1
|
Honeycutt JB, Wahl A, Files JK, League AF, Yadav-Samudrala BJ, Garcia JV, Fitting S. In situ analysis of neuronal injury and neuroinflammation during HIV-1 infection. Retrovirology 2024; 21:11. [PMID: 38945996 PMCID: PMC11215835 DOI: 10.1186/s12977-024-00644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/10/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Since the introduction of combination antiretroviral therapy (cART) the brain has become an important human immunodeficiency virus (HIV) reservoir due to the relatively low penetration of many drugs utilized in cART into the central nervous system (CNS). Given the inherent limitations of directly assessing acute HIV infection in the brains of people living with HIV (PLWH), animal models, such as humanized mouse models, offer the most effective means of studying the effects of different viral strains and their impact on HIV infection in the CNS. To evaluate CNS pathology during HIV-1 infection in the humanized bone marrow/liver/thymus (BLT) mouse model, a histological analysis was conducted on five CNS regions, including the frontal cortex, hippocampus, striatum, cerebellum, and spinal cord, to delineate the neuronal (MAP2ab, NeuN) and neuroinflammatory (GFAP, Iba-1) changes induced by two viral strains after 2 weeks and 8 weeks post-infection. RESULTS Findings reveal HIV-infected human cells in the brain of HIV-infected BLT mice, demonstrating HIV neuroinvasion. Further, both viral strains, HIV-1JR-CSF and HIV-1CH040, induced neuronal injury and astrogliosis across all CNS regions following HIV infection at both time points, as demonstrated by decreases in MAP2ab and increases in GFAP fluorescence signal, respectively. Importantly, infection with HIV-1JR-CSF had more prominent effects on neuronal health in specific CNS regions compared to HIV-1CH040 infection, with decreasing number of NeuN+ neurons, specifically in the frontal cortex. On the other hand, infection with HIV-1CH040 demonstrated more prominent effects on neuroinflammation, assessed by an increase in GFAP signal and/or an increase in number of Iba-1+ microglia, across CNS regions. CONCLUSION These findings demonstrate that CNS pathology is widespread during acute HIV infection. However, neuronal loss and the magnitude of neuroinflammation in the CNS is strain dependent indicating that strains of HIV cause differential CNS pathologies.
Collapse
Affiliation(s)
- Jenna B Honeycutt
- Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Angela Wahl
- Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, AL, 35294, USA
| | - Jacob K Files
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, AL, 35294, USA
| | - Alexis F League
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Barkha J Yadav-Samudrala
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - J Victor Garcia
- Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, AL, 35294, USA.
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
Scanlan A, Zhang Z, Koneru R, Reece M, Gavegnano C, Anderson AM, Tyor W. A Rationale and Approach to the Development of Specific Treatments for HIV Associated Neurocognitive Impairment. Microorganisms 2022; 10:2244. [PMID: 36422314 PMCID: PMC9699382 DOI: 10.3390/microorganisms10112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 05/22/2024] Open
Abstract
Neurocognitive impairment (NCI) associated with HIV infection of the brain impacts a large proportion of people with HIV (PWH) regardless of antiretroviral therapy (ART). While the number of PWH and severe NCI has dropped considerably with the introduction of ART, the sole use of ART is not sufficient to prevent or arrest NCI in many PWH. As the HIV field continues to investigate cure strategies, adjunctive therapies are greatly needed. HIV imaging, cerebrospinal fluid, and pathological studies point to the presence of continual inflammation, and the presence of HIV RNA, DNA, and proteins in the brain despite ART. Clinical trials exploring potential adjunctive therapeutics for the treatment of HIV NCI over the last few decades have had limited success. Ideally, future research and development of novel compounds need to address both the HIV replication and neuroinflammation associated with HIV infection in the brain. Brain mononuclear phagocytes (MPs) are the primary instigators of inflammation and HIV protein expression; therefore, adjunctive treatments that act on MPs, such as immunomodulating agents, look promising. In this review, we will highlight recent developments of innovative therapies and discuss future approaches for HIV NCI treatment.
Collapse
Affiliation(s)
- Aaron Scanlan
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhan Zhang
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajeth Koneru
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Monica Reece
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Christina Gavegnano
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Albert M. Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Sil S, Thangaraj A, Chivero ET, Niu F, Kannan M, Liao K, Silverstein PS, Periyasamy P, Buch S. HIV-1 and drug abuse comorbidity: Lessons learned from the animal models of NeuroHIV. Neurosci Lett 2021; 754:135863. [PMID: 33794296 DOI: 10.1016/j.neulet.2021.135863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Various research studies that have investigated the association between HIV infection and addiction underpin the role of various drugs of abuse in impairing immunological and non-immunological pathways of the host system, ultimately leading to augmentation of HIV infection and disease progression. These studies have included both in vitro and in vivo animal models wherein investigators have assessed the effects of various drugs on several disease parameters to decipher the impact of drugs on both HIV infection and progression of HIV-associated neurocognitive disorders (HAND). However, given the inherent limitations in the existing animal models of HAND, these investigations only recapitulated specific aspects of the disease but not the complex human syndrome. Despite the inability of HIV to infect rodents over the last 30 years, multiple strategies have been employed to develop several rodent models of HAND. While none of these models can accurately mimic the overall pathophysiology of HAND, they serve the purpose of modeling some unique aspects of HAND. This review provides an overview of various animal models used in the field and a careful evaluation of methodological strengths and limitations inherent in both the model systems and study designs to understand better how the various animal models complement one another.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter S Silverstein
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
4
|
Reversing interferon-alpha neurotoxicity in a HIV-associated neurocognitive disorder mouse model. AIDS 2018; 32:1403-1411. [PMID: 29683852 DOI: 10.1097/qad.0000000000001836] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Increased brain interferon-alpha (IFNα) is associated with neurodegenerative disorders, including HIV-associated neurocognitive disorders (HAND). HAND occurs in approximately 50% of individuals with HIV despite combined antiretroviral therapy (cART). Therefore, adjunctive therapies must be developed that prevent progression of mild forms of HAND to HIV-associated dementia. Increased IFNα in the CNS has been associated with HAND in patients and in a HAND mouse model. DESIGN AND METHODS B18R binds IFNα and ameliorates HAND mouse brain histopathology (HIV encephalitis). The HAND model was used to determine if B18R with cART is superior to cART. Behavioral testing [Object recognition Test (ORT)] was used to show that B18R can reverse behavioral deficits. Rat neuronal cultures were used to investigate mechanisms of IFNα neurotoxicity. RESULTS Mouse brain immunohistochemistry and densitometry suggests that B18R with a common cART regimen improve histopathological markers better than cART alone. B18R reverses ORT behavioral abnormalities in HAND mice. IFNα-treated rat neurons show decreases in PSD-95, suggesting that dendritic spine architecture is disrupted. Decreases in Arf1, a GTP-binding protein, and AMPA receptors on the surface of rat neurons exposed to IFNα suggest the mechanism of IFNα neurotoxicity may relate to decreased Arf1 resulting in destabilization of dendritic spines, decreased PSD-95 expression, and internalization of AMPA receptors. CONCLUSION B18R reversal of HAND in the mouse model is further evidence that the treatment of IFNα in individuals with HAND could be a viable adjunctive treatment. Investigating pathways of IFNα neurotoxicity may lead to more specific treatments.
