1
|
Zhang MJ, Kou JJ, Zhang HD, Xie XM, Zhou YF, Yuan P, Pang XB, Zhao LL, Qiu J, He YY. Metabolic alterations in human pulmonary artery smooth muscle cells treated with PDGF-BB. Animal Model Exp Med 2024. [PMID: 39468692 DOI: 10.1002/ame2.12486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/07/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Metabolic abnormalities are considered to play a key regulatory role in vascular remodeling of pulmonary arterial hypertension. However, to date, there is a paucity of research documenting the changes in metabolome profiles within the supernatants of pulmonary artery smooth muscle cells (PASMC) during their transition from a contractile to a synthetic phenotype. METHODS CCK-8 and Edu staining assays were used to evaluate the cell viability and proliferation of human PASMCs. IncuCyte ZOOM imaging system was used to continuously and automatically detect the migration of the PASMCs. A targeted metabolomics profiling was performed to quantitatively analyze 121 metabolites in the supernatant. Orthogonal partial least squares discriminant analysis was used to discriminate between PDGF-BB-induced PASMCs and controls. Metabolite set enrichment analysis was adapted to exploit the most disturbed metabolic pathways. RESULTS Human PASMCs exhibited a transformation from contractile phenotype to synthetic phenotype after PDGF-BB induction, along with a significant increase in cell viability, proliferation, and migration. Metabolites in the supernatants of PASMCs treated with or without PDGF-BB were well profiled. Eleven metabolites were found to be significantly upregulated, whereas seven metabolites were downregulated in the supernatants of PASMCs induced by PDGF-BB compared to the vehicle-treated cells. Fourteen pathways were involved, and pyruvate metabolism pathway was ranked first with the highest enrichment impact followed by glycolysis/gluconeogenesis and pyrimidine metabolism. CONCLUSIONS Significant and extensive metabolic abnormalities occurred during the phenotypic transformation of PASMCs. Disturbance of pyruvate metabolism pathway might contribute to pulmonary vascular remodeling.
Collapse
Affiliation(s)
| | - Jie-Jian Kou
- Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng, China
| | - Hong-Da Zhang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Mei Xie
- School of Pharmacy, Henan University, Kaifeng, China
| | - Yun-Feng Zhou
- School of Pharmacy, Henan University, Kaifeng, China
| | - Ping Yuan
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Bin Pang
- School of Pharmacy, Henan University, Kaifeng, China
| | - Lu-Ling Zhao
- School of Pharmacy, Henan University, Kaifeng, China
| | - Jing Qiu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang-Yang He
- School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Hubesch G, Dewachter C, Chomette L, Hupkens E, Jespers P, Vegh G, Doppler M, Sheikh Mohammad U, Thiriard A, Remmelink M, Vachiéry J, McEntee K, Dewachter L. Early Alteration of Right Ventricle-Pulmonary Artery Coupling in Experimental Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2024; 13:e032201. [PMID: 38780193 PMCID: PMC11255620 DOI: 10.1161/jaha.123.032201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 04/01/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Pulmonary hypertension and right ventricular (RV) dysfunction are major prognostic determinants in patients with heart failure with preserved ejection fraction (HFpEF). The underlying pathomechanisms remain unknown. In this context, we sought to study the pathogenesis of pulmonary hypertension and RV dysfunction in a rat model of obesity-associated HFpEF. METHODS AND RESULTS HFpEF was induced in obesity-prone rats fed a high-fat diet (n=13) and compared with obesity-resistant rats fed with standard chow (n=9). After 12 months, the animals underwent echocardiographic and hemodynamic evaluation followed by tissue sampling for pathobiological assessment. HFpEF rats presented mild RV pressure overload (with increased RV systolic pressure and pulmonary vascular resistance). No changes in pulmonary artery medial thickness and ex vivo vasoreactivity (to acetylcholine and endothelin-1) were observed and RNA sequencing analysis failed to identify gene clustering in HFpEF lungs. However, released nitric oxide levels were decreased in HFpEF pulmonary artery, while lung expression of preproendothelin-1 was increased. In HFpEF rats, RV structure and function were altered, with RV enlargement, decreased RV fractional area change and free wall longitudinal fractional shortening, together with altered right ventricle-pulmonary artery coupling (estimated by tricuspid annular plane systolic excursion/systolic pulmonary artery pressure). Hypertrophy and apoptosis (evaluated by transferase biotin- dUTP nick-end labeling staining) were increased in right and left ventricles of HFpEF rats. There was an inverse correlation between tricuspid annular plane systolic excursion/systolic pulmonary artery pressure and RV apoptotic rate. Plasma levels of soluble suppression of tumorigenicity-2, interleukin-1β, -6 and -17A were increased in HFpEF rats. CONCLUSIONS Obesity-associated HFpEF in rats spontaneously evolves to pulmonary hypertension-HFpEF associated with impaired right ventricle-pulmonary artery coupling that appears disproportionate to a slight increase in RV afterload.
