1
|
Yegian AK, Heymsfield SB, Castillo ER, Müller MJ, Redman LM, Lieberman DE. Metabolic scaling, energy allocation tradeoffs, and the evolution of humans' unique metabolism. Proc Natl Acad Sci U S A 2024; 121:e2409674121. [PMID: 39556743 PMCID: PMC11621513 DOI: 10.1073/pnas.2409674121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024] Open
Abstract
All organisms use limited energy to grow, survive, and reproduce, necessitating energy allocation tradeoffs, but there is debate over how selection impacted metabolic budgets and tradeoffs in primates, including humans. Here, we develop a method to compare metabolic rates as quotients of observed relative to expected values for mammals corrected for size, body composition, environmental temperature, and phylogenetic relatedness. Contrary to previous analyses, these quotients reveal that nonhuman primates have total metabolic rates expected for similar-sized mammals in similar environments. In addition, data from several small-scale societies show that humans evolved exceptionally high resting, activity, and total metabolic rates apparently by overcoming tradeoffs between resting and active energy expenditures that constrain other primates. Enhanced metabolic rates help humans fuel expanded brains, faster reproductive rates, extended longevity, and high percentage of body fat.
Collapse
Affiliation(s)
- Andrew K. Yegian
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Steven B. Heymsfield
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA70808
| | - Eric R. Castillo
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Manfred J. Müller
- Institute of Human Nutrition and Food Science, Department of Nutrition, Christian-Albrechts-Universität zu Kiel, Kiel24118, Germany
| | - Leanne M. Redman
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA70808
| | - Daniel E. Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
2
|
Turcotte CM, Choi AM, Spear JK, Hernandez-Janer EM, Taboada HG, Stock MK, Villamil CI, Bauman SE, Martinez MI, Brent LJN, Snyder-Mackler N, Montague MJ, Platt ML, Williams SA, Higham JP, Antón SC. Quantifying the relationship between bone and soft tissue measures within the rhesus macaques of Cayo Santiago. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24920. [PMID: 38447005 DOI: 10.1002/ajpa.24920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVES Interpretations of the primate and human fossil record often rely on the estimation of somatic dimensions from bony measures. Both somatic and skeletal variation have been used to assess how primates respond to environmental change. However, it is unclear how well skeletal variation matches and predicts soft tissue. Here, we empirically test the relationship between tissues by comparing somatic and skeletal measures using paired measures of pre- and post-mortem rhesus macaques from Cayo Santiago, Puerto Rico. MATERIALS AND METHODS Somatic measurements were matched with skeletal dimensions from 105 rhesus macaque individuals to investigate paired signals of variation (i.e., coefficients of variation, sexual dimorphism) and bivariate codependence (reduced major axis regression) in measures of: (1) limb length; (2) joint breadth; and (3) limb circumference. Predictive models for the estimation of soft tissue dimensions from skeletons were built from Ordinary Least Squares regressions. RESULTS Somatic and skeletal measurements showed statistically equivalent coefficients of variation and sexual dimorphism as well as high epiphyses-present ordinary least square (OLS) correlations in limb lengths (R2 >0.78, 0.82), joint breadths (R2 >0.74, 0.83) and, to a lesser extent, limb circumference (R2 >0.53, 0.68). CONCLUSION Skeletal measurements are good substitutions for somatic values based on population signals of variation. OLS regressions indicate that skeletal correlates are highly predictive of somatic dimensions. The protocols and regression equations established here provide a basis for reliable reconstruction of somatic dimension from catarrhine fossils and validate our ability to compare or combine results of studies based on population data of either hard or soft tissue proxies.