Collapse
|
5
|
Honeycutt JB, Liao B, Nixon CC, Cleary RA, Thayer WO, Birath SL, Swanson MD, Sheridan P, Zakharova O, Prince F, Kuruc J, Gay CL, Evans C, Eron JJ, Wahl A, Garcia JV. T cells establish and maintain CNS viral infection in HIV-infected humanized mice. J Clin Invest 2018; 128:2862-2876. [PMID: 29863499 DOI: 10.1172/jci98968] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/10/2018] [Indexed: 01/10/2023] Open
Abstract
The human brain is an important site of HIV replication and persistence during antiretroviral therapy (ART). Direct evaluation of HIV infection in the brains of otherwise healthy individuals is not feasible; therefore, we performed a large-scale study of bone marrow/liver/thymus (BLT) humanized mice as an in vivo model to study HIV infection in the brain. Human immune cells, including CD4+ T cells and macrophages, were present throughout the BLT mouse brain. HIV DNA, HIV RNA, and/or p24+ cells were observed in the brains of HIV-infected animals, regardless of the HIV isolate used. HIV infection resulted in decreased numbers of CD4+ T cells, increased numbers of CD8+ T cells, and a decreased CD4+/CD8+ T cell ratio in the brain. Using humanized T cell-only mice (ToM), we demonstrated that T cells establish and maintain HIV infection of the brain in the complete absence of human myeloid cells. HIV infection of ToM resulted in CD4+ T cell depletion and a reduced CD4+/CD8+ T cell ratio. ART significantly reduced HIV levels in the BLT mouse brain, and the immune cell populations present were indistinguishable from those of uninfected controls, which demonstrated the effectiveness of ART in controlling HIV replication in the CNS and returning cellular homeostasis to a pre-HIV state.
Collapse
Affiliation(s)
- Jenna B Honeycutt
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Baolin Liao
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA.,Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Christopher C Nixon
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Rachel A Cleary
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - William O Thayer
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Shayla L Birath
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Michael D Swanson
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Patricia Sheridan
- Department of Nutrition, UNC-CH, Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Oksana Zakharova
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Francesca Prince
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - JoAnn Kuruc
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Cynthia L Gay
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Chris Evans
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Joseph J Eron
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Angela Wahl
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - J Victor Garcia
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Evering TH, Tsuji M. Human Immune System Mice for the Study of Human Immunodeficiency Virus-Type 1 Infection of the Central Nervous System. Front Immunol 2018; 9:649. [PMID: 29670623 PMCID: PMC5893637 DOI: 10.3389/fimmu.2018.00649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/16/2018] [Indexed: 01/08/2023] Open
Abstract
Immunodeficient mice transplanted with human cell populations or tissues, also known as human immune system (HIS) mice, have emerged as an important and versatile tool for the in vivo study of human immunodeficiency virus-type 1 (HIV-1) pathogenesis, treatment, and persistence in various biological compartments. Recent work in HIS mice has demonstrated their ability to recapitulate critical aspects of human immune responses to HIV-1 infection, and such studies have informed our knowledge of HIV-1 persistence and latency in the context of combination antiretroviral therapy. The central nervous system (CNS) is a unique, immunologically privileged compartment susceptible to HIV-1 infection, replication, and immune-mediated damage. The unique, neural, and glia-rich cellular composition of this compartment, as well as the important role of infiltrating cells of the myeloid lineage in HIV-1 seeding and replication makes its study of paramount importance, particularly in the context of HIV-1 cure research. Current work on the replication and persistence of HIV-1 in the CNS, as well as cells of the myeloid lineage thought to be important in HIV-1 infection of this compartment, has been aided by the expanded use of these HIS mouse models. In this review, we describe the major HIS mouse models currently in use for the study of HIV-1 neuropathogenesis, recent insights from the field, limitations of the available models, and promising advances in HIS mouse model development.
Collapse
Affiliation(s)
- Teresa H Evering
- Aaron Diamond AIDS Research Center, An Affiliate of the Rockefeller University, New York, NY, United States
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, An Affiliate of the Rockefeller University, New York, NY, United States
| |
Collapse
|
7
|
Tyor WR, Bimonte-Nelson H. A mouse model of HIV-associated neurocognitive disorders: a brain-behavior approach to discover disease mechanisms and novel treatments. J Neurovirol 2017; 24:180-184. [PMID: 28895064 DOI: 10.1007/s13365-017-0572-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/01/2017] [Accepted: 08/21/2017] [Indexed: 01/04/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) remain highly prevalent despite combined antiretroviral therapy (cART). Although the most common forms of HAND are mild and identified through neuropsychological testing, there is evidence that with aging these mild forms become more prevalent and may advance to the most severe form of HAND, HIV-associated dementia. Therefore, novel therapies must be developed that can be used adjunctively with cART to prevent deterioration or restore normal cognitive function. In order to develop innovative treatments, animal models are used for preclinical testing. Ideally, a HAND animal model should portray similar mild cognitive deficits that are found in humans. A mouse model of HAND is discussed, which demonstrates mild behavioral deficits and has been used to investigate cART and novel treatments for HAND. This model also shows correlations between abnormal mouse behavior due to HIV in the brain and pathological parameters such as gliosis and neuronal abnormalities. A recent advancement utilizes the object recognition test to monitor mouse behavior before and after treatment. It is postulated that this model is well suited for preclinical testing of novel therapies and provides correlations of mild cognitive impairment with pathological markers that can give further insight into the pathophysiology of HAND.
