1
|
Nurkolis F, Utami TW, Alatas AI, Wicaksono D, Kurniawan R, Ratmandhika SR, Sukarno KT, Pahu YGP, Kim B, Tallei TE, Tjandrawinata RR, Alhasyimi AA, Surya R, Helen H, Halim P, Muhar AM, Syahputra RA. Can salivary and skin microbiome become a biodetector for aging-associated diseases? Current insights and future perspectives. FRONTIERS IN AGING 2024; 5:1462569. [PMID: 39484071 PMCID: PMC11524912 DOI: 10.3389/fragi.2024.1462569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024]
Abstract
Growth and aging are fundamental elements of human development. Aging is defined by a decrease in physiological activities and higher illness vulnerability. Affected by lifestyle, environmental, and hereditary elements, aging results in disorders including cardiovascular, musculoskeletal, and neurological diseases, which accounted for 16.1 million worldwide deaths in 2019. Stress-induced cellular senescence, caused by DNA damage, can reduce tissue regeneration and repair, promoting aging. The root cause of many age-related disorders is inflammation, encouraged by the senescence-associated secretory phenotype (SASP). Aging's metabolic changes and declining immune systems raise illness risk via promoting microbiome diversity. Stable, individual-specific skin and oral microbiomes are essential for both health and disease since dysbiosis is linked with periodontitis and eczema. Present from birth to death, the human microbiome, under the influence of diet and lifestyle, interacts symbiotically with the body. Poor dental health has been linked to Alzheimer's and Parkinson's diseases since oral microorganisms and systemic diseases have important interactions. Emphasizing the importance of microbiome health across the lifetime, this study reviews the understanding of the microbiome's role in aging-related diseases that can direct novel diagnosis and treatment approaches.
Collapse
Affiliation(s)
- Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - Trianna Wahyu Utami
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Aiman Idrus Alatas
- Program of Clinical Microbiology Residency, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Danar Wicaksono
- Alumnus Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rudy Kurniawan
- Graduate School of Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | | | | | | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | | | - Ananto Ali Alhasyimi
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Reggie Surya
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia
| | - Helen Helen
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Adi Muradi Muhar
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
2
|
Vialle RA, de Paiva Lopes K, Li Y, Ng B, Schneider JA, Buchman AS, Wang Y, Farfel JM, Barnes LL, Wingo AP, Wingo TS, Seyfried NT, De Jager PL, Gaiteri C, Tasaki S, Bennett DA. Structural variants linked to Alzheimer's Disease and other common age-related clinical and neuropathologic traits. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.12.24311887. [PMID: 39185527 PMCID: PMC11343262 DOI: 10.1101/2024.08.12.24311887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Advances have led to a greater understanding of the genetics of Alzheimer's Disease (AD). However, the gap between the predicted and observed genetic heritability estimates when using single nucleotide polymorphisms (SNPs) and small indel data remains. Large genomic rearrangements, known as structural variants (SVs), have the potential to account for this missing genetic heritability. By leveraging data from two ongoing cohort studies of aging and dementia, the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP), we performed genome-wide association analysis testing around 20,000 common SVs from 1,088 participants with whole genome sequencing (WGS) data. A range of Alzheimer's Disease and Related Disorders (AD/ADRD) clinical and pathologic traits were examined. Given the limited sample size, no genome-wide significant association was found, but we mapped SVs across 81 AD risk loci and discovered 22 SVs in linkage disequilibrium (LD) with GWAS lead variants and directly associated with AD/ADRD phenotypes (nominal P < 0.05). The strongest association was a deletion of an Alu element in the 3'UTR of the TMEM106B gene. This SV was in high LD with the respective AD GWAS locus and was associated with multiple AD/ADRD phenotypes, including tangle density, TDP-43, and cognitive resilience. The deletion of this element was also linked to lower TMEM106B protein abundance. We also found a 22 kb deletion associated with depression in ROSMAP and bearing similar association patterns as AD GWAS SNPs at the IQCK locus. In addition, genome-wide scans allowed the identification of 7 SVs, with no LD with SNPs and nominally associated with AD/ADRD traits. This result suggests potentially new ADRD risk loci not discoverable using SNP data. Among these findings, we highlight a 5.6 kb duplication of coding regions of the gene C1orf186 at chromosome 1 associated with indices of cognitive impairment, decline, and resilience. While further replication in independent datasets is needed to validate these findings, our results support the potential roles of common structural variations in the pathogenesis of AD/ADRD.
Collapse
Affiliation(s)
- Ricardo A Vialle
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Katia de Paiva Lopes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Yan Li
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Bernard Ng
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jose M Farfel
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Aliza P Wingo
- Department of Psychiatry, University of California, Davis CA, USA
- VA Northern California Health Care System, McClellan Park, CA, USA
| | - Thomas S Wingo
- Department of Neurology, University of California, Davis, CA, USA
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Department of Neurology and Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Philip L De Jager
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
3
|
Gronich N. Central Nervous System Medications: Pharmacokinetic and Pharmacodynamic Considerations for Older Adults. Drugs Aging 2024; 41:507-519. [PMID: 38814377 PMCID: PMC11193826 DOI: 10.1007/s40266-024-01117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/31/2024]
Abstract
Most drugs have not been evaluated in the older population. Recognizing physiological alterations associated with changes in drug disposition and with the ultimate effect, especially in central nervous system-acting drugs, is fundamental. While considering pharmacokinetics, it should be noted that the absorption of most drugs from the gastrointestinal tract does not change in advanced age. There are only few data about the effect of age on the transdermal absorption of medications such as fentanyl. Absorption from an intramuscular injection may be similar in older adults as in younger patients. The distribution of lipophilic drugs (such as diazepam) is increased owing to a relative increase in the percentage of body fat, causing drug accumulation and prolonged drug elimination following cessation. Phase I drug biotransformation is variably decreased in aging, impacting elimination, and hepatic drug clearance has been shown to decrease in older individuals by 10-40% for most drugs studied. Lower doses of phenothiazines, butyrophenones, atypical antipsychotics, antidepressants (citalopram, mirtazapine, and tricyclic antidepressants), and benzodiazepines (such as diazepam) achieve the same extent of exposure. For renally cleared drugs with no prior metabolism (such as gabapentin), the glomerular filtration rate appropriately estimates drug clearance. Important pharmacodynamic changes in older adults include an increased sedative effect of benzodiazepines at a given drug exposure, and a higher sensitivity to mu opiate receptor agonists and to opioid adverse effects. Artificial intelligence, physiologically based pharmacokinetic modeling and simulation, and concentration-effect modeling enabling a differentiation between the pharmacokinetic and the pharmacodynamic effects of aging might help to close some of the gaps in knowledge.
Collapse
Affiliation(s)
- Naomi Gronich
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Clalit Health Services, 7 Michal St, 3436212, Haifa, Israel.
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
4
|
Chu Y, Hirst WD, Federoff HJ, Harms AS, Stoessl AJ, Kordower JH. Nigrostriatal tau pathology in parkinsonism and Parkinson's disease. Brain 2024; 147:444-457. [PMID: 38006313 PMCID: PMC10834249 DOI: 10.1093/brain/awad388] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 11/27/2023] Open
Abstract
While Parkinson's disease remains clinically defined by cardinal motor symptoms resulting from nigrostriatal degeneration, it is now appreciated that the disease commonly consists of multiple pathologies, but it is unclear where these co-pathologies occur early in disease and whether they are responsible for the nigrostriatal degeneration. For the past number of years, we have been studying a well-characterized cohort of subjects with motor impairment that we have termed mild motor deficits. Motor deficits were determined on a modified and validated Unified Parkinson's Disease Rating Scale III but were insufficient in degree to diagnose Parkinson's disease. However, in our past studies, cases in this cohort had a selection bias, as both a clinical syndrome in between no motor deficits and Parkinson's disease, plus nigral Lewy pathology as defined post-mortem, were required for inclusion. Therefore, in the current study, we only based inclusion on the presence of a clinical phenotype with mild motor impairment insufficient to diagnose Parkinson's disease. Then, we divided this group further based upon whether or not subjects had a synucleinopathy in the nigrostriatal system. Here we demonstrate that loss of nigral dopaminergic neurons, loss of putamenal dopaminergic innervation and loss of the tyrosine hydroxylase-phenotype in the substantia nigra and putamen occur equally in mild motor deficit groups with and without nigral alpha-synuclein aggregates. Indeed, the common feature of these two groups is that both have similar degrees of AT8 positive phosphorylated tau, a pathology not seen in the nigrostriatal system of age-matched controls. These findings were confirmed with early (tau Ser208 phosphorylation) and late (tau Ser396/Ser404 phosphorylation) tau markers. This suggests that the initiation of nigrostriatal dopaminergic neurodegeneration occurs independently of alpha-synuclein aggregation and can be tau mediated.
Collapse
Affiliation(s)
- Yaping Chu
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, USA
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA 02142, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Howard J Federoff
- Neurology, School of Medicine, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Ashley S Harms
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - A Jon Stoessl
- Pacific Parkinson’s Research Centre and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
5
|
Bayram E, Coughlin DG, Rajmohan R, Litvan I. Sex differences for clinical correlates of substantia nigra neuron loss in people with Lewy body pathology. Biol Sex Differ 2024; 15:8. [PMID: 38243325 PMCID: PMC10797801 DOI: 10.1186/s13293-024-00583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Lewy body dementia (LBD) phenotype is associated with the presence and degree of Lewy body, Alzheimer's pathologies, and substantia nigra neuron loss. Nigral neuron loss is associated with parkinsonism in LBD, and females with LBD are less likely than males to have parkinsonism. As sex differences were reported for clinical correlates of Lewy body and Alzheimer's pathologies, we aimed to investigate whether there are also sex differences for correlates of nigral neuron loss. METHODS Data were obtained from the National Alzheimer's Coordinating Center for females (n = 159) and males (n = 263) with brainstem, limbic, and neocortical Lewy body pathology. Sex differences for the nigral neuron loss' association with Lewy body pathology staging and core clinical LBD features (cognitive fluctuations, visual hallucinations, rapid eye movement sleep behavior disorder, parkinsonism) during follow-up were analyzed with generalized linear models adjusting for age and Alzheimer's pathology staging. Whether any of the core clinical features at the time of dementia onset can predict underlying nigral neuron loss for females and males were also analyzed with generalized linear models. RESULTS Compared to males, females died older and had higher levels of Braak tau staging, but had similar levels of Lewy body pathology staging and nigral neuron loss. Females were less likely than males to have a clinical Lewy body disease diagnosis during follow-up. More advanced Lewy body pathology staging was associated with more nigral neuron loss, more so for males than females. More nigral neuron loss was associated with parkinsonism and clinical LBD diagnosis during follow-up, more so for males than females. Across the subgroup with dementia (40 females, 58 males), core LBD features at first visit with dementia were not associated with nigral neuron loss. CONCLUSIONS Nigral neuron loss' association with Lewy body pathology staging and core LBD features can differ by sex. Compared to males, females with Lewy body pathology have a higher risk of underdiagnosis. There is a need to elucidate the mechanisms underlying sex differences for pathology and clinicopathological correlations to advance diagnostic and therapeutic efforts in LBD.