Collapse
Affiliation(s)
- Cassandra M Turcotte
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
- Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Audrey M Choi
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Jeffrey K Spear
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Eva M Hernandez-Janer
- Department of Evolutionary Anthropology, Rutgers University, New Brunswick, New Jersey, USA
| | - Hannah G Taboada
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Michala K Stock
- Department of Sociology and Anthropology, Metropolitan State University of Denver, Denver, Colorado, USA
| | - Catalina I Villamil
- Doctor of Chiropractic Program, School of Health Sciences and Technologies, Universidad Central del Caribe, Bayamón, Puerto Rico, USA
| | - Samuel E Bauman
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Melween I Martinez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico, USA
| | | | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- School for Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott A Williams
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - James P Higham
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Susan C Antón
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| |
Collapse
|
3
|
Noiret A, Karanewsky C, Aujard F, Terrien J. Sex-specific heterothermy patterns in wintering captive Microcebus murinus do not translate into differences in energy balance. J Therm Biol 2024; 121:103829. [PMID: 38569326 DOI: 10.1016/j.jtherbio.2024.103829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The physiological mechanisms of responses to stressors are at the core of ecophysiological studies that examine the limits of an organism's flexibility. Interindividual variability in these physiological responses can be particularly important and lead to differences in the stress response among population groups, which can affect population dynamics. Some observations of intersexual differences in heterothermy raise the question of whether there is a difference in energy management between the sexes. In this study, we assessed male and female differences in mouse lemurs (Microcebus murinus), a highly seasonal malagasy primate, by measuring their physiological flexibility in response to caloric restriction and examining the subsequent impact on reproductive success. Using complementary methods aiming to describe large-scale and daily variations in body temperature throughout a 6-month winter-like short-day (SD) period, we monitored 12 males and 12 females, applying chronic 40% caloric restriction (CR) to 6 individuals in each group. We found variations in Tb modulation throughout the SD period and in response to caloric treatment that depended on sex, as females, regardless of food restriction, and CR males, only, entered deep torpor. The use of deeper torpor, however, did not translate into a lower loss of body mass in females and did not affect reproductive success. Captive conditions may have buffered the depth of torpor and minimised the positive effects of torpor on energy savings. However, the significant sex differences in heterothermy we observed may point to physiological benefits other than preservation of energy reserves.
Collapse
Affiliation(s)
- Aude Noiret
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National D'Histoire Naturelle, CNRS UMR 7179, Brunoy, France.
| | - Caitlin Karanewsky
- Department of Biochemistry, Stanford University School of Medicine, California, 94305, USA
| | - Fabienne Aujard
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National D'Histoire Naturelle, CNRS UMR 7179, Brunoy, France
| | - Jérémy Terrien
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National D'Histoire Naturelle, CNRS UMR 7179, Brunoy, France.
| |
Collapse
|
4
|
Dittus W, Baker A. Maternal care in wild toque macaques (Macaca sinica) involves prolonged lactation and interbirth intervals as adaptations to reduce maternal depletion and infant mortality in harsh environments. Am J Primatol 2024; 86:e23584. [PMID: 38095045 DOI: 10.1002/ajp.23584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/25/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Weaning age in primates has been challenging to measure and new methods, involving molecular biomarkers in feces, tissue, or teeth have contributed to a solution. Here, we used a direct approach by briefly anesthetizing 442 female toque macaques (Macaca sinica) of Sri Lanka (over a 17-year period) and manually testing their mammary tissue for the presence or absence of milk. Milk tests were related to known offspring ages and maternal care behaviors and indicated that older infants suckled milk well past the weaning age of 7 months that is often reported for food-provisioned primates. Mothers strongly rejected their infants' nursing attempts in two phases, the first at 7 months as an honest signal "giving notice" promoting a shift to greater independence from milk to solid food, and when "shutting down" at final weaning after 12-18 months. The shift to supplementary lactation coincided also with the cessation of mothers carrying their infants and a resumption of cycling. All infants up to 7.2 months suckled milk, 91% of them did up to 18 months, this continued for 42% of infants beyond 18 months, and normally none received milk after 22 months. Lactation extended into 2.2% of cycling and 10.7% of pregnant females (up to 50% of gestation). The interbirth interval was prolonged by factors predicted to draw on female metabolic energy reserves and included the duration of lactation, growth among primiparas, and dietary limitations. The last also increased menarche. Females offset the metabolic costs of lactation with increased foraging and catabolism, but infants died when lactation costs seemingly compromised maternal condition. The prolonged lactation and slowed reproduction are considered adaptations to promote infant survival and growth in an environment where the natural food supply limits population growth and competition for food and water impacts the mortality of the youngest the most.
