1
|
Gupta S, Fernandes R, Natarajan S, Jose NP, Giri J, Dahal S. Comparative evaluation of arch form among the Nepalese population: A morphological study. J Oral Maxillofac Pathol 2024; 28:111-118. [PMID: 38800435 PMCID: PMC11126270 DOI: 10.4103/jomfp.jomfp_280_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 05/29/2024] Open
Abstract
Aims The study aims to identify sexual dimorphic features in the arch patterns based on tooth arrangement patterns and the maxillary and mandibular arches using Euclidean Distance Matrix Analysis (EDMA). Settings and Design A total of 96 Nepalese subjects, aged 18 to 25 were assessed using casts and photographs. Materials and Methods Thirteen landmarks representing the most facial portions of the proximal contact areas on the maxillary and mandibular casts were digitised. Seventy-eight possible, Euclidean distances between the 13 landmarks were calculated using the Analysis ToolPak of Microsoft Excel®. The male-to-female ratios of the corresponding distances were computed and ratios were compared to evaluate the arch form for variation in the genders, among the Nepalese population. Statistical Analysis Used Microsoft Excel Analysis ToolPak and SPSS 20.0 (IBM Chicago) were used to perform EDMA and an independent t-test to compare the significant differences between the two genders. Results The maxillary arch's largest ratio (1.008179001) was discovered near the location of the right and left lateral incisors, indicating that the anterior region may have experienced the greatest change. The posterior-molar region is where the smallest ratio was discovered, suggesting less variation. At the intercanine region, female arches were wider than male ones; however, at the interpremolar and intermolar sections, they were similar in width. Females' maxillary arches were discovered to be bigger antero-posteriorly than those of males. The highest ratio (1.014336113) in the mandibular arch was discovered at the intermolar area, suggesting that males had a larger mandibular posterior arch morphology. At the intercanine area, the breadth of the arch form was greater in males and nearly the same in females at the interpremolar and intermolar regions. Female mandibular arch forms were also discovered to be longer than those of males from the anterior to the posterior. Conclusions The male and female arches in the Nepalese population were inferred to be different in size and shape. With references to the landmarks demonstrating such a shift, the EDMA established objectively the presence of square arch forms in Nepali males and tapering arch forms in Nepalese females.
Collapse
Affiliation(s)
- Simran Gupta
- Intern, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rhea Fernandes
- Intern, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Srikant Natarajan
- Department of Forensic Odontology, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nidhin P. Jose
- Department of Orthodontics and Dentofacial Orthopaedics, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jamal Giri
- Department of Orthodontics, B.P. Koirala Institute of Health Sciences, Dharan, Nepal, India
| | - Samarika Dahal
- Department of Oral Pathology and Forensic Dentistry, Maharajgunj Medical Campus, Institute of Medicine, Nepal, India
| |
Collapse
|
2
|
Vevoda J, Navratilova D, Machaczka O, Ambroz P, Vevodova S, Tomietto M. Nurses job satisfaction identified by personal preferences and perceived saturation divergence: a comparative cross-sectional study in Czech hospitals between 2011 and 2021. BMC Nurs 2023; 22:422. [PMID: 37950226 PMCID: PMC10638754 DOI: 10.1186/s12912-023-01586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The perception of the quality of care provided by the medical institution to patients is directly affected by the job satisfaction of nurses. The feeling of job satisfaction is caused besides other things by the subjective expectations of employees about what their work should provide them with in return. The aim of the study is to evaluate and compare job satisfaction of hospital nurses in the Czech Republic in 2011 and 2021 by identifying differences between their personal preferences and perceived saturation. METHODS The respondents are hospital nurses in the Czech Republic in 2011 and 2021. A developed questionnaire was used to determine the job satisfaction factors. The order of factors of personal preferences, perceived saturation and differences between them was compiled. For evaluation was used the Euclidean distance model that enables to capture the order and determine the significance given by the distance in which the factors are located. RESULTS At the top of personal preferences of hospital nurses, the factors salary and patient care are in the first two places with a similar distance. The salary factor is the most preferred by hospital nurses in both evaluated periods, and at the same time there is the greatest discrepancy between personal preferences and perceived saturation. By contrast, image of profession and working conditions were sufficiently saturated by the employer in both periods, but nurses do not significantly prefer these factors. CONCLUSIONS The salary and patient care (i.e. the mission of the nurse's work itself) are at the top of personal preferences of hospital nurses, with an exclusive position among other factors. We consider it important that the hospital management emphasizes them in the management of hospital nurses. At the same time, the patient care is perceived by the hospital nurses as one of the most saturated factors - in contrast to salary, which is located at the complete opposite pole as the least saturated factor and therefore emerges from the mutual comparison as the factor with the greatest degree of divergence. The stated conclusions are valid for both compared periods. New method of data evaluation was successfully tested.
Collapse
Affiliation(s)
- Jiri Vevoda
- Department of Humanities and Social Sciences, Faculty of Health Sciences, Palacký University Olomouc, Hněvotínská 976/3, Olomouc, 75 15, Czech Republic
| | - Daniela Navratilova
- Department of Healthcare Management and Public Health, Faculty of Health Sciences, Palacký University Olomouc, Hněvotínská 976/3, Olomouc, 75 15, Czech Republic.
| | - Ondrej Machaczka
- Department of Healthcare Management and Public Health, Faculty of Health Sciences, Palacký University Olomouc, Hněvotínská 976/3, Olomouc, 75 15, Czech Republic
| | - Petr Ambroz
- Department of Healthcare Management and Public Health, Faculty of Health Sciences, Palacký University Olomouc, Hněvotínská 976/3, Olomouc, 75 15, Czech Republic
| | - Sarka Vevodova
- Department of Humanities and Social Sciences, Faculty of Health Sciences, Palacký University Olomouc, Hněvotínská 976/3, Olomouc, 75 15, Czech Republic
| | - Marco Tomietto
- Department of Nursing, Midwifery and Health, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| |
Collapse
|
3
|
Motch Perrine SM, Sapkota N, Kawasaki K, Zhang Y, Chen DZ, Kawasaki M, Durham EL, Heuzé Y, Legeai-Mallet L, Richtsmeier JT. Embryonic cranial cartilage defects in the Fgfr3 Y367C /+ mouse model of achondroplasia. Anat Rec (Hoboken) 2023. [PMID: 37747411 PMCID: PMC10961250 DOI: 10.1002/ar.25327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
Achondroplasia, the most common chondrodysplasia in humans, is caused by one of two gain of function mutations localized in the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) leading to constitutive activation of FGFR3 and subsequent growth plate cartilage and bone defects. Phenotypic features of achondroplasia include macrocephaly with frontal bossing, midface hypoplasia, disproportionate shortening of the extremities, brachydactyly with trident configuration of the hand, and bowed legs. The condition is defined primarily on postnatal effects on bone and cartilage, and embryonic development of tissues in affected individuals is not well studied. Using the Fgfr3Y367C/+ mouse model of achondroplasia, we investigated the developing chondrocranium and Meckel's cartilage (MC) at embryonic days (E)14.5 and E16.5. Sparse hand annotations of chondrocranial and MC cartilages visualized in phosphotungstic acid enhanced three-dimensional (3D) micro-computed tomography (microCT) images were used to train our automatic deep learning-based 3D segmentation model and produce 3D isosurfaces of the chondrocranium and MC. Using 3D coordinates of landmarks measured on the 3D isosurfaces, we quantified differences in the chondrocranium and MC of Fgfr3Y367C/+ mice relative to those of their unaffected littermates. Statistically significant differences in morphology and growth of the chondrocranium and MC were found, indicating direct effects of this Fgfr3 mutation on embryonic cranial and pharyngeal cartilages, which in turn can secondarily affect cranial dermal bone development. Our results support the suggestion that early therapeutic intervention during cartilage formation may lessen the effects of this condition.
Collapse
Affiliation(s)
- Susan M Motch Perrine
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Nishchal Sapkota
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| | - Kazuhiko Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yejia Zhang
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| | - Mizuho Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Emily L Durham
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yann Heuzé
- Univ. Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR 5199, Pessac, France
| | - Laurence Legeai-Mallet
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France
| | - Joan T Richtsmeier
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Motch Perrine SM, Pitirri MK, Durham EL, Kawasaki M, Zheng H, Chen DZ, Kawasaki K, Richtsmeier JT. A dysmorphic mouse model reveals developmental interactions of chondrocranium and dermatocranium. eLife 2022; 11:76653. [PMID: 35704354 PMCID: PMC9259032 DOI: 10.7554/elife.76653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
The cranial endo- and dermal skeletons, which comprise the vertebrate skull, evolved independently over 470 million years ago and form separately during embryogenesis. In mammals, much of the cartilaginous chondrocranium is transient, undergoing endochondral ossification or disappearing, so its role in skull morphogenesis is not well studied and it remains an enigmatic structure. We provide complete three-dimensional (3D) reconstructions of the laboratory mouse chondrocranium from embryonic day 13.5 through 17.5 using a novel methodology of uncertainty-guided segmentation of phosphotungstic enhanced 3D microcomputed tomography images with sparse annotation. We evaluate the embryonic mouse chondrocranium and dermatocranium in 3D and delineate the effects of a Fgfr2 variant on embryonic chondrocranial cartilages and on their association with forming dermal bones using the Fgfr2cC342Y/+ Crouzon syndrome mouse. We show that the dermatocranium develops outside of and in shapes that conform to the chondrocranium. Results reveal direct effects of the Fgfr2 variant on embryonic cartilage, on chondrocranium morphology, and on the association between chondrocranium and dermatocranium development. Histologically we observe a trend of relatively more chondrocytes, larger chondrocytes, and/or more matrix in the Fgfr2cC342Y/+ embryos at all timepoints before the chondrocranium begins to disintegrate at E16.5. The chondrocrania and forming dermatocrania of Fgfr2cC342Y/+ embryos are relatively large, but a contrasting trend begins at E16.5 and continues into early postnatal (P0 and P2) timepoints, with the skulls of older Fgfr2cC342Y/+ mice reduced in most dimensions compared to Fgfr2c+/+ littermates. Our findings have implications for the study and treatment of human craniofacial disease, for understanding the impact of chondrocranial morphology on skull growth, and potentially on the evolution of skull morphology.
Collapse
Affiliation(s)
- Susan M Motch Perrine
- Department of Anthropology, The Pennsylvania State University, University Park, United States
| | - M Kathleen Pitirri
- Department of Anthropology, The Pennsylvania State University, University Park, United States
| | - Emily L Durham
- Department of Anthropology, The Pennsylvania State University, University Park, United States
| | - Mizuho Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, United States
| | - Hao Zheng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, United States
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, United States
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, United States
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, United States
| |
Collapse
|
5
|
Pitirri MK, Durham EL, Romano NA, Santos JI, Coupe AP, Zheng H, Chen DZ, Kawasaki K, Jabs EW, Richtsmeier JT, Wu M, Motch Perrine SM. Meckel's Cartilage in Mandibular Development and Dysmorphogenesis. Front Genet 2022; 13:871927. [PMID: 35651944 PMCID: PMC9149363 DOI: 10.3389/fgene.2022.871927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/15/2022] [Indexed: 12/02/2022] Open
Abstract
The Fgfr2cC342Y/+ Crouzon syndrome mouse model carries a cysteine to tyrosine substitution at amino acid position 342 (Cys342Tyr; C342Y) in the fibroblast growth factor receptor 2 (Fgfr2) gene equivalent to a FGFR2 mutation commonly associated with Crouzon and Pfeiffer syndromes in humans. The Fgfr2c C342Y mutation results in constitutive activation of the receptor and is associated with upregulation of osteogenic differentiation. Fgfr2cC342Y/+ Crouzon syndrome mice show premature closure of the coronal suture and other craniofacial anomalies including malocclusion of teeth, most likely due to abnormal craniofacial form. Malformation of the mandible can precipitate a plethora of complications including disrupting development of the upper jaw and palate, impediment of the airway, and alteration of occlusion necessary for proper mastication. The current paradigm of mandibular development assumes that Meckel’s cartilage (MC) serves as a support or model for mandibular bone formation and as a template for the later forming mandible. If valid, this implies a functional relationship between MC and the forming mandible, so mandibular dysmorphogenesis might be discerned in MC affecting the relationship between MC and mandibular bone. Here we investigate the relationship of MC to mandible development from the early mineralization of the mandible (E13.5) through the initiation of MC degradation at E17.7 using Fgfr2cC342Y/+ Crouzon syndrome embryos and their unaffected littermates (Fgfr2c+/+). Differences between genotypes in both MC and mandibular bone are subtle, however MC of Fgfr2cC342Y/+ embryos is generally longer relative to unaffected littermates at E15.5 with specific aspects remaining relatively large at E17.5. In contrast, mandibular bone is smaller overall in Fgfr2cC342Y/+ embryos relative to their unaffected littermates at E15.5 with the posterior aspect remaining relatively small at E17.5. At a cellular level, differences are identified between genotypes early (E13.5) followed by reduced proliferation in MC (E15.5) and in the forming mandible (E17.5) in Fgfr2cC342Y/+ embryos. Activation of the ERK pathways is reduced in the perichondrium of MC in Fgfr2cC342Y/+ embryos and increased in bone related cells at E15.5. These data reveal that the Fgfr2c C342Y mutation differentially affects cells by type, location, and developmental age indicating a complex set of changes in the cells that make up the lower jaw.