Collapse
Affiliation(s)
- Ece Bayram
- Department of Neurosciences, Parkinson and other Movement Disorders Center, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093-0886, USA.
| | - David G Coughlin
- Department of Neurosciences, Parkinson and other Movement Disorders Center, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093-0886, USA
| | - Ravi Rajmohan
- Department of Neurology, University of California Irvine, 1001 Health Sciences Road, Irvine, CA, 92697-3950, USA
| | - Irene Litvan
- Department of Neurosciences, Parkinson and other Movement Disorders Center, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093-0886, USA
| |
Collapse
|
6
|
Salvatore MF. Dopamine Signaling in Substantia Nigra and Its Impact on Locomotor Function-Not a New Concept, but Neglected Reality. Int J Mol Sci 2024; 25:1131. [PMID: 38256204 PMCID: PMC10815979 DOI: 10.3390/ijms25021131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The mechanistic influences of dopamine (DA) signaling and impact on motor function are nearly always interpreted from changes in nigrostriatal neuron terminals in striatum. This is a standard practice in studies of human Parkinson's disease (PD) and aging and related animal models of PD and aging-related parkinsonism. However, despite dozens of studies indicating an ambiguous relationship between changes in striatal DA signaling and motor phenotype, this perseverating focus on striatum continues. Although DA release in substantia nigra (SN) was first reported almost 50 years ago, assessment of nigral DA signaling changes in relation to motor function is rarely considered. Whereas DA signaling has been well-characterized in striatum at all five steps of neurotransmission (biosynthesis and turnover, storage, release, reuptake, and post-synaptic binding) in the nigrostriatal pathway, the depth of such interrogations in the SN, outside of cell counts, is sparse. However, there is sufficient evidence that these steps in DA neurotransmission in the SN are operational and regulated autonomously from striatum and are present in human PD and aging and related animal models. To complete our understanding of how nigrostriatal DA signaling affects motor function, it is past time to include interrogation of nigral DA signaling. This brief review highlights evidence that changes in nigral DA signaling at each step in DA neurotransmission are autonomous from those in striatum and changes in the SN alone can influence locomotor function. Accordingly, for full characterization of how nigrostriatal DA signaling affects locomotor activity, interrogation of DA signaling in SN is essential.
Collapse
Affiliation(s)
- Michael F Salvatore
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
7
|
Buchman AS, Yu L, Oveisgharan S, Zammit AR, Wang T, Shulman JM, VanderHorst V, Nag S, Bennett DA. Parkinson's Disease and Other Alzheimer's Disease and Related Dementia Pathologies and the Progression of Parkinsonism in Older Adults. J Alzheimers Dis 2024; 100:S197-S209. [PMID: 39121125 PMCID: PMC11619772 DOI: 10.3233/jad-240593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Background The interrelationship of parkinsonism, Parkinson's disease (PD) and other Alzheimer's disease (AD) and Alzheimer's disease and related dementias (ADRD) pathologies is unclear. Objective We examined the progression of parkinsonian signs in adults with and without parkinsonism, and their underlying brain pathologies. Methods Annual parkinsonian signs were based on a modified Unified Parkinson's Disease Rating Scale. We used linear mixed effects models to compare the progression of parkinsonian signs in 3 groups categorized based on all available clinical evaluations: Group1 (never parkinsonism or clinical PD), Group2 (ever parkinsonism, but never clinical PD), Group3 (ever clinical PD). In decedents, we examined the progression of parkinsonian signs with PD and eight other AD/ADRD pathologies. Results During average follow-up of 8 years, parkinsonian signs on average increased by 7.3% SD/year (N = 3,807). The progression of parkinsonian signs was slowest in Group1 (never parkinsonism or clinical PD), intermediate in Group2, and fastest in Group3. In decedents (n = 1,717) pathologic PD and cerebrovascular (CVD) pathologies were associated with a faster rate of progressive parkinsonian signs (all p values <0.05). However, pathologic PD was rare in adults without clinical PD (Group1, 5%; Group2, 7% versus Group3, 55%). Yet, 70% of adults in Group2 without pathologic PD showed one or more CVD pathologies. In Group2, adults with pathologic PD showed faster progression of parkinsonian signs compared with those without evidence of pathologic PD and their rate of progression was indistinguishable from adults with clinical PD. Conclusions Parkinsonism in old age is more commonly related to cerebrovascular pathologies relative to pathologic PD and only a minority manifest prodromal PD.
Collapse
Affiliation(s)
- Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Shahram Oveisgharan
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Andrea R. Zammit
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Tianhao Wang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Joshua M. Shulman
- Department of Neurology and Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
| | - Veronique VanderHorst
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sukrit Nag
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
8
|
Burtscher J, Moraud EM, Malatesta D, Millet GP, Bally JF, Patoz A. Exercise and gait/movement analyses in treatment and diagnosis of Parkinson's Disease. Ageing Res Rev 2024; 93:102147. [PMID: 38036102 DOI: 10.1016/j.arr.2023.102147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Cardinal motor symptoms in Parkinson's disease (PD) include bradykinesia, rest tremor and/or rigidity. This symptomatology can additionally encompass abnormal gait, balance and postural patterns at advanced stages of the disease. Besides pharmacological and surgical therapies, physical exercise represents an important strategy for the management of these advanced impairments. Traditionally, diagnosis and classification of such abnormalities have relied on partially subjective evaluations performed by neurologists during short and temporally scattered hospital appointments. Emerging sports medical methods, including wearable sensor-based movement assessment and computational-statistical analysis, are paving the way for more objective and systematic diagnoses in everyday life conditions. These approaches hold promise to facilitate customizing clinical trials to specific PD groups, as well as personalizing neuromodulation therapies and exercise prescriptions for each individual, remotely and regularly, according to disease progression or specific motor symptoms. We aim to summarize exercise benefits for PD with a specific emphasis on gait and balance deficits, and to provide an overview of recent advances in movement analysis approaches, notably from the sports science community, with value for diagnosis and prognosis. Although such techniques are becoming increasingly available, their standardization and optimization for clinical purposes is critically missing, especially in their translation to complex neurodegenerative disorders such as PD. We highlight the importance of integrating state-of-the-art gait and movement analysis approaches, in combination with other motor, electrophysiological or neural biomarkers, to improve the understanding of the diversity of PD phenotypes, their response to therapies and the dynamics of their disease progression.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Eduardo Martin Moraud
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Defitech Centre for Interventional Neurotherapies (NeuroRestore), UNIL-CHUV and Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Davide Malatesta
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Julien F Bally
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Aurélien Patoz
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Research and Development Department, Volodalen Swiss Sport Lab, Aigle, Switzerland
| |
Collapse
|
9
|
Mahlknecht P, Poewe W. Pharmacotherapy for Disease Modification in Early Parkinson's Disease: How Early Should We Be? JOURNAL OF PARKINSON'S DISEASE 2024; 14:S407-S421. [PMID: 38427503 PMCID: PMC11492107 DOI: 10.3233/jpd-230354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Slowing or halting progression continues to be a major unmet medical need in Parkinson's disease (PD). Numerous trials over the past decades have tested a broad range of interventions without ultimate success. There are many potential reasons for this failure and much debate has focused on the need to test 'disease-modifying' candidate drugs in the earliest stages of disease. While generally accepted as a rational approach, it is also associated with significant challenges around the selection of trial populations as well as trial outcomes and durations. From a health care perspective, intervening even earlier and before at-risk subjects have gone on to develop overt clinical disease is at the heart of preventive medicine. Recent attempts to develop a framework for a biological definition of PD are aiming to enable 'preclinical' and subtype-specific diagnostic approaches. The present review addresses past efforts towards disease-modification, including drug targets and reasons for failure, as well as novel targets that are currently being explored in disease-modification trials in early established PD. The new biological definitions of PD may offer new opportunities to intervene even earlier. We critically discuss the potential and challenges around planning 'disease-prevention' trials in subjects with biologically defined 'preclinical' or prodromal PD.
Collapse
Affiliation(s)
- Philipp Mahlknecht
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
10
|
Lim SY, Klein C. Parkinson's Disease is Predominantly a Genetic Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:467-482. [PMID: 38552119 DOI: 10.3233/jpd-230376] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The discovery of a pathogenic variant in the alpha-synuclein (SNCA) gene in the Contursi kindred in 1997 indisputably confirmed a genetic cause in a subset of Parkinson's disease (PD) patients. Currently, pathogenic variants in one of the seven established PD genes or the strongest known risk factor gene, GBA1, are identified in ∼15% of PD patients unselected for age at onset and family history. In this Debate article, we highlight multiple avenues of research that suggest an important - and in some cases even predominant - role for genetics in PD aetiology, including familial clustering, high rates of monogenic PD in selected populations, and complete penetrance with certain forms. At first sight, the steep increase in PD prevalence exceeding that of other neurodegenerative diseases may argue against a predominant genetic etiology. Notably, the principal genetic contribution in PD is conferred by pathogenic variants in LRRK2 and GBA1 and, in both cases, characterized by an overall late age of onset and age-related penetrance. In addition, polygenic risk plays a considerable role in PD. However, it is likely that, in the majority of PD patients, a complex interplay of aging, genetic, environmental, and epigenetic factors leads to disease development.
Collapse
Affiliation(s)
- Shen-Yang Lim
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, Faculty of Medicine, Division of Neurology, University of Malaya, Kuala Lumpur, Malaysia
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| |
Collapse
|
11
|
Van Cauwenberge MGA, Delva A, Vande Casteele T, Laroy M, Radwan A, Vansteelandt K, Van den Stock J, Bouckaert F, Van Laere K, Emsell L, Vandenberghe W, Vandenbulcke M. Mild Motor Signs in Healthy Aging Are Associated with Lower Synaptic Density in the Brain. Mov Disord 2023; 38:1786-1794. [PMID: 37574924 DOI: 10.1002/mds.29570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/17/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
OBJECTIVE To investigate whether mild motor signs (MMS) in old age correlate with synaptic density in the brain. BACKGROUND Normal aging is associated with a decline in movement quality and quantity, commonly termed "mild parkinsonian signs" or more recently MMS. Whether MMS stem from global brain aging or pathology within motor circuits remains unresolved. The synaptic vesicle glycoprotein 2A positron emission tomography (PET) ligand 11 C-UCB-J allows the investigation of brain-motor associations at the synaptic level in vivo. METHOD Fifty-eight healthy older adults (≥50 years) were included from two monocentric control cohorts. Brain magnetic resonance imaging and 11 C-UCB-J PET data were available in 54 participants. 11 C-UCB-J PET binding was quantified by standardized uptake value ratio (SUVR) values in grey matter (GM) volumes of interest (VOIs): caudate, putamen, globus pallidus, substantia nigra, thalamus, cerebellum, and the frontal, parietal, temporal, and occipital cortex. Multiple linear regression analyses were performed with Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III score measuring MMS as the dependent variable and mean SUVR values in each VOI as the independent variable with age, Fazekas score (white matter lesion [WML] load), VOI and cohort as covariates. RESULTS Participants (68 ± 7.5 years; 52% female) had an average MDS-UPDRS part III score of 3.3 ± 2.8. The MDS-UPDRS part III score was inversely associated with synaptic density, independently of WML load or GM volume, in the caudate, substantia nigra, thalamus, cerebellum, and parietal, occipital, temporal cortex. Cohen's f2 showed moderate effect sizes for subcortical (range, 0.30-0.35), cortical (0.28-0.35) and cerebellar VOIs (0.31). CONCLUSION MMS in healthy aging are associated with lower synaptic density throughout the brain. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Margot G A Van Cauwenberge
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Aline Delva
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Parkinson Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Thomas Vande Casteele
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
| | - Maarten Laroy
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Ahmed Radwan
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Kristof Vansteelandt
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jan Van den Stock
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
| | - Filip Bouckaert
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven, Belgium
| | - Louise Emsell
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Parkinson Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Kasanga EA, Han Y, Shifflet MK, Navarrete W, McManus R, Parry C, Barahona A, Nejtek VA, Manfredsson FP, Kordower JH, Richardson JR, Salvatore MF. Nigral-specific increase in ser31 phosphorylation compensates for tyrosine hydroxylase protein and nigrostriatal neuron loss: Implications for delaying parkinsonian signs. Exp Neurol 2023; 368:114509. [PMID: 37634696 DOI: 10.1016/j.expneurol.2023.114509] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Compensatory mechanisms that augment dopamine (DA) signaling are thought to mitigate onset of hypokinesia prior to major loss of tyrosine hydroxylase (TH) in striatum that occurs in Parkinson's disease. However, the identity of such mechanisms remains elusive. In the present study, the rat nigrostriatal pathway was unilaterally-lesioned with 6-hydroxydopamine (6-OHDA) to determine whether differences in DA content, TH protein, TH phosphorylation, or D1 receptor expression in striatum or substantia nigra (SN) aligned with hypokinesia onset and severity at two time points. In striatum, DA and TH loss reached its maximum (>90%) 7 days after lesion induction. However, in SN, no DA loss occurred, despite ∼60% TH loss. Hypokinesia was established at 21 days post-lesion and maintained at 28 days. At this time, DA loss was ∼60% in the SN, but still of lesser magnitude than TH loss. At day 7 and 28, ser31 TH phosphorylation increased only in SN, corresponding to less DA versus TH protein loss. In contrast, ser40 TH phosphorylation was unaffected in either region. Despite DA loss in both regions at day 28, D1 receptor expression increased only in lesioned SN. These results support the concept that augmented components of DA signaling in the SN, through increased ser31 TH phosphorylation and D1 receptor expression, contribute as compensatory mechanisms against progressive nigrostriatal neuron and TH protein loss, and may mitigate hypokinesia severity.