Collapse
Affiliation(s)
- Wolfgang Dittus
- Conservation Ecology Center, Smithsonian's Zoo and Conservation Biology Institute, Washington, District of Columbia, USA
- Primate Biology, National Institute of Fundamental Studies, Kandy, Sri Lanka
- Association for the Conservation of Primate Diversity, Polonnaruwa, Sri Lanka
| | - Anne Baker
- Conservation Ecology Center, Smithsonian's Zoo and Conservation Biology Institute, Washington, District of Columbia, USA
- Association for the Conservation of Primate Diversity, Polonnaruwa, Sri Lanka
| |
Collapse
|
5
|
Wishart AE, Guerrero-Chacón AL, Smith R, Hawkshaw DM, McAdam AG, Dantzer B, Boutin S, Lane JE. Inferring condition in wild mammals: body condition indices confer no benefit over measuring body mass across ecological contexts. Oecologia 2024; 204:161-172. [PMID: 38180565 DOI: 10.1007/s00442-023-05495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024]
Abstract
Many studies assume that it is beneficial for individuals of a species to be heavier, or have a higher body condition index (BCI), without accounting for the physiological relevance of variation in the composition of different body tissues. We hypothesized that the relationship between BCI and masses of physiologically important tissues (fat and lean) would be conditional on annual patterns of energy acquisition and expenditure. We studied three species with contrasting ecologies in their respective natural ranges: an obligate hibernator (Columbian ground squirrel, Urocitellus columbianus), a facultative hibernator (black-tailed prairie dog, Cynomys ludovicianus), and a food-caching non-hibernator (North American red squirrel, Tamiasciurus hudsonicus). We measured fat and lean mass in adults of both sexes using quantitative magnetic resonance (QMR). We measured body mass and two measures of skeletal structure (zygomatic width and right hind foot length) to develop sex- and species-specific BCIs, and tested the utility of BCI to predict body composition in each species. Body condition indices were more consistently, and more strongly correlated, with lean mass than fat mass. The indices were most positively correlated with fat when fat was expected to be very high (pre-hibernation prairie dogs). In all cases, however, BCI was never better than body mass alone in predicting fat or lean mass. While the accuracy of BCI in estimating fat varied across the natural histories and annual energetic patterns of the species considered, measuring body mass alone was as effective, or superior in capturing sufficient variation in fat and lean in most cases.
Collapse
Affiliation(s)
- Andrea E Wishart
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | | | - Rebecca Smith
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Deborah M Hawkshaw
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Andrew G McAdam
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109-1043, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109-1043, USA
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
6
|
Does behaviour predict weight gain during adulthood in captive group-living rhesus macaques? Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Zijlmans DGM, Maaskant A, Sterck EHM, Langermans JAM. Retrospective Evaluation of a Minor Dietary Change in Non-Diabetic Group-Housed Long-Tailed Macaques ( Macaca fascicularis). Animals (Basel) 2021; 11:2749. [PMID: 34573715 PMCID: PMC8472355 DOI: 10.3390/ani11092749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
Macaques in captivity are prone to becoming overweight and obese, which may cause several health problems. A diet that mimics the natural diet of macaques may prevent these problems and improve animal welfare. Adjusting captive diets towards a more natural composition may include increasing fiber content and lowering the glycemic index, i.e., reducing the impact on blood glucose levels. Such a dietary change was implemented in our long-tailed macaque (Macaca fascicularis) breeding colony. The basic diet of monkey chow pellets remained the same, while the supplementary provisioning of bread was replaced by grains and vegetables. This study is a retrospective evaluation, based on electronic health records, that investigated whether this minor dietary change had a beneficial effect on relative adiposity and overweight-related health parameters in 44 non-diabetic, group-housed, female long-tailed macaques. Relative adiposity was measured with a weight-for-height index and blood samples were collected during yearly health checks. Glycemic response and lipid metabolism were evaluated using several biochemical parameters. Relative adiposity and overweight status did not differ after dietary change. Yet, relatively heavy individuals generally lost body weight, while relatively lean individuals gained body weight, leading to a more balanced body weight dynamic. Dietary change did not affect HbA1c and triglyceride levels, while fructosamine and cholesterol levels were significantly reduced. Thus, the minor dietary change had no significant effect on overweight status, but some biochemical parameters related to the risk of diabetes and cardiovascular disease were positively affected. This study emphasizes the importance of evaluating husbandry changes and that critically reviewing husbandry practices can provide valuable insights to improve animal health and welfare.
