1
|
Yao D, Li S, You M, Chen Y, Yan S, Li B, Wang Y. Developmental exposure to nonylphenol leads to depletion of the neural precursor cell pool in the hippocampal dentate gyrus. Chem Biol Interact 2024; 401:111187. [PMID: 39111523 DOI: 10.1016/j.cbi.2024.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Developmental exposure to nonylphenol (NP) results in irreversible impairments of the central nervous system (CNS). The neural precursor cell (NPC) pool located in the subgranular zone (SGZ), a substructure of the hippocampal dentate gyrus, is critical for the development of hippocampal circuits and some hippocampal functions such as learning and memory. However, the effects of developmental exposure to NP on this pool remain unclear. Thus, our aim was to clarify the impacts of developmental exposure to NP on this pool and to explore the potential mechanisms. Animal models of developmental exposure to NP were created by treating Wistar rats with NP during pregnancy and lactation. Our data showed that developmental exposure to NP decreased Sox2-and Ki67-positive cells in the SGZ of offspring. Inhibited activation of Shh signaling and decreased levels of its downstream mediators, E2F1 and cyclins, were also observed in pups developmentally exposed to NP. Moreover, we established the in vitro model in the NE-4C cells, a neural precursor cell line, to further investigate the effect of NP exposure on NPCs and the underlying mechanisms. Purmorphamine, a small purine-derived hedgehog agonist, was used to specifically modulate the Shh signaling. Consistent with the in vivo results, exposure to NP reduced cell proliferation by inhibiting the Shh signaling in NE-4C cells, and purmorphamine alleviated this reduction in cell proliferation by restoring this signaling. Altogether, our findings support the idea that developmental exposure to NP leads to inhibition of the NPC proliferation and the NPC pool depletion in the SGZ located in the dentate gyrus. Furthermore, we also provided the evidence that suppressed activation of Shh signaling may contribute to the effects of developmental exposure to NP on the NPC pool.
Collapse
Affiliation(s)
- Dianqi Yao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Siyao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Yin Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Siyu Yan
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Bing Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| | - Yi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
2
|
Kraemer RR, Kraemer BR. The effects of peripheral hormone responses to exercise on adult hippocampal neurogenesis. Front Endocrinol (Lausanne) 2023; 14:1202349. [PMID: 38084331 PMCID: PMC10710532 DOI: 10.3389/fendo.2023.1202349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Over the last decade, a considerable amount of new data have revealed the beneficial effects of exercise on hippocampal neurogenesis and the maintenance or improvement of cognitive function. Investigations with animal models, as well as human studies, have yielded novel understanding of the mechanisms through which endocrine signaling can stimulate neurogenesis, as well as the effects of exercise on acute and/or chronic levels of these circulating hormones. Considering the effects of aging on the decline of specific endocrine factors that affect brain health, insights in this area of research are particularly important. In this review, we discuss how different forms of exercise influence the peripheral production of specific endocrine factors, with particular emphasis on brain-derived neurotrophic factor, growth hormone, insulin-like growth factor-1, ghrelin, estrogen, testosterone, irisin, vascular endothelial growth factor, erythropoietin, and cortisol. We also describe mechanisms through which these endocrine responses to exercise induce cellular changes that increase hippocampal neurogenesis and improve cognitive function.
Collapse
Affiliation(s)
- Robert R. Kraemer
- Department of Kinesiology and Health Studies, Southeastern Louisiana University, Hammond, LA, United States
| | - Bradley R. Kraemer
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, United States
| |
Collapse
|
3
|
Ferreira AC, Marques F. The Effects of Stress on Hippocampal Neurogenesis and Behavior in the Absence of Lipocalin-2. Int J Mol Sci 2023; 24:15537. [PMID: 37958520 PMCID: PMC10649401 DOI: 10.3390/ijms242115537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Lipocalin-2 (LCN2) is an acute phase protein able to bind iron when complexed with bacterial siderophores. The recent identification of a mammalian siderophore also suggested a physiological role for LCN2 in the regulation of iron levels and redox state. In the central nervous system, the deletion of LCN2 induces deficits in neural stem cells proliferation and commitment, with an impact on the hippocampal-dependent contextual fear discriminative task. Additionally, stress is a well-known regulator of cell genesis and is known to decrease adult hippocampal cell proliferation and neurogenesis. Although voluntary running, another well-known regulator of neurogenesis, is sufficient to rescue the defective hippocampal neurogenesis and behavior in LCN2-null mice by promoting stem cells' cell cycle progression and maturation, the relevance of LCN2-regulated hippocampal neurogenesis in response to stress has never been explored. Here, we show a lack of response by LCN2-null mice to the effects of chronic stress exposure at the cellular and behavioral levels. Together, these findings implicate LCN2 as a relevant mediator of neuronal plasticity and brain function in the adult mammalian brain.
Collapse
Affiliation(s)
- Ana Catarina Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
Ji X, Zhou S, Wang N, Wang J, Wu Y, Duan Y, Ni P, Zhang J, Yu S. Cerebral-Organoid-Derived Exosomes Alleviate Oxidative Stress and Promote LMX1A-Dependent Dopaminergic Differentiation. Int J Mol Sci 2023; 24:11048. [PMID: 37446226 DOI: 10.3390/ijms241311048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The remarkable advancements related to cerebral organoids have provided unprecedented opportunities to model human brain development and diseases. However, despite their potential significance in neurodegenerative diseases such as Parkinson's disease (PD), the role of exosomes from cerebral organoids (OExo) has been largely unknown. In this study, we compared the effects of OExo to those of mesenchymal stem cell (MSC)-derived exosomes (CExo) and found that OExo shared similar neuroprotective effects to CExo. Our findings showed that OExo mitigated H2O2-induced oxidative stress and apoptosis in rat midbrain astrocytes by reducing excess ROS production, antioxidant depletion, lipid peroxidation, mitochondrial dysfunction, and the expression of pro-apoptotic genes. Notably, OExo demonstrated superiority over CExo in promoting the differentiation of human-induced pluripotent stem cells (iPSCs) into dopaminergic (DA) neurons. This was attributed to the higher abundance of neurotrophic factors, including neurotrophin-4 (NT-4) and glial-cell-derived neurotrophic factor (GDNF), in OExo, which facilitated the iPSCs' differentiation into DA neurons in an LIM homeobox transcription factor 1 alpha (LMX1A)-dependent manner. Our study provides novel insight into the biological properties of cerebral organoids and highlights the potential of OExo in the treatment of neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Xingrui Ji
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Shaocong Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Nana Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jingwen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yue Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuhan Duan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Penghao Ni
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jingzhong Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Shuang Yu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
5
|
Nilsson J, Ekblom M, Moberg M, Lövdén M. The role of acute changes in mBDNF, cortisol and pro-BDNF in predicting cognitive performance in old age. Sci Rep 2023; 13:9418. [PMID: 37296176 PMCID: PMC10256682 DOI: 10.1038/s41598-023-35847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The interplay between biomarkers of relevance to neuroplasticity and its association with learning and cognitive ability in old age remains poorly understood. The present study investigated acute changes in plasma concentrations of mature brain-derived neurotrophic factor (mBDNF), its precursor protein (pro-BDNF), and cortisol, in response to acute physical exercise and cognitive training interventions, their covariation and role in predicting cognitive performance. Confirmatory results provided no support for mBDNF, pro-BDNF and cortisol co-varying over time, as the acute interventions unfolded, but did confirm a positive association between mBDNF and pro-BDNF at rest. The confirmatory results did not support the hypothesis that mBDNF change following physical exercise were counteracted by temporally coupled changes in cortisol or pro-BDNF, or by cortisol at rest, in its previously demonstrated faciliatory effect on cognitive training outcome. Exploratory results instead provided indications of a general and trait-like cognitive benefit of exhibiting greater mBDNF responsiveness to acute interventions when coupled with lesser cortisol responsiveness, greater pro-BDNF responsiveness, and lower cortisol at rest. As such, the results call for future work to test whether certain biomarker profiles are associated with preserved cognition in old age.
Collapse
Affiliation(s)
- Jonna Nilsson
- Swedish School of Sport and Health Sciences, Stockholm, Sweden.
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
| | - Maria Ekblom
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Moberg
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Martin Lövdén
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Lobo JJ, Ayoub LJ, Moayedi M, Linnstaedt SD. Hippocampal volume, FKBP5 genetic risk alleles, and childhood trauma interact to increase vulnerability to chronic multisite musculoskeletal pain. Sci Rep 2022; 12:6511. [PMID: 35444168 PMCID: PMC9021300 DOI: 10.1038/s41598-022-10411-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/30/2022] [Indexed: 01/05/2023] Open
Abstract
Chronic multisite musculoskeletal pain (CMP) is common and highly morbid. However, vulnerability factors for CMP are poorly understood. Previous studies have independently shown that both small hippocampal brain volume and genetic risk alleles in a key stress system gene, FKBP5, increase vulnerability for chronic pain. However, little is known regarding the relationship between these factors and CMP. Here we tested the hypothesis that both small hippocampal brain volume and FKBP5 genetic risk, assessed using the tagging risk variant, FKBP5rs3800373, increase vulnerability for CMP. We used participant data from 36,822 individuals with available genetic, neuroimaging, and chronic pain data in the UK Biobank study. Although no main effects were observed, the interaction between FKBP5 genetic risk and right hippocampal volume was associated with CMP severity (β = -0.020, praw = 0.002, padj = 0.01). In secondary analyses, severity of childhood trauma further moderated the relationship between FKBP5 genetic risk, right hippocampal brain volume, and CMP (β = -0.081, p = 0.016). This study provides novel evidence that both FKBP5 genetic risk and childhood trauma moderate the relationship between right hippocampal brain volume and CMP. The data increases our understanding of vulnerability factors for CMP and builds a foundation for further work assessing causal relationships that might drive CMP development.
Collapse
Affiliation(s)
- Jarred J Lobo
- Institute for Trauma Recovery, University of North Carolina, Campus Box #7010, Chapel Hill, NC, 27599-7010, USA
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC, USA
| | - Lizbeth J Ayoub
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Massieh Moayedi
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada.
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
- Department of Dentistry, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, 123 Edward Street, Suite 501B, Toronto, ON, M5G 1G6, Canada.
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, University of North Carolina, Campus Box #7010, Chapel Hill, NC, 27599-7010, USA.