Collapse
Affiliation(s)
- M Kathleen Pitirri
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Emily L Durham
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Natalie A Romano
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Jacob I Santos
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Abigail P Coupe
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Hao Zheng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Kazuhiko Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joan T Richtsmeier
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Susan M Motch Perrine
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
6
|
Kazuki Y, Gao FJ, Yamakawa M, Hirabayashi M, Kazuki K, Kajitani N, Miyagawa-Tomita S, Abe S, Sanbo M, Hara H, Kuniishi H, Ichisaka S, Hata Y, Koshima M, Takayama H, Takehara S, Nakayama Y, Hiratsuka M, Iida Y, Matsukura S, Noda N, Li Y, Moyer AJ, Cheng B, Singh N, Richtsmeier JT, Oshimura M, Reeves RH. A transchromosomic rat model with human chromosome 21 shows robust Down syndrome features. Am J Hum Genet 2022; 109:328-344. [PMID: 35077668 DOI: 10.1016/j.ajhg.2021.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Progress in earlier detection and clinical management has increased life expectancy and quality of life in people with Down syndrome (DS). However, no drug has been approved to help individuals with DS live independently and fully. Although rat models could support more robust physiological, behavioral, and toxicology analysis than mouse models during preclinical validation, no DS rat model is available as a result of technical challenges. We developed a transchromosomic rat model of DS, TcHSA21rat, which contains a freely segregating, EGFP-inserted, human chromosome 21 (HSA21) with >93% of its protein-coding genes. RNA-seq of neonatal forebrains demonstrates that TcHSA21rat expresses HSA21 genes and has an imbalance in global gene expression. Using EGFP as a marker for trisomic cells, flow cytometry analyses of peripheral blood cells from 361 adult TcHSA21rat animals show that 81% of animals retain HSA21 in >80% of cells, the criterion for a "Down syndrome karyotype" in people. TcHSA21rat exhibits learning and memory deficits and shows increased anxiety and hyperactivity. TcHSA21rat recapitulates well-characterized DS brain morphology, including smaller brain volume and reduced cerebellar size. In addition, the rat model shows reduced cerebellar foliation, which is not observed in DS mouse models. Moreover, TcHSA21rat exhibits anomalies in craniofacial morphology, heart development, husbandry, and stature. TcHSA21rat is a robust DS animal model that can facilitate DS basic research and provide a unique tool for preclinical validation to accelerate DS drug development.
Collapse
|
7
|
Tang H, Peng T, Yang X, Liu L, Xu Y, Zhao Y, Huang S, Fu C, Huang Y, Zhou H, Li J, He L, Wang W, Niu H, Xu K. Plasma Metabolomic Changes in Children with Cerebral Palsy Exposed to Botulinum Neurotoxin. J Proteome Res 2022; 21:671-682. [PMID: 35018779 DOI: 10.1021/acs.jproteome.1c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The long-term effect of botulinum neurotoxin A (BoNT-A) on children with cerebral palsy (CP) is unclear, and how the dynamic changes of metabolites impact the duration of effect remains unknown. To tackle this, we collected 120 plasma samples from 91 children with spastic CP for analysis, with 30 samples in each time point: prior to injection and 1, 3, and 6 months after injection. A total of 354 metabolites were identified across all the time points, 39 of which exhibited significant changes (with tentative IDs) (p values <0.05, VIP > 1). Principal component analysis and partial least-squares discriminant analysis disclosed a clear separation between different groups (p values <0.05). Network analysis revealed the coordinated changes of functional metabolites. Pathway analysis highlighted the metabolic pathways associated with energy consumption and glycine, serine, and threonine metabolism and cysteine and methionine metabolism. Collectively, our results identified the significant dynamic changes of plasma metabolite after BoNT-A injections on children with CP. Metabolic pathways associated with energy expenditure might provide a new perspective for the effect of BoNT-A in children with CP. Glycine, serine, and threonine metabolism and cysteine and methionine metabolism might be related to the duration of effect of BoNT-A.
Collapse
Affiliation(s)
- Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Xubo Yang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Yunxian Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Yiting Zhao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Shiya Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Chaoqiong Fu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Yuan Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China.,Department of Rehabilitation, School of Medicine, South China University of Technology, Guangzhou 510655, China
| | - Hongyu Zhou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Jinling Li
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Wenda Wang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Huiran Niu
- Genechem Biotechnology Co., Ltd. Shanghai 200120, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| |
Collapse
|
8
|
Moffett EA. Sexual dimorphism in the size and shape of the non-obstetric pelvis across anthropoids. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:402-421. [PMID: 34453450 DOI: 10.1002/ajpa.24398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 04/26/2021] [Accepted: 07/20/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The presence of sexual dimorphism in the birth canals of anthropoid primates is well documented, and birth canal dimorphism tends to be especially robust among species that give birth to relatively large neonates. However, it is less clear whether birth canal dimorphism is accompanied by dimorphism in parts of the pelvis not directly under selection for birth, particularly including bi-iliac breadth, biactetabular breadth, lengths of the ischium and ilium, and 3D shape. This study investigates the patterns of dimorphism among anthropoid primates in those parts of the pelvis which do not directly contribute to the bony birth canal, here termed the non-obstetric pelvis. METHODS 3D landmark data were collected on the bony pelves of 899 anthropoid primates. Specifically, landmark data were collected on parts of the pelvis not thought to be directly involved in selection for parturition, including portions of the posterior and superior ilium, acetabulum, and lateral ischium. Principal components analysis and Euclidean distance matrix analysis were used to ascertain sexual dimorphism in pelvic sizes and shapes within each species. RESULTS Results show that dimorphism in non-obstetric pelvic size and shape exists across anthropoids, just as is seen in the birth canal. However, the magnitude of dimorphism in non-obstetric pelvic shape tends to be greater among anthropoid species that give birth to relatively large neonates compared with those birthing smaller neonates relative to maternal pelvic size. CONCLUSIONS Though all anthropoids included in the study show some degree of sexual dimorphism in non-obstetric pelvic size and/or shape, species which give birth to large neonates relative to maternal pelvic size have the highest levels of dimorphism in pelvic shape. Moreover, the magnitude of dimorphism in certain parts of the non-obstetric pelvis mirrors patterns seen in the birth canal. The results of this study are promising for ascertaining pelvic dimorphism and relative neonate size in fossil primates, particularly in fragmentary remains which do not preserve a complete bony birth canal.
Collapse
Affiliation(s)
- Elizabeth A Moffett
- Department of Clinical Anatomy and Osteopathic Principles, Rocky Vista University, Parker, Colorado, USA
| |
Collapse
|
9
|
Motch Perrine SM, Wu M, Stephens NB, Kriti D, van Bakel H, Jabs EW, Richtsmeier JT. Mandibular dysmorphology due to abnormal embryonic osteogenesis in FGFR2-related craniosynostosis mice. Dis Model Mech 2019; 12:dmm.038513. [PMID: 31064775 PMCID: PMC6550049 DOI: 10.1242/dmm.038513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
One diagnostic feature of craniosynostosis syndromes is mandibular dysgenesis. Using three mouse models of Apert, Crouzon and Pfeiffer craniosynostosis syndromes, we investigated how embryonic development of the mandible is affected by fibroblast growth factor receptor 2 (Fgfr2) mutations. Quantitative analysis of skeletal form at birth revealed differences in mandibular morphology between mice carrying Fgfr2 mutations and their littermates that do not carry the mutations. Murine embryos with the mutations associated with Apert syndrome in humans (Fgfr2+/S252W and Fgfr2+/P253R) showed an increase in the size of the osteogenic anlagen and Meckel's cartilage (MC). Changes in the microarchitecture and mineralization of the developing mandible were visualized using histological staining. The mechanism for mandibular dysgenesis in the Apert Fgfr2+/S252W mouse resulting in the most severe phenotypic effects was further analyzed in detail and found to occur to a lesser degree in the other craniosynostosis mouse models. Laser capture microdissection and RNA-seq analysis revealed transcriptomic changes in mandibular bone at embryonic day 16.5 (E16.5), highlighting increased expression of genes related to osteoclast differentiation and dysregulated genes active in bone mineralization. Increased osteoclastic activity was corroborated by TRAP assay and in situ hybridization of Csf1r and Itgb3. Upregulated expression of Enpp1 and Ank was validated in the mandible of Fgfr2+/S252W embryos, and found to result in elevated inorganic pyrophosphate concentration. Increased proliferation of osteoblasts in the mandible and chondrocytes forming MC was identified in Fgfr2+/S252W embryos at E12.5. These findings provide evidence that FGFR2 gain-of-function mutations differentially affect cartilage formation and intramembranous ossification of dermal bone, contributing to mandibular dysmorphogenesis in craniosynostosis syndromes. This article has an associated First Person interview with the joint first authors of the paper. Summary: FGFR2 gain-of-function mutations differentially affect cartilage formation and intramembranous ossification of dermal bone, resulting in abnormal embryonic osteogenesis of the mandible.
Collapse
Affiliation(s)
- Susan M Motch Perrine
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicholas B Stephens
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
Wu W, Zhai G, Xu Z, Hou B, Liu D, Liu T, Liu W, Ren F. Whole-exome sequencing identified four loci influencing craniofacial morphology in northern Han Chinese. Hum Genet 2019; 138:601-611. [PMID: 30968251 PMCID: PMC6554238 DOI: 10.1007/s00439-019-02008-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/02/2019] [Indexed: 11/30/2022]
Abstract
Facial shape differences are one of the most significant phenotypes in humans. It is affected largely by skull shape. However, research into the genetic basis of the craniofacial morphology has rarely been reported. The present study aimed to identify genetic variants influencing craniofacial morphology in northern Han Chinese through whole-exome sequencing (WES). Phenotypic data of the volunteers’ faces and skulls were obtained through three-dimensional CT scan of the skull. A total of 48 phenotypes (35 facial and 13 cranial phenotypes) were used for the bioinformatics analysis. Four genetic loci were identified affecting the craniofacial shapes. The four candidate genes are RGPD3, IGSF3, SLC28A3, and USP40. Four single-nucleotide polymorphism (SNP) site mutations in RGPD3, IGSF3, and USP40 were significantly associated with the skull shape (p < 1×10−6), and three SNP site mutations in RGPD3, IGSF3, and SLC28A3 were significantly associated with the facial shape (p < 1×10−6). The rs62152530 site mutation in the RGPD3 gene may be closely associated with the nasal length, ear length, and alar width. The rs647711 site mutation in the IGSF3 gene may be closely associated with the nasal length, mandibular width, and width between the mental foramina. The rs10868138 site mutation in the SLC28A3 gene may be associated with the nasal length, alar width, width between tragus, and width between the mental foramina. The rs1048603 and rs838543 site mutations in the USP40 gene may be closely associated with the pyriform aperture width. Our findings provide useful genetic information for the determination of face morphology.