Collapse
Affiliation(s)
- Dian G. M. Zijlmans
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (E.H.M.S.); (J.A.M.L.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Annemiek Maaskant
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (E.H.M.S.); (J.A.M.L.)
- Unit Animals in Science & Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Elisabeth H. M. Sterck
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (E.H.M.S.); (J.A.M.L.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Jan A. M. Langermans
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (E.H.M.S.); (J.A.M.L.)
- Unit Animals in Science & Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
8
|
Zijlmans DGM, Meijer L, Vernes MK, Wubben JAM, Hofman L, Louwerse AL, Sterck EHM, Langermans JAM, Stammes MA. Effect of Housing Conditions on Cortisol and Body Fat Levels in Female Rhesus Macaques. BIOLOGY 2021; 10:744. [PMID: 34439976 PMCID: PMC8389645 DOI: 10.3390/biology10080744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022]
Abstract
Macaques are among the most commonly used non-human primates in biomedical research. They are highly social animals, yet biomedical studies often require group-living animals to be pair-housed in a controlled environment. A change in environment causes only short-term stress in adapting individuals, while non-adapting animals may experience long-term stress that can adversely affect study results. Individuals likely differ in their ability to adapt depending on individual characteristics. Changes in cortisol and body fat levels may reflect these different individual responses. Here, we investigate the long-term effect of a change from group- to pair-housing on cortisol and body fat levels in 32 female rhesus macaques, exploring whether age, dominance rank, original cortisol, and body fat levels are related to long-term stress in pair-housing. Hair samples were analyzed for cortisol levels, while anthropometric measurements and computed tomography were performed to quantify body fat. Monkeys served as their own control with a 7.5-month period between the measurements. Cortisol levels increased, while average body fat levels did not differ when individuals were moved from group- to pair-housing. Cortisol and body fat levels were not significantly correlated. Changes in cortisol were independent of age and dominance rank, whereas individual variation in body fat alterations was related to the group-housed body fat level and dominance rank. Although this study did not identify individual characteristics related to long-term stress in pair-housing, the individual variation confirms that some individuals are more resilient to change than others and provides possibilities for future refinement studies.
Collapse
Affiliation(s)
- Dian G. M. Zijlmans
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Lisette Meijer
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
| | - Marit K. Vernes
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
| | - Jacqueline A. M. Wubben
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
| | - Linda Hofman
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
| | - Annet L. Louwerse
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
| | - Elisabeth H. M. Sterck
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Jan A. M. Langermans
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
- Department Population Health Sciences, Unit Animals in Science & Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Marieke A. Stammes
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (L.M.); (M.K.V.); (J.A.M.W.); (L.H.); (A.L.L.); (E.H.M.S.); (J.A.M.L.); (M.A.S.)
| |
Collapse
|
9
|
Amano N, Wang YV, Boivin N, Roberts P. 'Emptying Forests?' Conservation Implications of Past Human-Primate Interactions. Trends Ecol Evol 2021; 36:345-359. [PMID: 33431163 DOI: 10.1016/j.tree.2020.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023]
Abstract
Non-human primates are among the most vulnerable tropical animals to extinction and ~50% of primate species are endangered. Human hunting is considered a major cause of increasingly 'empty forests', yet archaeological data remains under-utilised in testing this assertion over the longer-term. Zooarchaeological datasets allow investigation of human exploitation of primates and the reconstruction of extinction, extirpation, and translocation processes. We evaluate the application and limitations of data from zooarchaeological studies spanning the past 45 000 years in South and Southeast Asia in guiding primate conservation efforts. We highlight that environmental change was the primary threat to many South and Southeast Asian non-human primate populations during much of the Holocene, foreshadowing human-induced land-use and environmental change as major threats of the 21st century.