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Ali AAH, von Gall C. Adult Neurogenesis under Control of the Circadian System. Cells 2022; 11:cells11050764. [PMID: 35269386 PMCID: PMC8909047 DOI: 10.3390/cells11050764] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
The mammalian circadian system is a hierarchically organized system, which controls a 24-h periodicity in a wide variety of body and brain functions and physiological processes. There is increasing evidence that the circadian system modulates the complex multistep process of adult neurogenesis, which is crucial for brain plasticity. This modulatory effect may be exercised via rhythmic systemic factors including neurotransmitters, hormones and neurotrophic factors as well as rhythmic behavior and physiology or via intrinsic factors within the neural progenitor cells such as the redox state and clock genes/molecular clockwork. In this review, we discuss the role of the circadian system for adult neurogenesis at both the systemic and the cellular levels. Better understanding of the role of the circadian system in modulation of adult neurogenesis can help develop new treatment strategies to improve the cognitive deterioration associated with chronodisruption due to detrimental light regimes or neurodegenerative diseases.
Collapse
|
8
|
Rocha R, Andrade L, Alves T, Sá S, Pereira PA, Dulce Madeira M, Cardoso A. Behavioral and brain morphological analysis of non-inflammatory and inflammatory rat models of preterm brain injury. Neurobiol Learn Mem 2021; 185:107540. [PMID: 34673263 DOI: 10.1016/j.nlm.2021.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/21/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022]
Abstract
Investigations using preclinical models of preterm birth have much contributed, together with human neuropathological studies, for advances in our understanding of preterm brain injury. Here, we evaluated whether the neurodevelopmental and behavioral consequences of preterm birth induced by a non-inflammatory model of preterm birth using mifepristone would differ from those after inflammatory prenatal transient hypoxia-ischemia (TSHI) model. Pregnant Wistar rats were either injected with mifepristone, and pups were delivered on embryonic day 21 (ED21 group), or laparotomized on the 18th day of gestation for 60 min of uterine arteries occlusion. Rat pups were tested postnatally for characterization of developmental milestones and, after weaning, they were behaviorally tested for anxiety and for spatial learning and memory. One month later, brains were processed for quantification of doublecortin (DCX)- and neuropeptide Y (NPY)-immunoreactive cells, and cholinergic varicosities in the hippocampus. ED21 rats did not differ from controls with respect to neonatal developmental milestones, anxiety, learning and memory functions, and neurochemical parameters. Conversely, in TSHI rats the development of neonatal reflexes was delayed, the levels of anxiety were reduced, and spatial learning and memory was impaired; in the hippocampus, the total number of DCX and NPY cells was increased, and the density of cholinergic varicosities was reduced. With these results we suggest that a preterm birth, in a non-inflammatory prenatal environment, does not significantly change neonatal development and adult neurologic outcome. On other hand, prenatal hypoxia and ischemia (inflammation) modifies developmental trajectory, learning and memory, neurogenesis, and NPY GABAergic and cholinergic brain systems.
Collapse
Affiliation(s)
- Ruben Rocha
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; Pediatric Neurology Department, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, 4050-651 Porto, Portugal; Pediatric Emergency Department, Centro Hospitalar Universitário S. João, 4200-319 Porto, Portugal
| | - Leonardo Andrade
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Tânia Alves
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Susana Sá
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Pedro A Pereira
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - M Dulce Madeira
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Armando Cardoso
- Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| |
Collapse
|
9
|
Schouten M, Bielefeld P, Garcia-Corzo L, Passchier EMJ, Gradari S, Jungenitz T, Pons-Espinal M, Gebara E, Martín-Suárez S, Lucassen PJ, De Vries HE, Trejo JL, Schwarzacher SW, De Pietri Tonelli D, Toni N, Mira H, Encinas JM, Fitzsimons CP. Circadian glucocorticoid oscillations preserve a population of adult hippocampal neural stem cells in the aging brain. Mol Psychiatry 2020; 25:1382-1405. [PMID: 31222184 PMCID: PMC7303016 DOI: 10.1038/s41380-019-0440-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022]
Abstract
A decrease in adult hippocampal neurogenesis has been linked to age-related cognitive impairment. However, the mechanisms involved in this age-related reduction remain elusive. Glucocorticoid hormones (GC) are important regulators of neural stem/precursor cells (NSPC) proliferation. GC are released from the adrenal glands in ultradian secretory pulses that generate characteristic circadian oscillations. Here, we investigated the hypothesis that GC oscillations prevent NSPC activation and preserve a quiescent NSPC pool in the aging hippocampus. We found that hippocampal NSPC populations lacking expression of the glucocorticoid receptor (GR) decayed exponentially with age, while GR-positive populations decayed linearly and predominated in the hippocampus from middle age onwards. Importantly, GC oscillations controlled NSPC activation and GR knockdown reactivated NSPC proliferation in aged mice. When modeled in primary hippocampal NSPC cultures, GC oscillations control cell cycle progression and induce specific genome-wide DNA methylation profiles. GC oscillations induced lasting changes in the methylation state of a group of gene promoters associated with cell cycle regulation and the canonical Wnt signaling pathway. Finally, in a mouse model of accelerated aging, we show that disruption of GC oscillations induces lasting changes in dendritic complexity, spine numbers and morphology of newborn granule neurons. Together, these results indicate that GC oscillations preserve a population of GR-expressing NSPC during aging, preventing their activation possibly by epigenetic programming through methylation of specific gene promoters. Our observations suggest a novel mechanism mediated by GC that controls NSPC proliferation and preserves a dormant NSPC pool, possibly contributing to a neuroplasticity reserve in the aging brain.
Collapse
Affiliation(s)
- M Schouten
- Neuroscience Collaboration, Swammerdam Institute for Life Sciences, Faculty of Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - P Bielefeld
- Neuroscience Collaboration, Swammerdam Institute for Life Sciences, Faculty of Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - L Garcia-Corzo
- Biomedicine Institute of Valencia (IBV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - E M J Passchier
- Neuroscience Collaboration, Swammerdam Institute for Life Sciences, Faculty of Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - S Gradari
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - T Jungenitz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - M Pons-Espinal
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa, Italy
| | - E Gebara
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | - P J Lucassen
- Neuroscience Collaboration, Swammerdam Institute for Life Sciences, Faculty of Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - H E De Vries
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - J L Trejo
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - S W Schwarzacher
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - D De Pietri Tonelli
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa, Italy
| | - N Toni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - H Mira
- Biomedicine Institute of Valencia (IBV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - J M Encinas
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
- University of the Basque Country (UPV/EHU), Leioa, Spain
| | - C P Fitzsimons
- Neuroscience Collaboration, Swammerdam Institute for Life Sciences, Faculty of Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Chen Q, Wang F, Zhang Y, Liu Y, An L, Ma Z, Zhang J, Yu S. Neonatal DEX exposure leads to hyperanxious and depressive-like behaviors as well as a persistent reduction of BDNF expression in developmental stages. Biochem Biophys Res Commun 2020; 527:311-316. [PMID: 32446386 DOI: 10.1016/j.bbrc.2020.04.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), which regulates the neuronal survival, differentiation and synaptic plasticity, has been proved to play a critical role in the pathology and treatment of several psychiatric disorders including depression. Dexamethaone (DEX) is indicated for a number of conditions in perinatal medicine, however, the long-term impact of early-life DEX exposure on BDNF expression in hippocampus remains unknown. Here we found that neonatal DEX(ND) exposure leads to insignificant change of BDNF expression levels in the adulthood, albeit increased hyperanxious and depressive-like behaviors. However, the bdnf mRNA and BDNF protein levels were significantly reduced in all the hippocampal subregions during the developmental stages, including the perinatal period and puberty. We conclude that early life DEX exposure leads to a persistent disturbance of BDNF signaling during the developmental stages, which might be associated with the life-long impairment of hippocampal function.
Collapse
Affiliation(s)
- Qingfei Chen
- Shanghai University, No. 99 Shangda Road, Shanghai Baoshan District, Shanghai, 200444, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China
| | - Feifei Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China; Zhengzhou Institute of Engineering and Technology Affiliated with SIBET, Zhengzhou, 450001, China
| | - Yunchao Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China
| | - Yan Liu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China; Zhengzhou Institute of Engineering and Technology Affiliated with SIBET, Zhengzhou, 450001, China
| | - Li An
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China; Zhengzhou Institute of Engineering and Technology Affiliated with SIBET, Zhengzhou, 450001, China
| | - Zhongliang Ma
- Shanghai University, No. 99 Shangda Road, Shanghai Baoshan District, Shanghai, 200444, China
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China; Xuzhou Medical University, Xuzhou, 221004, China; Tianjin Guokeyigong Science and Technology Development Company Limited, Tianjin, 300399, China; Zhengzhou Institute of Engineering and Technology Affiliated with SIBET, Zhengzhou, 450001, China.
| | - Shuang Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China; Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
11
|
Human Embryonic Stem Cell-Derived Neural Lineages as In Vitro Models for Screening the Neuroprotective Properties of Lignosus rhinocerus (Cooke) Ryvarden. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3126376. [PMID: 33204680 PMCID: PMC7658738 DOI: 10.1155/2019/3126376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022]
Abstract
In the biomedical field, there is growing interest in using human stem cell-derived neurons as in vitro models for pharmacological and toxicological screening of bioactive compounds extracted from natural products. Lignosus rhinocerus (Tiger Milk Mushroom) is used by indigenous communities in Malaysia as a traditional medicine to treat various diseases. The sclerotium of L. rhinocerus has been reported to have medicinal properties, including various bioactivities such as neuritogenic, anti-inflammatory, and anticancer effects. This study aims to investigate the neuroprotective activities of L. rhinocerus sclerotial extracts. Human embryonic stem cell (hESC)-derived neural lineages exposed to the synthetic glucocorticoid, dexamethasone (DEX), were used as the in vitro models. Excess glucocorticoids have been shown to adversely affect fetal brain development and impair differentiation of neural progenitor cells. Screening of different L. rhinocerus sclerotial extracts and DEX on the hESC-derived neural lineages was conducted using cell viability and neurite outgrowth assays. The neuroprotective effects of L. rhinocerus sclerotial extracts against DEX were further evaluated using apoptosis assays and Western blot analysis. Hot aqueous and methanol extracts of L. rhinocerus sclerotium promoted neurite outgrowth of hESC-derived neural stem cells (NSCs) with negligible cytotoxicity. Treatment with DEX decreased viability of NSCs by inducing apoptosis. Coincubation of L. rhinocerus methanol extract with DEX attenuated the DEX-induced apoptosis and reduction in phospho-Akt (pAkt) level in NSCs. These results suggest the involvement of Akt signaling in the neuroprotection of L. rhinocerus methanol extract against DEX-induced apoptosis in NSCs. Methanol extract of L. rhinocerus sclerotium exhibited potential neuroprotective activities against DEX-induced toxicity in hESC-derived NSCs. This study thus validates the use of human stem cell-derived neural lineages as potential in vitro models for screening of natural products with neuroprotective properties.