Collapse
Affiliation(s)
- Wei Wu
- School of Humanities and Management, Jinzhou Medical University, Jinzhou, 121001, Liaoning, People's Republic of China.,Biological Anthropology Institute, Jinzhou Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou, 121001, Liaoning, People's Republic of China.,Liaoning Province Key Laboratory of Chinese Physical Characteristics Research (LPKL-CPCR), Jinzhou, 121001, Liaoning, People's Republic of China
| | - Guiying Zhai
- Biological Anthropology Institute, Jinzhou Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou, 121001, Liaoning, People's Republic of China.,Liaoning Province Key Laboratory of Chinese Physical Characteristics Research (LPKL-CPCR), Jinzhou, 121001, Liaoning, People's Republic of China
| | - Zejun Xu
- Biological Anthropology Institute, Jinzhou Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou, 121001, Liaoning, People's Republic of China.,Liaoning Province Key Laboratory of Chinese Physical Characteristics Research (LPKL-CPCR), Jinzhou, 121001, Liaoning, People's Republic of China
| | - Bo Hou
- Biological Anthropology Institute, Jinzhou Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou, 121001, Liaoning, People's Republic of China.,Liaoning Province Key Laboratory of Chinese Physical Characteristics Research (LPKL-CPCR), Jinzhou, 121001, Liaoning, People's Republic of China
| | - Dahua Liu
- Biological Anthropology Institute, Jinzhou Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou, 121001, Liaoning, People's Republic of China.,Liaoning Province Key Laboratory of Chinese Physical Characteristics Research (LPKL-CPCR), Jinzhou, 121001, Liaoning, People's Republic of China
| | - Tianyi Liu
- Department of Plastic and Maxillofacial Surgery, Uppsala University, Uppsala, Sweden
| | - Wei Liu
- Biological Anthropology Institute, Jinzhou Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou, 121001, Liaoning, People's Republic of China.,Liaoning Province Key Laboratory of Chinese Physical Characteristics Research (LPKL-CPCR), Jinzhou, 121001, Liaoning, People's Republic of China
| | - Fu Ren
- Biological Anthropology Institute, Jinzhou Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou, 121001, Liaoning, People's Republic of China. .,Liaoning Province Key Laboratory of Chinese Physical Characteristics Research (LPKL-CPCR), Jinzhou, 121001, Liaoning, People's Republic of China.
| |
Collapse
|
11
|
Luo F, Xie Y, Wang Z, Huang J, Tan Q, Sun X, Li F, Li C, Liu M, Zhang D, Xu M, Su N, Ni Z, Jiang W, Chang J, Chen H, Chen S, Xu X, Deng C, Wang Z, Du X, Chen L. Adeno-Associated Virus-Mediated RNAi against Mutant Alleles Attenuates Abnormal Calvarial Phenotypes in an Apert Syndrome Mouse Model. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:291-302. [PMID: 30321816 PMCID: PMC6197781 DOI: 10.1016/j.omtn.2018.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/01/2022]
Abstract
Apert syndrome (AS), the most severe form of craniosynostosis, is caused by missense mutations including Pro253Arg(P253R) of fibroblast growth factor receptor 2 (FGFR2), which leads to enhanced FGF/FGFR2-signaling activity. Surgical correction of the deformed skull is the typical treatment for AS. Because of constant maldevelopment of sutures, the corrective surgery is often executed several times, resulting in increased patient challenge and complications. Biological therapies targeting the signaling of mutant FGFR2 allele, in combination with surgery, may bring better outcome. Here we screened and found a small interfering RNA (siRNA) specifically targeting the Fgfr2-P253R allele, and we revealed that it inhibited osteoblastic differentiation and matrix mineralization by reducing the signaling of ERK1/2 and P38 in cultured primary calvarial cells and calvarial explants from Apert mice (Fgfr2+/P253R). Furthermore, AAV9 carrying short hairpin RNA (shRNA) (AAV9-Fgfr2-shRNA) against mutant Fgfr2 was delivered to the skulls of AS mice. Results demonstrate that AAV9-Fgfr2-shRNA attenuated the premature closure of coronal suture and the decreased calvarial bone volume of AS mice. Our study provides a novel practical biological approach, which will, in combination with other therapies, including surgeries, help treat patients with AS while providing experimental clues for the biological therapies of other genetic skeletal diseases.
Collapse
Affiliation(s)
- Fengtao Luo
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yangli Xie
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zuqiang Wang
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Junlan Huang
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Qiaoyan Tan
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xianding Sun
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Fangfang Li
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Can Li
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Mi Liu
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Dali Zhang
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Meng Xu
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Nan Su
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zhenhong Ni
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Wanling Jiang
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jinhong Chang
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Hangang Chen
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Shuai Chen
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaoling Xu
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaolan Du
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| | - Lin Chen
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
12
|
Delgado-González JC, Florensa-Vila J, Mansilla-Legorburo F, Insausti R, Artacho-Pérula E. Magnetic Resonance Imaging and Anatomical Correlation of Human Temporal Lobe Landmarks, in 3D Euclidean Space: A Study of Control and Alzheimer's Disease Subjects. J Alzheimers Dis 2018; 57:461-473. [PMID: 28269774 DOI: 10.3233/jad-160944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The medial temporal lobe (MTL), and in particular the hippocampal formation, is essential in the processing and consolidation of declarative memory. The 3D environment of the anatomical structures contained in the MTL is an important issue. OBJECTIVE Our aim was to explore the spatial relationship of the anatomical structures of the MTL and changes in aging and/or Alzheimer's disease (AD). METHODS MTL anatomical landmarks are identified and registered to create a 3D network. The brain network is quantitatively described as a plane, rostrocaudally-oriented, and presenting Euclidean/real distances. Correspondence between 1.5T RM, 3T RM, and histological sections were assessed to determine the most important recognizable changes in AD, based on statistical significance. RESULTS In both 1.5T and 3T RM images and histology, inter-rater reliability was high. Sex and hemisphere had no influence on network pattern. Minor changes were found in relation to aging. Distances from the temporal pole to the dentate gyrus showed the most significant differences when comparing control and AD groups. The best discriminative distance between control and AD cases was found in the temporal pole/dentate gyrus rostrocaudal length in histological sections. Moreover, more distances between landmarks were required to obtain 100% discrimination between control (divided into <65 years or >65 years) and AD cases. DISCUSSION Changes in the distance between MTL anatomical landmarks can successfully be detected by using measurements of 3D network patterns in control and AD cases.
Collapse
Affiliation(s)
- José-Carlos Delgado-González
- Human Neuroanatomy Laboratory and C.R.I.B., School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | - José Florensa-Vila
- Radiodiagnostic Service, Hospital Nacional de Parapléjicos (HNP), Toledo, Spain
| | - Francisco Mansilla-Legorburo
- Radiology Service, Magnetic Resonance Unit, Complejo Hospitalario Universitario de Albacete (CHUA), Albacete, Spain
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory and C.R.I.B., School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | - Emilio Artacho-Pérula
- Human Neuroanatomy Laboratory and C.R.I.B., School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
13
|
Singh GD, Rivera-Robles J, de Jesus-Vinas J. Longitudinal Craniofacial Growth Patterns in Patients with Orofacial Clefts: Geometric Morphometrics. Cleft Palate Craniofac J 2017; 41:136-43. [PMID: 14989692 DOI: 10.1597/02-166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective To demonstrate craniofacial developmental patterns in repaired cleft lip and cleft palate (CLP). Design Retrospective, longitudinal. Setting Center for Craniofacial Disorders, San Juan, Puerto Rico. Sample Males aged 9 to 17 years: 13 noncleft (NC) Class I occlusion (NCC1); 13 NC Class III malocclusion (NCC3); 12 CLP Class I occlusion (CLPC1); and 15 CLP Class III malocclusion (CLPC3). Main Outcome Measures Form changes (ages 10, 13, and 16 years), using finite-element scaling analysis. Results NCC1, 10 to 13 interval: 30% size increase in upper midface (p < .05), mental region (p < .01), mandibular body (p < .05); 13 to 16 interval: 10% to 35% size increase in bimaxillary region and ramus (p < .01). NCC3, 10 to 13 interval: 10% to 40% size increase in posterior cranial base, upper midface, and mandible (p < .05); 13 to 16 interval: 10% to 30% size increase in bimaxillary region (p < .01), especially ramus. CLPC1, 10 to 13 interval: 10% to 15% size increase in posterior cranial base (p < .01), midface (p < .05), and mandibular ramus (p < .05); 13 to 16 interval: 8% to 20% size increase in upper midface (p < .01), lower midface (p < .05), and mandible (p < .05). CLPC3, 10 to 13 interval: no significant changes; 13 to 16 interval: upper midface and cranial base show nonsignificant size decreases, but ramus showed size increase. Conclusions Noncleft and CLP Class 1 occlusion groups show similar craniofacial growth patterns. Noncleft Class III groups show excessive cranial and mandibular growth. Class III malocclusion in CLP patients is associated with clinically deficient craniomaxillary growth. Growth guidance may be indicated in children with CLP with unfavorable craniofacial growth patterns.
Collapse
Affiliation(s)
- G D Singh
- School of Medicine, University of Puerto Rico, San Juan, Puerto Rico.
| | | | | |
Collapse
|
14
|
Starbuck JM, Cole TM, Reeves RH, Richtsmeier JT. The Influence of trisomy 21 on facial form and variability. Am J Med Genet A 2017; 173:2861-2872. [PMID: 28941128 DOI: 10.1002/ajmg.a.38464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/16/2017] [Accepted: 08/14/2017] [Indexed: 01/25/2023]
Abstract
Triplication of chromosome 21 (trisomy 21) results in Down syndrome (DS), the most common live-born human aneuploidy. Individuals with DS have a unique facial appearance that can include form changes and altered variability. Using 3D photogrammatic images, 3D coordinate locations of 20 anatomical landmarks, and Euclidean Distance Matrix Analysis methods, we quantitatively test the hypothesis that children with DS (n = 55) exhibit facial form and variance differences relative to two different age-matched (4-12 years) control samples of euploid individuals: biological siblings of individuals with DS (n = 55) and euploid individuals without a sibling with DS (n = 55). Approximately 36% of measurements differ significantly between DS and DS-sibling samples, whereas 46% differ significantly between DS and unrelated control samples. Nearly 14% of measurements differ significantly in variance between DS and DS sibling samples, while 18% of measurements differ significantly in variance between DS and unrelated euploid control samples. Of those measures that showed a significant difference in variance, all were relatively increased in the sample of DS individuals. These results indicate that faces of children with DS are quantitatively more similar to their siblings than to unrelated euploid individuals and exhibit consistent, but slightly increased variation with most individuals falling within the range of normal variation established by euploid samples. These observations provide indirect evidence of the strength of the genetic underpinnings of the resemblance between relatives and the resistance of craniofacial development to genetic perturbations caused by trisomy 21, while underscoring the complexity of the genotype-phenotype map.