Collapse
Affiliation(s)
- Ella A Kasanga
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Yoonhee Han
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Marla K Shifflet
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Walter Navarrete
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Robert McManus
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Caleb Parry
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Arturo Barahona
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Vicki A Nejtek
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85287, USA
| | - Jason R Richardson
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Michael F Salvatore
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA.
| |
Collapse
|
13
|
Agrawal S, Leurgans SE, Nag S, Oveisgharan S, Barnes LL, Bennett DA, Buchman AS, Schneider JA. Effects of Cerebrovascular and Lewy Body Pathology on Parkinsonian Signs in Community-Dwelling Older Adults. Neurology 2023; 101:e754-e763. [PMID: 37438127 PMCID: PMC10437019 DOI: 10.1212/wnl.0000000000207497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/21/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The roles of Lewy body (LB) and separately of cerebrovascular disease (CVD) pathologies in the severity of parkinsonian signs are well recognized in old age. We investigated whether the 2 pathologies act synergistically to further potentiate the severity of parkinsonism beyond their separate effects. METHODS We used postmortem data of decedents from 3 longitudinal community-based studies of aging who underwent annual clinical evaluation to assess parkinsonian signs using 26 items of the motor portion of a modified Unified Parkinson Disease Rating Scale. A summary score was developed from each item score to construct a global parkinsonian score, with a higher score indicating more severe parkinsonism. A detailed neuropathologic evaluation was performed to identify LB, Alzheimer disease pathology, nigral neuronal loss, atherosclerosis, macroscopic infarcts, and other CVD pathologies (arteriolosclerosis, cerebral amyloid angiopathy, and microscopic infarcts). A series of regression models with terms for LB, CVD pathology, and the interaction of LB with CVD pathologies was fit for global parkinsonism proximate to death and for individual parkinsonian signs scores including, parkinsonian gait, rigidity, tremor, and bradykinesia. RESULTS In 1,753 participants (mean age at death = 89 years; 68% women), LB was observed in 26% of participants, and CVD pathologies were present in more than two-thirds of participants. LB and 3 CVD pathologies (atherosclerosis, arteriolosclerosis, and macroscopic infarcts) were each independently associated with the severity of global parkinsonism proximate to death (LB: β = 0.318, SE = 0.08, p < 0.001; atherosclerosis: β = 0.373, SE = 0.079, p < 0.001; arteriolosclerosis: β = 0.253, SE = 0.078, p = 0.001; macroscopic infarcts: β = 0.333, SE = 0.077, p < 0.001). A linear regression model adjusted for demographics, CVD, and neurodegenerative pathologies showed interaction between LB and macroscopic infarcts (β = 0.463, SE = 0.168, p = 0.006), with LBs being associated with worse global parkinsonism when macroinfarcts are present. Similar interactions were found for atherosclerosis and LBs (β = 0.371, SE = 0.173, p = 0.032) and for parkinsonian gait as the outcome (macroscopic infarcts: β = 0.662, SE = 0.239, p = 0.005; atherosclerosis: β = 0.509, SE = 0.246, p = 0.038). Findings were not affected when the 66 participants with a clinical diagnosis of Parkinson disease were excluded. By contrast, there were no interactions between LB and other CVD pathologies or between atherosclerosis and macroscopic infarcts for global parkinsonism proximate to death. DISCUSSION These findings suggest that atherosclerosis and macroscopic infarcts interact with LB pathology to increase the severity of parkinsonism beyond their additive effects in older persons.
Collapse
Affiliation(s)
- Sonal Agrawal
- From the Rush Alzheimer's Disease Center (S.A., S.E.L., S.N., S.O., L.L.B., D.A.B., A.S.B., J.A.S.); Departments of Pathology (S.A., S.N., J.A.S.), Neurological Sciences (S.E.L., S.O., L.L.B., D.A.B., A.S.B., J.A.S.) and Behavioral Sciences (L.L.B.), Rush University Medical Center, Chicago, IL.
| | - Sue E Leurgans
- From the Rush Alzheimer's Disease Center (S.A., S.E.L., S.N., S.O., L.L.B., D.A.B., A.S.B., J.A.S.); Departments of Pathology (S.A., S.N., J.A.S.), Neurological Sciences (S.E.L., S.O., L.L.B., D.A.B., A.S.B., J.A.S.) and Behavioral Sciences (L.L.B.), Rush University Medical Center, Chicago, IL
| | - Sukriti Nag
- From the Rush Alzheimer's Disease Center (S.A., S.E.L., S.N., S.O., L.L.B., D.A.B., A.S.B., J.A.S.); Departments of Pathology (S.A., S.N., J.A.S.), Neurological Sciences (S.E.L., S.O., L.L.B., D.A.B., A.S.B., J.A.S.) and Behavioral Sciences (L.L.B.), Rush University Medical Center, Chicago, IL
| | - Shahram Oveisgharan
- From the Rush Alzheimer's Disease Center (S.A., S.E.L., S.N., S.O., L.L.B., D.A.B., A.S.B., J.A.S.); Departments of Pathology (S.A., S.N., J.A.S.), Neurological Sciences (S.E.L., S.O., L.L.B., D.A.B., A.S.B., J.A.S.) and Behavioral Sciences (L.L.B.), Rush University Medical Center, Chicago, IL
| | - Lisa L Barnes
- From the Rush Alzheimer's Disease Center (S.A., S.E.L., S.N., S.O., L.L.B., D.A.B., A.S.B., J.A.S.); Departments of Pathology (S.A., S.N., J.A.S.), Neurological Sciences (S.E.L., S.O., L.L.B., D.A.B., A.S.B., J.A.S.) and Behavioral Sciences (L.L.B.), Rush University Medical Center, Chicago, IL
| | - David A Bennett
- From the Rush Alzheimer's Disease Center (S.A., S.E.L., S.N., S.O., L.L.B., D.A.B., A.S.B., J.A.S.); Departments of Pathology (S.A., S.N., J.A.S.), Neurological Sciences (S.E.L., S.O., L.L.B., D.A.B., A.S.B., J.A.S.) and Behavioral Sciences (L.L.B.), Rush University Medical Center, Chicago, IL
| | - Aron S Buchman
- From the Rush Alzheimer's Disease Center (S.A., S.E.L., S.N., S.O., L.L.B., D.A.B., A.S.B., J.A.S.); Departments of Pathology (S.A., S.N., J.A.S.), Neurological Sciences (S.E.L., S.O., L.L.B., D.A.B., A.S.B., J.A.S.) and Behavioral Sciences (L.L.B.), Rush University Medical Center, Chicago, IL
| | - Julie A Schneider
- From the Rush Alzheimer's Disease Center (S.A., S.E.L., S.N., S.O., L.L.B., D.A.B., A.S.B., J.A.S.); Departments of Pathology (S.A., S.N., J.A.S.), Neurological Sciences (S.E.L., S.O., L.L.B., D.A.B., A.S.B., J.A.S.) and Behavioral Sciences (L.L.B.), Rush University Medical Center, Chicago, IL
| |
Collapse
|
14
|
Rocha E, Chamoli M, Chinta SJ, Andersen JK, Wallis R, Bezard E, Goldberg M, Greenamyre T, Hirst W, Kuan WL, Kirik D, Niedernhofer L, Rappley I, Padmanabhan S, Trudeau LE, Spillantini M, Scott S, Studer L, Bellantuono I, Mortiboys H. Aging, Parkinson's Disease, and Models: What Are the Challenges? AGING BIOLOGY 2023; 1:e20230010. [PMID: 38978807 PMCID: PMC11230631 DOI: 10.59368/agingbio.20230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parkinson's disease (PD) is a chronic, neurodegenerative condition characterized by motor symptoms such as bradykinesia, rigidity, and tremor, alongside multiple nonmotor symptoms. The appearance of motor symptoms is linked to progressive dopaminergic neuron loss within the substantia nigra. PD incidence increases sharply with age, suggesting a strong association between mechanisms driving biological aging and the development and progression of PD. However, the role of aging in the pathogenesis of PD remains understudied. Numerous models of PD, including cell models, toxin-induced models, and genetic models in rodents and nonhuman primates (NHPs), reproduce different aspects of PD, but preclinical studies of PD rarely incorporate age as a factor. Studies using patient neurons derived from stem cells via reprogramming methods retain some aging features, but their characterization, particularly of aging markers and reproducibility of neuron type, is suboptimal. Investigation of age-related changes in PD using animal models indicates an association, but this is likely in conjunction with other disease drivers. The biggest barrier to drawing firm conclusions is that each model lacks full characterization and appropriate time-course assessments. There is a need to systematically investigate whether aging increases the susceptibility of mouse, rat, and NHP models to develop PD and understand the role of cell models. We propose that a significant investment in time and resources, together with the coordination and sharing of resources, knowledge, and data, is required to accelerate progress in understanding the role of biological aging in PD development and improve the reliability of models to test interventions.
Collapse
Affiliation(s)
- Emily Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Shankar J Chinta
- Buck Institute for Research on Aging, Novato, CA, USA
- Touro University California, College of Pharmacy, Vallejo, CA, USA
| | | | - Ruby Wallis
- The Healthy Lifespan Institute, Sheffield, United Kingdom
| | | | | | - Tim Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - We-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS), Lund, Sweden
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Irit Rappley
- Recursion pharmaceuticals, Salt Lake City, UT, USA
| | | | - Louis-Eric Trudeau
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Maria Spillantini
- Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Ilaria Bellantuono
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Heather Mortiboys
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Neuroscience, Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kindgom
| |
Collapse
|
15
|
Li R, Liu Z, Huang R, Chen Y, Wei Z, Wang J, He L, Pei Y, Su Y, Hu X, Peng X. Frailty trajectory predicts subsequent cognitive decline: A 26-year population-based longitudinal cohort study. MedComm (Beijing) 2023; 4:e296. [PMID: 37287754 PMCID: PMC10242271 DOI: 10.1002/mco2.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023] Open
Abstract
Frailty refers to a decline in the physiological functioning of one or more organ systems. It remained unclear whether variations in the trajectory of frailty over time were associated with subsequent cognitive change. The aim of the current study was to investigate the association between frailty trajectories and subsequent cognitive decline based on the Health and Retirement Study (HRS). A total of 15,454 participants were included. The frailty trajectory was assessed using the Paulson-Lichtenberg Frailty Index, while the cognitive function was evaluated using the Langa-Weir Classification. Results showed that severe frailty was significantly associated with the subsequent decline in cognitive function (β [95% CI] = -0.21 [-0.40, -0.03], p = 0.03). In the five identified frailty trajectories, participants with mild frailty (inverted U-shaped, β [95% CI] = -0.22 [-0.43, -0.02], p = 0.04), mild frailty (U-shaped, β [95% CI] = -0.22 [-0.39, -0.06], p = 0.01), and frailty (β [95% CI] = -0.34 [-0.62, -0.07], p = 0.01) were all significantly associated with the subsequent cognition decline in the elderly. The current study suggested that monitoring and addressing frailty trajectories in older adults may be a critical approach in preventing or mitigating cognitive decline, which had significant implications for healthcare.