Collapse
Affiliation(s)
- William R Tyor
- Atlanta VA Medical Center, Decatur, GA, USA. .,Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Heather Bimonte-Nelson
- Psychology Department, Arizona State University, Tempe, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| |
Collapse
|
8
|
Honeycutt JB, Garcia JV. Humanized mice: models for evaluating NeuroHIV and cure strategies. J Neurovirol 2017; 24:185-191. [PMID: 28831774 DOI: 10.1007/s13365-017-0567-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/29/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023]
Abstract
While the human immunodeficiency virus (HIV) epidemic was initially characterized by a high prevalence of severe and widespread neurological pathologies, the development of better treatments to suppress viremia over years and even decades has mitigated many of the severe neurological pathologies previously observed. Despite effective treatment, mild neurocognitive impairment and premature cognitive aging are observed in HIV-infected individuals, suggesting a changing but ongoing role of HIV infection in the central nervous system (CNS). Although current therapies are effective in suppressing viremia, they are not curative and patients must remain on life-long treatment or risk recrudescence of virus. Important for the development and evaluation of a cure for HIV will be animal models that recapitulate critical aspects of infection in vivo. In the following, we seek to summarize some of the recent developments in humanized mouse models and their usefulness in modeling HIV infection of the CNS and HIV cure strategies.
Collapse
Affiliation(s)
- Jenna B Honeycutt
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina (UNC), School of Medicine, Chapel Hill, NC, USA.
| | - J Victor Garcia
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina (UNC), School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
9
|
In vitro and Ex vivo Neurotoxic Effects of Efavirenz are Greater than Those of Other Common Antiretrovirals. Neurochem Res 2017; 42:3220-3232. [DOI: 10.1007/s11064-017-2358-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 05/15/2017] [Accepted: 07/13/2017] [Indexed: 01/04/2023]
|
10
|
Islam MA, Pillay TS. Structural requirements for potential HIV-integrase inhibitors identified using pharmacophore-based virtual screening and molecular dynamics studies. MOLECULAR BIOSYSTEMS 2016; 12:982-93. [PMID: 26809073 DOI: 10.1039/c5mb00767d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS) is a life-threatening disease which is a collection of symptoms and infections caused by a retrovirus, human immunodeficiency virus (HIV). There is currently no curative treatment and therapy is reliant on the use of existing anti-retroviral drugs. Pharmacoinformatics approaches have already proven their pivotal role in the pharmaceutical industry for lead identification and optimization. In the current study, we analysed the binding preferences and inhibitory activity of HIV-integrase inhibitors using pharmacoinformatics. A set of 30 compounds were selected as the training set of a total 540 molecules for pharmacophore model generation. The final model was validated by statistical parameters and further used for virtual screening. The best mapped model (R = 0.940, RMSD = 2.847, Q(2) = 0.912, se = 0.498, Rpred(2) = 0.847 and rm(test)(2) = 0.636) explained that two hydrogen bond acceptor and one aromatic ring features were crucial for the inhibition of HIV-integrase. From virtual screening, initial hits were sorted using a number of parameters and finally two compounds were proposed as promising HIV-integrase inhibitors. Drug-likeness properties of the final screened compounds were compared to FDA approved HIV-integrase inhibitors. HIV-integrase structure in complex with the most active and final screened compounds were subjected to 50 ns molecular dynamics (MD) simulation studies to check comparative stability of the complexes. The study suggested that the screened compounds might be promising HIV-integrase inhibitors. The new chemical entities obtained from the NCI database will be subjected to experimental studies to confirm potential inhibition of HIV integrase.
Collapse
Affiliation(s)
- Md Ataul Islam
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Private Bag X323, Arcadia, Pretoria, 0007, South Africa.
| | - Tahir S Pillay
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Private Bag X323, Arcadia, Pretoria, 0007, South Africa. and Division of Chemical Pathology, University of Cape Town, South Africa
| |
Collapse
|
11
|
Haile WB, Gavegnano C, Tao S, Jiang Y, Schinazi RF, Tyor WR. The Janus kinase inhibitor ruxolitinib reduces HIV replication in human macrophages and ameliorates HIV encephalitis in a murine model. Neurobiol Dis 2016; 92:137-43. [PMID: 26851503 DOI: 10.1016/j.nbd.2016.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 12/25/2022] Open
Abstract
A hallmark of persistent HIV-1 infection in the central nervous system is increased activation of mononuclear phagocytes and surrounding astrogliosis, conferring persistent HIV-induced inflammation. This inflammation is believed to result in neuronal dysfunction and the clinical manifestations of HIV-associated neurocognitive disorders (HAND). The Jak/STAT pathway is activated in macrophages/myeloid cells upon HIV-1 infection, modulating many pro-inflammatory pathways that result in HAND, thereby representing an attractive cellular target. Thus, the impact of ruxolitinib, a Janus Kinase (Jak) 1/2 inhibitor that is FDA approved for myelofibrosis and polycythemia vera, was assessed for its potential to inhibit HIV-1 replication in macrophages and HIV-induced activation in monocytes/macrophages in culture. In addition, a murine model of HIV encephalitis (HIVE) was used to assess the impact of ruxolitinib on histopathological features of HIVE, brain viral load, as well as its ability to penetrate the blood-brain-barrier (BBB). Ruxolitinib was found to inhibit HIV-1 replication in macrophages, HIV-induced activation of monocytes (CD14/CD16) and macrophages (HLA-DR, CCR5, and CD163) without apparent toxicity. In vivo, systemically administered ruxolitinib was detected in the brain during HIVE in SCID mice and markedly inhibited astrogliosis. Together, these data indicate that ruxolitinib reduces HIV-induced activation and infiltration of monocytes/macrophages in vitro, reduces the replication of HIV in vitro, penetrates the BBB when systemically administered in mice and reduces astrogliosis in the brains of mice with HIVE. These data suggest that ruxolitinib will be useful as a novel therapeutic to treat humans with HAND.