Collapse
MESH Headings
- Animals
- Heart Failure/physiopathology
- Heart Failure/etiology
- Heart Failure/metabolism
- Heart Failure/genetics
- Pulmonary Artery/physiopathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Stroke Volume/physiology
- Disease Models, Animal
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/genetics
- Male
- Ventricular Function, Right/physiology
- Rats
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Heart Ventricles/physiopathology
- Heart Ventricles/diagnostic imaging
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Obesity/physiopathology
- Obesity/complications
- Obesity/metabolism
- Diet, High-Fat
Collapse
Affiliation(s)
- Géraldine Hubesch
- Laboratory of Physiology and Pharmacology, Faculty of MedicineUniversité Libre de BruxellesBrusselsBelgium
| | - Céline Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of MedicineUniversité Libre de BruxellesBrusselsBelgium
- Department of CardiologyH.U.B.—Hôpital ErasmeBrusselsBelgium
| | - Laura Chomette
- Department of CardiologyH.U.B.—Hôpital ErasmeBrusselsBelgium
- Institute of Interdisciplinary Research (IRIBHM), Faculty of MedicineUniversité Libre de BruxellesBrusselsBelgium
| | - Emeline Hupkens
- Laboratory of Physiology and Pharmacology, Faculty of MedicineUniversité Libre de BruxellesBrusselsBelgium
| | - Pascale Jespers
- Laboratory of Physiology and Pharmacology, Faculty of MedicineUniversité Libre de BruxellesBrusselsBelgium
| | - Grégory Vegh
- Laboratory of Physiology and Pharmacology, Faculty of MedicineUniversité Libre de BruxellesBrusselsBelgium
| | - Mathilde Doppler
- Laboratory of Physiology and Pharmacology, Faculty of MedicineUniversité Libre de BruxellesBrusselsBelgium
| | - Umair Sheikh Mohammad
- Laboratory of Physiology and Pharmacology, Faculty of MedicineUniversité Libre de BruxellesBrusselsBelgium
| | - Anaïs Thiriard
- Institute for Medical Immunology, and ULB‐Center for Research in ImmunologyUniversité Libre de BruxellesCharleroiBelgium
| | | | | | - Kathleen McEntee
- Laboratory of Physiology and Pharmacology, Faculty of MedicineUniversité Libre de BruxellesBrusselsBelgium
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of MedicineUniversité Libre de BruxellesBrusselsBelgium
| |
Collapse
|
3
|
Ameri P, Mercurio V, Pollesello P, Anker MS, Backs J, Bayes-Genis A, Borlaug BA, Burkhoff D, Caravita S, Chan SY, de Man F, Giannakoulas G, González A, Guazzi M, Hassoun PM, Hemnes AR, Maack C, Madden B, Melenovsky V, Müller OJ, Papp Z, Pullamsetti SS, Rainer PP, Redfield MM, Rich S, Schiattarella GG, Skaara H, Stellos K, Tedford RJ, Thum T, Vachiery JL, van der Meer P, Van Linthout S, Pruszczyk P, Seferovic P, Coats AJS, Metra M, Rosano G, Rosenkranz S, Tocchetti CG. A roadmap for therapeutic discovery in pulmonary hypertension associated with left heart failure. A scientific statement of the Heart Failure Association (HFA) of the ESC and the ESC Working Group on Pulmonary Circulation & Right Ventricular Function. Eur J Heart Fail 2024; 26:707-729. [PMID: 38639017 PMCID: PMC11182487 DOI: 10.1002/ejhf.3236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/23/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
Pulmonary hypertension (PH) associated with left heart failure (LHF) (PH-LHF) is one of the most common causes of PH. It directly contributes to symptoms and reduced functional capacity and negatively affects right heart function, ultimately leading to a poor prognosis. There are no specific treatments for PH-LHF, despite the high number of drugs tested so far. This scientific document addresses the main knowledge gaps in PH-LHF with emphasis on pathophysiology and clinical trials. Key identified issues include better understanding of the role of pulmonary venous versus arteriolar remodelling, multidimensional phenotyping to recognize patient subgroups positioned to respond to different therapies, and conduct of rigorous pre-clinical studies combining small and large animal models. Advancements in these areas are expected to better inform the design of clinical trials and extend treatment options beyond those effective in pulmonary arterial hypertension. Enrichment strategies, endpoint assessments, and thorough haemodynamic studies, both at rest and during exercise, are proposed to play primary roles to optimize early-stage development of candidate therapies for PH-LHF.