Collapse
Affiliation(s)
- Ruidan Li
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zheran Liu
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Rendong Huang
- Hangzhou Linan Guorui Health Industry Investment Co., LtdHangzhouZhejiangChina
| | - Ye Chen
- Department of Abdominal Cancer, Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Zhigong Wei
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingjing Wang
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Ling He
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yiyan Pei
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yonglin Su
- West China HospitalSichuan UniversityChengduSichuanChina
| | - Xiaolin Hu
- West China School of Nursing, West China HospitalSichuan UniversityChengduSichuanChina
| | - Xingchen Peng
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
16
|
Baldelli L, Pirazzini C, Sambati L, Ravaioli F, Gentilini D, Calandra-Buonaura G, Guaraldi P, Franceschi C, Cortelli P, Garagnani P, Bacalini MG, Provini F. Epigenetic clocks suggest accelerated aging in patients with isolated REM Sleep Behavior Disorder. NPJ Parkinsons Dis 2023; 9:48. [PMID: 36997543 PMCID: PMC10063653 DOI: 10.1038/s41531-023-00492-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
Isolated REM Sleep Behavior Disorder (iRBD) is the strongest prodromal marker for α-synucleinopathies. Overt α-synucleinopathies and aging share several mechanisms, but this relationship has been poorly investigated in prodromal phases. Using DNA methylation-based epigenetic clocks, we measured biological aging in videopolysomnography confirmed iRBD patients, videopolysomnography-negative and population-based controls. We found that iRBDs tended to be epigenetically older than controls, suggesting that accelerated aging characterizes prodromal neurodegeneration.
Collapse
Affiliation(s)
- Luca Baldelli
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Luisa Sambati
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesco Ravaioli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy
| | - Giovanna Calandra-Buonaura
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Pietro Guaraldi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, Russia
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Federica Provini
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| |
Collapse
|
17
|
Gonzalez-Rodriguez P, Zampese E, Surmeier DJ. Disease mechanisms as Subtypes: Mitochondrial and bioenergetic dysfunction. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:53-66. [PMID: 36803823 DOI: 10.1016/b978-0-323-85555-6.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disease in the world. Despite its enormous human and societal cost, there is no disease-modifying therapy for PD. This unmet medical need reflects our limited understanding of PD pathogenesis. One of the most important clues comes from the recognition that PD motor symptoms arises from the dysfunction and degeneration of a very select group of neurons in the brain. These neurons have a distinctive set of anatomic and physiologic traits that reflect their role in brain function. These traits elevate mitochondrial stress, potentially making them particularly vulnerable to age, as well as to genetic mutations and environmental toxins linked to PD incidence. In this chapter, the literature supporting this model is outlined, along with gaps in our knowledge base. The translational implications of this hypothesis are then discussed, with a focus on why disease-modification trials have failed to date and what this means for the development of new strategies for altering disease course.
Collapse
Affiliation(s)
- Patricia Gonzalez-Rodriguez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and CIBERNED, Seville, Spain
| | - Enrico Zampese
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
18
|
Modulation of nigral dopamine signaling mitigates parkinsonian signs of aging: evidence from intervention with calorie restriction or inhibition of dopamine uptake. GeroScience 2023; 45:45-63. [PMID: 35635679 PMCID: PMC9886753 DOI: 10.1007/s11357-022-00583-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/29/2022] [Indexed: 02/03/2023] Open
Abstract
Identifying neurobiological mechanisms of aging-related parkinsonism, and lifestyle interventions that mitigate them, remain critical knowledge gaps. No aging study, from rodent to human, has reported loss of any dopamine (DA) signaling marker near the magnitude associated with onset of parkinsonian signs in Parkinson's disease (PD). However, in substantia nigra (SN), similar loss of DA signaling markers in PD or aging coincide with parkinsonian signs. Alleviation of these parkinsonian signs may be possible by interventions such as calorie restriction (CR), which augment DA signaling markers like tyrosine hydroxylase (TH) expression in the SN, but not striatum. Here, we interrogated respective contributions of nigral and striatal DA mechanisms to aging-related parkinsonian signs in aging (18 months old) rats in two studies: by the imposition of CR for 6 months, and inhibition of DA uptake within the SN or striatum by cannula-directed infusion of nomifensine. Parkinsonian signs were mitigated within 12 weeks after CR and maintained until 24 months old, commensurate with increased D1 receptor expression in the SN alone, and increased GDNF family receptor, GFR-α1, in the striatum, suggesting increased GDNF signaling. Nomifensine infusion into the SN or striatum selectively increased extracellular DA. However, only nigral infusion increased locomotor activity. These results indicate mechanisms that increase components of DA signaling in the SN alone mitigate parkinsonian signs in aging, and are modifiable by interventions, like CR, to offset parkinsonian signs, even at advanced age. Moreover, these results give evidence that changes in nigral DA signaling may modulate some parameters of locomotor activity autonomously from striatal DA signaling.
Collapse
|
19
|
Sharma M, Sharma N, Khairnar A. Intranasal Rotenone Induces Alpha-Synuclein Accumulation, Neuroinflammation and Dopaminergic Neurodegeneration in Middle-Aged Mice. Neurochem Res 2022; 48:1543-1560. [PMID: 36571663 DOI: 10.1007/s11064-022-03847-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022]
Abstract
Accumulation of alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson's disease (PD). Previous studies suggest that α-syn pathology may originate from the olfactory bulb (OB) or gut in response to an unknown pathogen and later progress to the different brain regions. Aging is viewed as the utmost threat to PD development. Therefore, studies depicting the role of age in α-syn accumulation and its progression in PD are important. In the present study, we gave intranasal rotenone microemulsion for 6 weeks in 12-month-old female BALB/c mice and found olfactory dysfunction after 4 and 6 weeks of rotenone administration. Interestingly, motor impairment was observed only after 6 weeks. The animals were sacrificed after 6 weeks to perform western blotting and immunohistochemical studies to detect α-syn pathology, neuroinflammation and neurodegeneration. We found α-syn accumulation in OB, striatum, substantia nigra (SN) and cortex. Importantly, we found significant glial cell activation and neurodegeneration in all the analysed regions which were absent in our previous published studies with 3 months old mice even after they were exposed to rotenone for 9 weeks indicating age is a crucial factor for α-syn induced neuroinflammation and neurodegeneration. We also observed increased iron accumulation in SN of rotenone-exposed aged mice. Moreover, inflammaging was observed in OB and striatum of 12-month-old BALB/c mice as compared to 3-month-old BALB/c mice. In conclusion, there is a difference in sensitivity between adult and aged mice in the development and progression of α-syn pathology and subsequent neurodegeneration, for which inflammaging might be the crucial probable mechanism.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Nishant Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Ahmedabad, Gandhinagar, 382355, Gujarat, India. .,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic, ICRC, FNUSA, Brno, Czech Republic.
| |
Collapse
|
20
|
Agrawal S, Farfel JM, Arfanakis K, Al-Harthi L, Shull T, Teppen TL, Evia AM, Patel MB, Ely EW, Leurgans SE, Bennett DA, Mehta R, Schneider JA. Brain autopsies of critically ill COVID-19 patients demonstrate heterogeneous profile of acute vascular injury, inflammation and age-linked chronic brain diseases. Acta Neuropathol Commun 2022; 10:186. [PMID: 36528671 PMCID: PMC9758667 DOI: 10.1186/s40478-022-01493-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND This study examined neuropathological findings of patients who died following hospitalization in an intensive care unit with SARS-CoV-2. METHODS Data originate from 20 decedents who underwent brain autopsy followed by ex-vivo imaging and dissection. Systematic neuropathologic examinations were performed to assess histopathologic changes including cerebrovascular disease and tissue injury, neurodegenerative diseases, and inflammatory response. Cerebrospinal fluid (CSF) and fixed tissues were evaluated for the presence of viral RNA and protein. RESULTS The mean age-at-death was 66.2 years (range: 26-97 years) and 14 were male. The patient's medical history included cardiovascular risk factors or diseases (n = 11, 55%) and dementia (n = 5, 25%). Brain examination revealed a range of acute and chronic pathologies. Acute vascular pathologic changes were common in 16 (80%) subjects and included infarctions (n = 11, 55%) followed by acute hypoxic/ischemic injury (n = 9, 45%) and hemorrhages (n = 7, 35%). These acute pathologic changes were identified in both younger and older groups and those with and without vascular risk factors or diseases. Moderate-to-severe microglial activation were noted in 16 (80%) brains, while moderate-to-severe T lymphocyte accumulation was present in 5 (25%) brains. Encephalitis-like changes included lymphocytic cuffing (n = 6, 30%) and neuronophagia or microglial nodule (most prominent in the brainstem, n = 6, 30%) were also observed. A single brain showed vasculitis-like changes and one other exhibited foci of necrosis with ball-ring hemorrhages reminiscent of acute hemorrhagic leukoencephalopathy changes. Chronic pathologies were identified in only older decedents: 7 brains exhibited neurodegenerative diseases and 8 brains showed vascular disease pathologies. CSF and brain samples did not show evidence of viral RNA or protein. CONCLUSIONS Acute tissue injuries and microglial activation were the most common abnormalities in COVID-19 brains. Focal evidence of encephalitis-like changes was noted despite the lack of detectable virus. The majority of older subjects showed age-related brain pathologies even in the absence of known neurologic disease. Findings of this study suggest that acute brain injury superimposed on common pre-existing brain disease may put older subjects at higher risk of post-COVID neurologic sequelae.
Collapse
Affiliation(s)
- Sonal Agrawal
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago, IL, 60612, USA.
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA.
| | - Jose M Farfel
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago, IL, 60612, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Tanner Shull
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Tara L Teppen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Arnold M Evia
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago, IL, 60612, USA
| | - Mayur B Patel
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Health Services Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- The Geriatric Research Education Clinical Center (GRECC), Nashville Veterans Affairs Medical Center, Tennessee Valley Healthcare System (TVHS), Nashville, TN, USA
| | - E Wesley Ely
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Health Services Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- The Geriatric Research Education Clinical Center (GRECC), Nashville Veterans Affairs Medical Center, Tennessee Valley Healthcare System (TVHS), Nashville, TN, USA
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Rupal Mehta
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago, IL, 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Jelke Building, 1750 W. Harrison Street, Chicago, IL, 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
21
|
Arnold MR, Coughlin DG, Brumbach BH, Smirnov DS, Concha-Marambio L, Farris CM, Ma Y, Kim Y, Wilson EN, Kaye JA, Hiniker A, Woltjer RL, Galasko DR, Quinn JF. α-Synuclein Seed Amplification in CSF and Brain from Patients with Different Brain Distributions of Pathological α-Synuclein in the Context of Co-Pathology and Non-LBD Diagnoses. Ann Neurol 2022; 92:650-662. [PMID: 35808984 PMCID: PMC9489647 DOI: 10.1002/ana.26453] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the sensitivity and specificity of α-synuclein seed amplification assay (αSyn-SAA) in antemortem and postmortem cerebrospinal fluid (CSF) of autopsy-confirmed patients with different distributions of pathological αSyn, co-pathologies, and clinical diagnoses. METHODS The αSyn-SAA was used to test antemortem CSF samples from 119 subjects with a variety of clinical syndromes and standardized neuropathological examinations from Oregon Health and Science University (OHSU) and University of California San Diego (UCSD; 56 additional postmortem CSF samples available). The αSyn-SAA was also applied to frontal cortex and amygdala homogenates. Sensitivity and specificity were compared across distributions of αSyn pathology. Clinical data and co-pathologies were compared across αSyn-SAA positive and negative groups. RESULTS Fifty-three individuals without and 66 with αSyn-pathology (neocortical [n = 38], limbic [n = 7], and amygdala-predominant [n = 21]) were included. There was a sensitivity of 97.8% and specificity of 98.1% of the αSyn-SAA to identify patients with limbic/neocortical pathology from antemortem CSF. Sensitivity to detect amygdala-predominant pathology was only 14.3%. Postmortem CSF and brain tissue αSyn-SAA analyses also showed higher assay positivity in samples from limbic/neocortical cases. INTERPRETATION CSF αSyn-SAA reliably identifies αSyn seeds in patients with diffuse αSyn pathology in the context of co-pathology and non-Lewy body disease (LBD) diagnoses. The analysis of brain homogenates suggests that pathological αSyn in the amygdala might differ from pathological αSyn in the frontal cortex. The αSyn-SAA might facilitate the differential diagnosis of dementias with mixed pathologies. ANN NEUROL 2022;92:650-662.