Collapse
Affiliation(s)
| | - Christina Gavegnano
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Sijia Tao
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Yong Jiang
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; Veterans Affairs Medical Center, Decatur, GA 30033, USA.
| | - William R Tyor
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30209, USA; Veterans Affairs Medical Center, Decatur, GA 30033, USA.
| |
Collapse
|
12
|
Hofer MJ, Campbell IL. Immunoinflammatory diseases of the central nervous system - the tale of two cytokines. Br J Pharmacol 2016; 173:716-28. [PMID: 25917268 PMCID: PMC4742300 DOI: 10.1111/bph.13175] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/23/2022] Open
Abstract
Cytokines are potent mediators of cellular communication that have crucial roles in the regulation of innate and adaptive immunoinflammatory responses. Clear evidence has emerged in recent years that the dysregulated production of cytokines may in itself be causative in the pathogenesis of certain immunoinflammatory disorders. Here we review current evidence for the involvement of two different cytokines, IFN-α and IL-6, as principal mediators of specific immunoinflammatory disorders of the CNS. IFN-α belongs to the type I IFN family and is causally linked to the development of inflammatory encephalopathy exemplified by the genetic disorder, Aicardi-Goutières syndrome. IL-6 belongs to the gp130 family of cytokines and is causally linked to a number of immunoinflammatory disorders of the CNS including neuromyelitis optica, idiopathic transverse myelitis and genetically linked autoinflammatory neurological disease. In addition to clinical evidence, experimental studies, particularly in genetically engineered mouse models with astrocyte-targeted, CNS-restricted production of IFN-α or IL-6 replicate many of the cardinal neuropathological features of these human cytokine-linked immunoinflammatory neurological disorders giving crucial evidence for a direct causative role of these cytokines and providing further rationale for the therapeutic targeting of these cytokines in neurological diseases where indicated.
Collapse
Affiliation(s)
- M J Hofer
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - I L Campbell
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| |
Collapse
|
13
|
Fritz-French C, Shawahna R, Ward JE, Maroun LE, Tyor WR. The recombinant vaccinia virus gene product, B18R, neutralizes interferon alpha and alleviates histopathological complications in an HIV encephalitis mouse model. J Interferon Cytokine Res 2014; 34:510-7. [PMID: 24564363 DOI: 10.1089/jir.2013.0072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interferon-alpha (IFN-α) has been identified as a neurotoxin that plays a prominent role in human immunodeficiency virus (HIV)-associated neurocognitive disorders and HIV encephalitis (HIVE) pathology. IFN-α is associated with cognitive dysfunction in other inflammatory diseases where IFN-α is upregulated. Trials of monoclonal anti-IFN-α antibodies have been generally disappointing possibly due to high specificity to limited IFN-α subtypes and low affinity. We investigated a novel IFN-α inhibitor, B18R, in an HIVE/severe combined immunodeficiency (SCID) mouse model. Immunostaining for B18R in systemically treated HIVE/SCID mice suggested the ability of B18R to cross the blood-brain barrier (BBB). Real-time PCR indicated that B18R treatment resulted in a decrease in gene expression associated with IFN-α signaling in the brain. Mice treated with B18R were found to have decreased mouse mononuclear phagocytes and significant retention of neuronal arborization compared to untreated HIVE/SCID mice. Increased mononuclear phagocytes and decreased neuronal arborization are key features of HIVE. These results suggest that B18R crosses the BBB, blocks IFN-α signaling, and it prevents key features of HIVE pathology. These data suggest that the high affinity and broad IFN-α subtype specificity of B18R make it a viable alternative to monoclonal antibodies for the inhibition of IFN-α in the immune-suppressed environment.
Collapse
Affiliation(s)
- Cari Fritz-French
- 1 Department of Neurology, Emory University School of Medicine , Atlanta, Georgia
| | | | | | | | | |
Collapse
|
14
|
Koneru R, Olive MF, Tyor WR. Combined antiretroviral therapy reduces brain viral load and pathological features of HIV encephalitis in a mouse model. J Neurovirol 2014; 20:9-17. [PMID: 24415129 DOI: 10.1007/s13365-013-0223-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/22/2013] [Accepted: 11/27/2013] [Indexed: 12/18/2022]
Abstract
The role of brain HIV load in the pathogenesis of HIV-associated neurocognitive disorders (HAND) is unclear. To try and determine if the amount of HIV drives the severity of pathology, a severe combined immunodeficient (SCID) mouse model of HIV encephalitis (HIVE) was utilized to determine the effectiveness of a systemically administered combined antiretroviral (cART) regimen. SCID mice were inoculated intracerebrally with HIV-infected or uninfected (control) human macrophages and treated subcutaneously with cART or saline for 10 days. Immunohistochemistry was then used to examine gliosis and neuronal damage. Drug levels were measured in brain and plasma using high-performance liquid chromatography. Peak plasma and brain levels of atazanavir, tenofovir, and emtricitabine were determined to be 1 h post-injection of cART therapy. cART significantly reduced neuropathological features of HIVE, including astrogliosis and the presence of mononuclear phagocytes, and ameliorated reduced MAP2 (neuronal integrity) staining. However, cART did not eradicate HIV from the brain. Using this animal model of HIVE, these data indicate effective penetration of cART reduces brain viral loads and HIV pathology, possibly by eliminating the production of HIV proteins, virus infected cells, or both. Importantly, these data suggest that viral load directly affects the extent of pathology seen in the brain, particularly neuronal damage, which implies that more effective suppression of HIV in the CNS could reduce currently highly prevalent forms of HAND. However, these data also strongly suggest that cART will not eliminate HIV from the brain and that adjunctive therapies must be developed.