Collapse
Affiliation(s)
- Pietro Ameri
- Department of Internal Medicine, University of Genova, Genoa, Italy
- Cardiac, Thoracic, and Vascular Department, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Valentina Mercurio
- Department of Translational Medical Sciences, Interdepartmental Center for Clinical and Translational Research (CIRCET), and Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Piero Pollesello
- Content and Communication, Branded Products, Orion Pharma, Espoo, Finland
| | - Markus S Anker
- Deutsches Herzzentrum der Charité, Klinik für Kardiologie, Angiologie und Intensivmedizin (Campus CBF), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, University Hospital Heidelberg, University of Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Antoni Bayes-Genis
- Heart Institute, Hospital Universitari Germans Trias i Pujol, CIBERCV, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Barry A Borlaug
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
- Cardiovascular Research Foundation, New York, NY, USA
| | | | - Sergio Caravita
- Department of Management, Information and Production Engineering, University of Bergamo, Dalmine (BG), Italy
- Department of Cardiology, Istituto Auxologico Italiano IRCCS Ospedale San Luca, Milan, Italy
| | - Stephen Y Chan
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Frances de Man
- PHEniX laboratory, Department of Pulmonary Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - George Giannakoulas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aránzazu González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain
- CIBERCV, Madrid, Spain
| | - Marco Guazzi
- University of Milan, Milan, Italy
- Cardiology Division, San Paolo University Hospital, Milan, Italy
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cristoph Maack
- Comprehensive Heart Failure Center (CHFC) and Medical Clinic I, University Clinic Würzburg, Würzburg, Germany
| | | | - Vojtech Melenovsky
- Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Oliver J Müller
- Department of Internal Medicine V, University Hospital Schleswig-Holstein, and German Centre for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Zoltan Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Soni Savai Pullamsetti
- Department of Internal Medicine and Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, Giessen, Germany
| | - Peter P Rainer
- Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Department of Medicine, St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| | | | - Stuart Rich
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gabriele G Schiattarella
- Max-Rubner Center (CMR), Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Hall Skaara
- Pulmonary Hypertension Association Europe, Vienna, Austria
| | - Kostantinos Stellos
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site, Heidelberg and Mannheim, Germany
- Department of Cardiology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ryan J Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Jean Luc Vachiery
- Department of Cardiology, Hopital Universitaire de Bruxelles Erasme, Brussels, Belgium
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sophie Van Linthout
- Berlin Institute of Health (BIH) at Charité, BIH Center for Regenerative Therapies, University of Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK, partner site Berlin), Berlin, Germany
| | - Piotr Pruszczyk
- Department of Internal Medicine and Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Petar Seferovic
- University of Belgrade Faculty of Medicine, Belgrade University Medical Center, Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | | | - Marco Metra
- Cardiology. ASST Spedali Civili and Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Stephan Rosenkranz
- Department of Cardiology and Cologne Cardiovascular Research Center (CCRC), Heart Center at the University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Interdepartmental Center for Clinical and Translational Research (CIRCET), and Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), Federico II University, Naples, Italy
| |
Collapse
|
4
|
Münks J, Yogeswaran A, Antoine TK, Blumrich LA, Dorfmüller P, Ghofrani HA, Assmus B, Schermuly RT, Sydykov A. A Novel Rat Model of Mild Pulmonary Hypertension Associated with Pulmonary Venous Congestion Induced by Left Pulmonary Vein Banding. Int J Mol Sci 2024; 25:2827. [PMID: 38474074 DOI: 10.3390/ijms25052827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Pulmonary hypertension (PH) associated with left heart disease (PH-LHD) is the most common form of PH. In PH-LHD, changes in the pulmonary vasculature are assumed to be mainly caused by pulmonary venous congestion. However, the underlying mechanisms of this form of PH are poorly understood. We aimed to establish a model of PH associated with pulmonary venous congestion. Wistar-Kyoto rats underwent partial occlusion of the left pulmonary vein to induce pulmonary venous congestion or sham surgery and were assessed at various time points post-surgery (3, 6, 9, 12 weeks). In vivo cardiopulmonary phenotyping was performed by using echocardiography along with heart catheterization. Histomorphometry methods were used to assess pulmonary vascular remodeling (e.g., wall thickness, degree of muscularization). Left pulmonary vein banding (PVB) resulted in mildly elevated right ventricular systolic pressure and moderate right ventricular hypertrophy. In PVB rats, small- and medium-sized pulmonary vessels in the left lung were characterized by increased wall thickness and muscularization. Taken together, our data demonstrate that left PVB-induced pulmonary venous congestion is associated with pulmonary vascular remodeling and mild PH.