Collapse
Affiliation(s)
- Moriah R. Arnold
- Medical Scientist Training Program, Oregon Health and Science University
| | | | | | | | | | | | | | | | - Yongya Kim
- Department of Neurosciences, University of California San Diego
| | - Edward N. Wilson
- Department of Neurology & Neurological Sciences, Stanford University
| | - Jeffrey A. Kaye
- Department of Neurology, Oregon Health and Science University
| | - Annie Hiniker
- Department of Pathology, University of California San Diego
| | | | - Doug R. Galasko
- Department of Neurosciences, University of California San Diego
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University
- Portland VA Medical Center, Parkinson’s Disease Research Education and Clinical Care Center (PADRECC)
| |
Collapse
|
22
|
Rani L, Ranjan Sahu M, Chandra Mondal A. Age-related Mitochondrial Dysfunction in Parkinson's Disease: New Insights Into the Disease Pathology. Neuroscience 2022; 499:152-169. [PMID: 35839924 DOI: 10.1016/j.neuroscience.2022.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Abstract
Aging is a progressive loss of physiological function that increases risk of disease and death. Among the many factors that contribute to human aging, mitochondrial dysfunction has emerged as one of the most prominent features of the aging process. It has been linked to the development of various age-related pathologies, including Parkinson's disease (PD). Mitochondria has a complex quality control system that ensures mitochondrial integrity and function. Perturbations in these mitochondrial mechanisms have long been linked to various age-related neurological disorders. Even though research has shed light on several aspects of the disease pathology, the underlying mechanism of age-related factors responsible for individuals developing this disease is still unknown. This review article aims to discuss the role of mitochondria in the transition from normal brain aging to pathological brain aging, which leads to the progression of PD. We have discussed the emerging evidence on how age-related disruption of mitochondrial quality control mechanisms contributes to the development of PD-related pathophysiology.
Collapse
Affiliation(s)
- Linchi Rani
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India.
| |
Collapse
|
23
|
Cannabidiol alleviates the damage to dopaminergic neurons in MPTP-induced Parkinson's disease mice via regulating neuronal apoptosis and neuroinflammation. Neuroscience 2022; 498:64-72. [DOI: 10.1016/j.neuroscience.2022.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/20/2022]
|
24
|
Hallacli E, Kayatekin C, Nazeen S, Wang XH, Sheinkopf Z, Sathyakumar S, Sarkar S, Jiang X, Dong X, Di Maio R, Wang W, Keeney MT, Felsky D, Sandoe J, Vahdatshoar A, Udeshi ND, Mani DR, Carr SA, Lindquist S, De Jager PL, Bartel DP, Myers CL, Greenamyre JT, Feany MB, Sunyaev SR, Chung CY, Khurana V. The Parkinson's disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability. Cell 2022; 185:2035-2056.e33. [PMID: 35688132 DOI: 10.1016/j.cell.2022.05.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022]
Abstract
Alpha-synuclein (αS) is a conformationally plastic protein that reversibly binds to cellular membranes. It aggregates and is genetically linked to Parkinson's disease (PD). Here, we show that αS directly modulates processing bodies (P-bodies), membraneless organelles that function in mRNA turnover and storage. The N terminus of αS, but not other synucleins, dictates mutually exclusive binding either to cellular membranes or to P-bodies in the cytosol. αS associates with multiple decapping proteins in close proximity on the Edc4 scaffold. As αS pathologically accumulates, aberrant interaction with Edc4 occurs at the expense of physiologic decapping-module interactions. mRNA decay kinetics within PD-relevant pathways are correspondingly disrupted in PD patient neurons and brain. Genetic modulation of P-body components alters αS toxicity, and human genetic analysis lends support to the disease-relevance of these interactions. Beyond revealing an unexpected aspect of αS function and pathology, our data highlight the versatility of conformationally plastic proteins with high intrinsic disorder.
Collapse
Affiliation(s)
- Erinc Hallacli
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Can Kayatekin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sumaiya Nazeen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Xiou H Wang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Zoe Sheinkopf
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shubhangi Sathyakumar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Souvarish Sarkar
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xin Jiang
- Yumanity Therapeutics, Boston, MA 02135, USA
| | - Xianjun Dong
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Genomics and Bioinformatics Hub, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, Pittsburgh, PA 15213, USA
| | - Wen Wang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, Pittsburgh, PA 15213, USA
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics and Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto, ON M5T 3M7, Canada
| | - Jackson Sandoe
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Aazam Vahdatshoar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - D R Mani
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David P Bartel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, Pittsburgh, PA 15213, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | | | - Vikram Khurana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
25
|
Wang B, Wang L, Qu Y, Lu J, Xia W. Chitosan oligosaccharides exert neuroprotective effects via modulating the PI3K/Akt/Bcl-2 pathway in a Parkinsonian model. Food Funct 2022; 13:5838-5853. [PMID: 35545086 DOI: 10.1039/d1fo04374a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease, is a threat to patients due to the inability to prevent or decelerate disease progression. Currently, most clinical drugs for the treatment of PD are synthetic drugs that always present undesirable adverse or toxic effects. Chitosan oligosaccharide (COS) is a natural oligosaccharide that has been considered relatively safe and studied in the therapeutic effects on different types of neuronal disorders. In this study, we separated four COS monomers (COSs) including chitobiose (COS2), chitotriose (COS3), chitotetraose (COS4) and chitopentaose (COS5) to explore their structure-activity relationship in PD mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Techniques including TLC, HPLC, MS, and NMR were applied to investigate the purity and structure of the COSs. After the oral administration of COSs, behavior indexes, pathological indexes, cytokines, and expression of proteins in the nigrostriatal pathway of the mice were analyzed. The results showed that the four COSs were fully deacetylated and the purity was >90%. Additionally, the neurobehavioral deficits of the PD mice were improved by treatment with COSs. The results further proved that COSs could protect the TH-labelled dopaminergic neurons via reducing the overexpression of α-synuclein, alleviating neuroinflammation, and activating the PI3K/Akt/Bcl-2 pathway to reduce apoptosis. COS3 exhibited a better effect on protecting dopaminergic neurons; however, COS2 provided a better effect on reducing the overexpression of α-synuclein. To conclude, the neuroprotective activity makes COSs a viable candidate as an ingredient for healthcare products.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ling Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yufei Qu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Jingyu Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
26
|
Reward System Dysfunction and the Motoric-Cognitive Risk Syndrome in Older Persons. Biomedicines 2022; 10:biomedicines10040808. [PMID: 35453558 PMCID: PMC9029623 DOI: 10.3390/biomedicines10040808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
During aging, many physiological systems spontaneously change independent of the presence of chronic diseases. The reward system is not an exception and its dysfunction generally includes a reduction in dopamine and glutamate activities and the loss of neurons of the ventral tegmental area (VTA). These impairments are even more pronounced in older persons who have neurodegenerative diseases and/or are affected by cognitive and motoric frailty. All these changes may result in the occurrence of cognitive and motoric frailty and accelerated progression of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases. In particular, the loss of neurons in VTA may determine an acceleration of depressive symptoms and cognitive and motor frailty trajectory, producing an increased risk of disability and mortality. Thus, we hypothesize the existence of a loop between reward system dysfunction, depression, and neurodegenerative diseases in older persons. Longitudinal studies are needed to evaluate the determinant role of the reward system in the onset of motoric-cognitive risk syndrome.
Collapse
|
27
|
Zammit AR, Yu L, Petyuk V, Schneider JA, De Jager PL, Klein HU, Bennett DA, Buchman AS. Cortical Proteins and Individual Differences in Cognitive Resilience in Older Adults. Neurology 2022; 98:e1304-e1314. [PMID: 35241503 PMCID: PMC8967427 DOI: 10.1212/wnl.0000000000200017] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Cognitive resilience is a well-recognized concept, but knowledge gaps about its underlying mechanisms have made it difficult to develop instruments that identify older adults with high or low resilience. We tested whether aggregating cortical peptides associated with cognitive resilience into an index can identify adults with higher or lower cognitive resilience. METHODS We used data from 1,192 older decedents, including annual clinical testing, indices of 10 Alzheimer disease (AD) and related dementia (ADRD) pathologies, and 226 proteotypic peptides measured in the dorsal lateral prefrontal cortex. We used linear mixed-effects models to identify peptides that were related to cognitive resilience (i.e., cognitive decline not explained by ADRD pathologies [false discovery rate <0.05]). We aggregated the expression levels of these resilience peptides into a person-specific cognitive resilience index and examined its association with AD clinical and pathologic phenotypes. RESULTS We constructed a resilience index from 52 of 226 peptides related to cognitive resilience. A higher index was associated with slower cognitive decline (estimate 0.05, SE 0.003, p < 0.001) and slower motor decline (estimate 0.005, SE 0.001, p < 0.001). Most resilience peptides (70%) were specific to cognitive decline, but 30% also provided resilience for motor decline. A higher index was also related to a lower burden of AD pathologies (odds ratio [OR] 0.41, SE 0.01, p < 0.001) and modified the association of AD pathology with cognition in that a higher index modified the negative effects of AD pathology on AD dementia proximate to death (OR 0.70, SE 0.14, p = 0.010). Up to 90% of cognitive resilience peptides were related to AD pathologic phenotypes. DISCUSSION Cortical proteins may provide some degree of cognitive resilience. These multifunctional proteins also seem to provide resilience to other AD clinical phenotypes and have independent associations with ADRD pathologies. Resilience proteins may be high-value therapeutic targets for drug discovery of interventions that maintain brain health in aging adults via multiple pathways.
Collapse
Affiliation(s)
- Andrea R Zammit
- From the Rush Alzheimer's Disease Center (A.R.Z., Y.L., J.A.S., D.A.B., A.S.B.), Department of Psychiatry and Behavioral Sciences (A.R.Z.), Department of Neurological Sciences (Y.L., J.A.S., D.A.B., A.S.B.), and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Biological Sciences Division (V.P.), Pacific Northwest National Laboratory, Richland, WA; and Center for Translational & Computational Neuroimmunology (P.L.D.J., H.-U.K.), Department of Neurology, Columbia University Medical Center, New York, NY.