Collapse
Affiliation(s)
- Rajeth Koneru
- Atlanta VA Medical Center, 1670 Clairmont Rd., Decatur, GA, 30033, USA
| | | | | |
Collapse
|
15
|
Hofer MJ, Campbell IL. Type I interferon in neurological disease-the devil from within. Cytokine Growth Factor Rev 2013; 24:257-67. [PMID: 23548179 DOI: 10.1016/j.cytogfr.2013.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/05/2013] [Indexed: 12/31/2022]
Abstract
The members of the type I interferon (IFN-I) family of cytokines are pleiotropic factors that have seminal roles in host defence, acting as antimicrobial and antitumor mediators as well as potent immunomodulatory factors that bridge the innate and adaptive immune responses. Despite these beneficial actions there is mounting evidence that link inappropriate or chronic production of IFN-I in the CNS to the development of a number of severe neuroinflammatory disorders. The most persuasive example is the genetically determined inflammatory encephalopathy, Aicardi-Goutières syndrome (AGS) in which patients have chronically elevated IFN-α production in the CNS. The presentation of AGS can often mimic congenital viral infection, however, molecular genetic studies have identified mutations in six genes that can cause AGS, most likely via dysregulated nucleic acid metabolism and activation of the innate immune response leading to increased intrathecal production of IFN-α. The role of IFN-α as a pathogenic factor in AGS and other neurological disorders has gained considerable support from experimental studies. In particular, a transgenic mouse model with CNS-restricted production of IFN-α replicates many of the cardinal neuropathologic features of AGS and reveal IFN-I to be the "devil from within", mediating molecular and cellular damage within the CNS. Thus, targeting IFN-I may be an effective strategy for the treatment of AGS as well as some other autoimmune and infectious neurological "interferonopathies".
Collapse
Affiliation(s)
- Markus J Hofer
- School of Molecular Bioscience and the Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
16
|
Morphine exposure during HIV encephalitis in SCID mice. Neurochem Res 2012; 37:2836-41. [PMID: 22965853 DOI: 10.1007/s11064-012-0877-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/16/2012] [Accepted: 08/21/2012] [Indexed: 01/08/2023]
Abstract
HIV encephalitis (HIVE) is often complicated by opiate abuse. Based on human pathological, animal and in vitro studies, opiates are thought to exacerbate HIVE. To test this hypothesis we exposed 10 week old SCID mice with HIVE to morphine and examined histopathological parameters. Mice inoculated intracerebrally with either HIV-infected or uninfected (control mice) human macrophages were immediately implanted subcutaneously with pellets containing saline, morphine or morphine plus naltrexone. They were sacrificed after 10 days. Immunostaining for astrocytes (GFAP), mouse mononuclear phagocytes (CD45) and neuronal dendrites (MAP2) was analyzed by densitometry. HIVE mice exposed to either saline, morphine or morphine plus naltrexone also had brain sections counted for HIV+ human macrophages. Typical HIVE pathology was present, consistent with previously published studies. Surprisingly, there were no effects on astrogliosis, microgliosis and MAP2 decreases in the HIVE, morphine treated group. There was also no effect of morphine exposure on numbers of p24+ human macrophages. These results emphasize the complexities of modeling opiate effects in HIVE and the potential significance of opiate abuse on HIVE in humans.
Collapse
|
17
|
Fritz-French C, Tyor W. Interferon-α (IFNα) neurotoxicity. Cytokine Growth Factor Rev 2012; 23:7-14. [DOI: 10.1016/j.cytogfr.2012.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 01/09/2012] [Indexed: 01/20/2023]
|
18
|
Sango K, Joseph A, Patel M, Osiecki K, Dutta M, Goldstein H. Highly active antiretroviral therapy potently suppresses HIV infection in humanized Rag2-/-gammac-/- mice. AIDS Res Hum Retroviruses 2010; 26:735-46. [PMID: 20624075 DOI: 10.1089/aid.2009.0136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Humanized Rag2(-/-)gamma(c)(-/-) mice (Hu-DKO mice) become populated with functional human T cells, B cells, and dendritic cells following transplantation with human hematopoietic stem cells (HSC) and represent an improved model for studying HIV infection in vivo. In the current study we demonstrated that intrasplenic inoculation of hu-DKO mice with HIV-1 initiated a higher level of HIV infection than intravenous or intraperitoneal inoculation, associated with a reciprocal decrease in peripheral CD4(+) T cells and increase in peripheral CD8(+) T cells. HIV infection by intrasplenic injection increased serum levels of human IgG and IgM including human IgM and IgG specific for HIV-1 gp120. There was a significant inverse correlation between the level of HIV-1 infection and the extent of CD4(+) T cell depletion. Highly active antiretroviral therapy (HAART) initiated 1 week after HIV-1 inoculation markedly suppressed HIV-1 infection and prevented CD4(+) T cell depletion. Taken together, these findings demonstrate that intrasplenic injection of hu-DKO mice with HIV is a more efficient route of HIV infection than intravenous or intraperitoneal injection and generates increased infection associated with an increased anti-HIV humoral response. This animal model can serve as a valuable in vivo model to study the efficacy of anti-HIV therapies.
Collapse
Affiliation(s)
- Kaori Sango
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The development of antiretroviral drugs over the past couple of decades has been commendable owing to the identification of several new targets within the overall HIV replication cycle. However, complete control over HIV/AIDS is yet to be achieved. This is because the current anti-HIV drugs, although effective in reducing plasma viral levels, cannot eradicate the virus completely from the body. This occurs because most anti-HIV drugs do not accumulate in certain cellular and anatomical reservoirs including the CNS. Insufficient delivery of anti-HIV drugs to the CNS is attributed to their low permeability across the BBB. Hence, low and sustained viral replication within the CNS continues even during prolonged antiretroviral drug therapy. Therefore, developing novel approaches that are targeted at enhancing the CNS delivery of anti-HIV drugs are required. In this review, we discuss the potential of nanocarriers and the role of cell-penetrating peptides in enhancing drug delivery to the CNS. Such drug delivery approaches could also lead to higher drug delivery to other cellular and anatomical reservoirs where the virus harbors than with conventional treatment, thus providing an effective therapy to eliminate the virus completely from the body.
