified cells. All-optical approaches with the opportunity to write complex three dimensional patterns into neuronal networks have recently emerged. While clinical implications of the new tool set seem tempting, we emphasize here the role of optogenetics for basic research.
Collapse
|