Collapse
|
12
|
Moosecker S, Gomes P, Dioli C, Yu S, Sotiropoulos I, Almeida OFX. Activated PPARγ Abrogates Misprocessing of Amyloid Precursor Protein, Tau Missorting and Synaptotoxicity. Front Cell Neurosci 2019; 13:239. [PMID: 31263400 PMCID: PMC6584807 DOI: 10.3389/fncel.2019.00239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/13/2019] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes increases the risk for dementia, including Alzheimer’s disease (AD). Pioglitazone (Pio), a pharmacological agonist of the peroxisome proliferator-activated receptor γ (PPARγ), improves insulin sensitivity and has been suggested to have potential in the management of AD symptoms, albeit through mostly unknown mechanisms. We here investigated the potential of Pio to counter synaptic malfunction and loss, a characteristic of AD pathology and its accompanying cognitive deficits. Results from experiments on primary mouse neuronal cultures and a human neural cell line (SH-SY5Y) show that Pio treatment attenuates amyloid β (Aβ)-triggered the pathological (mis-) processing of amyloid precursor protein (APP) and inhibits Aβ-induced accumulation and hyperphosphorylation of Tau. These events are accompanied by increased glutamatergic receptor 2B subunit (GluN2B) levels that are causally linked with neuronal death. Further, Pio treatment blocks Aβ-triggered missorting of hyperphosphorylated Tau to synapses and the subsequent loss of PSD95-positive synapses. These latter effects of Pio are PPARγ-mediated since they are blocked in the presence of GW9662, a selective PPARγ inhibitor. Collectively, these data show that activated PPARγ buffer neurons against APP misprocessing, Tau hyperphosphorylation and its missorting to synapses and subsequently, synaptic loss. These first insights into the mechanisms through which PPARγ influences synaptic loss make a case for further exploration of the potential usefulness of PPARγ agonists in the prevention and treatment of synaptic pathology in AD.
Collapse
Affiliation(s)
- Susanne Moosecker
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Patrícia Gomes
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Chrysoula Dioli
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Shuang Yu
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Osborne F X Almeida
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
13
|
Dioli C, Patrício P, Sousa N, Kokras N, Dalla C, Guerreiro S, Santos-Silva MA, Rego AC, Pinto L, Ferreiro E, Sotiropoulos I. Chronic stress triggers divergent dendritic alterations in immature neurons of the adult hippocampus, depending on their ultimate terminal fields. Transl Psychiatry 2019; 9:143. [PMID: 31028242 PMCID: PMC6486609 DOI: 10.1038/s41398-019-0477-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/02/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022] Open
Abstract
Chronic stress, a suggested precipitant of brain pathologies, such as depression and Alzheimer's disease, is known to impact on brain plasticity by causing neuronal remodeling as well as neurogenesis suppression in the adult hippocampus. Although many studies show that stressful conditions reduce the number of newborn neurons in the adult dentate gyrus (DG), little is known about whether and how stress impacts on dendritic development and structural maturation of these newborn neurons. We, herein, demonstrate that chronic stress impacts differentially on doublecortin (DCX)-positive immature neurons in distinct phases of maturation. Specifically, the density of the DCX-positive immature neurons whose dendritic tree reaches the inner molecular layer (IML) of DG is reduced in stressed animals, whereas their dendritic complexity is increased. On the contrary, no change on the density of DCX-positive neurons whose dendritic tree extends to the medial/outer molecular layer (M/OML) of the DG is found under stress conditions, whereas the dendritic complexity of these cells is diminished. In addition, DCX+ cells displayed a more complex and longer arbor in the dendritic compartments located in the granular cell layer of the DG under stress conditions; on the contrary, their dendritic segments localized into the M/OML were shorter and less complex. These findings suggest that the neuroplastic effects of chronic stress on dendritic maturation and complexity of DCX+ immature neurons vary based on the different maturation stage of DCX-positive cells and the different DG sublayer, highlighting the complex and dynamic stress-driven neuroplasticity of immature neurons in the adult hippocampus.
Collapse
Affiliation(s)
- Chrysoula Dioli
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Patrícia Patrício
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Nuno Sousa
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Nikolaos Kokras
- 0000 0001 2155 0800grid.5216.0First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece ,0000 0001 2155 0800grid.5216.0Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- 0000 0001 2155 0800grid.5216.0Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sara Guerreiro
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Miguel A. Santos-Silva
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ana Cristina Rego
- 0000 0000 9511 4342grid.8051.cCenter for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute of Biochemistry, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Luísa Pinto
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Elisabete Ferreiro
- 0000 0000 9511 4342grid.8051.cCenter for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research of the University of Coimbra (IIIUC), Coimbra, Portugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.
| |
Collapse
|
14
|
Hayes SH, Manohar S, Majumdar A, Allman BL, Salvi R. Noise-induced hearing loss alters hippocampal glucocorticoid receptor expression in rats. Hear Res 2019; 379:43-51. [PMID: 31071644 DOI: 10.1016/j.heares.2019.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/25/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
Abstract
Although the effects of intense noise exposure on the peripheral and central auditory pathway have been well characterized, its effects on non-classical auditory structures in the brain, such as the hippocampus, are less well understood. Previously, we demonstrated that noise-induced hearing loss causes a significant long-term reduction in hippocampal neurogenesis and cell proliferation. Given the known suppressive effects of stress hormones on neurogenesis, the goal of the present study was to determine if activation of the stress response is an underlying mechanism for the long-term reduction in hippocampal neurogenesis observed following noise trauma. To accomplish this, we monitored basal and reactive blood plasma levels of the stress hormone corticosterone in rats for ten weeks following acoustic trauma, and quantified changes in hippocampal glucocorticoid and mineralocorticoid receptors. Our results indicate that long-term auditory deprivation does not cause a persistent increase in basal or reactive stress hormone levels in the weeks following noise exposure. Instead, we observed a greater decline in reactive corticosterone release in noise-exposed rats between the first and tenth week of sampling compared to control rats. We also observed a significant increase in hippocampal glucocorticoid receptor expression which may cause greater hippocampal sensitivity to circulating glucocorticoid levels and result in glucocorticoid-induced suppression of neurogenesis, as well as increased feedback inhibition on the HPA axis. No change in mineralocorticoid receptor expression was observed between control and noise exposed rats. These results highlight the adverse effect of intense noise exposure and auditory deprivation on the hippocampus.
Collapse
Affiliation(s)
- Sarah H Hayes
- Center for Hearing and Deafness, The State University of New York at Buffalo, Buffalo, NY, USA; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, Ontario, N6A 5C1, Canada.
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Antara Majumdar
- Center for Hearing and Deafness, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Brian L Allman
- Center for Hearing and Deafness, The State University of New York at Buffalo, Buffalo, NY, USA; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, Ontario, N6A 5C1, Canada
| | - Richard Salvi
- Center for Hearing and Deafness, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
15
|
Imura T, Kobayashi Y, Suzutani K, Ichikawa‐Tomikawa N, Chiba H. Differential expression of a stress‐regulated gene Nr4a2 characterizes early‐ and late‐born hippocampal granule cells. Hippocampus 2018; 29:539-549. [DOI: 10.1002/hipo.23045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Tetsuya Imura
- Department of Basic PathologyFukushima Medical University School of Medicine Fukushima Japan
- Department of Human PathologyKyoto Prefectural University of Medicine, Graduate School of Medical Sciences Kyoto Japan
- Department of Pathology and Applied NeurobiologyKyoto Prefectural University of Medicine, Graduate School of Medical Sciences Kyoto Japan
| | - Yasuyuki Kobayashi
- Department of Basic PathologyFukushima Medical University School of Medicine Fukushima Japan
| | - Ken Suzutani
- Department of Basic PathologyFukushima Medical University School of Medicine Fukushima Japan
| | - Naoki Ichikawa‐Tomikawa
- Department of Basic PathologyFukushima Medical University School of Medicine Fukushima Japan
| | - Hideki Chiba
- Department of Basic PathologyFukushima Medical University School of Medicine Fukushima Japan
| |
Collapse
|
16
|
Youssef M, Krish VS, Kirshenbaum GS, Atsak P, Lass TJ, Lieberman SR, Leonardo ED, Dranovsky A. Ablation of proliferating neural stem cells during early life is sufficient to reduce adult hippocampal neurogenesis. Hippocampus 2018; 28:586-601. [PMID: 29742815 PMCID: PMC6167166 DOI: 10.1002/hipo.22962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/19/2018] [Accepted: 05/01/2018] [Indexed: 12/26/2022]
Abstract
Environmental exposures during early life, but not during adolescence or adulthood, lead to persistent reductions in neurogenesis in the adult hippocampal dentate gyrus (DG). The mechanisms by which early life exposures lead to long-term deficits in neurogenesis remain unclear. Here, we investigated whether targeted ablation of dividing neural stem cells during early life is sufficient to produce long-term decreases in DG neurogenesis. Having previously found that the stem cell lineage is resistant to long-term effects of transient ablation of dividing stem cells during adolescence or adulthood (Kirshenbaum, Lieberman, Briner, Leonardo, & Dranovsky, ), we used a similar pharmacogenetic approach to target dividing neural stem cells for elimination during early life periods sensitive to environmental insults. We then assessed the Nestin stem cell lineage in adulthood. We found that the adult neural stem cell reservoir was depleted following ablation during the first postnatal week, when stem cells were highly proliferative, but not during the third postnatal week, when stem cells were more quiescent. Remarkably, ablating proliferating stem cells during either the first or third postnatal week led to reduced adult neurogenesis out of proportion to the changes in the stem cell pool, indicating a disruption of the stem cell function or niche following stem cell ablation in early life. These results highlight the first three postnatal weeks as a series of sensitive periods during which elimination of dividing stem cells leads to lasting alterations in adult DG neurogenesis and stem cell function. These findings contribute to our understanding of the relationship between DG development and adult neurogenesis, as well as suggest a possible mechanism by which early life experiences may lead to lasting deficits in adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Mary Youssef
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
- Graduate Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | - Varsha S. Krish
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
- Neuroscience and Behavior, Barnard College, New York, NY 10027, USA
| | - Greer S. Kirshenbaum
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Piray Atsak
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Tamara J. Lass
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Sophie R. Lieberman
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
- Neuroscience and Behavior, Barnard College, New York, NY 10027, USA
| | - E. David Leonardo
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Alex Dranovsky
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|
17
|
Ye J, Qin Y, Tang Y, Ma M, Wang P, Huang L, Yang R, Chen K, Chai C, Wu Y, Shen H. Methylprednisolone inhibits the proliferation of endogenous neural stem cells in nonhuman primates with spinal cord injury. J Neurosurg Spine 2018; 29:199-207. [DOI: 10.3171/2017.12.spine17669] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVEThe aim of this work was to investigate the effects of methylprednisolone on the proliferation of endogenous neural stem cells (ENSCs) in nonhuman primates with spinal cord injury (SCI).METHODSA total of 14 healthy cynomolgus monkeys (Macaca fascicularis) (4–5 years of age) were randomly divided into 3 groups: the control group (n = 6), SCI group (n = 6), and methylprednisolone therapy group (n = 2). Only laminectomy was performed in the control animals at T-10. SCI was induced in monkeys using Allen’s weight-drop method (50 mm × 50 g) to injure the posterior portion of the spinal cord at T-10. In the methylprednisolone therapy group, monkeys were intravenously infused with methylprednisolone (30 mg/kg) immediately after SCI. All animals were intravenously infused with 5-bromo-2-deoxyuridine (BrdU) (50 mg/kg/day) for 3 days prior to study end point. The small intestine was dissected for immunohistochemical examination. After 3, 7, and 14 days, the spinal cord segments of the control and SCI groups were dissected to prepare frozen and paraffin sections. The proliferation of ENSCs was evaluated using BrdU and nestin immunofluorescence staining.RESULTSHistological examination showed that a larger number of mucosa epithelial cells in the small intestine of all groups were BrdU positive. Nestin-positive ependymal cells are increased around the central canal after SCI. After 3, 7, and 14 days of SCI, BrdU-positive ependymal cells in the SCI group were significantly increased compared with the control group, and the percentage of BrdU-positive cells in the left/right ventral horns and dorsal horn was significantly higher than that of the control group. Seven days after SCI, the percentages of both BrdU-positive ependymal cells around the central canal and BrdU– and nestin–double positive cells in the left/right ventral horns and dorsal horn were significantly lower in the methylprednisolone therapy group than in the SCI group.CONCLUSIONSWhile ENSCs proliferate significantly after SCI in nonhuman primates, methylprednisolone can inhibit the proliferation of ependymal cells after SCI.