Collapse
Affiliation(s)
- Kavitha S Rao
- Lerner Research Institute,, Cleveland Clinic, Department of Biomedical Engineering/ND-20, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
20
|
Ellis RJ, Calero P, Stockin MD. HIV infection and the central nervous system: a primer. Neuropsychol Rev 2009; 19:144-51. [PMID: 19415500 PMCID: PMC2690832 DOI: 10.1007/s11065-009-9094-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 04/22/2009] [Indexed: 10/28/2022]
Abstract
The purpose of this brief review is to prepare readers who may be unfamiliar with Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome (HIV/AIDS) and the rapidly accumulating changes in the epidemic by providing an introduction to HIV disease and its treatment. The general concepts presented here will facilitate understanding of the papers in this issue on HIV-associated neurocognitive disorders (HAND). Toward that end, we briefly review the biology of HIV and how it causes disease in its human host, its epidemiology, and how antiretroviral treatments are targeted to interfere with the molecular biology that allows the virus to reproduce. Finally, we describe what is known about how HIV injures the nervous system, leading to HAND, and discuss potential strategies for preventing or treating the effects of HIV on the nervous system.
Collapse
Affiliation(s)
- Ronald J Ellis
- University of California, San Diego, San Diego, CA 92103, USA.
| | | | | |
Collapse
|
21
|
Abstract
Interferon-alpha (IFNalpha) is a pleomorphic cytokine produced by nucleated cells in response to viral infection. In patients, treatment with IFNalpha has side effects including cognitive impairment resembling subcortical dementia, which is a hallmark of human immunodeficiency virus (HIV)-associated dementia (HAD). IFNalpha is increased in the CSF of HAD patients compared with HIV patients without dementia. In this study, blocking IFNalpha in a HIV encephalitis (HIVE) mouse model with intraperitoneal injections of IFNalpha neutralizing antibodies (NAbs) significantly improved cognitive function compared with untreated or control antibody-treated HIVE mice during water radial arm maze behavioral testing. Treatment with IFNalpha NAbs significantly decreased microgliosis and prevented loss of dendritic arborization in the brains of HIVE mice. Furthermore, treatment of primary neuron cultures with IFNalpha resulted in dose-dependent loss of dendritic arborization that was blocked with IFNalpha NAb treatment and partially blocked with NMDA antagonists [AP5 and MK801 (dizocilpine maleate)] indicating glutamate signaling is involved in IFNalpha-mediated neuronal damage. These results show that IFNalpha has a major role in the pathogenesis of HIVE in mice and is likely important in the development neurocognitive dysfunction in humans with HIV. Blocking IFNalpha could be important in improving cognitive and pathological developments in HAD patients and may be clinically important in other neuroinflammatory diseases as well.
Collapse
|
22
|
Abstract
Human immunodeficiency virus (HIV)-associated dementia (HAD) is common among clade B HIV-infected individuals, but less common and less severe among individuals infected with clade C HIV-1, suggesting clade-specific differences in neuropathogenicity. Although differences in neuropathogenicity have been investigated in vitro using viral proteins responsible for HAD, to date there are no virological studies using animal models to address this issue. Therefore, we investigated neuropathogenesis induced by HIV-1 clades using the severe combined immune deficiency (SCID) mouse HIV encephalitis model, which involves intracranial injection of macrophages infected with representative clade B (HIV-1(ADA)) or clade C (HIV-1(Indie-C1)) HIV-1 isolates into SCID mice. In cognitive tests, mice exposed to similar inputs of HIV-1 clade C made fewer memory errors than those exposed to HIV-1 clade B. Histopathological analysis of mice exposed to clade B exhibited greater astrogliosis and increased loss of neuronal network integrity. In vitro experiments revealed differences in a key characteristic of HIV-1 that influences HAD, increased monocyte infiltration. HIV-1(Indie-C1)-infected macrophages recruited monocytes poorly in vitro compared with HIV-1(ADA)-infected macrophages. Monocyte recruitment was HIV-1 Tat and CCL2 dependent. This is the first demonstration, ever since HIV neuropathogenesis was first recognized, that viral genetic differences between clades can affect disease severity and that such studies help identify key players in neuropathogenesis by HIV-1.
Collapse
|
23
|
Kipnis J, Derecki NC, Yang C, Scrable H. Immunity and cognition: what do age-related dementia, HIV-dementia and 'chemo-brain' have in common? Trends Immunol 2008; 29:455-63. [PMID: 18789764 DOI: 10.1016/j.it.2008.07.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Revised: 07/01/2008] [Accepted: 07/03/2008] [Indexed: 11/24/2022]
Abstract
Until recently, dogma dictated that the immune system and the central nervous system (CNS) live mostly separate, parallel lives, and any interactions between the two were assumed to be limited to extreme cases of pathological insult. It was only a decade ago that T cells in the injured brain were shown to play a protective rather than a destructive role. In this article, we explore the role of the immune system in the healthy brain, focusing on the key function that T lymphocytes have in the regulation of cognition. We discuss candidate mechanisms underlying T cell-mediated control of cognitive function in human cognitive diseases associated with immune decline, such as age- and HIV-related dementias, 'chemo-brain' and others.
Collapse
Affiliation(s)
- Jonathan Kipnis
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
24
|
Perfettini JL, Nardacci R, Bourouba M, Subra F, Gros L, Séror C, Manic G, Rosselli F, Amendola A, Masdehors P, Chessa L, Novelli G, Ojcius DM, Siwicki JK, Chechlinska M, Auclair C, Regueiro JR, de Thé H, Gougeon ML, Piacentini M, Kroemer G. Critical involvement of the ATM-dependent DNA damage response in the apoptotic demise of HIV-1-elicited syncytia. PLoS One 2008; 3:e2458. [PMID: 18560558 PMCID: PMC2423469 DOI: 10.1371/journal.pone.0002458] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 04/29/2008] [Indexed: 11/19/2022] Open
Abstract
DNA damage can activate the oncosuppressor protein ataxia telangiectasia mutated (ATM), which phosphorylates the histone H2AX within characteristic DNA damage foci. Here, we show that ATM undergoes an activating phosphorylation in syncytia elicited by the envelope glycoprotein complex (Env) of human immunodeficiency virus-1 (HIV-1) in vitro. This was accompanied by aggregation of ATM in discrete nuclear foci that also contained phospho-histone H2AX. DNA damage foci containing phosphorylated ATM and H2AX were detectable in syncytia present in the brain or lymph nodes from patients with HIV-1 infection, as well as in a fraction of blood leukocytes, correlating with viral status. Knockdown of ATM or of its obligate activating factor NBS1 (Nijmegen breakage syndrome 1 protein), as well as pharmacological inhibition of ATM with KU-55933, inhibited H2AX phosphorylation and prevented Env-elicited syncytia from undergoing apoptosis. ATM was found indispensable for the activation of MAP kinase p38, which catalyzes the activating phosphorylation of p53 on serine 46, thereby causing p53 dependent apoptosis. Both wild type HIV-1 and an HIV-1 mutant lacking integrase activity induced syncytial apoptosis, which could be suppressed by inhibiting ATM. HIV-1-infected T lymphoblasts from patients with inactivating ATM or NBS1 mutations also exhibited reduced syncytial apoptosis. Altogether these results indicate that apoptosis induced by a fusogenic HIV-1 Env follows a pro-apoptotic pathway involving the sequential activation of ATM, p38MAPK and p53.