Collapse
Affiliation(s)
- Noel Amano
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Yiming V Wang
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|
10
|
Mellor EL, Cuthill IC, Schwitzer C, Mason GJ, Mendl M. Large Lemurs: Ecological, Demographic and Environmental Risk Factors for Weight Gain in Captivity. Animals (Basel) 2020; 10:ani10081443. [PMID: 32824807 PMCID: PMC7460476 DOI: 10.3390/ani10081443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Excessive body mass, i.e., being overweight or obese, is a health concern. Some lemur species are prone to extreme weight gain in captivity, yet for others a healthy body condition is typical. The first aim of our study was to examine possible ecological explanations for these species’ differences in susceptibility to captive weight gain across 13 lemur species. Our second aim was to explore demographic and environmental risk factors across individuals from the four best-sampled species. We found a potential ecological explanation for susceptibility to captive weight gain: being adapted to unpredictable wild food resources. Additionally, we also revealed one environmental and four demographic risk factors, e.g., increasing age and, for males, being housed with only fixed climbing structures. Our results indicate targeted practical ways to help address weight issues in affected animals, e.g., by highlighting at-risk species for whom extra care should be taken when designing diets; and by providing a mixture of flexible and fixed climbing structures within enclosures. Abstract Excessive body mass, i.e., being overweight or obese, is a health concern associated with issues such as reduced fertility and lifespan. Some lemur species are prone to extreme weight gain in captivity, yet others are not. To better understand species- and individual-level effects on susceptibility to captive weight gain, we use two complementary methods: phylogenetic comparative methods to examine ecological explanations for susceptibility to weight gain across species, and epidemiological approaches to examine demographic and environment effects within species. Data on body masses and living conditions were collected using a survey, yielding useable data on 675 lemurs representing 13 species from 96 collections worldwide. Data on species-typical wild ecology for comparative analyses came from published literature and climate databases. We uncovered one potential ecological risk factor: species adapted to greater wild food resource unpredictability tended to be more prone to weight gain. Our epidemiological analyses on the four best-sampled species revealed four demographic and one environmental risk factors, e.g., for males, being housed with only fixed climbing structures. We make practical recommendations to help address weight concerns, and describe future research including ways to validate the proxy we used to infer body condition.
Collapse
Affiliation(s)
- Emma L. Mellor
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK;
- Correspondence:
| | - Innes C. Cuthill
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK;
| | | | - Georgia J. Mason
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada;
| | - Michael Mendl
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK;
| |
Collapse
|
11
|
|
12
|
Sterck EHM, Zijlmans DGM, de Vries H, van den Berg LM, van Schaik CP, Langermans JAM. Determining overweight and underweight with a new weight-for-height index in captive group-housed macaques. Am J Primatol 2019; 81:e22996. [PMID: 31192494 PMCID: PMC6772146 DOI: 10.1002/ajp.22996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/16/2019] [Accepted: 05/05/2019] [Indexed: 01/06/2023]
Abstract
Housing primates in naturalistic groups provides social benefits relative to solitary housing. However, food intake may vary across individuals, possibly resulting in overweight and underweight individuals. Information on relative adiposity (the amount of fat tissue relative to body weight) is needed to monitor overweight and underweight of group-housed individuals. However, the upper and lower relative adiposity boundaries are currently only known for macaques living solitarily in small cages. We determined the best measure of relative adiposity and explored the boundaries of overweight and underweight to investigate their incidence in group-housed adult male and female rhesus macaques and long-tailed macaques living in spacious enclosures at the Biomedical Primate Research Centre (BPRC), the Netherlands. During yearly health checks different relative adiposity measures were obtained. For long-tailed macaques, comparable data on founder and wild animals were also available. Weight-for-height indices (WHI) with height to the power of 3.0 (WHI3.0) for rhesus macaques and 2.7 (WHI2.7) for long-tailed macaques were optimally independent of height and were highly correlated with other relative adiposity measures. The boundary for overweight was similar in group-housed and solitary-housed macaques. A lower boundary for underweight, based on 2% body fat similar to wild primates, gave a better estimate for underweight in group-housed macaques. We propose that for captive group-housed rhesus macaques relative adiposity should range between 42 and 67 (WHI3.0) and for long-tailed macaques between 39 and 62 (WHI2.7). The majority of group-housed macaques in this facility have a normal relative adiposity, a considerable proportion (17-23%) is overweight, and a few (0-3%) are underweight.