Collapse
Affiliation(s)
- Jichao Ye
- 1Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Yi Qin
- 2Department of Orthopedics, Zhuhai People’s Hospital; and
| | - Yong Tang
- 1Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Mengjun Ma
- 1Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Peng Wang
- 1Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Lin Huang
- 1Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Rui Yang
- 1Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Keng Chen
- 1Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Chaopeng Chai
- 1Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Yanfeng Wu
- 3Biotherapy Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huiyong Shen
- 1Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| |
Collapse
|
18
|
Choi BY, Won SJ, Kim JH, Sohn M, Song HK, Chung TN, Kim TY, Suh SW. EAAC1 gene deletion reduces adult hippocampal neurogenesis after transient cerebral ischemia. Sci Rep 2018; 8:6903. [PMID: 29720605 PMCID: PMC5932005 DOI: 10.1038/s41598-018-25191-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
Several studies have demonstrated that excitatory amino acid carrier-1 (EAAC1) gene deletion exacerbates hippocampal and cortical neuronal death after ischemia. However, presently there are no studies investigating the role of EAAC1 in hippocampal neurogenesis. In this study, we tested the hypothesis that reduced cysteine transport into neurons by EAAC1 knockout negatively affects adult hippocampal neurogenesis under physiological or pathological states. This study used young mice (aged 3-5 months) and aged mice (aged 11-15 months) of either the wild-type (WT) or EAAC1 -/- genotype. Ischemia was induced through the occlusion of bilateral common carotid arteries for 30 minutes. Histological analysis was performed at 7 or 30 days after ischemia. We found that both young and aged mice with loss of the EAAC1 displayed unaltered cell proliferation and neuronal differentiation, as compared to age-matched WT mice under ischemia-free conditions. However, neurons generated from EAAC1 -/- mice showed poor survival outcomes in both young and aged mice. In addition, deletion of EAAC1 reduced the overall level of neurogenesis, including cell proliferation, differentiation, and survival after ischemia. The present study demonstrates that EAAC1 is important for the survival of newly generated neurons in the adult brain under physiological and pathological conditions. Therefore, this study suggests that EAAC1 plays an essential role in modulating hippocampal neurogenesis.
Collapse
Affiliation(s)
- Bo Young Choi
- Department of Physiology, Hallym University, College of Medicine, Chuncheon, 24252, South Korea
| | - Seok Joon Won
- Department of Neurology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
| | - Jin Hee Kim
- Department of Physiology, Hallym University, College of Medicine, Chuncheon, 24252, South Korea
| | - Min Sohn
- Department of Nursing, Inha University, Incheon, 22212, South Korea
| | - Hong Ki Song
- Department of Neurology, Hallym University, College of Medicine, Chuncheon, 24252, South Korea
| | - Tae Nyoung Chung
- Department of Emergency Medicine, CHA University School of Medicine, Seongnam, 13496, South Korea
| | - Tae Yul Kim
- Department of Physiology, Hallym University, College of Medicine, Chuncheon, 24252, South Korea
| | - Sang Won Suh
- Department of Physiology, Hallym University, College of Medicine, Chuncheon, 24252, South Korea.
| |
Collapse
|
19
|
Lin R, Lang M, Heinsinger N, Stricsek G, Zhang J, Iozzo R, Rosenwasser R, Iacovitti L. Stepwise impairment of neural stem cell proliferation and neurogenesis concomitant with disruption of blood-brain barrier in recurrent ischemic stroke. Neurobiol Dis 2018; 115:49-58. [PMID: 29605425 DOI: 10.1016/j.nbd.2018.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/12/2018] [Accepted: 03/28/2018] [Indexed: 01/15/2023] Open
Abstract
Stroke patients are at increased risk for recurrent stroke and development of post-stroke dementia. In this study, we investigated the effects of recurrent stroke on adult brain neurogenesis using a novel rat model of recurrent middle cerebral artery occlusion (MCAO) developed in our laboratory. Using BrdU incorporation, activation and depletion of stem cells in the subgranular zone (SGZ) and subventricular zone (SVZ) were assessed in control rats and rats after one or two strokes. In vitro neurosphere assay was used to assess the effects of plasma from normal and stroke rats. Also, EM and permeability studies were used to evaluate changes in the blood-brain-barrier (BBB) of the SGZ after recurrent stroke. We found that proliferation and neurogenesis was activated 14 days after MCAO. This was correlated with increased permeability in the BBB to factors which increase proliferation in a neurosphere assay. However, with each stroke, there was a stepwise decrease of proliferating stem cells and impaired neurogenesis on the ipsilateral side. On the contralateral side, this process stabilized after a first stroke. These studies indicate that stem cells are activated after MCAO, possibly after increased access to systemic stroke-related factors through a leaky BBB. However, the recruitment of stem cells for neurogenesis after stroke results in a stepwise ipsilateral decline with each ischemic event, which could contribute to post-stroke dementia.
Collapse
Affiliation(s)
- Ruihe Lin
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Michael Lang
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nicolette Heinsinger
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Geoffrey Stricsek
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Justine Zhang
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato Iozzo
- Department of Pathology, Anatomy, & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert Rosenwasser
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
20
|
Crisafulli U, Xavier AM, Dos Santos FB, Cambiaghi TD, Chang SY, Porcionatto M, Castilho BA, Malnic B, Glezer I. Topical Dexamethasone Administration Impairs Protein Synthesis and Neuronal Regeneration in the Olfactory Epithelium. Front Mol Neurosci 2018; 11:50. [PMID: 29559887 PMCID: PMC5845685 DOI: 10.3389/fnmol.2018.00050] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/06/2018] [Indexed: 11/13/2022] Open
Abstract
Chronic inflammatory process in the nasal mucosa is correlated with poor smell perception. Over-activation of immune cells in the olfactory epithelium (OE) is generally associated with loss of olfactory function, and topical steroidal anti-inflammatory drugs have been largely used for treating such condition. Whether this therapeutic strategy could directly affect the regenerative process in the OE remains unclear. In this study, we show that nasal topical application of dexamethasone (DEX; 200 or 800 ng/nostril), a potent synthetic anti-inflammatory steroid, attenuates OE lesion caused by Gram-negative bacteria lipopolysaccharide (LPS) intranasal infusion. In contrast, repeated DEX (400 ng/nostril) local application after lesion establishment limited the regeneration of olfactory sensory neurons after injury promoted by LPS or methimazole. Remarkably, DEX effects were observed when the drug was infused as 3 consecutive days regimen. The anti-inflammatory drug does not induce OE progenitor cell death, however, disturbance in mammalian target of rapamycin downstream signaling pathway and impairment of protein synthesis were observed during the course of DEX treatment. In addition, in vitro studies conducted with OE neurospheres in the absence of an inflammatory environment showed that glucocorticoid receptor engagement directly reduces OE progenitor cells proliferation. Our results suggest that DEX can interfere with the intrinsic regenerative cellular mechanisms of the OE, raising concerns on the use of topical anti-inflammatory steroids as a risk factor for progressive olfactory function impairment.
Collapse
Affiliation(s)
- Umberto Crisafulli
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - André M Xavier
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fabiana B Dos Santos
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tavane D Cambiaghi
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Seo Y Chang
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marimélia Porcionatto
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz A Castilho
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bettina Malnic
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Isaias Glezer
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Antidepressant responsiveness in adulthood is permanently impaired after neonatal destruction of the neurogenic pool. Transl Psychiatry 2017; 7:e990. [PMID: 28045461 PMCID: PMC5545723 DOI: 10.1038/tp.2016.255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 09/20/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022] Open
Abstract
The dynamic turnover of hippocampal neurons is implicated in the regulation of cognitive and affective behavior. Extending our previous demonstration that administration of dexamethasone (ND) to neonatal rats depletes the resident population of neural precursor cells (NPC) and restrains the size of the neurogenic regions, we now show that the adverse effects of ND persist into adulthood. Specifically, ND impairs repletion of the neurogenic pool and neurogenesis; ND also compromises cognitive performance, the ability to actively adapt to an acute stressor and, the efficacy of glucocorticoid (GC) negative feedback. Interestingly, although ND depletes the neurogenic pool, it does not permanently abolish the proliferative machinery of the residual NPC population; however, ND increases the susceptibility of hippocampal granule neurons to apoptosis. Although the antidepressant fluoxetine (FLX) reverses the latter phenomenon, it does not replenish the NPC pool. Treatment of ND-treated adult rats with FLX also improves GC negative feedback, albeit without rescuing the deleterious effects of ND on behavior. In summary, ND leads to protracted disruption of mental functions, some of which are resistant to antidepressant interventions. We conclude that manipulation of the NPC pool during early life may jeopardize the therapeutic potential of antidepressants in adulthood.