Collapse
Affiliation(s)
- John M Starbuck
- Department of Anthropology, University of Central Florida, Orlando, Florida
| | - Theodore M Cole
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | - Roger H Reeves
- Department of Physiology and Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joan T Richtsmeier
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
15
|
Martini M, Klausing A, Messing-Jünger M, Lüchters G. The self-defining axis of symmetry: A new method to determine optimal symmetry and its application and limitation in craniofacial surgery. J Craniomaxillofac Surg 2017; 45:1558-1565. [DOI: 10.1016/j.jcms.2017.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/01/2017] [Accepted: 06/27/2017] [Indexed: 11/17/2022] Open
|
16
|
Mouse models of 17q21.31 microdeletion and microduplication syndromes highlight the importance of Kansl1 for cognition. PLoS Genet 2017; 13:e1006886. [PMID: 28704368 PMCID: PMC5531616 DOI: 10.1371/journal.pgen.1006886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 07/27/2017] [Accepted: 06/21/2017] [Indexed: 11/24/2022] Open
Abstract
Koolen-de Vries syndrome (KdVS) is a multi-system disorder characterized by intellectual disability, friendly behavior, and congenital malformations. The syndrome is caused either by microdeletions in the 17q21.31 chromosomal region or by variants in the KANSL1 gene. The reciprocal 17q21.31 microduplication syndrome is associated with psychomotor delay, and reduced social interaction. To investigate the pathophysiology of 17q21.31 microdeletion and microduplication syndromes, we generated three mouse models: 1) the deletion (Del/+); or 2) the reciprocal duplication (Dup/+) of the 17q21.31 syntenic region; and 3) a heterozygous Kansl1 (Kans1+/-) model. We found altered weight, general activity, social behaviors, object recognition, and fear conditioning memory associated with craniofacial and brain structural changes observed in both Del/+ and Dup/+ animals. By investigating hippocampus function, we showed synaptic transmission defects in Del/+ and Dup/+ mice. Mutant mice with a heterozygous loss-of-function mutation in Kansl1 displayed similar behavioral and anatomical phenotypes compared to Del/+ mice with the exception of sociability phenotypes. Genes controlling chromatin organization, synaptic transmission and neurogenesis were upregulated in the hippocampus of Del/+ and Kansl1+/- animals. Our results demonstrate the implication of KANSL1 in the manifestation of KdVS phenotypes and extend substantially our knowledge about biological processes affected by these mutations. Clear differences in social behavior and gene expression profiles between Del/+ and Kansl1+/- mice suggested potential roles of other genes affected by the 17q21.31 deletion. Together, these novel mouse models provide new genetic tools valuable for the development of therapeutic approaches. The 17q21.31 deletion syndrome, also named Koolen-de Vries syndrome (KdVS), is a rare copy number variants associated in humans with intellectual disability, friendly behavior, congenital malformations. The syndrome is caused either by microdeletions in the 17q21.31 region or by variants in the KANSL1 gene in human. The reciprocal 17q21.31 microduplication syndrome is not so well characterized. To investigate the pathophysiology of the syndromes, we studied the deletion, the duplication of the syntenic region and a heterozygous Kansl1 mutant in the mouse. We found affected morphology and cognition, similar to human condition, with genes controlling chromatin organization, synaptic transmission and neurogenesis dysregulated in the hippocampus of KdVS models. In addition we found that synaptic transmission was altered in KdVS mice. Our results demonstrate the implication of KANSL1 in the manifestation of KdVS and extend substantially our knowledge about altered biological processes. Nevertheless, phenotypic differences between deletion and Kansl1+/- models suggested roles of other genes affected by the 17q21.31 deletion.
Collapse
|
17
|
Moffett EA. Dimorphism in the Size and Shape of the Birth Canal Across Anthropoid Primates. Anat Rec (Hoboken) 2017; 300:870-889. [DOI: 10.1002/ar.23572] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/13/2016] [Accepted: 12/19/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Elizabeth A. Moffett
- Department of Pathology and Anatomical Sciences; University of Missouri; Columbia Missouri
- Department of Anthropology; Stony Brook University; Stony Brook New York
| |
Collapse
|
18
|
Luo F, Xie Y, Xu W, Huang J, Zhou S, Wang Z, Luo X, Liu M, Chen L, Du X. Deformed Skull Morphology Is Caused by the Combined Effects of the Maldevelopment of Calvarias, Cranial Base and Brain in FGFR2-P253R Mice Mimicking Human Apert Syndrome. Int J Biol Sci 2017; 13:32-45. [PMID: 28123344 PMCID: PMC5264259 DOI: 10.7150/ijbs.16287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/24/2016] [Indexed: 02/04/2023] Open
Abstract
Apert syndrome (AS) is a common genetic syndrome in humans characterized with craniosynostosis. Apert patients and mouse models showed abnormalities in sutures, cranial base and brain, that may all be involved in the pathogenesis of skull malformation of Apert syndrome. To distinguish the differential roles of these components of head in the pathogenesis of the abnormal skull morphology of AS, we generated mouse strains specifically expressing mutant FGFR2 in chondrocytes, osteoblasts, and progenitor cells of central nervous system (CNS) by crossing Fgfr2+/P253R-Neo mice with Col2a1-Cre, Osteocalcin-Cre (OC-Cre), and Nestin-Cre mice, respectively. We then quantitatively analyzed the skull and brain morphology of these mutant mice by micro-CT and micro-MRI using Euclidean distance matrix analysis (EDMA). Skulls of Col2a1-Fgfr2+/P253R mice showed Apert syndrome-like dysmorphology, such as shortened skull dimensions along the rostrocaudal axis, shortened nasal bone, and evidently advanced ossification of cranial base synchondroses. The OC-Fgfr2+/P253R mice showed malformation in face at 8-week stage. Nestin-Fgfr2+/P253R mice exhibited increased dorsoventral height and rostrocaudal length on the caudal skull and brain at 8 weeks. Our study indicates that the abnormal skull morphology of AS is caused by the combined effects of the maldevelopment in calvarias, cranial base, and brain tissue. These findings further deepen our knowledge about the pathogenesis of the abnormal skull morphology of AS, and provide new clues for the further analyses of skull phenotypes and clinical management of AS.
Collapse
Affiliation(s)
- Fengtao Luo
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yangli Xie
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Wei Xu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Junlan Huang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Siru Zhou
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zuqiang Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaoqing Luo
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Mi Liu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaolan Du
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
19
|
Arbogast T, Ouagazzal AM, Chevalier C, Kopanitsa M, Afinowi N, Migliavacca E, Cowling BS, Birling MC, Champy MF, Reymond A, Herault Y. Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes. PLoS Genet 2016; 12:e1005709. [PMID: 26872257 PMCID: PMC4752317 DOI: 10.1371/journal.pgen.1005709] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/06/2015] [Indexed: 11/18/2022] Open
Abstract
The 16p11.2 600 kb BP4-BP5 deletion and duplication syndromes have been associated with developmental delay; autism spectrum disorders; and reciprocal effects on the body mass index, head circumference and brain volumes. Here, we explored these relationships using novel engineered mouse models carrying a deletion (Del/+) or a duplication (Dup/+) of the Sult1a1-Spn region homologous to the human 16p11.2 BP4-BP5 locus. On a C57BL/6N inbred genetic background, Del/+ mice exhibited reduced weight and impaired adipogenesis, hyperactivity, repetitive behaviors, and recognition memory deficits. In contrast, Dup/+ mice showed largely opposite phenotypes. On a F1 C57BL/6N × C3B hybrid genetic background, we also observed alterations in social interaction in the Del/+ and the Dup/+ animals, with other robust phenotypes affecting recognition memory and weight. To explore the dosage effect of the 16p11.2 genes on metabolism, Del/+ and Dup/+ models were challenged with high fat and high sugar diet, which revealed opposite energy imbalance. Transcriptomic analysis revealed that the majority of the genes located in the Sult1a1-Spn region were sensitive to dosage with a major effect on several pathways associated with neurocognitive and metabolic phenotypes. Whereas the behavioral consequence of the 16p11 region genetic dosage was similar in mice and humans with activity and memory alterations, the metabolic defects were opposite: adult Del/+ mice are lean in comparison to the human obese phenotype and the Dup/+ mice are overweight in comparison to the human underweight phenotype. Together, these data indicate that the dosage imbalance at the 16p11.2 locus perturbs the expression of modifiers outside the CNV that can modulate the penetrance, expressivity and direction of effects in both humans and mice.
Collapse
Affiliation(s)
- Thomas Arbogast
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Abdel-Mouttalib Ouagazzal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Claire Chevalier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Maksym Kopanitsa
- Synome Ltd, Moneta Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Nurudeen Afinowi
- Synome Ltd, Moneta Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Eugenia Migliavacca
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Belinda S. Cowling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Marie-Christine Birling
- PHENOMIN, Institut Clinique de la Souris, ICS; CNRS, INSERM, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Marie-France Champy
- PHENOMIN, Institut Clinique de la Souris, ICS; CNRS, INSERM, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
- PHENOMIN, Institut Clinique de la Souris, ICS; CNRS, INSERM, University of Strasbourg, Illkirch-Graffenstaden, France
- * E-mail:
| |
Collapse
|
20
|
Young R, Maga AM. Performance of single and multi-atlas based automated landmarking methods compared to expert annotations in volumetric microCT datasets of mouse mandibles. Front Zool 2015; 12:33. [PMID: 26628903 PMCID: PMC4666065 DOI: 10.1186/s12983-015-0127-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/19/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Here we present an application of advanced registration and atlas building framework DRAMMS to the automated annotation of mouse mandibles through a series of tests using single and multi-atlas segmentation paradigms and compare the outcomes to the current gold standard, manual annotation. RESULTS Our results showed multi-atlas annotation procedure yields landmark precisions within the human observer error range. The mean shape estimates from gold standard and multi-atlas annotation procedure were statistically indistinguishable for both Euclidean Distance Matrix Analysis (mean form matrix) and Generalized Procrustes Analysis (Goodall F-test). Further research needs to be done to validate the consistency of variance-covariance matrix estimates from both methods with larger sample sizes. CONCLUSION Multi-atlas annotation procedure shows promise as a framework to facilitate truly high-throughput phenomic analyses by channeling investigators efforts to annotate only a small portion of their datasets.
Collapse
Affiliation(s)
- Ryan Young
- />Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 Ninth Ave, 98101 Seattle, WA USA
| | - A. Murat Maga
- />Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA USA
- />Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 Ninth Ave, 98101 Seattle, WA USA
- />Department of Oral Biology, University of Washington, Seattle, WA USA
| |
Collapse
|
21
|
Hallgrimsson B, Percival CJ, Green R, Young NM, Mio W, Marcucio R. Morphometrics, 3D Imaging, and Craniofacial Development. Curr Top Dev Biol 2015; 115:561-97. [PMID: 26589938 DOI: 10.1016/bs.ctdb.2015.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent studies have shown how volumetric imaging and morphometrics can add significantly to our understanding of morphogenesis, the developmental basis for variation, and the etiology of structural birth defects. On the other hand, the complex questions and diverse imaging data in developmental biology present morphometrics with more complex challenges than applications in virtually any other field. Meeting these challenges is necessary in order to understand the mechanistic basis for variation in complex morphologies. This chapter reviews the methods and theory that enable the application of modern landmark-based morphometrics to developmental biology and craniofacial development, in particular. We discuss the theoretical foundations of morphometrics as applied to development and review the basic approaches to the quantification of morphology. Focusing on geometric morphometrics, we discuss the principal statistical methods for quantifying and comparing morphological variation and covariation structure within and among groups. Finally, we discuss the future directions for morphometrics in developmental biology that will be required for approaches that enable quantitative integration across the genotype-phenotype map.
Collapse
Affiliation(s)
- Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, and McCaig Bone and Joint Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Christopher J Percival
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, and McCaig Bone and Joint Institute, University of Calgary, Calgary, Alberta, Canada
| | - Rebecca Green
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, and McCaig Bone and Joint Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nathan M Young
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, University of California San Francisco, San Francisco, California, USA
| | - Washington Mio
- Department of Mathematics, Florida State University, Tallahassee, Florida, USA
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
22
|
Chollet MB, DeLeon VB, Conrad AL, Nopoulos P. Morphometric analysis of brain shape in children with nonsyndromic cleft lip and/or palate. J Child Neurol 2014; 29:1616-25. [PMID: 24381208 PMCID: PMC4221570 DOI: 10.1177/0883073813510603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to test for differences in brain shape among children with cleft palate only (n = 22), children with cleft lip and palate (n = 35), and controls (n = 39) using Euclidean distance matrix analysis. Sixteen percent of interlandmark distances differed between children with cleft palate only and controls, 10% differed between children with cleft lip and palate and controls, and 10% differed between children with cleft palate only and children with cleft lip and palate. Major differences in brain shape associated with cleft lip and/or palate included posterior expansion of the occipital lobe, reorientation of the cerebellum, heightened callosal midbody, and posterior displacement of the caudate nucleus and thalamus. Differences in brain shape unique to cleft palate only and to cleft lip and palate were also identified. These results expand upon previous volumetric studies on brain morphology in individuals with cleft lip and/or palate and provide additional evidence that the primary defect in cleft lip and/or palate results in both facial and brain dysmorphology.