Collapse
Affiliation(s)
| | - Roberta Nardacci
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, Rome, Italy
| | | | - Frédéric Subra
- CNRS UMR 8113 LBPA, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Laurent Gros
- CNRS UMR 8113 LBPA, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Claire Séror
- INSERM U848, Institut Gustave Roussy, Villejuif, France
| | - Gwenola Manic
- INSERM U848, Institut Gustave Roussy, Villejuif, France
| | | | - Alessandra Amendola
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, Rome, Italy
| | - Peggy Masdehors
- Antiviral Immunity, Biotherapy and Vaccine Unit, Department of Infection and Epidemiology, Institut Pasteur, Paris, France
| | - Luciana Chessa
- II Faculty of Medicine, University of Rome “La Sapienza”, Rome, Italy
| | - Giuseppe Novelli
- Department of Biopathology and Diagnosing Imaging, University of Rome “Tor Vergata”, Rome, Italy
| | - David M. Ojcius
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Jan Konrad Siwicki
- Department of Immunology, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Magdalena Chechlinska
- Department of Immunology, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Christian Auclair
- CNRS UMR 8113 LBPA, Ecole Normale Supérieure de Cachan, Cachan, France
| | - José R. Regueiro
- Imunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Hugues de Thé
- CNRS UPR 9051, Université de Paris VII, Hôpital St. Louis, Paris, France
| | - Marie-Lise Gougeon
- Antiviral Immunity, Biotherapy and Vaccine Unit, Department of Infection and Epidemiology, Institut Pasteur, Paris, France
| | - Mauro Piacentini
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, Rome, Italy
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Guido Kroemer
- INSERM U848, Institut Gustave Roussy, Villejuif, France
- * E-mail:
| |
Collapse
|
25
|
Cognitive dysfunction in HIV encephalitic SCID mice correlates with levels of Interferon-alpha in the brain. AIDS 2007; 21:2151-9. [PMID: 18090041 DOI: 10.1097/qad.0b013e3282f08c2f] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Interferon alpha (IFNalpha) is an antiviral cytokine produced in response to viral infection. IFNalpha also acts as a neuromodulatory molecule in the central nervous system (CNS). Elevated IFNalpha in the CNS causes cognitive deficits. OBJECTIVE To determine if elevated levels of IFNalpha in an HIV encephalitis mouse model correlate with cognitive deficits. METHODS C57BL/6J SCID mice were inoculated intracerebrally (i.c.) with HIV infected or uninfected (control) macrophages and cognitively tested in a water escape radial arm maze. After behavioral testing was completed, immunohistochemistry and ELISA were used to examine brain pathology and IFNalpha expression. RESULTS Mice injected i.c. with HIV infected macrophages exhibited significantly more working memory errors, particularly in trials with the highest memory load. Immunohistochemistry indicated increased mouse IFNalpha staining prevalent on neurons and glial cells in the brains of mice with HIV infected macrophages compared to mice with uninfected control macrophages. In addition, IFNalpha levels in the brain correlated directly with working memory errors for mice with HIV infected macrophages. CONCLUSIONS These data suggest that the cognitive deficit noted for the C57BL/6J SCID mice with HIV infected macrophages is mediated by the infection induced increase in IFNalpha.
Collapse
|
26
|
Cook-Easterwood J, Middaugh LD, Griffin WC, Khan I, Tyor WR. Highly active antiretroviral therapy of cognitive dysfunction and neuronal abnormalities in SCID mice with HIV encephalitis. Exp Neurol 2007; 205:506-12. [PMID: 17442303 PMCID: PMC1963516 DOI: 10.1016/j.expneurol.2007.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 02/14/2007] [Accepted: 03/07/2007] [Indexed: 11/16/2022]
Abstract
Our objective was to determine if highly active antiretroviral therapy (HAART), previously shown to ameliorate several pathological features of HIV encephalitis (HIVE) in a SCID mouse model, would also reduce additional established pathological features of HIV: cognitive dysfunction, TNF-alpha, production, and reduced MAP-2 expression. SCID mice with HIVE and control mice inoculated with uninfected monocytes were administered HAART or saline. The HIV pathological features evaluated included astrogliosis, viral load, neuronal apoptosis, MAP-2 expression, mouse TNF-alpha mRNA production and learning acquisition and retention. HAART reduced the HIV-induced viral load, and the astro- and microgliosis as previously observed; this effect was extended to HIV-induced increases in TNF-alpha mRNA production. In contrast, although HIV produced the cognitive deficits previously observed and also decreased MAP-2 expression in the area surrounding the injected HIV-infected human monocytes, HAART did not attenuate these effects. Interestingly, there was no neuronal apoptosis evident at the time point reflecting the above pathology. The results of this study combined with previous reports indicate that HAART reduces TNF-alpha mRNA, viral load and astrogliosis; however, HAART does not improve HIV-induced cognitive dysfunction or MAP-2 decreases. These results suggest that viral load, astrogliosis, TNF- alpha and apoptosis are not prominent in the pathogenesis of early functional deficits related to decreased MAP-2 expression or cognitive dysfunction in HIVE in SCID mice.