Collapse
|
22
|
|
23
|
Lanshakov DA, Sukhareva EV, Kalinina TS, Dygalo NN. Dexamethasone-induced acute excitotoxic cell death in the developing brain. Neurobiol Dis 2016; 91:1-9. [DOI: 10.1016/j.nbd.2016.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 01/12/2016] [Accepted: 02/07/2016] [Indexed: 01/04/2023] Open
|
24
|
Kalinec G, Thein P, Park C, Kalinec F. HEI-OC1 cells as a model for investigating drug cytotoxicity. Hear Res 2016; 335:105-117. [DOI: 10.1016/j.heares.2016.02.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/17/2022]
|
25
|
Lee AS, De Jesús-Cortés H, Kabir ZD, Knobbe W, Orr M, Burgdorf C, Huntington P, McDaniel L, Britt JK, Hoffmann F, Brat DJ, Rajadhyaksha AM, Pieper AA. The Neuropsychiatric Disease-Associated Gene cacna1c Mediates Survival of Young Hippocampal Neurons. eNeuro 2016; 3:ENEURO.0006-16.2016. [PMID: 27066530 PMCID: PMC4819284 DOI: 10.1523/eneuro.0006-16.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/12/2016] [Accepted: 03/09/2016] [Indexed: 02/04/2023] Open
Abstract
Genetic variations in CACNA1C, which encodes the Cav1.2 subunit of L-type calcium channels (LTCCs), are associated with multiple forms of neuropsychiatric disease that manifest high anxiety in patients. In parallel, mice harboring forebrain-specific conditional knockout of cacna1c (forebrain-Cav1.2 cKO) display unusually high anxiety-like behavior. LTCCs in general, including the Cav1.3 subunit, have been shown to mediate differentiation of neural precursor cells (NPCs). However, it has not previously been determined whether Cav1.2 affects postnatal hippocampal neurogenesis in vivo. Here, we show that forebrain-Cav1.2 cKO mice exhibit enhanced cell death of young hippocampal neurons, with no change in NPC proliferation, hippocampal size, dentate gyrus thickness, or corticosterone levels compared with wild-type littermates. These mice also exhibit deficits in brain levels of brain-derived neurotrophic factor (BDNF), and Cre recombinase-mediated knockdown of adult hippocampal Cav1.2 recapitulates the deficit in young hippocampal neurons survival. Treatment of forebrain-Cav1.2 cKO mice with the neuroprotective agent P7C3-A20 restored the net magnitude of postnatal hippocampal neurogenesis to wild-type levels without ameliorating their deficit in BDNF expression. The role of Cav1.2 in young hippocampal neurons survival may provide new approaches for understanding and treating neuropsychiatric disease associated with aberrations in CACNA1C. Visual Abstract.
Collapse
Affiliation(s)
- Anni S. Lee
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, New York 10065
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York 10065
| | - Héctor De Jesús-Cortés
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, Texas 75390
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| | - Zeeba D. Kabir
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York 10065
| | - Whitney Knobbe
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Madeline Orr
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Caitlin Burgdorf
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, New York 10065
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York 10065
| | - Paula Huntington
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Latisha McDaniel
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| | - Jeremiah K. Britt
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| | - Franz Hoffmann
- Institute of Pharmacology, Technical University Munich, Munich, Germany
- Research Group 923, Technical University Munich, Munich, Germany
| | - Daniel J. Brat
- Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Anjali M. Rajadhyaksha
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, New York 10065
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York 10065
- Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, New York 10065
| | - Andrew A. Pieper
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
- Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, New York 10065
- Department of Neurology, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
- Department of Free Radical and Radiation Biology Program, Department of Radiation Oncology Holden Comprehensive Cancer Center, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
- Department of Veteran Affairs, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| |
Collapse
|
26
|
Inhibition of Hippocampal Regeneration by Adjuvant Dexamethasone in Experimental Infant Rat Pneumococcal Meningitis. Antimicrob Agents Chemother 2016; 60:1841-6. [PMID: 26824948 DOI: 10.1128/aac.02429-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/02/2016] [Indexed: 12/31/2022] Open
Abstract
Pneumococcal meningitis (PM) causes neurological sequelae in up to half of surviving patients. Neuronal damage associated with poor outcome is largely mediated by the inflammatory host response. Dexamethasone (DXM) is used as an adjuvant therapy in adult PM, but its efficacy in the treatment of pneumococcal meningitis in children is controversially discussed. While DXM has previously been shown to enhance hippocampal apoptosis in experimental PM, its impact on hippocampal cell proliferation is not known. This study investigated the impact of DXM on hippocampal proliferation in infant rat PM. Eleven-day-old nursing Wistar rats (n = 90) were intracisternally infected with Streptococcus pneumoniae to induce experimental meningitis. Treatment with DXM or vehicle was started 18 h after infection, concomitantly with antibiotics (ceftriaxone 100 mg/kg of body weight twice a day [b.i.d.]). Clinical parameters were monitored, and the amount of cells with proliferating activity was assessed using in vivo incorporation of bromodeoxyuridine (BrdU) and an in vitro neurosphere culture system at 3 and 4 d postinfection. DXM significantly worsened weight loss and survival. Density of BrdU-positive cells, as an index of cells with proliferating activity, was significantly lower in DXM-treated animals compared to vehicle controls (P < 0.0001). In parallel, DXM reduced neurosphere formation as an index for stem/progenitor cell density compared to vehicle treatment (P = 0.01). Our findings provide clear evidence that DXM exerts an antiproliferative effect on the hippocampus in infant rat PM. We conclude that an impairment of regenerative hippocampal capacity should be taken into account when considering adjuvant DXM in the therapeutic regimen for PM in children.
Collapse
|
27
|
Kino T. Stress, glucocorticoid hormones, and hippocampal neural progenitor cells: implications to mood disorders. Front Physiol 2015; 6:230. [PMID: 26347657 PMCID: PMC4541029 DOI: 10.3389/fphys.2015.00230] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/30/2015] [Indexed: 12/20/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis and its end-effectors glucocorticoid hormones play central roles in the adaptive response to numerous stressors that can be either internal or external. Thus, this system has a strong impact on the brain hippocampus and its major functions, such as cognition, memory as well as behavior, and mood. The hippocampal area of the adult brain contains neural stem cells or more committed neural progenitor cells, which retain throughout the human life the ability of self-renewal and to differentiate into multiple neural cell lineages, such as neurons, astrocytes, and oligodendrocytes. Importantly, these characteristic cells contribute significantly to the above-indicated functions of the hippocampus, while various stressors and glucocorticoids influence proliferation, differentiation, and fate of these cells. This review offers an overview of the current understanding on the interactions between the HPA axis/glucocorticoid stress-responsive system and hippocampal neural progenitor cells by focusing on the actions of glucocorticoids. Also addressed is a further discussion on the implications of such interactions to the pathophysiology of mood disorders.
Collapse
Affiliation(s)
- Tomoshige Kino
- Division of Experimental Biology, Department of Experimental Therapeutics, Sidra Medical and Research Center Doha, Qatar
| |
Collapse
|
28
|
Druwe I, Freudenrich TM, Wallace K, Shafer TJ, Mundy WR. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening. Toxicology 2015; 333:14-24. [DOI: 10.1016/j.tox.2015.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/24/2015] [Accepted: 03/31/2015] [Indexed: 12/13/2022]
|
29
|
Peffer ME, Zhang JY, Umfrey L, Rudine AC, Monaghan AP, DeFranco DB. Minireview: the impact of antenatal therapeutic synthetic glucocorticoids on the developing fetal brain. Mol Endocrinol 2015; 29:658-66. [PMID: 25763611 DOI: 10.1210/me.2015-1042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The life-threatening, emotional, and economic burdens of premature birth have been greatly alleviated by antenatal glucocorticoid (GC) treatment. Antenatal GCs accelerate tissue development reducing respiratory distress syndrome and intraventricular hemorrhage in premature infants. However, they can also alter developmental processes in the brain and trigger adverse behavioral and metabolic outcomes later in life. This review summarizes animal model and clinical studies that examined the impact of antenatal GCs on the developing brain. In addition, we describe studies that assess glucocorticoid receptor (GR) action in neural stem/progenitor cells (NSPCs) in vivo and in vitro. We highlight recent work from our group on two GR pathways that impact NSPC proliferation, ie, a nongenomic GR pathway that regulates gap junction intercellular communication between coupled NSPCs through site-specific phosphorylation of connexin 43 and a genomic pathway driven by differential promoter recruitment of a specific GR phosphoisoform.
Collapse
Affiliation(s)
- Melanie E Peffer
- Program in Integrative Molecular Biology (M.E.P., D.B.D.), Department of Pharmacology and Chemical Biology (M.E.P., J.Y.Z., L.U., D.B.D.), and Newborn Medicine Program (A.C.R.), Children's Hospital of Pittsburgh, and Department of Neurobiology (A.P.M.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | | | | | | | | | | |
Collapse
|
30
|
Duncan J, Wang N, Zhang X, Johnson S, Harris S, Zheng B, Zhang Q, Rajkowska G, Miguel-Hidalgo JJ, Sittman D, Ou XM, Stockmeier CA, Wang JM. Chronic Social Stress and Ethanol Increase Expression of KLF11, a Cell Death Mediator, in Rat Brain. Neurotox Res 2015; 28:18-31. [PMID: 25739536 DOI: 10.1007/s12640-015-9524-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 01/20/2015] [Accepted: 02/19/2015] [Indexed: 02/06/2023]
Abstract
Major depressive disorder and alcoholism are significant health burdens that can affect executive functioning, cognitive ability, job responsibilities, and personal relationships. Studies in animal models related to depression or alcoholism reveal that the expression of Krüppel-like factor 11 (KLF11, also called TIEG2) is elevated in frontal cortex, which suggests that KLF11 may play a role in stress- or ethanol-induced psychiatric conditions. KLF11 is a transcriptional activator of monoamine oxidase A and B, but also serves other functions in cell cycle regulation and apoptotic cell death. In the present study, immunohistochemistry was used to quantify intensity of nuclear KLF11, combined with an unbiased stereological approach to assess nuclei in fronto-limbic, limbic, and other brain regions of rats exposed chronically to social defeat or ethanol. KLF11 immunoreactivity was increased significantly in the medial prefrontal cortex, frontal cortex, and hippocampus of both stressed rats and rats fed ethanol. However, expression of KLF11 protein was not significantly affected in the thalamus, hypothalamus, or amygdala in either treatment group compared to respective control rats. Triple-label immunofluorescence revealed that KLF11 protein was localized in nuclei of neurons and astrocytes. KLF11 was also co-localized with the immunoreactivity of cleaved caspase-3. In addition, Western blot analysis revealed a significant reduction in anti-apoptotic protein, Bcl-xL, but an increase of caspase-3 expression in the frontal cortex of ethanol-treated rats compared to ethanol-preferring controls. Thus, KLF11 protein is up-regulated following chronic exposure to stress or ethanol in a region-specific manner and may contribute to pro-apoptotic signaling in ethanol-treated rats. Further investigation into the KLF11 signaling cascade as a mechanism for neurotoxicity and cell death in depression and alcoholism may provide novel pharmacological targets to lessen brain damage and maximize neuroprotection in these disorders.