Collapse
Affiliation(s)
- Madeleine B. Chollet
- Former doctoral student at Johns Hopkins University School of Medicine, Baltimore, MD and current medical student at Washington University School of Medicine, St. Louis, MO
| | - Valerie B. DeLeon
- Assistant Professor of Anatomy, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Amy L. Conrad
- Assistant Research Scientist in Psychiatry, University of Iowa Carver College of Medicine, IA
| | - Peg Nopoulos
- Professor of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
23
|
Motch Perrine SM, Cole TM, Martínez-Abadías N, Aldridge K, Jabs EW, Richtsmeier JT. Craniofacial divergence by distinct prenatal growth patterns in Fgfr2 mutant mice. BMC DEVELOPMENTAL BIOLOGY 2014; 14:8. [PMID: 24580805 PMCID: PMC4101838 DOI: 10.1186/1471-213x-14-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/05/2014] [Indexed: 11/12/2022]
Abstract
Background Differences in cranial morphology arise due to changes in fundamental cell processes like migration, proliferation, differentiation and cell death driven by genetic programs. Signaling between fibroblast growth factors (FGFs) and their receptors (FGFRs) affect these processes during head development and mutations in FGFRs result in congenital diseases including FGFR-related craniosynostosis syndromes. Current research in model organisms focuses primarily on how these mutations change cell function local to sutures under the hypothesis that prematurely closing cranial sutures contribute to skull dysmorphogenesis. Though these studies have provided fundamentally important information contributing to the understanding of craniosynostosis conditions, knowledge of changes in cell function local to the sutures leave change in overall three-dimensional cranial morphology largely unexplained. Here we investigate growth of the skull in two inbred mouse models each carrying one of two gain-of-function mutations in FGFR2 on neighboring amino acids (S252W and P253R) that in humans cause Apert syndrome, one of the most severe FGFR-related craniosynostosis syndromes. We examine late embryonic skull development and suture patency in Fgfr2 Apert syndrome mice between embryonic day 17.5 and birth and quantify the effects of these mutations on 3D skull morphology, suture patency and growth. Results We show in mice what studies in humans can only infer: specific cranial growth deviations occur prenatally and worsen with time in organisms carrying these FGFR2 mutations. We demonstrate that: 1) distinct skull morphologies of each mutation group are established by E17.5; 2) cranial suture patency patterns differ between mice carrying these mutations and their unaffected littermates; 3) the prenatal skull grows differently in each mutation group; and 4) unique Fgfr2-related cranial morphologies are exacerbated by late embryonic growth patterns. Conclusions Our analysis of mutation-driven changes in cranial growth provides a previously missing piece of knowledge necessary for explaining variation in emergent cranial morphologies and may ultimately be helpful in managing human cases carrying these same mutations. This information is critical to the understanding of craniofacial development, disease and evolution and may contribute to the evaluation of incipient therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
24
|
de Ruiter DJ, DeWitt TJ, Carlson KB, Brophy JK, Schroeder L, Ackermann RR, Churchill SE, Berger LR. Mandibular Remains Support Taxonomic Validity of
Australopithecus sediba. Science 2013; 340:1232997. [DOI: 10.1126/science.1232997] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Darryl J. de Ruiter
- Department of Anthropology, Texas A&M University, College Station, TX 77843, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
| | - Thomas J. DeWitt
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Keely B. Carlson
- Department of Anthropology, Texas A&M University, College Station, TX 77843, USA
| | - Juliet K. Brophy
- Department of Anthropology, Texas A&M University, College Station, TX 77843, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
- Department of Anthropology, Loyola University, Chicago, IL 60660, USA
| | - Lauren Schroeder
- Department of Archaeology, University of Cape Town, Rondebosch 7701, South Africa
| | - Rebecca R. Ackermann
- Department of Archaeology, University of Cape Town, Rondebosch 7701, South Africa
| | - Steven E. Churchill
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
- Department of Evolutionary Anthropology, Box 90383, Duke University, Durham, NC 27708, USA
| | - Lee R. Berger
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
| |
Collapse
|
25
|
Martínez-Abadías N, Holmes G, Pankratz T, Wang Y, Zhou X, Jabs EW, Richtsmeier JT. From shape to cells: mouse models reveal mechanisms altering palate development in Apert syndrome. Dis Model Mech 2013; 6:768-79. [PMID: 23519026 PMCID: PMC3634659 DOI: 10.1242/dmm.010397] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Apert syndrome is a congenital disorder characterized by severe skull malformations and caused by one of two missense mutations, S252W and P253R, on fibroblast growth factor receptor 2 (FGFR2). The molecular bases underlying differential Apert syndrome phenotypes are still poorly understood and it is unclear why cleft palate is more frequent in patients carrying the S252W mutation. Taking advantage of Apert syndrome mouse models, we performed a novel combination of morphometric, histological and immunohistochemical analyses to precisely quantify distinct palatal phenotypes in Fgfr2+/S252W and Fgfr2+/P253R mice. We localized regions of differentially altered FGF signaling and assessed local cell patterns to establish a baseline for understanding the differential effects of these two Fgfr2 mutations. Palatal suture scoring and comparative 3D shape analysis from high resolution μCT images of 120 newborn mouse skulls showed that Fgfr2+/S252W mice display relatively more severe palate dysmorphologies, with contracted and more separated palatal shelves, a greater tendency to fuse the maxillary-palatine sutures and aberrant development of the inter-premaxillary suture. These palatal defects are associated with suture-specific patterns of abnormal cellular proliferation, differentiation and apoptosis. The posterior region of the developing palate emerges as a potential target for therapeutic strategies in clinical management of cleft palate in Apert syndrome patients.
Collapse
Affiliation(s)
- Neus Martínez-Abadías
- Department of Anthropology, Pennsylvania State University, 409 Carpenter Building, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Lambi AG, Pankratz TL, Mundy C, Gannon M, Barbe MF, Richtsmeier JT, Popoff SN. The skeletal site-specific role of connective tissue growth factor in prenatal osteogenesis. Dev Dyn 2012; 241:1944-59. [PMID: 23073844 PMCID: PMC3752831 DOI: 10.1002/dvdy.23888] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that is highly expressed during bone development. Mice with global CTGF ablation (knockout, KO) have multiple skeletal dysmorphisms and perinatal lethality. A quantitative analysis of the bone phenotype has not been conducted. RESULTS We demonstrated skeletal site-specific changes in growth plate organization, bone microarchitecture, and shape and gene expression levels in CTGF KO compared with wild-type mice. Growth plate malformations included reduced proliferation zone and increased hypertrophic zone lengths. Appendicular skeletal sites demonstrated decreased metaphyseal trabecular bone, while having increased mid-diaphyseal bone and osteogenic expression markers. Axial skeletal analysis showed decreased bone in caudal vertebral bodies, mandibles, and parietal bones in CTGF KO mice, with decreased expression of osteogenic markers. Analysis of skull phenotypes demonstrated global and regional differences in CTGF KO skull shape resulting from allometric (size-based) and nonallometric shape changes. Localized differences in skull morphology included increased skull width and decreased skull length. Dysregulation of the transforming growth factor-β-CTGF axis coupled with unique morphologic traits provides a potential mechanistic explanation for the skull phenotype. CONCLUSIONS We present novel data on a skeletal phenotype in CTGF KO mice, in which ablation of CTGF causes site-specific aberrations in bone formation.
Collapse
Affiliation(s)
- Alex G. Lambi
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Talia L. Pankratz
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Christina Mundy
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Division of Diabetes, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mary F. Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Joan T. Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Steven N. Popoff
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
- Department of Orthopaedic Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Brown KM, Handa VL, Macura KJ, DeLeon VB. Three-dimensional shape differences in the bony pelvis of women with pelvic floor disorders. Int Urogynecol J 2012; 24:431-9. [DOI: 10.1007/s00192-012-1876-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 06/23/2012] [Indexed: 10/28/2022]
|
28
|
Aldridge K, George ID, Cole KK, Austin JR, Takahashi TN, Duan Y, Miles JH. Facial phenotypes in subgroups of prepubertal boys with autism spectrum disorders are correlated with clinical phenotypes. Mol Autism 2011; 2:15. [PMID: 21999758 PMCID: PMC3212884 DOI: 10.1186/2040-2392-2-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 10/14/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The brain develops in concert and in coordination with the developing facial tissues, with each influencing the development of the other and sharing genetic signaling pathways. Autism spectrum disorders (ASDs) result from alterations in the embryological brain, suggesting that the development of the faces of children with ASD may result in subtle facial differences compared to typically developing children. In this study, we tested two hypotheses. First, we asked whether children with ASD display a subtle but distinct facial phenotype compared to typically developing children. Second, we sought to determine whether there are subgroups of facial phenotypes within the population of children with ASD that denote biologically discrete subgroups. METHODS The 3dMD cranial System was used to acquire three-dimensional stereophotogrammetric images for our study sample of 8- to 12-year-old boys diagnosed with essential ASD (n = 65) and typically developing boys (n = 41) following approved Institutional Review Board protocols. Three-dimensional coordinates were recorded for 17 facial anthropometric landmarks using the 3dMD Patient software. Statistical comparisons of facial phenotypes were completed using Euclidean Distance Matrix Analysis and Principal Coordinates Analysis. Data representing clinical and behavioral traits were statistically compared among groups by using χ2 tests, Fisher's exact tests, Kolmogorov-Smirnov tests and Student's t-tests where appropriate. RESULTS First, we found that there are significant differences in facial morphology in boys with ASD compared to typically developing boys. Second, we also found two subgroups of boys with ASD with facial morphology that differed from the majority of the boys with ASD and the typically developing boys. Furthermore, membership in each of these distinct subgroups was correlated with particular clinical and behavioral traits. CONCLUSIONS Boys with ASD display a facial phenotype distinct from that of typically developing boys, which may reflect alterations in the prenatal development of the brain. Subgroups of boys with ASD defined by distinct facial morphologies correlated with clinical and behavioral traits, suggesting potentially different etiologies and genetic differences compared to the larger group of boys with ASD. Further investigations into genes involved in neurodevelopment and craniofacial development of these subgroups will help to elucidate the causes and significance of these subtle facial differences.
Collapse
Affiliation(s)
- Kristina Aldridge
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, One Hospital Dr, M309 Med Sci Bldg, Columbia, MO 65212, USA
- Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, 205 Portland St, Columbia, MO 65211, USA
| | - Ian D George
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, One Hospital Dr, M309 Med Sci Bldg, Columbia, MO 65212, USA
| | - Kimberly K Cole
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, One Hospital Dr, M309 Med Sci Bldg, Columbia, MO 65212, USA
| | - Jordan R Austin
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, One Hospital Dr, M309 Med Sci Bldg, Columbia, MO 65212, USA
| | - T Nicole Takahashi
- Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, 205 Portland St, Columbia, MO 65211, USA
| | - Ye Duan
- Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, 205 Portland St, Columbia, MO 65211, USA
- Department of Computer Science, University of Missouri, 209 Engineering Building West, Columbia, MO 65211, USA
| | - Judith H Miles
- Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, 205 Portland St, Columbia, MO 65211, USA
- Department of Child Health, University of Missouri School of Medicine, One Hospital Dr, N712, Columbia, MO 65212, USA
| |
Collapse
|
29
|
Aldridge K. Patterns of differences in brain morphology in humans as compared to extant apes. J Hum Evol 2010; 60:94-105. [PMID: 21056456 DOI: 10.1016/j.jhevol.2010.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 09/07/2010] [Accepted: 09/13/2010] [Indexed: 12/31/2022]
Abstract
Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos). Twenty-nine 3D landmarks, including surface and internal features of the brain were located on 3D MRI reconstructions of each individual using MEASURE software. Landmark coordinate data were scaled for differences in size and analyzed using Euclidean Distance Matrix Analysis (EDMA) to statistically compare the brains of each non-human ape species to the human sample. Results of analyses show both a pattern of brain morphology that is consistently different between all apes and humans, as well as patterns that differ among species. Further, both the consistent and species-specific patterns include cortical and subcortical features. The pattern that remains consistent across species indicates a morphological reorganization of 1) relationships between cortical and subcortical frontal structures, 2) expansion of the temporal lobe and location of the amygdala, and 3) expansion of the anterior parietal region. Additionally, results demonstrate that, although there is a pattern of morphology that uniquely defines the human brain, there are also patterns that uniquely differentiate human morphology from the morphology of each non-human ape species, indicating that reorganization of neural morphology occurred at the evolutionary divergence of each of these groups.