Collapse
Affiliation(s)
- Jennifer Cook-Easterwood
- Department of Microbiology and Immunology, Medical University of South Carolina Charleston, SC 29425
| | - Lawrence D Middaugh
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina Charleston, SC 29425
- Department of Neurosciences, Medical University of South Carolina Charleston, SC 29425
| | - William C Griffin
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina Charleston, SC 29425
| | | | - William R Tyor
- Department of Microbiology and Immunology, Medical University of South Carolina Charleston, SC 29425
- Department of Neurosciences, Medical University of South Carolina Charleston, SC 29425
- Ralph H. Johnson VAMC Chief, Neurology Service, 109 Bee St., Charleston, SC 29401, , (843) 789-7428, (843) 789-6241
| |
Collapse
|
27
|
Ellis R, Langford D, Masliah E. HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 2007; 8:33-44. [PMID: 17180161 DOI: 10.1038/nrn2040] [Citation(s) in RCA: 391] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Approximately 40 million people worldwide are infected with human immunodeficiency virus (HIV). Despite HIV's known propensity to infect the CNS and cause neurological disease, HIV neurocognitive disorders remain under-recognized. Although combination antiretroviral therapy has improved the health of millions of those living with HIV, the penetration into the CNS of many such therapies is limited, and patients' quality of life continues to be diminished by milder, residual neurocognitive impairment. Synaptodendritic neuronal injury is emerging as an important mediator of such deficits in HIV. By carefully selecting specific antiretrovirals and supplementing them with neuroprotective agents, physicians might be able to facilitate innate CNS repair, promoting enhanced synaptodendritic plasticity, neural function and clinical neurological status.
Collapse
Affiliation(s)
- Ronald Ellis
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
28
|
Wang J, Wang HX, Ng TB. A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides 2007; 28:560-5. [PMID: 17113195 DOI: 10.1016/j.peptides.2006.10.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 10/09/2006] [Accepted: 10/09/2006] [Indexed: 10/23/2022]
Abstract
Hot water extracts of 16 species of mushrooms, including both edible and medicinal mushrooms, were screened for human immunodeficiency virus (HIV)-1 reverse transcriptase (RT) inhibitory activity. Extracts of Lactarius camphoratus, Trametes suaveolens, Sparassis crispa, Pleurotus sajor-caju, Pleurotus pulmonarius, and Russula paludosa elicited over 50% inhibition when tested at the concentration of 1 mg/ml. The extract of R. paludosa demonstrated the highest inhibitory activity on HIV-1 RT (97.6%). Fraction SU2, purified from R. paludosa extract by anion exchange chromatography on DEAE-cellulose and gel filtration on Superdex 75, exhibited potent inhibitory activity on HIV-1 RT. At the concentrations of 1 mg/ml, 0.2 mg/ml, and 0.04 mg/ml, the inhibition ratios were 99.2%, 89.3%, and 41.8%, respectively, giving an IC50 of 11 microM. The molecular mass of SU2 was 4.5 kDa and its N-terminal amino acid sequence was determined to be KREHGQHCEF. The peptide was devoid of hemagglutinating, ribonuclease, antifungal, protease, protease inhibitory, and laccase activities.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Chemistry, Peking University, Beijing 100080, China
| | | | | |
Collapse
|
29
|
Griffin WC, Middaugh LD, Tyor WR. Chronic cocaine exposure in the SCID mouse model of HIV encephalitis. Brain Res 2006; 1134:214-9. [PMID: 17189621 PMCID: PMC1839831 DOI: 10.1016/j.brainres.2006.11.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/17/2006] [Accepted: 11/21/2006] [Indexed: 11/18/2022]
Abstract
Clinical and preclinical evidence suggests that cocaine exposure hastens progression of the HIV disease process. An established active, euphoric dose of cocaine (20 mg/kg) was administered to SCID mice according to a regimen consistent with exposure to the drug by cocaine-abusing HIV-infected patients to determine the effects of cocaine on four previously established pathological characteristics of HIV encephalitis: cognitive deficits, fatigue, astrogliosis, and microgliosis. Mice were intracranially inoculated with either HIV-infected, or uninfected macrophages and then injected with either cocaine or saline in a 2 (Infection)x2 (Cocaine) factorial design. Cognition was assessed by acquisition and retention of a spatially cued learning task. Fatigue was assessed by monitoring motor activity following a 2 min forced swim. Mice were then sacrificed to determine the extent of astrogliosis and microgliosis in the four groups. Results indicated that in comparison to uninfected controls, HIV positive mice had increased astrogliosis and microgliosis, cognitive deficits, and recovered more slowly from fatigue. However, despite evidence that the cocaine exposure regimen activated the central nervous system and had long-term CNS effects, the drug did not alter the behavioral or the neuropathological deficits noted in HIV-infected SCID mice.
Collapse
Affiliation(s)
- W C Griffin
- Center for Drug and Alcohol Programs, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
30
|
Abstract
HIV infected macrophages infiltrate the nervous system early in the progression of HIV infection, leading to a complex set of neuropathological alterations including HIV encephalitis (HIVE), leukoencephalopathy and vacuolar myelopathy that in turn result in neurodegeneration of selective cellular populations and pathways involved in regulating cognitive and motor functioning. Rapid progress in the development of highly active antiretroviral therapy (HAART) has changed the patterns of HIV related neuropathology and neurological manifestations in the past 10 years. The prevalence of opportunistic infections and central nervous system (CNS) neoplasms has decreased, and some groups have proposed that the frequency of chronic forms of HIVE have been rising as the HAART-treated HIV population ages. Accordingly, clinical manifestations have shifted from severe dementia forms to more subtle minor cognitive impairment, leading to the suggestion of a classification of HIV associated neurological conditions into an inactive form, a chronic variety, and a 'transformed' variant. From a neuropathological point of view these variants might correspond to: a) aggressive forms with severe HIVE and white matter injury, b) extensive perivascular lymphocytic infiltration, c) 'burnt-out' forms of HIVE and d) aging-associated amyloid accumulation with Alzheimer's-like neuropathology. Factors contributing to the emergence of these variants of HIVE include the development of viral resistance, immune reconstitution, anti-retroviral drug toxicity and co-morbid factors (e.g., methamphetamine, HCV). More detailed characterization of these proposed variants of HIVE is important in order to better understand the pathogenesis of HIV-associated neurological damage and to design more effective treatments to protect the nervous system.
Collapse
Affiliation(s)
- I P Everall
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093-0624, USA
| | | | | |
Collapse
|