Collapse
Affiliation(s)
- Jeremy Duncan
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chari DM. How do corticosteroids influence myelin genesis in the central nervous system? Neural Regen Res 2014; 9:909-11. [PMID: 25206910 PMCID: PMC4146217 DOI: 10.4103/1673-5374.133131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2014] [Indexed: 01/24/2023] Open
Affiliation(s)
- Divya M Chari
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, School of Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
32
|
Menshanov PN, Bannova AV, Dygalo NN. Dexamethasone suppresses the locomotor response of neonatal rats to novel environment. Behav Brain Res 2014; 271:43-50. [PMID: 24886779 DOI: 10.1016/j.bbr.2014.05.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/23/2014] [Accepted: 05/24/2014] [Indexed: 11/18/2022]
Abstract
Locomotion of animals in the novel environment is determined by two main factors-the intrinsic motor activity and the specific locomotor response to novelty. Glucocorticoids alter neurobehavioral development of mammals and its locomotor manifestations. However, it remains unclear whether the intrinsic and/or the novelty-induced activity are affected by glucocorticoids during early life. Here, the principal component analysis was used to determine the main factors that underlie alterations in locomotion of rat pups treated with dexamethasone. It was shown that neonatal rats exhibited an enhanced locomotion in the novel environment beginning from postnatal day (PD) 5. We found for the first time that this reaction was significantly suppressed by dexamethasone. The effect was specific to the novelty-induced component of behavior, while the intrinsic locomotor activity was not affected by glucocorticoid treatment. The suppression of the behavioral response to novelty was maximal at PD7 and vanquished at PD10-11. In parallel with the hormonal effect on the behavior, dexamethasone upregulated the main cell death executor-active caspase-3 in the prefrontal cortex of 7-day old rats. Thus, dexamethasone-induced alterations in the novelty-related behavior may be the earliest visible signs of the brain damage that could lead to forthcoming depressive state or schizophrenia, emerging as a result of neonatal stress or glucocorticoid treatment.
Collapse
Affiliation(s)
- Petr N Menshanov
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics SBRAS, Russian Academy of Science, Lavrentyev av. 10., Novosibirsk 630090, Russian Federation; Department of Natural Sciences, Novosibirsk State University, Pirogova st. 2, Novosibirsk 630090, Russian Federation.
| | - Anita V Bannova
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics SBRAS, Russian Academy of Science, Lavrentyev av. 10., Novosibirsk 630090, Russian Federation
| | - Nikolay N Dygalo
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics SBRAS, Russian Academy of Science, Lavrentyev av. 10., Novosibirsk 630090, Russian Federation; Department of Natural Sciences, Novosibirsk State University, Pirogova st. 2, Novosibirsk 630090, Russian Federation
| |
Collapse
|
33
|
Marschallinger J, Krampert M, Couillard-Despres S, Heuchel R, Bogdahn U, Aigner L. Age-dependent and differential effects of Smad7ΔEx1 on neural progenitor cell proliferation and on neurogenesis. Exp Gerontol 2014; 57:149-54. [PMID: 24862634 PMCID: PMC4162458 DOI: 10.1016/j.exger.2014.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/09/2014] [Accepted: 05/15/2014] [Indexed: 12/26/2022]
Abstract
We recently reported that young (3 to 4 months old) mice lacking Exon 1 of the Smad7 gene (S7ΔEx1 mice) show enhanced proliferation of neural stem and progenitor cells (NPCs) in the hippocampal dentate gyrus (DG) and in the subventricular zone (SVZ) of the lateral ventricles. It remained unclear, however, whether this phenotype would persist along aging, the latter typically being associated with a profound decrease in neurogenesis. Analysis of NPCs' proliferation based on the cell cycle marker PCNA in 12 month-old S7ΔEx1 mice revealed a reversal of the phenotype. Hence, in contrast to their younger counterparts, 12 month-old S7ΔEx1 mice had a reduced number of proliferating cells, compared to wildtype (WT) mice. At the same time, the survival of newly generated cells was enhanced in the aged transgenic animals. 12 month-old S7ΔEx1 mice further displayed a reduced level of neurogenesis based on the numbers of cells expressing doublecortin (DCX), a marker for newborn neurons. The reduced neurogenesis in aged S7ΔEx1 mice was not due to a stem cell depletion, which might have occurred as a consequence of hyperproliferation in the young mice, since the number of Nestin and Sox2 positive cells was similar in WT and S7ΔEx1 mice. Instead, Nestin positive cells in the DG as well as primary neurosphere cultures derived from 12 month-old S7ΔEx1 mice had a reduced capability to proliferate. However, after passaging, when released from their age- and niche-associated proliferative block, neurospheres from aged S7ΔEx1 mice regained the hyperproliferative property. Further, pSmad2 antibody staining intensity was elevated in the DG and SVZ of 12-month old transgenic compared to WT mice, indicating increased intracellular TGF-beta signaling in the aged S7ΔEx1 mice. In summary, this points toward differential effects of S7ΔEx1 on neurogenesis: (i) a hyperproliferation in young animals caused by a cell autonomous mechanism, and (ii) a TGF-beta dependent modulation of neurogenesis in aged S7ΔEx1 animals that abrogates the cell-intrinsic hyperproliferative properties and results in reduced proliferation, increased stem cell quiescence, and enhanced survival of newly generated cells.
Collapse
Affiliation(s)
- Julia Marschallinger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Monika Krampert
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany; Ludwig Institute for Cancer Research, Uppsala University, Box 595, BMC, 75124 Uppsala, Sweden
| | - Sebastien Couillard-Despres
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria; Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Rainer Heuchel
- Ludwig Institute for Cancer Research, Uppsala University, Box 595, BMC, 75124 Uppsala, Sweden; Karolinska Institute, Department of Clinical Science, Intervention and Technology (CLINTEC), K53, 14186 Stockholm, Sweden
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
34
|
Vose LR, Vinukonda G, Diamond D, Korumilli R, Hu F, Zia MTK, Hevner R, Ballabh P. Prenatal betamethasone does not affect glutamatergic or GABAergic neurogenesis in preterm newborns. Neuroscience 2014; 270:148-57. [PMID: 24735821 DOI: 10.1016/j.neuroscience.2014.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
Prenatal glucocorticoids (GCs) are routinely used for pregnant women in preterm labor to prevent respiratory distress syndrome and intraventricular hemorrhage in premature infants. However, the effect of antenatal GCs on neurogenesis in preterm neonates remains elusive. Herein, we hypothesized that prenatal GCs might suppress both glutamatergic and GABAergic neurogenesis in preterm rabbits and that this treatment would induce distinct changes in the expression of transcription factors regulating these developmental events. To test our hypotheses, we treated pregnant rabbits with betamethasone at E27 and E28, delivered the pups at E29 (term=32d), and assessed neurogenesis at birth and postnatal day 3. We quantified radial glia (Sox2(+)) and intermediate progenitor cells (Tbr2(+)) in the dorsal cortical subventricular zone to assess glutamatergic neuronal progenitors, and counted Nkx2.1(+) and Dlx2(+) cells in the ganglionic eminence to evaluate GABAergic neurogenesis. In addition, we assayed transcription factors regulating neurogenesis. We found that prenatal GCs did not affect the densities of radial glia and intermediate progenitors of glutamatergic or GABAergic neurons. The number of GABA(+) interneurons in the ganglionic eminence was similar between the prenatal GC-treated pups compared to untreated controls. Moreover, the mRNA expression of transcription factors, including Pax6, Ngn1/2, Emx1/2, Insm1, Dlx1, Nkx2.1, and Gsh2, were comparable between the two groups. However, there was a transient elevation in Mash1 protein in betamethasone-treated pups relative to controls at birth. These data suggest that prenatal GC treatment does not significantly impact the balance of glutamatergic and GABAergic neurogenesis in premature infants.
Collapse
Affiliation(s)
- L R Vose
- Department of Pediatrics, New York Medical College-Westchester Medical Center, Valhalla, NY, United States
| | - G Vinukonda
- Department of Pediatrics, New York Medical College-Westchester Medical Center, Valhalla, NY, United States
| | - D Diamond
- Department of Pediatrics, New York Medical College-Westchester Medical Center, Valhalla, NY, United States
| | - R Korumilli
- Department of Pediatrics, New York Medical College-Westchester Medical Center, Valhalla, NY, United States
| | - F Hu
- Department of Pediatrics, New York Medical College-Westchester Medical Center, Valhalla, NY, United States
| | - M T K Zia
- Department of Pediatrics, New York Medical College-Westchester Medical Center, Valhalla, NY, United States
| | - R Hevner
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - P Ballabh
- Department of Pediatrics, New York Medical College-Westchester Medical Center, Valhalla, NY, United States; Department of Cell Biology and Anatomy, New York Medical College-Westchester Medical Center, Valhalla, NY, United States.
| |
Collapse
|
35
|
Malaeb SN, Stonestreet BS. Steroids and injury to the developing brain: net harm or net benefit? Clin Perinatol 2014; 41:191-208. [PMID: 24524455 PMCID: PMC5083968 DOI: 10.1016/j.clp.2013.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Deleterious effects result from both glucocorticoid insufficiency and excess glucocorticoid tissue exposure in the developing brain. Accumulating evidence suggests a net benefit of postnatal glucocorticoid therapy when administered shortly after the first week of life to premature infants with early and persistent pulmonary dysfunction, particularly in those with evidence of relative adrenal insufficiency. The decision to treat with steroids should ensure maximum respiratory benefit at the lowest possible neurologic risk, while avoiding serious systemic complications. Ongoing clinical trials must validate this approach.
Collapse
Affiliation(s)
- Shadi N. Malaeb
- Department of Pediatrics, St. Christopher’s Hospital for Children, Drexel University College of Medicine, 245 North 15th Street, NewCollege Building, Room7410, Mail Stop 1029, Philadelphia, PA 19102, USA,Corresponding author.
| | - Barbara S. Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905, USA
| |
Collapse
|
36
|
Canovas-Jorda D, Louisse J, Pistollato F, Zagoura D, Bremer S. Regenerative toxicology: the role of stem cells in the development of chronic toxicities. Expert Opin Drug Metab Toxicol 2013; 10:39-50. [PMID: 24102433 DOI: 10.1517/17425255.2013.844228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Human stem cell lines and their derivatives, as alternatives to the use of animal cells or cancer cell lines, have been widely discussed as cellular models in predictive toxicology. However, the role of stem cells in the development of long-term toxicities and carcinogenesis has not received great attention so far, despite growing evidence indicating the relationship of stem cell damage to adverse effects later in life. However, testing this in vitro is a scientific/technical challenge in particular due to the complex interplay of factors existing under physiological conditions. Current major research programs in stem cell toxicity are not aiming to demonstrate that stem cells can be targeted by toxicants. Therefore, this knowledge gap needs to be addressed in additional research activities developing technical solutions and defining appropriate experimental designs. AREAS COVERED The current review describes selected examples of the role of stem cells in the development of long-term toxicities in the brain, heart or liver and in the development of cancer. EXPERT OPINION The presented examples illustrate the need to analyze the contribution of stem cells to chronic toxicity in order to make a final conclusion whether stem cell toxicities are an underestimated risk in mechanism-based safety assessments. This requires the development of predictive in vitro models allowing the assessment of adverse effects to stem cells on chronic toxicity and carcinogenicity.