Collapse
Affiliation(s)
- Elisabeth H. M. Sterck
- Animal Ecology, Department of BiologyUtrecht UniversityUtrechtThe Netherlands
- Animal Science DepartmentBiomedical Primate Research CentreRijswijkThe Netherlands
| | - Dian G. M. Zijlmans
- Animal Ecology, Department of BiologyUtrecht UniversityUtrechtThe Netherlands
- Animal Science DepartmentBiomedical Primate Research CentreRijswijkThe Netherlands
| | - Han de Vries
- Animal Ecology, Department of BiologyUtrecht UniversityUtrechtThe Netherlands
| | | | - Carel P. van Schaik
- Animal Ecology, Department of BiologyUtrecht UniversityUtrechtThe Netherlands
- Department of AnthropologyUniversity of ZurichZurichSwitzerland
| | - Jan A. M. Langermans
- Animal Science DepartmentBiomedical Primate Research CentreRijswijkThe Netherlands
- Department of Animals in Science and Society, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
13
|
|
14
|
Heldstab SA, van Schaik CP, Isler K. Being fat and smart: A comparative analysis of the fat-brain trade-off in mammals. J Hum Evol 2017; 100:25-34. [PMID: 27765147 DOI: 10.1016/j.jhevol.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022]
Abstract
Humans stand out among non-aquatic mammals by having both an extremely large brain and a relatively large amount of body fat. To understand the evolution of this human peculiarity we report a phylogenetic comparative study of 120 mammalian species, including 30 primates, using seasonal variation in adult body mass as a proxy of the tendency to store fat. Species that rely on storing fat to survive lean periods are expected to be less active because of higher costs of locomotion and have increased predation risk due to reduced agility. Because a fat-storage strategy reduces the net cognitive benefit of a large brain without reducing its cost, such species should be less likely to evolve a larger brain than non-fat-storing species. We therefore predict that the two strategies to buffer food shortages (storing body fat and cognitive flexibility) are compensatory, and therefore predict negative co-evolution between relative brain size and seasonal variation in body mass. This trade-off is expected to be stronger in predominantly arboreal species than in more terrestrial ones, as the cost of transporting additional adipose depots is higher for climbing than for horizontal locomotion. We did, indeed, find a significant negative correlation between brain size and coefficient of variation (CV) in body mass in both sexes for the subsample of arboreal species, both in all mammals and within primates. In predominantly terrestrial species, in contrast, this correlation was not significant. We therefore suggest that the adoption of habitually terrestrial locomotor habits, accompanied by a reduced reliance on climbing, has allowed for a primate of our body size the unique human combination of unusually large brains and unusually large adipose depots.