Collapse
Affiliation(s)
- Kristina Aldridge
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, M309 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA.
| |
Collapse
|
30
|
Martínez-Abadías N, Percival C, Aldridge K, Hill CA, Ryan T, Sirivunnabood S, Wang Y, Jabs EW, Richtsmeier JT. Beyond the closed suture in apert syndrome mouse models: evidence of primary effects of FGFR2 signaling on facial shape at birth. Dev Dyn 2010; 239:3058-71. [PMID: 20842696 PMCID: PMC2965208 DOI: 10.1002/dvdy.22414] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Apert syndrome is a congenital disorder caused mainly by two neighboring mutations on fibroblast growth factor receptor 2 (FGFR2). Premature closure of the coronal suture is commonly considered the identifying and primary defect triggering or preceding the additional cranial malformations of Apert phenotype. Here we use two transgenic mouse models of Apert syndrome, Fgfr2(+/S252W) and Fgfr2(+/P253R), to explore variation in cranial phenotypes in newborn (P0) mice. Results show that the facial skeleton is the most affected region of the cranium. Coronal suture patency shows marked variation that is not strongly correlated with skull dysmorphology. The craniofacial effects of the FGFR2 mutations are similar, but Fgfr2(+/S252W) mutant mice display significantly more severe dysmorphology localized to the posterior palate. Our results demonstrate that coronal suture closure is neither the primary nor the sole locus of skull dysmorphology in these mouse models for Apert syndrome, but that the face is also primarily affected.
Collapse
Affiliation(s)
- Neus Martínez-Abadías
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Christopher Percival
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristina Aldridge
- Department of Pathology & Anatomical Sciences, University of Missouri-School of Medicine, Columbia, Missouri, USA
| | - Cheryl A Hill
- Department of Pathology & Anatomical Sciences, University of Missouri-School of Medicine, Columbia, Missouri, USA
| | - Timothy Ryan
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Satama Sirivunnabood
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yingli Wang
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
31
|
Du X, Weng T, Sun Q, Su N, Chen Z, Qi H, Jin M, Yin L, He Q, Chen L. Dynamic morphological changes in the skulls of mice mimicking human Apert syndrome resulting from gain-of-function mutation of FGFR2 (P253R). J Anat 2010; 217:97-105. [PMID: 20557404 DOI: 10.1111/j.1469-7580.2010.01248.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Apert syndrome is caused mainly by gain-of-function mutations of fibroblast growth factor receptor 2. We have generated a mouse model (Fgfr2(+/P253R)) mimicking human Apert syndrome resulting from fibroblast growth factor receptor 2 Pro253Arg mutation using the knock-in approach. This mouse model in general has the characteristic skull morphology similar to that in humans with Apert syndrome. To characterize the detailed changes of form in the overall skull and its major anatomic structures, euclidean distance matrix analysis was used to quantitatively compare the form and growth difference between the skulls of mutants and their wild-type controls. There were substantial morphological differences between the skulls of mutants and their controls at 4 and 8 weeks of age (P < 0.01). The mutants showed shortened skull dimensions along the rostrocaudal axis, especially in their face. The width of the frontal bone and the distance between the two orbits were broadened mediolaterally. The neurocrania were significantly increased along the dorsoventral axis and slightly increased along the mediolateral axis, and also had anteriorly displayed opisthion along the rostrocaudal axis. Compared with wild-type, the mutant mandible had an anteriorly displaced coronoid process and mandibular condyle along the rostrocaudal axis. We further found that there was catch-up growth in the nasal bone, maxilla, zygomatic bone and some regions of the mandible of the mutant skulls during the 4-8-week interval. The above-mentioned findings further validate the Fgfr2(+/P253R) mouse strain as a good model for human Apert syndrome. The changes in form characterized in this study will help to elucidate the mechanisms through which the Pro253Arg mutation in fibroblast growth factor receptor 2 affects craniofacial development and causes Apert syndrome.
Collapse
Affiliation(s)
- Xiaolan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kaminen-Ahola N, Ahola A, Maga M, Mallitt KA, Fahey P, Cox TC, Whitelaw E, Chong S. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet 2010; 6:e1000811. [PMID: 20084100 PMCID: PMC2797299 DOI: 10.1371/journal.pgen.1000811] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 12/10/2009] [Indexed: 11/19/2022] Open
Abstract
Recent studies have shown that exposure to some nutritional supplements and chemicals in utero can affect the epigenome of the developing mouse embryo, resulting in adult disease. Our hypothesis is that epigenetics is also involved in the gestational programming of adult phenotype by alcohol. We have developed a model of gestational ethanol exposure in the mouse based on maternal ad libitum ingestion of 10% (v/v) ethanol between gestational days 0.5-8.5 and observed changes in the expression of an epigenetically-sensitive allele, Agouti viable yellow (A(vy)), in the offspring. We found that exposure to ethanol increases the probability of transcriptional silencing at this locus, resulting in more mice with an agouti-colored coat. As expected, transcriptional silencing correlated with hypermethylation at A(vy). This demonstrates, for the first time, that ethanol can affect adult phenotype by altering the epigenotype of the early embryo. Interestingly, we also detected postnatal growth restriction and craniofacial dysmorphology reminiscent of fetal alcohol syndrome, in congenic a/a siblings of the A(vy) mice. These findings suggest that moderate ethanol exposure in utero is capable of inducing changes in the expression of genes other than A(vy), a conclusion supported by our genome-wide analysis of gene expression in these mice. In addition, offspring of female mice given free access to 10% (v/v) ethanol for four days per week for ten weeks prior to conception also showed increased transcriptional silencing of the A(vy) allele. Our work raises the possibility of a role for epigenetics in the etiology of fetal alcohol spectrum disorders, and it provides a mouse model that will be a useful resource in the continued efforts to understand the consequences of gestational alcohol exposure at the molecular level.
Collapse
Affiliation(s)
- Nina Kaminen-Ahola
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Australia
| | - Arttu Ahola
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Australia
- Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Murat Maga
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Kylie-Ann Mallitt
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Australia
| | - Paul Fahey
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Australia
| | - Timothy C. Cox
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Emma Whitelaw
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Australia
- Griffith Medical Research College, Griffith University and the Queensland Institute of Medical Research, Herston, Australia
| | - Suyinn Chong
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Herston, Australia
- Griffith Medical Research College, Griffith University and the Queensland Institute of Medical Research, Herston, Australia
- * E-mail:
| |
Collapse
|
33
|
Paschetta C, de Azevedo S, Castillo L, Martínez-Abadías N, Hernández M, Lieberman DE, González-José R. The influence of masticatory loading on craniofacial morphology: A test case across technological transitions in the Ohio valley. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2009; 141:297-314. [DOI: 10.1002/ajpa.21151] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Weinberg SM, Neiswanger K, Richtsmeier JT, Maher BS, Mooney MP, Siegel MI, Marazita ML. Three-dimensional morphometric analysis of craniofacial shape in the unaffected relatives of individuals with nonsyndromic orofacial clefts: a possible marker for genetic susceptibility. Am J Med Genet A 2008; 146A:409-20. [PMID: 18203157 DOI: 10.1002/ajmg.a.32177] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Numerous studies have described altered patterns of craniofacial form in the unaffected relatives of individuals with nonsyndromic clefts. Unfortunately, results from such studies have been highly variable and have failed to provide a reliable method for differentiating "at-risk" relatives from controls. In the present study, we compared craniofacial shape between a sample of unaffected relatives (33 females; 14 males) from cleft multiplex families and an equal number of age/sex/ethnicity-matched controls. Sixteen x,y,z facial landmark coordinates derived from 3D photogrammetry were analyzed via Euclidean Distance Matrix Analysis, while 14 additional linear distances were analyzed via t tests. A subset of variables was then entered into a discriminant function analysis (DFA). Compared to controls, female unaffected relatives demonstrated increased upper facial width, midface reduction and lateral displacement of the alar cartilage. DFA correctly classified 70% of female unaffected relatives and 73% of female controls. Male unaffected relatives demonstrated increased upper facial and cranial base width, increased lower facial height and decreased upper facial height compared with controls. DFA correctly classified 86% of male unaffected relatives and 93% of male controls. In both sexes, upper facial width contributed most to group discrimination. Following DFA, unaffected relatives were assigned to risk/liability classes based on the degree of phenotypic divergence from controls. Results indicate that craniofacial shape differences characterizing unaffected relatives are partly sex-specific and are in broad agreement with previous reports. These findings further suggest that a quantitative assessment of the craniofacial phenotype may allow for the identification of susceptible individuals within nonsyndromic cleft families.
Collapse
Affiliation(s)
- Seth M Weinberg
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Seidenstricker-Kink LM, Becker DB, Govier DP, DeLeon VB, Lo LJ, Kane AA. Comparative osseous and soft tissue morphology following cleft lip repair. Cleft Palate Craniofac J 2008; 45:511-7. [PMID: 18788869 DOI: 10.1597/07-001.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To quantify comparative improvement between osseous and soft tissue asymmetry following primary lip repair. DESIGN Retrospective analysis of preoperative and postoperative computed tomography scans of infants with unilateral cleft lip and palate. Sixteen soft tissue landmarks were placed using an exploratory two-/three-dimensional image processing system and compared for asymmetry. PATIENTS Computed tomography scans were obtained on 26 patients (13 boys, 13 girls) of Chinese ethnicity (mean age = 0.25 years) prior to Millard lip repair. Nineteen of these contributed to follow-up comparative studies prior to palatoplasty at a mean age of 0.92 years. There were 18 left-sided and eight right-sided clefts. MAIN OUTCOME MEASURE Euclidean distance matrix asymmetry analysis was used to determine the amount of soft tissue asymmetry pre- and postlip repair. Similar analyses of the same scans were performed for 41 osseous landmarks. RESULTS Soft tissue landmarks had 36/39 (92%) preoperative and 13/39 (33%) postoperative asymmetric pairs. Osseous distances demonstrated 77/125 (61%) asymmetric pairs preoperatively and 60/125 (48%) postoperatively. Soft tissue and osseous distances of the lip region demonstrated 32% and 39% postoperative asymmetry, respectively. Soft tissue and osseous distances of the nasal region demonstrated 52% and 72% postoperative asymmetry, respectively. Soft tissue and osseous distances of the facial landmarks demonstrated 24% and 34% postoperative asymmetry, respectively. CONCLUSIONS Primary lip repair appears to effect gains in symmetry in soft tissue and provides sufficient molding forces to cause correlating symmetry changes in underlying osseous structures.