| | - Lei Yu
- From the Rush Alzheimer's Disease Center (A.R.Z., Y.L., J.A.S., D.A.B., A.S.B.), Department of Psychiatry and Behavioral Sciences (A.R.Z.), Department of Neurological Sciences (Y.L., J.A.S., D.A.B., A.S.B.), and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Biological Sciences Division (V.P.), Pacific Northwest National Laboratory, Richland, WA; and Center for Translational & Computational Neuroimmunology (P.L.D.J., H.-U.K.), Department of Neurology, Columbia University Medical Center, New York, NY
| | - Vladislav Petyuk
- From the Rush Alzheimer's Disease Center (A.R.Z., Y.L., J.A.S., D.A.B., A.S.B.), Department of Psychiatry and Behavioral Sciences (A.R.Z.), Department of Neurological Sciences (Y.L., J.A.S., D.A.B., A.S.B.), and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Biological Sciences Division (V.P.), Pacific Northwest National Laboratory, Richland, WA; and Center for Translational & Computational Neuroimmunology (P.L.D.J., H.-U.K.), Department of Neurology, Columbia University Medical Center, New York, NY
| | - Julie A Schneider
- From the Rush Alzheimer's Disease Center (A.R.Z., Y.L., J.A.S., D.A.B., A.S.B.), Department of Psychiatry and Behavioral Sciences (A.R.Z.), Department of Neurological Sciences (Y.L., J.A.S., D.A.B., A.S.B.), and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Biological Sciences Division (V.P.), Pacific Northwest National Laboratory, Richland, WA; and Center for Translational & Computational Neuroimmunology (P.L.D.J., H.-U.K.), Department of Neurology, Columbia University Medical Center, New York, NY
| | - Philip Lawrence De Jager
- From the Rush Alzheimer's Disease Center (A.R.Z., Y.L., J.A.S., D.A.B., A.S.B.), Department of Psychiatry and Behavioral Sciences (A.R.Z.), Department of Neurological Sciences (Y.L., J.A.S., D.A.B., A.S.B.), and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Biological Sciences Division (V.P.), Pacific Northwest National Laboratory, Richland, WA; and Center for Translational & Computational Neuroimmunology (P.L.D.J., H.-U.K.), Department of Neurology, Columbia University Medical Center, New York, NY
| | - Hans-Ulrich Klein
- From the Rush Alzheimer's Disease Center (A.R.Z., Y.L., J.A.S., D.A.B., A.S.B.), Department of Psychiatry and Behavioral Sciences (A.R.Z.), Department of Neurological Sciences (Y.L., J.A.S., D.A.B., A.S.B.), and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Biological Sciences Division (V.P.), Pacific Northwest National Laboratory, Richland, WA; and Center for Translational & Computational Neuroimmunology (P.L.D.J., H.-U.K.), Department of Neurology, Columbia University Medical Center, New York, NY
| | - David A Bennett
- From the Rush Alzheimer's Disease Center (A.R.Z., Y.L., J.A.S., D.A.B., A.S.B.), Department of Psychiatry and Behavioral Sciences (A.R.Z.), Department of Neurological Sciences (Y.L., J.A.S., D.A.B., A.S.B.), and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Biological Sciences Division (V.P.), Pacific Northwest National Laboratory, Richland, WA; and Center for Translational & Computational Neuroimmunology (P.L.D.J., H.-U.K.), Department of Neurology, Columbia University Medical Center, New York, NY
| | - Aron S Buchman
- From the Rush Alzheimer's Disease Center (A.R.Z., Y.L., J.A.S., D.A.B., A.S.B.), Department of Psychiatry and Behavioral Sciences (A.R.Z.), Department of Neurological Sciences (Y.L., J.A.S., D.A.B., A.S.B.), and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Biological Sciences Division (V.P.), Pacific Northwest National Laboratory, Richland, WA; and Center for Translational & Computational Neuroimmunology (P.L.D.J., H.-U.K.), Department of Neurology, Columbia University Medical Center, New York, NY
| |
Collapse
|
28
|
Wang TF, Wu SY, Pan BS, Tsai SF, Kuo YM. Inhibition of Nigral Microglial Activation Reduces Age-Related Loss of Dopaminergic Neurons and Motor Deficits. Cells 2022; 11:cells11030481. [PMID: 35159290 PMCID: PMC8834087 DOI: 10.3390/cells11030481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disease caused by a selective loss of dopaminergic (DA) neurons in the substantia nigra (SN). Microglial activation is implicated in the pathogenesis of PD. This study aimed to characterize the role of microglial activation in aging-related nigral DA neuron loss and motor deficits in mice. We showed that, compared to 3-month-old mice, the number of DA neurons in the SN and the expression of dopamine transporter (DAT) in the striatum decreased during the period of 9 to 12 months of age. Motor deficits and microglial activation in the SN were also evident during these months. The number of DA neurons was negatively correlated with the degrees of microglial activation. The inhibition of age-related microglial activation by ibuprofen during these 3 months decreased DA neuron loss in the SN. Eliminating the microglia prevented systemic inflammation-induced DA neuron death. Forcing mice to run during these 3 months inhibited microglial activation and DA neuron loss. Blocking the brain-derived neurotrophic factor (BDNF) signaling eliminated the exercise-induced protective effects. In conclusion, nigral DA neurons were susceptible to local microglial activation. Running exercise upregulated BDNF-TrkB signaling and inhibited microglial activation during aging. Long-term exercise can be considered as a non-pharmacological strategy to ameliorate microglial activation and related neurodegeneration.
Collapse
Affiliation(s)
- Tzu-Feng Wang
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan;
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Shih-Ying Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (S.-Y.W.); (B.-S.P.)
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC 27157, USA
| | - Bo-Syong Pan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (S.-Y.W.); (B.-S.P.)
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC 27157, USA
| | - Sheng-Feng Tsai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (S.-Y.W.); (B.-S.P.)
| | - Yu-Min Kuo
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan;
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (S.-Y.W.); (B.-S.P.)
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5294); Fax: +886-6-2093007
| |
Collapse
|
29
|
Zago E, Dal Molin A, Dimitri GM, Xumerle L, Pirazzini C, Bacalini MG, Maturo MG, Azevedo T, Spasov S, Gómez-Garre P, Periñán MT, Jesús S, Baldelli L, Sambati L, Calandra-Buonaura G, Garagnani P, Provini F, Cortelli P, Mir P, Trenkwalder C, Mollenhauer B, Franceschi C, Liò P, Nardini C. Early downregulation of hsa-miR-144-3p in serum from drug-naïve Parkinson's disease patients. Sci Rep 2022; 12:1330. [PMID: 35079043 PMCID: PMC8789812 DOI: 10.1038/s41598-022-05227-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Advanced age represents one of the major risk factors for Parkinson's Disease. Recent biomedical studies posit a role for microRNAs, also known to be remodelled during ageing. However, the relationship between microRNA remodelling and ageing in Parkinson's Disease, has not been fully elucidated. Therefore, the aim of the present study is to unravel the relevance of microRNAs as biomarkers of Parkinson's Disease within the ageing framework. We employed Next Generation Sequencing to profile serum microRNAs from samples informative for Parkinson's Disease (recently diagnosed, drug-naïve) and healthy ageing (centenarians) plus healthy controls, age-matched with Parkinson's Disease patients. Potential microRNA candidates markers, emerging from the combination of differential expression and network analyses, were further validated in an independent cohort including both drug-naïve and advanced Parkinson's Disease patients, and healthy siblings of Parkinson's Disease patients at higher genetic risk for developing the disease. While we did not find evidences of microRNAs co-regulated in Parkinson's Disease and ageing, we report that hsa-miR-144-3p is consistently down-regulated in early Parkinson's Disease patients. Moreover, interestingly, functional analysis revealed that hsa-miR-144-3p is involved in the regulation of coagulation, a process known to be altered in Parkinson's Disease. Our results consistently show the down-regulation of hsa-mir144-3p in early Parkinson's Disease, robustly confirmed across a variety of analytical and experimental analyses. These promising results ask for further research to unveil the functional details of the involvement of hsa-mir144-3p in Parkinson's Disease.
Collapse
Affiliation(s)
| | | | - Giovanna Maria Dimitri
- Computer Laboratory, Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | | | - Chiara Pirazzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Maria Giovanna Maturo
- Personal Genomics S.R.L., Verona, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Tiago Azevedo
- Computer Laboratory, Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Simeon Spasov
- Computer Laboratory, Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Pilar Gómez-Garre
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María Teresa Periñán
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Luca Baldelli
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
| | - Luisa Sambati
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giovanna Calandra-Buonaura
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Federica Provini
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kliniktstrasse 16, 34128, Kassel, Germany
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kliniktstrasse 16, 34128, Kassel, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Pietro Liò
- Computer Laboratory, Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Christine Nardini
- Personal Genomics S.R.L., Verona, Italy.
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo "Mauro Picone", 00185, Rome, Italy.
| |
Collapse
|
30
|
Autophagy facilitates age-related cell apoptosis-a new insight from senile cataract. Cell Death Dis 2022; 13:37. [PMID: 35013122 PMCID: PMC8748728 DOI: 10.1038/s41419-021-04489-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022]
Abstract
Age-related cell loss underpins many senescence-associated diseases. Apoptosis of lens epithelial cells (LECs) is the important cellular basis of senile cataract resulted from prolonged exposure to oxidative stress, although the specific mechanisms remain elusive. Our data indicated the concomitance of high autophagy activity, low SQSTM1/p62 protein level and apoptosis in the same LEC from senile cataract patients. Meanwhile, in primary cultured LECs model, more durable autophagy activation and more obvious p62 degradation under oxidative stress were observed in LECs from elder healthy donors, compared with that from young healthy donors. Using autophagy-deficiency HLE-B3 cell line, autophagy adaptor p62 was identified as the critical scaffold protein sustaining the pro-survival signaling PKCι-IKK-NF-κB cascades, which antagonized the pro-apoptotic signaling. Moreover, the pharmacological inhibitor of autophagy, 3-MA, significantly inhibited p62 degradation and rescued oxidative stress-induced apoptosis in elder LECs. Collectively, this study demonstrated that durable activation of autophagy promoted age-related cell death in LECs. Our work contributes to better understanding the pathogenesis of senescence-associated diseases.
Collapse
|
31
|
Wang L, Li S, Jiang Y, Zhao Z, Shen Y, Zhang J, Zhao L. Neuroprotective effect of Lactobacillus plantarum DP189 on MPTP-induced Parkinson's disease model mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
32
|
Buchanan SM, Richards M, Schott JM, Schrag A. Mild Parkinsonian Signs: A Systematic Review of Clinical, Imaging, and Pathological Associations. Mov Disord 2021; 36:2481-2493. [PMID: 34562045 DOI: 10.1002/mds.28777] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 11/07/2022] Open
Abstract
Mild parkinsonian signs (MPS) have been widely studied during the past 3 decades and proposed as a risk marker for neurodegenerative disease. This systematic review explores the epidemiology, clinical and prognostic associations, radiological features, and pathological findings associated with MPS in older adults free from neurodegenerative disease. We find that MPS as currently defined are strongly associated with increasing age and increased risk of development of Parkinson's disease (PD), all-cause dementia, disability, and death. Positive associations with later PD are found mainly in younger populations and those with other features of prodromal PD. There are currently no consistent radiological findings for MPS, and pathological studies have shown that MPS, at least in the oldest old, are often underpinned by mixed neuropathologies, including those associated with Alzheimer's disease, cerebrovascular disease, nigral neuronal loss, and Lewy bodies. Different subcategories of MPS appear to convey varying risk and specificity for PD and other outcomes. MPS overall are not specific for parkinsonian disorders and, although associated with increased risk of PD, can reflect multiple pathologies, particularly in older individuals. "Mild motor signs" appears a more appropriate term to avoid prognostic and pathological implications, and larger future studies to prospectively examine outcomes and associations of specific MPS subcategories are required. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sarah M Buchanan
- Dementia Research Centre, University College London Institute of Neurology, University College London, London, United Kingdom
- Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Marcus Richards
- Medical Research Council Unit for Lifelong Health and Ageing at UCL, London, United Kingdom
| | - Jonathan M Schott
- Dementia Research Centre, University College London Institute of Neurology, University College London, London, United Kingdom
| | - Anette Schrag
- Department of Clinical Neurosciences, UCL Institute of Neurology University College London, London, United Kingdom
| |
Collapse
|
33
|
Nag S, Barnes LL, Yu L, Buchman AS, Bennett DA, Schneider JA, Wilson RS. Association of Lewy Bodies With Age-Related Clinical Characteristics in Black and White Decedents. Neurology 2021; 97:e825-e835. [PMID: 34088871 PMCID: PMC8397586 DOI: 10.1212/wnl.0000000000012324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/24/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The associations of Lewy bodies (LBs) with olfactory dysfunction, parkinsonism, and higher odds of dementia were assessed in Black and White community-dwelling elders and racial differences in these associations were tested. METHODS Black decedents (n = 81) were matched 2-to-1 by age, sex, years of education, and follow-up time in the study with White decedents (n = 154) from 4 longitudinal studies of dementia and aging. Participants underwent uniform clinical examination and cognitive, motor, and olfactory testing. LBs were detected in 7 brain regions by α-synuclein immunohistochemistry and racial differences in their association with olfaction, parkinsonism, and odds of dementia were determined using regression analyses. RESULTS The mean scores of the odor test, global parkinsonism signs, and global cognition were lower in Black than White decedents; the frequency of dementia was similar in both groups. The frequency of LBs was similar in Black and White decedents (∼25%), as was the frequency of LBs in individual brain regions, while the mean LB counts/mm2 were similar in all regions except the cingulate cortex, which showed higher mean LB counts in Black decedents. In regression analyses, LBs were associated with impaired olfaction (-2.23, 95% confidence interval [CI] -3.45 to -1.01) and higher odds of dementia (odds ratio 3.0, 95% CI 1.10-8.17) in both racial groups; an association with parkinsonism was stronger in Black than White decedents. CONCLUSIONS The frequency, distribution, and clinical manifestations of LBs are similar in Black and White elders.