Collapse
Affiliation(s)
- David Canovas-Jorda
- Institute for Health and Consumer Protection, DG Joint Research Centre (JRC), European Commission, Systems Toxicology Unit , Via E. Fermi 2749, TP 580, 21027 Ispra (VA) , Italy +39 0332 785914 ; +39 0332 785336 ;
| | | | | | | | | |
Collapse
|
37
|
Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons in the adult hippocampus and impairs fear-motivated behavior. Mol Psychiatry 2013; 18:993-1005. [PMID: 22925833 DOI: 10.1038/mp.2012.123] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 06/28/2012] [Accepted: 07/05/2012] [Indexed: 01/24/2023]
Abstract
Glucocorticoids (GCs) secreted after stress reduce adult hippocampal neurogenesis, a process that has been implicated in cognitive aspects of psychopathology, amongst others. Yet, the exact role of the GC receptor (GR), a key mediator of GC action, in regulating adult neurogenesis is largely unknown. Here, we show that GR knockdown, selectively in newborn cells of the hippocampal neurogenic niche, accelerates their neuronal differentiation and migration. Strikingly, GR knockdown induced ectopic positioning of a subset of the new granule cells, altered their dendritic complexity and increased their number of mature dendritic spines and mossy fiber boutons. Consistent with the increase in synaptic contacts, cells with GR knockdown exhibit increased basal excitability parallel to impaired contextual freezing during fear conditioning. Together, our data demonstrate a key role for the GR in newborn hippocampal cells in mediating their synaptic connectivity and structural as well as functional integration into mature hippocampal circuits involved in fear memory consolidation.
Collapse
|
38
|
Bhatt AJ, Feng Y, Wang J, Famuyide M, Hersey K. Dexamethasone induces apoptosis of progenitor cells in the subventricular zone and dentate gyrus of developing rat brain. J Neurosci Res 2013; 91:1191-202. [PMID: 23686666 DOI: 10.1002/jnr.23232] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/09/2013] [Accepted: 03/12/2013] [Indexed: 01/22/2023]
Abstract
The use of dexamethasone in premature infants to prevent and/or treat bronchopulmonary dysplasia adversely affects neurocognitive development and is associated with cerebral palsy. The underlying mechanisms of these effects are multifactorial and likely include apoptosis. The objective of this study was to confirm whether dexamethasone causes apoptosis in different regions of the developing rat brain. On postnatal day 2, pups in each litter were randomly divided into the dexamethasone-treated (n = 91) or vehicle-treated (n = 92) groups. Rat pups in the dexamethasone group received tapering doses of dexamethasone on postnatal days 3-6 (0.5, 0.25, 0.125, and 0.06 mg/kg/day, respectively). Dexamethasone treatment significantly decreased the gain of body and brain weight and increased brain caspase-3 activity, DNA fragments, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, and cleaved caspse-3-positive cells at 24 hr after treatment. Dexamethasone increased cleaved caspse-3-positive cells in the cortex, thalamus, hippocampus, cerebellum, dentate gyrus, and subventricular zone. Double-immunofluorescence studies show that progenitor cells in the subventricular zone and dentate gyrus preferentially undergo apoptosis following dexamethasone exposure. These results indicate that dexamethasone-induced apoptosis in immature cells in developing brain is one of the mechanisms of its neurodegenerative effects in newborn rats.
Collapse
Affiliation(s)
- Abhay J Bhatt
- Division of Newborn Medicine, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | | | | | | | |
Collapse
|
39
|
Wang Z, Si LY. Hypoxia-inducible factor-1α and vascular endothelial growth factor in the cardioprotective effects of intermittent hypoxia in rats. Ups J Med Sci 2013; 118:65-74. [PMID: 23441597 PMCID: PMC3633332 DOI: 10.3109/03009734.2013.766914] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/11/2012] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE This study investigated the effects of short-term intermittent hypoxia (IH) preconditioning on cardiac structure and function in rats and the influence of ischemia reperfusion (I/R) injury. Special attention was then paid to the involvement of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). METHODS Wistar rats were given IH treatment for 1, 7, 14, or 28 days. Some of them were thereafter subject to myocardial infarction surgery. Right ventricle systolic pressure (RVSP), myocardial capillary density (CD), and mRNA/protein expression of HIF-1α, VEGF, and Bcl-2 in rat myocardial tissue were determined. Apoptotic cell number was determined by TUNEL staining, and concentrations of malondialdehyde (MDA) and superoxide dismutase (SOD) were measured. RESULTS IH treatment for 1, 7, 14, and 28 days reduced the myocardial infarction size, whereas IH for 28 days increased the RVSP, ratio of right to left ventricle weight (RV/LV+S), and CD. IH up-regulated the mRNA and protein levels of HIF-1α, VEGF, and Bcl-2 both under normal and I/R conditions. The induced expression of HIF-1α and VEGF by IH reached a peak after 7 days of treatment. Moreover, IH for 28 days induced cardiomyocyte apoptosis, whereas prior treatment with IH for 1, 7, 14, and 28 days all markedly attenuated the apoptosis effected by the subsequent I/R injury. IH also decreased the concentrations of MDA but increased those of SOD in myocardial tissue of both in normal rats and following I/R. CONCLUSIONS The present study demonstrates that short-term IH protects the heart from I/R injury through inhibiting apoptosis and oxidative stress. The up-regulation of HIF-1α and VEGF by short-term IH may participate in the cardioprotective effect of IH.
Collapse
Affiliation(s)
- Zhang Wang
- Department of Geriatrics, The First Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Liang-Yi Si
- Department of Geriatrics, The First Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
40
|
Ichinohashi Y, Sato Y, Saito A, Ito M, Watanabe K, Hayakawa M, Nakanishi K, Wakatsuki A, Oohira A. Dexamethasone administration to the neonatal rat results in neurological dysfunction at the juvenile stage even at low doses. Early Hum Dev 2013; 89:283-8. [PMID: 23153570 DOI: 10.1016/j.earlhumdev.2012.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 10/07/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Dexamethasone (DEX), a synthetic glucocorticoid, has been widely used to prevent the development of a variety of poor health conditions in premature infants including chronic lung disease, inflammation, circulatory failure, and shock. Although there are some reports of neurologic complications related to DEX exposure, its full effects on the premature brain have not been examined in detail. To investigate the effects of DEX on neural development, we first administered low doses (0.2 mg/kg bodyweight or less) of the glucocorticoid to neonatal rats on a daily basis during the first postnatal week and examined subsequent behavioral alterations at the juvenile stage. DEX-treated rats exhibited not only a significant reduction in both somatic and brain weights but also learning disabilities as revealed in the shuttle avoidance test. The hippocampi of DEX-treated rats displayed a high apoptotic and a low mitotic cell density compared to control rats on day 7 after birth. In a subsequent experiment, neural stem/progenitor cells were cultured in the presence of DEX for 6 days. The glucocorticoid inhibited cell growth without an increase in cell death. These results suggest that administration of DEX to premature infants induces neurological dysfunction via inhibition of the proliferation of neural stem/progenitor cells.
Collapse
Affiliation(s)
- Yuko Ichinohashi
- Division of Obstetrics and Gynecology, Aichi Medical University Graduate School of Medicine, Nagakute, Aichi 480-1195, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
MENSHANOV PN, BANNOVA AV, BULYGINA VV, DYGALO NN. Acute Antiapoptotic Effects of Hydrocortisone in the Hippocampus of Neonatal Rats. Physiol Res 2013; 62:205-13. [DOI: 10.33549/physiolres.932339] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Natural glucocorticoid hydrocortisone was suggested as a potent substitution for dexamethasone in the treatment of bronchopulmonary dysplasia in neonates. The aim of this study was to investigate whether hydrocortisone is able to affect the expression of apoptotic genes and the intensity of naturally occurring cell death in the developing rat hippocampus. Hormone treatment decreased procaspase-3 and active caspase-3 levels as well as DNA fragmentation intensity in the hippocampal formation of one-week-old rats in 6 h after injection. These changes were accompanied by an upregulation of antiapoptotic protein Bcl-XL, while expression of proapoptotic protein Bax remained unchanged. The action of hydrocortisone was glucocorticoid receptor-independent, as the selective glucocorticoid receptor agonist dexamethasone did not affect either apoptotic protein levels or DNA fragmentation intensity in the hippocampal region. The data are the first evidences for in vivo antiapoptotic effects of hydrocortisone in the developing hippocampus.
Collapse
Affiliation(s)
- P. N. MENSHANOV
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation
| | | | | | | |
Collapse
|
42
|
Gruver-Yates AL, Cidlowski JA. Tissue-specific actions of glucocorticoids on apoptosis: a double-edged sword. Cells 2013; 2:202-23. [PMID: 24709697 PMCID: PMC3972684 DOI: 10.3390/cells2020202] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 12/20/2022] Open
Abstract
First described for their metabolic and immunosuppressive effects, glucocorticoids are widely prescribed in clinical settings of inflammation. However, glucocorticoids are also potent inducers of apoptosis in many cell types and tissues. This review will focus on the established mechanisms of glucocorticoid-induced apoptosis and outline what is known about the apoptotic response in cells and tissues of the body after exposure to glucocorticoids. Glucocorticoid-induced apoptosis affects the skeletal system, muscular system, circulatory system, nervous system, endocrine system, reproductive system, and the immune system. Interestingly, several cell types have an anti-apoptotic response to glucocorticoids that is cytoprotective. Lastly, we will discuss the pro- and anti-apoptotic effects of glucocorticoids in cancers and their clinical implications.