Collapse
|
36
|
Frazier BC, Mooney MP, Losken HW, Barbano T, Moursi A, Siegel MI, Richtsmeier JT. Comparison of craniofacial phenotype in craniosynostotic rabbits treated with anti-Tgf-beta2 at suturectomy site. Cleft Palate Craniofac J 2007; 45:571-82. [PMID: 18956936 DOI: 10.1597/07-095.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Overexpression of transforming growth factor-beta 2 has been associated with craniosynostosis and resynostosis following surgery. We examined the effects of localized transforming growth factor-beta 2 inhibition on craniofacial phenotype in rabbits with craniosynostosis. DESIGN Twenty-five New Zealand white rabbits with bilateral coronal craniosynostosis were divided into three treatment groups: (1) suturectomy control (n=8); (2) suturectomy with nonspecific, control immunoglobulin G antibody (n=6); and (3) suturectomy with anti-transforming growth factor-beta 2 antibody (n=11). At 10 days of age, a coronal suturectomy was performed on all rabbits. The sites in groups 2 and 3 were immediately filled with a slow-resorbing collagen gel mixed with either immunoglobulin G or anti-transforming growth factor-beta 2 antibody. Computed tomography scans of each rabbit were acquired at ages 10, 25, and 84 days. Craniofacial landmarks were collected from three-dimensional computed tomography reconstructions, and growth and form were compared among the three groups. RESULTS Rabbits treated with anti-transforming growth factor-beta 2 antibody differed in form at 84 days of age compared with suturectomy control rabbits, specifically in the snout and posterior neurocranium. Growth in some areas of the skull was greater in rabbits from the anti-transforming growth factor-beta 2 group than in suturectomy control rabbits, but not significantly greater than in IgG control rabbits. CONCLUSIONS We find support for the hypothesis that transforming growth factor-beta 2 inhibition alters adult form, but these changes do not appear to be localized to the suturectomy region. Slight differences in form and growth between the two control groups suggest that the presence of the collagen vehicle itself may affect skull growth.
Collapse
Affiliation(s)
- Brenda C Frazier
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Adult craniofacial morphology results from complex interactions among genetic, epigenetic and environmental factors. Trisomy causes perturbations in the genetic programmes that control development and these are reflected in morphology that can either ameliorate or worsen with time and growth. Many of the specific changes that occur in Down syndrome can be studied in the Ts65Dn trisomic mouse, which shows direct parallels with specific aspects of adult craniofacial dysmorphology associated with trisomy 21. This study investigates patterns of craniofacial growth in Ts65Dn mice and their euploid littermates to assess how the adult dysmorphology develops. Three-dimensional coordinate data were collected from microcomputed tomography scans of the face, cranial base, palate and mandible of newborn (P0) and adult trisomic and euploid mice. Growth patterns were analysed using Euclidean distance matrix analysis. P0 trisomic mice show significant differences in craniofacial shape. Growth is reduced along the rostro-caudal axis of the Ts65Dn face and palate relative to euploid littermates and Ts65Dn mandibles demonstrate reduced growth local to the mandibular processes. Thus, the features of Down syndrome that are reflected in the mature Ts65Dn skull are established early in development and growth does not appear to ameliorate them. Differences in growth may in fact contribute to many of the morphological differences that are evident at birth in trisomic mice and humans.
Collapse
Affiliation(s)
- Cheryl A Hill
- Department of Anthropology, The Pennsylvania State University, PA 16801, USA
| | | | | |
Collapse
|
38
|
Aldridge K, Reeves RH, Olson LE, Richtsmeier JT. Differential effects of trisomy on brain shape and volume in related aneuploid mouse models. Am J Med Genet A 2007; 143A:1060-70. [PMID: 17431903 PMCID: PMC3246902 DOI: 10.1002/ajmg.a.31721] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Down syndrome (DS) results from inheritance of three copies of human chromosome 21 (Hsa21). Individuals with DS have a significantly smaller brain size overall and a disproportionately small cerebellum. The small cerebellum is seen in Ts65Dn mice, which have segmental trisomy for orthologs of about half the genes on Hsa21 and provide a genetic model for DS. While small cerebellar size is well-established in mouse and humans, much less is known about the shape of the brain in trisomy. Here we conduct a morphometric analysis of the whole brain and cerebellum in Ts65Dn mice and show that the differences with euploid littermates are largely a function of volume and not of shape. This is not the case in two aneuploid mouse models that have fewer genes orthologous to Hsa21 than Ts65Dn. Ts1Rhr is trisomic for genes corresponding to the so-called Down syndrome critical region (DSCR), which was purported to contain a dosage sensitive gene or genes responsible for many phenotypes of DS. Ms1Rhr is monosomic for the same segment. These models show effects on cerebellum and overall brain that are different from each other and from Ts65Dn. These models can help to identify the contributions of genes from different regions of the chromosome on this and other aspects of brain development in trisomy.
Collapse
Affiliation(s)
- Kristina Aldridge
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania
| | - Roger H. Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lisa E. Olson
- Department of Biology, University of Redlands, Redlands, California
| | - Joan T. Richtsmeier
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Craniofacial Development and Disorders, The Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
39
|
Perlyn CA, DeLeon VB, Babbs C, Govier D, Burell L, Darvann T, Kreiborg S, Morriss-Kay G. The craniofacial phenotype of the Crouzon mouse: analysis of a model for syndromic craniosynostosis using three-dimensional MicroCT. Cleft Palate Craniofac J 2007; 43:740-8. [PMID: 17105336 DOI: 10.1597/05-212] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To characterize the craniofacial phenotype of a mouse model for Crouzon syndrome by a quantitative analysis of skull morphology in mutant and wild-type mice and to compare the findings with skull features observed in humans with Crouzon syndrome. METHODS MicroCT scans and skeletal preparations were obtained on previously described Fgfr2(C342Y/+) Crouzon mutant mice and wild-type mice at 6 weeks of age. Three-dimensional coordinate data from biologically relevant landmarks on the skulls were collected. Euclidean Distance Matrix Analysis was used to quantify and compare skull shapes using these landmark data. RESULTS Obliteration of bilateral coronal sutures was observed in 80% of skulls, and complete synostosis of the sagittal suture was observed in 70%. In contrast, fewer than 40% of lambdoid sutures were found to be fully fused. In each of the 10 Fgfr2(C342Y/+) mutant mice analyzed, the presphenoid-basisphenoid synchondrosis was fused. Skull height and width were increased in mutant mice, whereas skull length was decreased. Interorbital distance was also increased in Fgfr2(C342Y/+) mice as compared with wild-type littermates. Upper-jaw length was shorter in the Fgfr2(C342Y/+) mutant skulls, as was mandibular length. CONCLUSION Skulls of Fgfr2(C342Y/+) mice differ from normal littermates in a comparable manner with differences between the skulls of humans with Crouzon syndrome and those of unaffected individuals. These findings were consistent across several regions of anatomic interest. Further investigation into the molecular mechanisms underlying the anomalies seen in the Crouzon mouse model is currently under way.
Collapse
Affiliation(s)
- Chad A Perlyn
- Division of Plastic Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Martínez-Abadías N, González-José R, González-Martín A, Van der Molen S, Talavera A, Hernández P, Hernández M. Phenotypic evolution of human craniofacial morphology after admixture: a geometric morphometrics approach. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2006; 129:387-98. [PMID: 16323202 DOI: 10.1002/ajpa.20291] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An evolutionary, diachronic approach to the phenotypic craniofacial pattern arisen in a human population after high levels of admixture and gene flow was achieved by means of geometric morphometrics. Admixture has long been studied after molecular data. Nevertheless, few efforts have been made to explain the morphological outcome in human craniofacial samples. The Spanish-Amerindian contact can be considered a good scenario for such an analysis. Here we present a comparative analysis of craniofacial shape changes observed between two putative ancestor groups, Spanish and precontact Aztecs, and two diachronic admixed groups, corresponding to early and late colonial periods from the Mexico's Central Valley. Quantitative shape comparisons of Amerindian, Spanish, and admixed groups were used to test the expectations of quantitative genetics for admixture events. In its simplest form, this prediction states that an admixed group will present phenotypic values falling between those of both parental groups. Results show that, in general terms, although the human skull is a complex, integrated structure, the craniofacial morphology observed fits the theoretical expectations of quantitative genetics. Thus, it is predictive of population structure and history. In fact, results obtained after the craniofacial analysis are in accordance with previous molecular and historical interpretations, providing evidence that admixture is a main microevolutionary agent influencing modern Mexican gene pool. However, expectations are not straightforward when moderate shape changes are considered. Deviations detected at localized structures, such as the upper and lower face, highlight the evolution of a craniofacial pattern exclusively inherent to the admixed groups, indicating that quantitative characters might respond to admixture in a complicated, nondirectional way.
Collapse
Affiliation(s)
- Neus Martínez-Abadías
- Unitat d'Antropologia, Departament de Biologia Animal, Facultat de Biologia,Universitat de Barcelona, Barcelona 08028, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Becker DB, Fundakowski CE, Govier DP, Deleon VB, Marsh JL, Kane AA. Long-Term Osseous Morphologic Outcome of Surgically Treated Unilateral Coronal Craniosynostosis. Plast Reconstr Surg 2006; 117:929-35. [PMID: 16525287 DOI: 10.1097/01.prs.0000200613.06035.51] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Unilateral coronal craniosynostosis has characteristic osseous dysmorphology that persists into adulthood if untreated. Knowledge of the long-term in vivo osseous morphologic outcome of surgically treated unilateral coronal craniosynostosis patients is limited. The purpose of this study was to define the osseous morphology of adolescent patients who underwent surgery for unilateral coronal craniosynostosis in infancy, compared with both their 1-year postoperative morphology and the morphology of other individuals with untreated unilateral coronal craniosynostosis. METHODS Three populations of unilateral coronal craniosynostosis were studied: group 1, patients with surgical treatment of unilateral coronal craniosynostosis in infancy who had reached dentoskeletal maturity, ranging in age from 13.5 to 32.7 years (n= 9); group 2, individuals with untreated unilateral coronal craniosynostosis, ranging in age from 1.1 to 21 years (n= 11); and group 3, a subset of group 1 patients 1 year after surgical correction of unilateral coronal craniosynostosis, ranging in age from 1.2 to 2.6 years (n= 6). Data from high-resolution, thin-slice computed tomographic scans of the head were analyzed. Thirty-five reproducible osseous landmarks were recorded as three-dimensional coordinates using ETDIPS imaging software. Nonmidline landmarks were designated as either ipsilateral or contralateral to the synostosis. One researcher performed all landmarking with high intrarater reliability (average error, <2 mm). Data from the three groups were analyzed for asymmetry using Euclidean distance matrix analysis techniques. RESULTS Euclidean distance matrix analysis asymmetry analysis demonstrated more statistically significant ipsilateral-contralateral asymmetric pairs in group 1 (68 of 135) than in group 3 (25 of 135), but fewer statistically significant ipsilateral-contralateral asymmetric pairs than in group 2 (93 of 135). CONCLUSIONS Surgical treatment of unilateral coronal craniosynostosis in infancy results in a less asymmetric craniofacial skeleton in adolescence than nontreatment. However, patients who have been followed to dentoskeletal maturity have a greater degree of asymmetry than those evaluated at 1 year postoperatively. These results support the conclusion that with time there is a partial reversion to the untreated phenotype.
Collapse
Affiliation(s)
- Devra B Becker
- Cleft Palate and Craniofacial Deformities Institute, St. Louis Children's Hospital, Washington University Medical Center, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
42
|
Ramírez Rozzi FV, González-José R, Pucciarelli HM. Cranial growth in normal and low-protein-fed Saimiri. An environmental heterochrony. J Hum Evol 2005; 49:515-35. [PMID: 16051314 DOI: 10.1016/j.jhevol.2005.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Accepted: 06/08/2005] [Indexed: 11/19/2022]
Abstract
Protein malnutrition has a significant and measurable effect on the rate and timing of growth. Heterochrony is generally viewed as the study of evolutionary changes in the relative rates and timing of growth and development. Although changes in growth commonly result from experimental manipulations of diet, nobody has previously attempted to explain such changes from a heterochronic perspective. We use a heterochronic perspective to compare a group of squirrel monkeys fed a low-protein diet to individuals on a high-protein diet, but, in contrast to previous works, we focus particularly on the effects of environmental and not genetic factors. In the present study, Gould's (1977) and Godfrey and Sutherland's (1996) methodologies for studying heterochrony, as well as geometric morphometrics, are used to compare two groups of Saimiri sciureus boliviensis. Two groups of Saimiri were constructed on the basis of the protein content in their diets: a high-protein group (HP) (N=12) and a low-protein group (LP) (N=12). All individuals are males born in captivity. Two major functional components of the skull, the neurocranium and the face, were analysed. Four minor components were studied in each major component. Comparison of craniofacial ontogeny patterns based on major and minor components suggests that changes in the skull of LP animals can be explained by heterochrony. The skull of LP animals exhibits isomorphism produced by proportioned dwarfism. Our results suggest that heterochrony can be environmentally, rather than exclusively genetically, induced. The study of genetic assimilation (Waddington, 1953, 1956; see Scharloo, 1991; Hallgrimsson et al., 2002) has demonstrated that environmentally induced phenotypes often have a genetic basis, and thus parallel changes can be easily induced genetically. It is possible that proportioned dwarfism is far more common than currently appreciated.