Collapse
Affiliation(s)
- Sukriti Nag
- From the Departments of Pathology (Neuropathology) (S.N., J.A.S.), Neurological Sciences (L.L.B., L.Y., A.S.B., D.A.B., J.A.S., R.S.W.), and Psychiatry and Behavioral Sciences (L.L.B., R.S.W.), Rush Alzheimer Disease Center and Rush University Medical Center, Chicago, IL.
| | - Lisa L Barnes
- From the Departments of Pathology (Neuropathology) (S.N., J.A.S.), Neurological Sciences (L.L.B., L.Y., A.S.B., D.A.B., J.A.S., R.S.W.), and Psychiatry and Behavioral Sciences (L.L.B., R.S.W.), Rush Alzheimer Disease Center and Rush University Medical Center, Chicago, IL
| | - Lei Yu
- From the Departments of Pathology (Neuropathology) (S.N., J.A.S.), Neurological Sciences (L.L.B., L.Y., A.S.B., D.A.B., J.A.S., R.S.W.), and Psychiatry and Behavioral Sciences (L.L.B., R.S.W.), Rush Alzheimer Disease Center and Rush University Medical Center, Chicago, IL
| | - Aron S Buchman
- From the Departments of Pathology (Neuropathology) (S.N., J.A.S.), Neurological Sciences (L.L.B., L.Y., A.S.B., D.A.B., J.A.S., R.S.W.), and Psychiatry and Behavioral Sciences (L.L.B., R.S.W.), Rush Alzheimer Disease Center and Rush University Medical Center, Chicago, IL
| | - David A Bennett
- From the Departments of Pathology (Neuropathology) (S.N., J.A.S.), Neurological Sciences (L.L.B., L.Y., A.S.B., D.A.B., J.A.S., R.S.W.), and Psychiatry and Behavioral Sciences (L.L.B., R.S.W.), Rush Alzheimer Disease Center and Rush University Medical Center, Chicago, IL
| | - Julie A Schneider
- From the Departments of Pathology (Neuropathology) (S.N., J.A.S.), Neurological Sciences (L.L.B., L.Y., A.S.B., D.A.B., J.A.S., R.S.W.), and Psychiatry and Behavioral Sciences (L.L.B., R.S.W.), Rush Alzheimer Disease Center and Rush University Medical Center, Chicago, IL
| | - Robert S Wilson
- From the Departments of Pathology (Neuropathology) (S.N., J.A.S.), Neurological Sciences (L.L.B., L.Y., A.S.B., D.A.B., J.A.S., R.S.W.), and Psychiatry and Behavioral Sciences (L.L.B., R.S.W.), Rush Alzheimer Disease Center and Rush University Medical Center, Chicago, IL
| |
Collapse
|
34
|
Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021; 13:654931. [PMID: 34326765 PMCID: PMC8315271 DOI: 10.3389/fnagi.2021.654931] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.
Collapse
Affiliation(s)
- Anna Gasiorowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Wydrych
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Zadrozny
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Steczkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
35
|
Bailey M, Shulman LM, Ryan D, Ouyang B, Shulman JM, Buchman AS, Bennett DA, Barnes LL, Hall DA. Frequency of Parkinsonism and Parkinson Disease in African Americans in the Chicago Community. J Gerontol A Biol Sci Med Sci 2021; 76:1340-1345. [PMID: 33631006 PMCID: PMC8202152 DOI: 10.1093/gerona/glab042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND There is paucity of data about African American (AA) patients with Parkinson's disease (PD) and parkinsonism which may precede PD in older adults. Prior studies suggest that there are lower rates of PD in the AA population, with more cognitive impairment in AA with PD. This study aimed to investigate differences in PD, parkinsonism, and cognition between White and AA populations in 3 longitudinal epidemiologic cohort studies of aging. METHODS This study examined parkinsonism, PD frequency, and cognition of community-dwelling older individuals in 3 longitudinal epidemiologic cohort studies. Parkinsonism was based on an exam utilizing the modified Unified Parkinson's Disease Rating Scale performed by a nurse. PD was based on self-report, medications used for treatment of PD, and examination findings. Cognition was assessed using 19 performance-based tests that assess 5 cognitive domains. RESULTS AA participants were less likely to have parkinsonism compared to Whites, even with age and gender differences. Frequency of PD was not significant between groups. AA were more likely to have lower cognitive scores as compared to Whites. AA were less likely to have parkinsonism even with controlling for cognitive differences between groups. CONCLUSIONS Parkinsonian signs are present among AA in the community at lower rates than in White individuals. Cognitive profiles of AA and Whites with parkinsonism may be different, suggesting differing contributions of pathology to cognitive decline and parkinsonism between groups. Additional research is needed to understand the progression of parkinsonism to PD, as well as to understanding the cognitive differences in AA with parkinsonism.
Collapse
Affiliation(s)
- Meagan Bailey
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Lisa M Shulman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, USA
| | - Diane Ryan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
| | - Aron S Buchman
- Department of Neurological Sciences, Rush Alzheimer’s Disease Center, Chicago, Illinois, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush Alzheimer’s Disease Center, Chicago, Illinois, USA
| | - Lisa L Barnes
- Department of Neurological Sciences, Rush Alzheimer’s Disease Center, Chicago, Illinois, USA
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
36
|
Petyuk VA, Yu L, Olson HM, Yu F, Clair G, Qian WJ, Shulman JM, Bennett DA. Proteomic Profiling of the Substantia Nigra to Identify Determinants of Lewy Body Pathology and Dopaminergic Neuronal Loss. J Proteome Res 2021; 20:2266-2282. [PMID: 33900085 PMCID: PMC9190253 DOI: 10.1021/acs.jproteome.0c00747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteinaceous aggregates containing α-synuclein protein called Lewy bodies in the substantia nigra is a hallmark of Parkinson's disease. The molecular mechanisms of Lewy body formation and associated neuronal loss remain largely unknown. To gain insights into proteins and pathways associated with Lewy body pathology, we performed quantitative profiling of the proteome. We analyzed substantia nigra tissue from 51 subjects arranged into three groups: cases with Lewy body pathology, Lewy body-negative controls with matching neuronal loss, and controls with no neuronal loss. Using a label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach, we characterized the proteome both in terms of protein abundances and peptide modifications. Statistical testing for differential abundance of the most abundant 2963 proteins, followed by pathway enrichment and Bayesian learning of the causal network structure, was performed to identify likely drivers of Lewy body formation and dopaminergic neuronal loss. The identified pathways include (1) Arp2/3 complex-mediated actin nucleation; (2) synaptic function; (3) poly(A) RNA binding; (4) basement membrane and endothelium; and (5) hydrogen peroxide metabolic process. According to the data, the endothelial/basement membrane pathway is tightly connected with both pathologies and likely to be one of the drivers of neuronal loss. The poly(A) RNA-binding proteins, including the ones relevant to other neurodegenerative disorders (e.g., TDP-43 and FUS), have a strong inverse correlation with Lewy bodies and may reflect an alternative mechanism of nigral neurodegeneration.
Collapse
Affiliation(s)
- Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, Washington 99352, United States
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Heather M Olson
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, Washington 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K8-98, Richland, Washington 99352, United States
| | - Joshua M Shulman
- Departments of Neurology, Molecular & Human Genetics, and Neuroscience, Baylor College of Medicine, Houston, Texas 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, United States
| |
Collapse
|
37
|
LRRK2 at the Crossroad of Aging and Parkinson's Disease. Genes (Basel) 2021; 12:genes12040505. [PMID: 33805527 PMCID: PMC8066012 DOI: 10.3390/genes12040505] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the widespread occurrence of proteinaceous inclusions known as Lewy bodies and Lewy neurites. The etiology of PD is still far from clear, but aging has been considered as the highest risk factor influencing the clinical presentations and the progression of PD. Accumulating evidence suggests that aging and PD induce common changes in multiple cellular functions, including redox imbalance, mitochondria dysfunction, and impaired proteostasis. Age-dependent deteriorations in cellular dysfunction may predispose individuals to PD, and cellular damages caused by genetic and/or environmental risk factors of PD may be exaggerated by aging. Mutations in the LRRK2 gene cause late-onset, autosomal dominant PD and comprise the most common genetic causes of both familial and sporadic PD. LRRK2-linked PD patients show clinical and pathological features indistinguishable from idiopathic PD patients. Here, we review cellular dysfunctions shared by aging and PD-associated LRRK2 mutations and discuss how the interplay between the two might play a role in PD pathologies.
Collapse
|
38
|
Wu Z, Xu H, Zhu S, Gu R, Zhong M, Jiang X, Shen B, Zhu J, Pan Y, Dong J, Yan J, Zhang W, Zhang L. Gait Analysis of Old Individuals with Mild Parkinsonian Signs and Those Individuals' Gait Performance Benefits Little from Levodopa. Risk Manag Healthc Policy 2021; 14:1109-1118. [PMID: 33758563 PMCID: PMC7979347 DOI: 10.2147/rmhp.s291669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/24/2021] [Indexed: 11/23/2022] Open
Abstract
Background and Purpose Gait analysis and the effects of levodopa on the gait characteristics in Mild parkinsonian signs (MPS) are rarely published. The present research aimed to (1) analyze the gait characteristics in MPS; (2) explore the effects of levodopa on the gait performance of MPS. Methods We enrolled 22 inpatients with MPS and 20 healthy control subjects (HC) from Nanjing Brain Hospital. The Unified Parkinson’s Disease Rating Scale was used to evaluate motor symptoms. Acute levodopa challenge test was performed to explore the effects of levodopa on the gait performance of MPS. The instrumented stand and walk test was conducted for each participant and the JiBuEn gait analysis system was used to collect gait data. Results For spatiotemporal parameters: Compared with HC, the state before taking levodopa/benserazide in MPS group (meds-off) demonstrated a decrease in stride length (SL) (p≤0.001), an increase in SL variability (p≤0.001), and swing phase time variability (p=0.016). Compared with meds-off, the state after 1 hour of taking levodopa/benserazide in MPS group (meds-on) exhibited an increase in SL (p≤0.001), a decrease in SL variability (p≤0.001). For kinematic parameters: Compared with HC, meds-off demonstrated a decrease in heel strike angle (p=0.008), range of motion (ROM) of knee joint (p=0.011) and ROM of hip joint (p=0.007). Compared with meds-off, meds-on exhibited an increase in HS (p≤0.001). Bradykinesia and rigidity scores were significantly correlated with gait parameters. Conclusion Although the clinical symptoms of the MPS group are mild, their gait damage is obvious and they exhibited a decreased SL and joints movement, and a more variable gait pattern. Levodopa had little effect on the gait performance of those individuals.
Collapse
Affiliation(s)
- Zhuang Wu
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hang Xu
- Department of Neurology, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, People's Republic of China
| | - Sha Zhu
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Ruxin Gu
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Min Zhong
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xu Jiang
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Bo Shen
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun Zhu
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yang Pan
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jingde Dong
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun Yan
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Wenbin Zhang
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Li Zhang
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
39
|
Chu Y, Kordower JH. GDNF signaling in subjects with minimal motor deficits and Parkinson's disease. Neurobiol Dis 2021; 153:105298. [PMID: 33684514 DOI: 10.1016/j.nbd.2021.105298] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
The failure of glial cell derived neurotropic factor to be efficacious in blinded clinical trials for Parkinson's disease may be due to alterations in signaling receptors and downstream signaling molecules. To test this hypothesis, brain sections were obtained from older adults with no motor deficit (n = 6), minimal motor deficits (n = 10), and clinical diagnosis of Parkinson's disease (n = 10) who underwent motor examination proximate to death. Quantitative unbiased stereology and densitometry were performed to analyze RET and phosphorylated ribosomal protein S6 expression in nigral neurons. Individuals with no motor deficit had extensive and intense RET and phosphorylated ribosomal protein S6 immunoreactive neurons in substantia nigra. The number and staining intensity of RET-immunoreactive neurons were reduced moderately in subjects with minimal motor deficits and severely reduced in Parkinson's disease relative to no motor deficit group. The number and staining intensity of phosphorylated ribosomal protein S6 was more markedly reduced in both subjects with minimal motor deficits and Parkinson's disease. Reductions in levels of RET and phosphorylated ribosomal protein S6 were recapitulated in a non-human primate genetic Parkinson's disease model based on over-expression of human mutant α-synuclein (A53T). These data indicate that for neurotrophic factors to be effective in patients with minimal motor deficits or PD, these factors would likely have to upregulate RET and phosphorylated ribosomal protein S6 immunoreactive neurons in substantia nigra .