Collapse
Affiliation(s)
- Sandra A Heldstab
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Carel P van Schaik
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Karin Isler
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
15
|
Heldstab SA, van Schaik CP, Isler K. Getting fat or getting help? How female mammals cope with energetic constraints on reproduction. Front Zool 2017; 14:29. [PMID: 28616058 PMCID: PMC5468974 DOI: 10.1186/s12983-017-0214-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fat deposits enable a female mammal to bear the energy costs of offspring production and thus greatly influence her reproductive success. However, increasing locomotor costs and reduced agility counterbalance the fitness benefits of storing body fat. In species where costs of reproduction are distributed over other individuals such as fathers or non-breeding group members, reproductive females might therefore benefit from storing less energy in the form of body fat. RESULTS Using a phylogenetic comparative approach on a sample of 87 mammalian species, and controlling for possible confounding variables, we found that reproductive females of species with allomaternal care exhibit reduced annual variation in body mass (estimated as CV body mass), which is a good proxy for the tendency to store body fat. Differential analyses of care behaviours such as allonursing or provisioning corroborated an energetic interpretation of this finding. The presumably most energy-intensive form of allomaternal care, provisioning of the young, had the strongest effect on CV body mass. In contrast, allonursing, which involves no additional influx of energy but distributes maternal help across different mothers, was not correlated with CV body mass. CONCLUSIONS Our results suggest that reproducing females in species with allomaternal care can afford to reduce reliance on fat reserves because of the helpers' energetic contribution towards offspring rearing.
Collapse
Affiliation(s)
- Sandra A. Heldstab
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Carel P. van Schaik
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karin Isler
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
16
|
Power ML, Dittus WPJ. Vitamin D status in wild toque macaques (Macaca sinica) in Sri Lanka. Am J Primatol 2017; 79. [PMID: 28346700 DOI: 10.1002/ajp.22655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 11/12/2022]
Abstract
The vitamin D receptor is found on most cells, including active immune cells, implying that vitamin D has important biological functions beyond calcium metabolism and bone health. Although captive primates should be given a dietary source of vitamin D, under free-living conditions vitamin D is not a required nutrient, but rather is produced in skin when exposed to UV-B light. The circulating level of 25 hydroxyvitamin D (25-OH-D) considered adequate for humans is a topic of current controversy. Levels of circulating 25-OH-D sufficient for good health for macaques and other Old World anthropoids are assumed to be the same as human values, but data from free-living animals are scant. This study reports values for 25-OH-D and the active vitamin D metabolite, 1,25-dihydroxyvitamin D (1,25[OH]2 D) for wild, forest-ranging toque macaques (Macaca sinica) in Sri Lanka. Plasma samples were obtained from eight adult males, seven juvenile males, six young nulliparous females, nine adult females not pregnant or lactating, eleven lactating adult females, and four pregnant females. Mean values for the complete sample were 61.3 ± 4.0 ng/ml for 25-OH-D and 155.6 ± 8.7 pg/ml for 1,25[OH]2 D. There were no significant differences for either metabolite among age and sex classes, nor between lactating and non-reproductive females. Values from the literature for circulating 25-OH-D in captive macaques are three times higher than those found in this wild population, however, 1,25[OH]2 D values in captive animals were similar to the wild values. The data from this study indicate that anthropoid primates exposed to extensive sunlight will have circulating values of 25-OH-D generally above 30 ng/ml, providing some support for the Endocrine Society recommendations for humans. Current dietary vitamin D supplementation of captive macaques likely exceeds requirement. This may affect metabolism and immune function, with possible consequences for macaque health and biomedical research results.