Collapse
Affiliation(s)
- Jonas Münks
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Athiththan Yogeswaran
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Tobiah Kevin Antoine
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Leonhard Anton Blumrich
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Peter Dorfmüller
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
- Department of Pathology, Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Hossein Ardeschir Ghofrani
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Birgit Assmus
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
- Department of Cardiology and Angiology, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Ralph Theo Schermuly
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Akylbek Sydykov
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| |
Collapse
|
5
|
Jasińska-Stroschein M. An updated review of experimental rodent models of pulmonary hypertension and left heart disease. Front Pharmacol 2024; 14:1308095. [PMID: 38259266 PMCID: PMC10800974 DOI: 10.3389/fphar.2023.1308095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Left heart disease (LHD) is the leading cause of pulmonary hypertension (PH). Its recent growth has not been matched by the design of therapeutic agents directly targeting the disease. Effective therapies approved for pulmonary arterial hypertension (PAH) have been shown to be inefficient in patients with PH-LHD. Hence, there is a need for an animal model that would closely mimic PH-LHD in preclinical experiments. The current study describes and compares a number of rodent models of left ventricular failure and their potential to induce PH. It also evaluates whether, and to what extent, common PH models could develop LV failure. Articles were identified in the Pubmed/Medline and Web of Science online electronic databases following the PRISMA Protocol between 1992 and 2022. Quality assessment was carried out using the SYRCLE risk-of-bias tool for animal studies. Publication bias across studies using Egger's regression test statistic, was performed together with sensitivity analysis. A wide spectrum of protocols-135 studies and 207 interventions, was examined, including systemic hypertensive models, pressure-overload-induced HF, model of ischemic heart failure, and metabolic approaches based on high fat diet or metabolic syndrome. The most pronounced alterations in PH-related parameters were demonstrated for the common PH models, but were also seen in animals with LV failure induced by ischemic conditions, pressure overload or metabolic conditions. Models based on aortic banding, transverse aortic constriction (TAC), or with myocardial infarction (MI) caused by coronary artery ligation, demonstrated more pronounced worsening in PH due to LV failure; however, they also demonstrated poor survival, especially the ischemic-HF model. Common PH models, excluding prolonged exposure to monocrotaline, do not promote LV hypertrophy. Prolonged exposure to a high-fat diet, or a two-hit model of an obese ZSF1 rat combined with SU5416-induced pulmonary endothelial impairment (a VEGF receptor antagonist) worsened PH and impaired diastolic dysfunction. Due to the limited number of protocols, further trials are needed to confirm the utility of such approaches for modeling PH in subjects with metabolic syndrome. This would provide a clearer insight into the complexity of LHD, PH and metabolic disorders in PH-LHD, and thus accelerate the development of new therapies in clinical trials.
Collapse
|
6
|
Sarkar T, Isbatan A, Moinuddin SM, Chen J, Ahsan F. Catheterization of Pulmonary and Carotid Arteries for Concurrent Measurement of Mean Pulmonary and Systemic Arterial Pressure in Rat Models of Pulmonary Arterial Hypertension. Bio Protoc 2023; 13:e4737. [PMID: 37645695 PMCID: PMC10461069 DOI: 10.21769/bioprotoc.4737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 05/14/2023] [Indexed: 08/31/2023] Open
Abstract
Pulmonary hypertension (PH) is a group of pulmonary vascular disorders in which mean pulmonary arterial pressure (mPAP) becomes abnormally high because of various pathological conditions, including remodeling of the pulmonary arteries, lung and heart disorders, or congenital conditions. Various animal models, including mouse and rat models, have been used to recapitulate elevated mPAP observed in PH patients. However, the measurement and recording of mPAP and mean systemic arterial pressure (mSAP) in small animals require microsurgical procedures and a sophisticated data acquisition system. In this paper, we describe the surgical procedures for right heart catheterizations (RHC) to measure mPAP in rats. We also explain the catheterization of the carotid artery for simultaneous measurement of mPAP and mSAP using the PowerLab Data Acquisition system. We enumerate the surgical steps involved in exposing the jugular vein and the carotid artery for catheterizing these two blood vessels. We list the tools used for microsurgery in rats, describe the methods for preparing catheters, and illustrate the process for inserting the catheters in the pulmonary and carotid arteries. Finally, we delineate the steps involved in the calibration and setup of the PowerLab system for recording both mPAP and mSAP. This is the first protocol wherein we meticulously explain the surgical procedures for RHC in rats and the recording of mPAP and mSAP. We believe this protocol will be essential for PH research. Investigators with little training in animal handling can reproduce this microsurgical procedure for RHC in rats and measure mPAP and mSAP in rat models of PH. Further, this protocol is likely to help master RHC in rats that are performed for other conditions, such as heart failure, congenital heart disease, heart valve disorders, and heart transplantation.
Collapse
Affiliation(s)
- Tanoy Sarkar
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, USA
| | - Ayman Isbatan
- Cardiovascular Research Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Sakib M. Moinuddin
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, USA
| | - Jiwang Chen
- Cardiovascular Research Center, University of Illinois at Chicago, Chicago, IL, USA
- Department of Medicine, Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, USA
| |
Collapse
|