Collapse
Affiliation(s)
- Amanda L Gruver-Yates
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
43
|
Abstract
Neurogenesis during embryonic and adult life is tightly regulated by a network of transcriptional, growth and hormonal factors. Emerging evidence indicates that activation of the stress response, via the associated glucocorticoid increase, reduces neurogenesis and contributes to the development of adult diseases.As corticotrophin-releasing hormone (CRH) or factor is the major mediator of adaptive response to stressors, we sought to investigate its involvement in this process. Accordingly, we found that CRH could reverse the damaging effects of glucocorticoid on neural stem/progenitor cells (NS/PCs), while its genetic deficiency results in compromised proliferation and enhanced apoptosis during neurogenesis. Analyses in fetal and adult mouse brain revealed significant expression of CRH receptors in proliferating neuronal progenitors. Furthermore, by using primary cultures of NS/PCs, we characterized the molecular mechanisms and identified CRH receptor-1 as the receptor mediating the neuroprotective effects of CRH. Finally, we demonstrate the expression of CRH receptors in human fetal brain from early gestational age, in areas of active neuronal proliferation. These observations raise the intriguing possibility for CRH-mediated pharmacological applications in diseases characterized by altered neuronal homeostasis, including depression, dementia, neurodegenerative diseases, brain traumas and obesity.
Collapse
|
44
|
Androutsellis-Theotokis A, Chrousos GP, McKay RD, DeCherney AH, Kino T. Expression profiles of the nuclear receptors and their transcriptional coregulators during differentiation of neural stem cells. Horm Metab Res 2013; 45:159-68. [PMID: 22990992 PMCID: PMC3781591 DOI: 10.1055/s-0032-1321789] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neural stem cells (NSCs) are pluripotent precursors with the ability to proliferate and differentiate into 3 neural cell lineages, neurons, astrocytes and oligodendrocytes. Elucidation of the mechanisms underlying these biologic processes is essential for understanding both physiologic and pathologic neural development and regeneration after injury. Nuclear hormone receptors (NRs) and their transcriptional coregulators also play crucial roles in neural development, functions and fate. To identify key NRs and their transcriptional regulators in NSC differentiation, we examined mRNA expression of 49 NRs and many of their coregulators during differentiation (0-5 days) of mouse embryonic NSCs induced by withdrawal of fibroblast growth factor-2 (FGF2). 37 out of 49 NRs were expressed in NSCs before induction of differentiation, while receptors known to play major roles in neural development, such as THRα, RXRs, RORs, TRs, and COUP-TFs, were highly expressed. CAR, which plays important roles in xenobiotic metabolism, was also highly expressed. FGF2 withdrawal induced mRNA expression of RORγ, RXRγ, and MR by over 20-fold. Most of the transcriptional coregulators examined were expressed basally and throughout differentiation without major changes, while FGF2 withdrawal strongly induced mRNA expression of several histone deacetylases (HDACs), including HDAC11. Dexamethasone and aldosterone, respectively a synthetic glucocorticoid and natural mineralocorticoid, increased NSC numbers and induced differentiation into neurons and astrocytes. These results indicate that the NRs and their coregulators are present and/or change their expression during NSC differentiation, suggesting that they may influence development of the central nervous system in the absence or presence of their ligands.
Collapse
Affiliation(s)
- A. Androutsellis-Theotokis
- Department of Medicine, University of Dresden and Center for Regenerative Therapies-Dresden, Dresden, Germany
| | - G. P. Chrousos
- First Department of Pediatrics, Athens University Medical School, Athens, Greece
| | - R. D. McKay
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - A. H. DeCherney
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - T. Kino
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
The role of glucocorticoid receptors in dexamethasone-induced apoptosis of neuroprogenitor cells in the hippocampus of rat pups. Mediators Inflamm 2013; 2013:628094. [PMID: 23401645 PMCID: PMC3557631 DOI: 10.1155/2013/628094] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/17/2012] [Indexed: 12/25/2022] Open
Abstract
Background. Dexamethasone (Dex) has been used to reduce inflammation in preterm infants with assistive ventilation and to prevent chronic lung diseases. However, Dex treatment results in adverse effects on the brain. Since the hippocampus contains a high density of glucocorticoid receptors (GCRs), we hypothesized that Dex affects neurogenesis in the hippocampus through inflammatory mediators. Methods. Albino Wistar rat pups first received a single dose of Dex (0.5 mg/kg) on postnatal day 1 (P1) and were sacrificed on P2, P3, P5, and P7. One group of Dex-treated pups (Dex-treated D1D2) was given mifepristone (RU486, a GCR antagonist) on P1 and sacrificed on P2. Hippocampi were isolated for western blot analysis, TUNEL, cleaved-caspase 3 staining for cell counts, and morphological assessment. Control pups received normal saline (NS). Results. Dex reduced the developmental gain in body weight, but had no effect on brain weight. In the Dex-treated D1D2 group, apoptotic cells increased in number based on TUNEL and cleaved-caspase 3 staining. Most of the apoptotic cells expressed the neural progenitor cell marker nestin. Dex-induced apoptosis in P1 pups was markedly reduced (60%) by pretreatment with RU486, indicating the involvement of GCRs. Conclusion. Early administration of Dex results in apoptosis of neural progenitor cells in the hippocampus and this is mediated through GCRs.
Collapse
|
46
|
Sousa N, Almeida OFX. Disconnection and reconnection: the morphological basis of (mal)adaptation to stress. Trends Neurosci 2012; 35:742-51. [PMID: 23000140 DOI: 10.1016/j.tins.2012.08.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 07/15/2012] [Accepted: 08/20/2012] [Indexed: 12/26/2022]
Abstract
Maladaptive responses to stress and the associated hypersecretion of glucocorticoids cause psychopathologies ranging from hyperemotional states and mood dysfunction to cognitive impairments. Research in both humans and animal models has begun to identify morphological correlates of these functional changes. These include dendritic and synaptic reorganization, glial remodeling, and altered cell fate in cortical and subcortical structures. The emerging view is that stress induces a 'disconnection syndrome' whereby the transmission and integration of information that are critical for orchestrating appropriate physiological and behavioral responses are perturbed. High-resolution spatiotemporal mapping of the complete neural circuitry and identification of the cellular processes impacted by stress will help to advance discovery of strategies to reduce or reverse the burden of stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nuno Sousa
- Life and Health Science Research Institute, School of Health Sciences, University of Minho, Braga, Portugal.
| | | |
Collapse
|
47
|
Franklin T, Saab B, Mansuy I. Neural Mechanisms of Stress Resilience and Vulnerability. Neuron 2012; 75:747-61. [DOI: 10.1016/j.neuron.2012.08.016] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2012] [Indexed: 01/01/2023]
|
48
|
Bennet L, Davidson JO, Koome M, Gunn AJ. Glucocorticoids and preterm hypoxic-ischemic brain injury: the good and the bad. J Pregnancy 2012; 2012:751694. [PMID: 22970371 PMCID: PMC3431094 DOI: 10.1155/2012/751694] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/13/2012] [Indexed: 12/20/2022] Open
Abstract
Fetuses at risk of premature delivery are now routinely exposed to maternal treatment with synthetic glucocorticoids. In randomized clinical trials, these substantially reduce acute neonatal systemic morbidity, and mortality, after premature birth and reduce intraventricular hemorrhage. However, the overall neurodevelopmental impact is surprisingly unclear; worryingly, postnatal glucocorticoids are consistently associated with impaired brain development. We review the clinical and experimental evidence on how glucocorticoids may affect the developing brain and highlight the need for systematic research.
Collapse
Affiliation(s)
- Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand.
| | | | | | | |
Collapse
|
49
|
Zuloaga DG, Carbone DL, Handa RJ. Prenatal dexamethasone selectively decreases calretinin expression in the adult female lateral amygdala. Neurosci Lett 2012; 521:109-14. [PMID: 22668856 DOI: 10.1016/j.neulet.2012.05.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/06/2012] [Accepted: 05/18/2012] [Indexed: 01/07/2023]
Abstract
Exposure to high levels of glucocorticoids (GCs) during early development results in lasting disturbances in emotional behavior in rodents. Inhibitory GABAergic neurons, classified by their expression of calcium binding proteins (CBPs), also contribute to stress-related behaviors and may be GC sensitive during development. Therefore, in the present study we investigated the effects of prenatal treatment with the glucocorticoid receptor agonist dexamethasone (DEX) on expression of calbindin and calretinin in brain areas critical to emotional regulation (basolateral/lateral amygdala and hippocampal CA1 and CA3 regions). Late gestational treatment with DEX (gestational days 18-22) significantly decreased the density of calretinin immunoreactive cells in the lateral amygdala of adult female offspring with no differences in the basolateral amygdala, hippocampal CA1, or CA3 regions. Moreover, there were no effects of gestational DEX treatment on calretinin expression in males. Calbindin expression in adulthood was unaltered within either amygdala or hippocampal subregion of either sex following prenatal DEX treatment. Together these findings indicate that late gestational DEX treatment causes a targeted reduction of calretinin within the lateral amygdala of females and this may be one mechanism through which developmental glucocorticoid exposure contributes to lasting alterations in emotional behavior.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, United States.
| | | | | |
Collapse
|
50
|
Oliveira M, Rodrigues AJ, Leão P, Cardona D, Pêgo JM, Sousa N. The bed nucleus of stria terminalis and the amygdala as targets of antenatal glucocorticoids: implications for fear and anxiety responses. Psychopharmacology (Berl) 2012; 220:443-53. [PMID: 21935638 DOI: 10.1007/s00213-011-2494-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/05/2011] [Indexed: 02/06/2023]
Abstract
RATIONALE Several human and experimental studies have shown that early life adverse events can shape physical and mental health in adulthood. Stress or elevated levels of glucocorticoids (GCs) during critical periods of development seem to contribute for the appearance of neurospyschiatric conditions such as anxiety and depression, albeit the underlying mechanisms remain to be fully elucidated. OBJECTIVES The aim of the present study was to determine the long-term effect of prenatal exposure to dexamethasone- DEX (synthetic GC widely used in clinics) in fear and anxious behavior and identify the neurochemical, morphological and molecular correlates. RESULTS Prenatal exposure to DEX triggers a hyperanxious phenotype and altered fear behavior in adulthood. These behavioral traits were correlated with increased volume of the bed nucleus of the stria terminalis (BNST), particularly the anteromedial subdivision which presented increased dendritic length; in parallel, we found an increased expression of synapsin and NCAM in the BNST of these animals. Remarkably, DEX effects were opposite in the amygdala, as this region presented reduced volume due to significant dendritic atrophy. Albeit no differences were found in dopamine and its metabolite levels in the BNST, this neurotransmitter was substantially reduced in the amygdala, which also presented an up-regulation of dopamine receptor 2. CONCLUSIONS Altogether, our results show that in utero DEX exposure can modulate anxiety and fear behavior in parallel with significant morphological, neurochemical and molecular changes; importantly, GCs seem to differentially affect distinct brain regions involved in this type of behaviors.
Collapse
Affiliation(s)
- Mário Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | | | | | | | | |
Collapse
|