Collapse
Affiliation(s)
- Michael L Power
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia.,Research Department, American College of Obstetricians and Gynecologists, Washington, District of Columbia
| | - Wolfgang P J Dittus
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia.,National Institute of Fundamental Studies, Kandy, Sri Lanka
| |
Collapse
|
17
|
Roberts P, Blumenthal SA, Dittus W, Wedage O, Lee-Thorp JA. Stable carbon, oxygen, and nitrogen, isotope analysis of plants from a South Asian tropical forest: Implications for primatology. Am J Primatol 2017; 79. [DOI: 10.1002/ajp.22656] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Patrick Roberts
- Max Planck Institute for the Science of Human History; Jena Germany
- Research Laboratory for Archaeology and the History of Art; School of Archaeology; University of Oxford; Oxford UK
| | - Scott A. Blumenthal
- Research Laboratory for Archaeology and the History of Art; School of Archaeology; University of Oxford; Oxford UK
| | - Wolfgang Dittus
- Smithsonian Conservation Biology Institute; Conservation Ecology Center; Front Royal Washington D.C
- National Institute of Fundamental Studies; Kandy Sri Lanka
| | - Oshan Wedage
- Department of History and Archaeology; University of Sri Jayewardenepura; Gangodawila Nugegoda Sri Lanka
| | - Julia A. Lee-Thorp
- Research Laboratory for Archaeology and the History of Art; School of Archaeology; University of Oxford; Oxford UK
| |
Collapse
|
18
|
Zihlman AL, Bolter DR. Body composition in Pan paniscus compared with Homo sapiens has implications for changes during human evolution. Proc Natl Acad Sci U S A 2015; 112:7466-71. [PMID: 26034269 PMCID: PMC4475937 DOI: 10.1073/pnas.1505071112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human body has been shaped by natural selection during the past 4-5 million years. Fossils preserve bones and teeth but lack muscle, skin, fat, and organs. To understand the evolution of the human form, information about both soft and hard tissues of our ancestors is needed. Our closest living relatives of the genus Pan provide the best comparative model to those ancestors. Here, we present data on the body composition of 13 bonobos (Pan paniscus) measured during anatomical dissections and compare the data with Homo sapiens. These comparative data suggest that both females and males (i) increased body fat, (ii) decreased relative muscle mass, (iii) redistributed muscle mass to lower limbs, and (iv) decreased relative mass of skin during human evolution. Comparison of soft tissues between Pan and Homo provides new insights into the function and evolution of body composition.
Collapse
Affiliation(s)
- Adrienne L Zihlman
- Department of Anthropology, University of California, Santa Cruz, CA 95064;
| | - Debra R Bolter
- Department of Anthropology, Modesto College, Modesto, CA 95350; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
19
|
Dittus WPJ, Gunathilake KAS. Validating skinfold thickness as a proxy to estimate total body fat in wild toque macaques (Macaca sinica) using the mass of dissected adipose tissue. Am J Primatol 2015; 77:618-32. [PMID: 25715692 DOI: 10.1002/ajp.22385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 01/10/2015] [Accepted: 01/18/2015] [Indexed: 11/12/2022]
Abstract
Skinfold thickness (SFT) has been used often in non-human primates and humans as a proxy to estimate fatness (% body fat). We intended to validate the relation between SFT (in recently deceased specimens) and the mass of adipose tissue as determined from dissection of fresh carcasses of wild toque macaques (Macaca sinica). In adult male and female toque macaques body composition is normally 2% adipose tissue. Calipers for measuring SFT were suitable for measuring only some subcutaneous deposits of adipose tissue but were not suitable for measuring large fat deposits within the body cavity or minor intermuscular ones. The anatomical distribution of 13 different adipose deposits, in different body regions (subcutaneous, intra-abdominal and intermuscular) and their proportional size differences, were consistent in this species (as in other primates), though varying in total mass among individuals. These consistent allometric relationships were fundamental for estimating fatness of different body regions based on SFT. The best fit statistically significant correlations and regressions with the known masses of dissectible adipose tissue were evident between the SFT means of the seven sites measured, as well as with a single point on the abdomen anterior to the umbilicus. SFT related to total fat mass and intra-abdominal fat mass in curvilinear regressions and to subcutaneous fat mass in a linear relationship. To adjust for differences in body size among individuals, and to circumvent intangible variations in total body mass allocated, for example to the gastro-intestinal contents, dissected fat mass was estimated per unit body size (length of crown-rump)(3). SFT had greater coefficients of correlation and regressions with this Fat Mass Index (g/dm(3)) than with Percent Body Fat.
Collapse
Affiliation(s)
- Wolfgang P J Dittus
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia.,National Institute of Fundamental Studies, Kandy, Sri Lanka.,Association for the Conservation of Primate Diversity, Polonnaruwa, Sri Lanka
| | | |
Collapse
|