Collapse
Affiliation(s)
- Fernando V Ramírez Rozzi
- UPR 2147 Dynamique de l'volution humaine (CNRS), 44, rue de l'Amiral Mouchez, 75014 - Paris, France.
| | | | | |
Collapse
|
43
|
Burrows AM, Smith TD. Three-dimensional analysis of mandibular morphology inOtolemur. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2005; 127:219-30. [PMID: 15503337 DOI: 10.1002/ajpa.20183] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Euclidean distance matrix analysis (EDMA) of three-dimensional data is used here to examine mandibular morphology between two species of galagos. Otolemur crassicaudatus consumes primarily exudates, while O. garnettii is more frugivorous. Acquisition of exudates involves either gouging or scraping tree bark, and may involve different forces at the mandible than incising fruits. Previous studies of mandibular morphology in exudate-feeding primates produced mixed results, some suggesting that morphological specializations reflect adaptations for greater force at the anterior dentition, while others suggest specializations for producing a large gape. This study addresses these controversies by testing predictions associated with O. crassicaudatus generating greater force at the anterior dentition or producing a larger gape relative to O. garnettii. In addition, this study tests predictions associated with specializations of the anterior dentition in O. crassicaudatus as related to exudate-feeding. Crania and mandibles from 28 O. crassicaudatus and 17 O. garnettii were digitized in three dimensions, using 18 landmarks that summarize the shape of the jaw. Two-dimensional measurements were taken to assess incisor robusticity. All three-dimensional data were analyzed using EDMA, and bootstrap tests were executed to identify specific interlandmark differences that were driving any significant (P < 0.05) overall shape differences. Two-dimensional data were analyzed using Student's t-test for independent measures. Results revealed that there was a significant shape difference in mandibles between species, and that mandibles of O. crassicaudatus showed higher condyles, longer mandibles, decreased incisor procumbency, and greater incisor robusticity relative to O. garnettii. It is suggested that the results of the present study reflect adaptations for scraping in O. crassicaudatus rather than gouging.
Collapse
Affiliation(s)
- Anne M Burrows
- Department of Physical Therapy, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | |
Collapse
|
44
|
Arnold WH, Zoellner A, Sebastian T. Development of the palatal size in Pan troglodytes, hominids and Homo sapiens. Ann Anat 2004; 186:511-20. [PMID: 15646285 DOI: 10.1016/s0940-9602(04)80099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
As the hard palate plays an important role in speech production it was the aim of this study whether similarities or dissimilarities in palatal size may allow conclusions about the ability to produce speech in the extant investigated species. The palatal size of Pan troglodytes, Homo sapiens, Australopithecus afarensis, Australopithecus africanus, Australopithecus robustus, Australopithecus boisei, Homo erectus, Homo neanderthalensis and Cro-Magnon has been investigated using euclidian distance matrix analysis (EDMA) and thin-plate-spline analysis. The results show that the palatal size of all australopithecine specimens and H. erectus is very similar to that of P toglodytes, whereas the palatal size of H. neanderthalensis more closely resembles that of H. sapiens. Postnatal development of palatal size in P troglodytes is different from that of H. sapiens. In P troglodytes not only the size of the palate changes but also the form. In H. sapiens there is little change in form, but a continuos uniform growth from infantile to adult specimens. From the results we conclude that in all australopithecine samples which have been investigated, the palatal size is similar to that of P troglodytes. Therefore, it is unlikely that austraopithecine individuals were capable of producing vowels and consonants. The palatal size of H. neandethalensis and Cro-Magnon is similar to that of H. sapiens which may indicate the possibility that they were capable of speech production.
Collapse
Affiliation(s)
- W H Arnold
- Department of Anatomy, Faculty of Dental Medicine, University of Witten/Herdecke, Alfred Herrhausen Strasse 50, 58448 Witten, Germany.
| | | | | |
Collapse
|
45
|
Lieberman DE, Krovitz GE, Yates FW, Devlin M, St Claire M. Effects of food processing on masticatory strain and craniofacial growth in a retrognathic face. J Hum Evol 2004; 46:655-77. [PMID: 15183669 DOI: 10.1016/j.jhevol.2004.03.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 03/19/2004] [Indexed: 11/28/2022]
Abstract
Changes in the technology of food preparation over the last few thousand years (especially cooking, softening, and grinding) are hypothesized to have contributed to smaller facial size in humans because of less growth in response to strains generated by chewing softer, more processed food. While there is considerable comparative evidence to support this idea, most experimental tests of this hypothesis have been on non-human primates or other very prognathic mammals (rodents, swine) raised on hard versus very soft (nearly liquid) diets. Here, we examine facial growth and in vivo strains generated in response to raw/dried foods versus cooked foods in a retrognathic mammal, the rock hyrax (Procavia capensis). The results indicate that the hyrax cranium resembles the non-human primate cranium in having a steep gradient of strains from the occlusal to orbital regions, but differs from most non-anthropoids in being primarily twisted; the hyrax mandible is bent both vertically and laterally. In general, higher strains, as much as two-fold at some sites, are generated by masticating raw versus cooked food. Hyraxes raised on cooked food had significantly less growth (approximately 10%) in the ventral (inferior) and posterior portions of the face, where strains are highest, resembling many of the differences evident between humans raised on highly processed versus less processed diets. The results support the hypothesis that food processing techniques have led to decreased facial growth in the mandibular and maxillary arches in recent human populations.
Collapse
Affiliation(s)
- Daniel E Lieberman
- Department of Anthropology, Peabody Museum, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA.
| | | | | | | | | |
Collapse
|
46
|
Lieberman DE, Krovitz GE, McBratney-Owen B. Testing hypotheses about tinkering in the fossil record: the case of the human skull. ACTA ACUST UNITED AC 2004; 302:284-301. [PMID: 15211687 DOI: 10.1002/jez.b.21004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Efforts to test hypotheses about small-scale shifts in development (tinkering) that can only be observed in the fossil record pose many challenges. Here we use the origin of modern human craniofacial form to explore a series of analytical steps with which to propose and test evolutionary developmental hypotheses about the basic modules of evolutionary change. Using factor and geometric morphometric analyses of craniofacial variation in modern humans, fossil hominids, and chimpanzee crania, we identify several key shifts in integration (defined as patterns of covariation that result from interactions between components of a system) among units of the cranium that underlie the unique shape of the modern human cranium. The results indicate that facial retraction in modern humans is largely a product of three derived changes: a relatively longer anterior cranial base, a more flexed cranial base angle, and a relatively shorter upper face. By applying the Atchley-Hall model of morphogenesis, we show that these shifts are most likely the result of changes in epigenetic interactions between the cranial base and both the brain and the face. Changes in the size of the skeletal precursors to these regions may also have played some role. This kind of phenotype-to-genotype approach is a useful and important complement to more standard genotype-to-phenotype approaches, and may help to identify candidate genes involved in the origin of modern human craniofacial form.
Collapse
Affiliation(s)
- Daniel E Lieberman
- Department of Anthropology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
47
|
Richtsmeier JT, DeLeon VB, Lele SR. The promise of geometric morphometrics. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2003; Suppl 35:63-91. [PMID: 12653309 DOI: 10.1002/ajpa.10174] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nontraditional or geometric morphometric methods have found wide application in the biological sciences, especially in anthropology, a field with a strong history of measurement of biological form. Controversy has arisen over which method is the "best" for quantifying the morphological difference between forms and for making proper statistical statements about the detected differences. This paper explains that many of these arguments are superfluous to the real issues that need to be understood by those wishing to apply morphometric methods to biological data. Validity, the ability of a method to find the correct answer, is rarely discussed and often ignored. We explain why demonstration of validity is a necessary step in the evaluation of methods used in morphometrics. Focusing specifically on landmark data, we discuss the concepts of size and shape, and reiterate that since no unique definition of size exists, shape can only be recognized with reference to a chosen surrogate for size. We explain why only a limited class of information related to the morphology of an object can be known when landmark data are used. This observation has genuine consequences, as certain morphometric methods are based on models that require specific assumptions, some of which exceed what can be known from landmark data. We show that orientation of an object with reference to other objects in a sample can never be known, because this information is not included in landmark data. Consequently, a descriptor of form difference that contains information on orientation is flawed because that information does not arise from evidence within the data, but instead is a product of a chosen orientation scheme. To illustrate these points, we apply superimposition, deformation, and linear distance-based morphometric methods to the analysis of a simulated data set for which the true differences are known. This analysis demonstrates the relative efficacy of various methods to reveal the true difference between forms. Our discussion is intended to be fair, but it will be obvious to the reader that we favor a particular approach. Our bias comes from the realization that morphometric methods should operate with a definition of form and form difference consistent with the limited class of information that can be known from landmark data. Answers based on information that can be known from the data are of more use to biological inquiry than those based on unjustifiable assumptions.
Collapse
Affiliation(s)
- Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
48
|
Zumpano MP, Richtsmeier JT. Growth-related shape changes in the fetal craniofacial complex of humans (Homo sapiens) and pigtailed macaques (Macaca nemestrina): a 3D-CT comparative analysis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2003; 120:339-51. [PMID: 12627529 DOI: 10.1002/ajpa.10125] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study investigates whether macaques and humans possess a common pattern of relative growth during the fetal period. The fetal samples consist of 16 male pigtailed macaques (mean age, 20.5 gestational weeks) and 17 humans (9 males and 8 females; mean age, 29.5 gestational weeks). For each individual, three-dimensional coordinates of 18 landmarks on the skull were collected from three-dimensional computed tomographic (CT) reconstructed images and two-dimensional CT axial slices. Early and late groups were created from the human (early mean age, 24 weeks, N = 8; late mean age, 34 weeks, N = 9) and macaque samples (early mean age, 17.7 weeks, N = 7; late mean age, 23 weeks, N = 9). Inter- and intraspecific comparisons were made between the early and late groups. To determine if macaques and humans share a common fetal pattern of relative growth, human change in shape estimated from a comparison of early and late groups was compared to the pattern estimated between early and late macaque groups. Euclidean distance matrix analysis was used in all comparisons. Intraspecific comparisons indicate that the growing fetal skull displays the greatest amount of change along mediolateral dimensions. Changes during human growth are primarily localized to the basicranium and palate, while macaques experience localized change in the midface. Interspecific comparisons indicate that the two primate species do not share a common pattern of relative growth, and the macaque pattern is characterized by increased midfacial growth relative to humans. Our results suggest that morphological differences in the craniofacial skeleton of these species are in part established by differences in fetal growth patterns.
Collapse
Affiliation(s)
- Michael P Zumpano
- Department of Anatomy, New York Chiropractic College, Seneca Falls, New York 13148-0800, USA.
| | | |
Collapse
|
49
|
|
50
|
Ackermann RR, Krovitz GE. Common patterns of facial ontogeny in the hominid lineage. THE ANATOMICAL RECORD 2002; 269:142-7. [PMID: 12124900 DOI: 10.1002/ar.10119] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent evaluation of Neanderthal and modern human ontogeny suggests that taxon-specific features arose very early in development in both lineages, with early, possibly prenatal, morphological divergence followed by parallel postnatal developmental patterns. Here we use morphometric techniques to compare hominoid facial growth patterns, and show that this developmental phenomenon is, in fact, not unique to comparisons between Neanderthals and modern humans but extends to Australopithecus africanus and to the hominoid lineage more broadly. This finding suggests that a common pattern of juvenile facial development may be more widespread and that the roots of ontogenetically early developmental differentiation are deep-perhaps predating the ape/human split of 6+ million years ago.
Collapse
|