Collapse
Affiliation(s)
- Yaping Chu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, United States of America.; ASU-Banner Neurodgenerative Disease Research Center, Arizona State University, Tempe, Arizona 85287, United States of America..
| |
Collapse
|
40
|
Pirazzini C, Azevedo T, Baldelli L, Bartoletti-Stella A, Calandra-Buonaura G, Dal Molin A, Dimitri GM, Doykov I, Gómez-Garre P, Hägg S, Hällqvist J, Halsband C, Heywood W, Jesús S, Jylhävä J, Kwiatkowska KM, Labrador-Espinosa MA, Licari C, Maturo MG, Mengozzi G, Meoni G, Milazzo M, Periñán-Tocino MT, Ravaioli F, Sala C, Sambati L, Schade S, Schreglmann S, Spasov S, Tenori L, Williams D, Xumerle L, Zago E, Bhatia KP, Capellari S, Cortelli P, Garagnani P, Houlden H, Liò P, Luchinat C, Delledonne M, Mills K, Mir P, Mollenhauer B, Nardini C, Pedersen NL, Provini F, Strom S, Trenkwalder C, Turano P, Bacalini MG, Franceschi C. A geroscience approach for Parkinson's disease: Conceptual framework and design of PROPAG-AGEING project. Mech Ageing Dev 2021; 194:111426. [PMID: 33385396 DOI: 10.1016/j.mad.2020.111426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
Advanced age is the major risk factor for idiopathic Parkinson's disease (PD), but to date the biological relationship between PD and ageing remains elusive. Here we describe the rationale and the design of the H2020 funded project "PROPAG-AGEING", whose aim is to characterize the contribution of the ageing process to PD development. We summarize current evidences that support the existence of a continuum between ageing and PD and justify the use of a Geroscience approach to study PD. We focus in particular on the role of inflammaging, the chronic, low-grade inflammation characteristic of elderly physiology, which can propagate and transmit both locally and systemically. We then describe PROPAG-AGEING design, which is based on the multi-omic characterization of peripheral samples from clinically characterized drug-naïve and advanced PD, PD discordant twins, healthy controls and "super-controls", i.e. centenarians, who never showed clinical signs of motor disability, and their offspring. Omic results are then validated in a large number of samples, including in vitro models of dopaminergic neurons and healthy siblings of PD patients, who are at higher risk of developing PD, with the final aim of identifying the molecular perturbations that can deviate the trajectories of healthy ageing towards PD development.
Collapse
Affiliation(s)
- Chiara Pirazzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Tiago Azevedo
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Luca Baldelli
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | | | - Giovanna Calandra-Buonaura
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | | | - Giovanna Maria Dimitri
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Ivan Doykov
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health, London, United Kingdom
| | - Pilar Gómez-Garre
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y NeurofisiologíaClínica, Instituto de Biomedicina de Sevilla, Seville, Spain; Centro de Investigación Biomédicaen Red sobreEnfermedades Neurodegenerativas (CIBERNED), Spain
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Hällqvist
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health, London, United Kingdom
| | - Claire Halsband
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany; Department of Gerontopsychiatry, Rhein-Mosel-Fachklinik, Andernach, Germany
| | - Wendy Heywood
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health, London, United Kingdom; NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Silvia Jesús
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y NeurofisiologíaClínica, Instituto de Biomedicina de Sevilla, Seville, Spain; Centro de Investigación Biomédicaen Red sobreEnfermedades Neurodegenerativas (CIBERNED), Spain
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Miguel A Labrador-Espinosa
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y NeurofisiologíaClínica, Instituto de Biomedicina de Sevilla, Seville, Spain; Centro de Investigación Biomédicaen Red sobreEnfermedades Neurodegenerativas (CIBERNED), Spain
| | - Cristina Licari
- CERM, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Maria Giovanna Maturo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giacomo Mengozzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Maddalena Milazzo
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Teresa Periñán-Tocino
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y NeurofisiologíaClínica, Instituto de Biomedicina de Sevilla, Seville, Spain; Centro de Investigación Biomédicaen Red sobreEnfermedades Neurodegenerativas (CIBERNED), Spain
| | - Francesco Ravaioli
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Luisa Sambati
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | - Sebastian Schade
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Schreglmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Simeon Spasov
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Leonardo Tenori
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Florence, Italy
| | - Dylan Williams
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Claudio Luchinat
- CERM, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Italy
| | | | - Kevin Mills
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health, London, United Kingdom; NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Pablo Mir
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y NeurofisiologíaClínica, Instituto de Biomedicina de Sevilla, Seville, Spain; Centro de Investigación Biomédicaen Red sobreEnfermedades Neurodegenerativas (CIBERNED), Spain
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany; Department of Neurology, University Medical Centre Goettingen, Goettingen, Germany
| | - Christine Nardini
- Istituto per le Applicazioni del Calcolo Mauro Picone, CNR, Roma, Italy
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Federica Provini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | - Stephen Strom
- Department of Laboratory Medicine, Karolinska Institute and Karolinska Universitetssjukhuset, 171 76, Stockholm, Sweden
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany; Department of Neurosurgery, University Medical Center Göttingen, Germany
| | - Paola Turano
- CERM, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Italy
| | | | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| |
Collapse
|
41
|
Brás IC, Outeiro TF. Alpha-Synuclein: Mechanisms of Release and Pathology Progression in Synucleinopathies. Cells 2021; 10:cells10020375. [PMID: 33673034 PMCID: PMC7917664 DOI: 10.3390/cells10020375] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
The accumulation of misfolded alpha-synuclein (aSyn) throughout the brain, as Lewy pathology, is a phenomenon central to Parkinson’s disease (PD) pathogenesis. The stereotypical distribution and evolution of the pathology during disease is often attributed to the cell-to-cell transmission of aSyn between interconnected brain regions. The spreading of conformationally distinct aSyn protein assemblies, commonly referred as strains, is thought to result in a variety of clinically and pathologically heterogenous diseases known as synucleinopathies. Although tremendous progress has been made in the field, the mechanisms involved in the transfer of these assemblies between interconnected neural networks and their role in driving PD progression are still unclear. Here, we present an update of the relevant discoveries supporting or challenging the prion-like spreading hypothesis. We also discuss the importance of aSyn strains in pathology progression and the various putative molecular mechanisms involved in cell-to-cell protein release. Understanding the pathways underlying aSyn propagation will contribute to determining the etiology of PD and related synucleinopathies but also assist in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Inês C. Brás
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Tiago F. Outeiro
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany;
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
- Scientific Employee with a Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
- Correspondence: ; Tel.: +49-(0)-551-391-3544; Fax: +49-(0)-551-392-2693
| |
Collapse
|
42
|
Mance S, Rosso A, Bis J, Studenski S, Bohnen N, Rosano C. Catechol-O-Methyltransferase Genotype, Frailty, and Gait Speed in a Biracial Cohort of Older Adults. J Am Geriatr Soc 2021; 69:357-364. [PMID: 33043988 PMCID: PMC7902408 DOI: 10.1111/jgs.16842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To examine whether the association between dopamine-related genotype and gait speed differs according to frailty status or race. DESIGN Cross-sectional population-based study (Cardiovascular Health Study). SETTING Multicenter study, four U.S. sites. PARTICIPANTS Volunteer community-dwelling adults aged 65 years and older, without evidence of Parkinson's disease (N = 3,744; 71 years; 82% White; 39% male). MEASUREMENTS Gait speed (usual pace; m/s), physical frailty (Fried definition), and genetic polymorphism of catechol-O-methyltransferase (COMT; rs4680), an enzyme regulating tonic brain dopamine levels, were assessed. Interaction of COMT by frailty and by race predicting gait speed were tested, and, if significant, analyses were stratified. Multivariable regression models of COMT predicting gait speed were adjusted for demographics and locomotor risk factors. Sensitivity analyses were repeated, stratified by clinical cutoffs of gait speed (0.6 and 1.0 m/s) instead of frailty status. RESULTS The interaction of COMT by frailty and COMT by race were P = .02 and P = .01, respectively. Compared with Met/Met (higher dopaminergic signaling), the Val/Val group (lower dopaminergic signaling) walked marginally more slowly in the full cohort (0.87 vs 0.89 m/s; P = .2). Gait speed differences were significant for frail (n = 220; 0.55 vs 0.63 m/s; P = .03), but not for prefrail (n = 1,691; 0.81 vs 0.81 m/s; P = .9) or nonfrail (n = 1,833; 0.98 vs 0.97 m/s; P = .7); results were similar in fully adjusted models. Among frail, associations were similar for Whites and Blacks, with statistical significance for Whites only. Associations stratified by clinical cutoffs of gait speed were not significant. CONCLUSION The association of dopamine-related genotype with gait speed is stronger among adults with frailty compared with those without frailty. The potential effects of dopaminergic signaling on preserving physical function in biracial cohorts of frail adults should be further examined.
Collapse
Affiliation(s)
- Shannon Mance
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Andrea Rosso
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Joshua Bis
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington
| | | | - Nico Bohnen
- Departments of Radiology & Neurology, University of Michigan School of Medicine & Ann Arbor VA, Ann Arbor, Michigan
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Oveisgharan S, Yu L, Dawe RJ, Bennett DA, Buchman AS. Total Daily Physical Activity and the Risk of Parkinsonism in Community-Dwelling Older Adults. J Gerontol A Biol Sci Med Sci 2021; 75:702-711. [PMID: 31046115 DOI: 10.1093/gerona/glz111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Physical activity is a modifiable risk factor associated with health benefits. We hypothesized that a more active lifestyle in older adults is associated with a reduced risk of incident parkinsonism and a slower rate of its progression. METHODS Total daily physical activity was recorded with an activity monitor in 889 community-dwelling older adults participating in the Rush Memory and Aging Project. Four parkinsonian signs were assessed with a modified motor portion of the Unified Parkinson's Disease Rating Scale and summarized as a categorical measure and continuous global parkinsonian score. We used Cox models to determine whether physical activity was associated with incident parkinsonism and linear mixed-effects models to examine if physical activity was associated with the rate of progressive parkinsonism. RESULTS During an average follow-up of 4 years, 233 of 682 (34%) participants, without parkinsonism, developed incident parkinsonism. In Cox models controlling for age, sex, and education, a higher level of physical activity was associated with a reduced risk of developing parkinsonism (hazard ratio = 0.79; 95% CI = 0.70-0.88, p < .001). This association was not attenuated when controlling for cognition, depressive symptoms, Apolipoprotein E ℇ4 allele, and chronic health conditions. In a linear mixed-effects model including all participants (N = 889) which controlled for age, sex, and education, a 1 SD total daily physical activity was associated with a 20% slower rate of progression of parkinsonism. CONCLUSION Older adults with a more active lifestyle have a reduced risk for parkinsonism and a slower rate of its progression.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois.,Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois.,Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Robert J Dawe
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois.,Department of Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, Illinois
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois.,Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois.,Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
44
|
Kasanga EA, Little J, McInnis TR, Bugnariu N, Cunningham JT, Salvatore MF. Cardiovascular Metrics Associated With Prevention of Aging-Related Parkinsonian Signs Following Exercise Intervention in Sedentary Older Rats. Front Aging Neurosci 2021; 13:775355. [PMID: 34975456 PMCID: PMC8714671 DOI: 10.3389/fnagi.2021.775355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022] Open
Abstract
Preservation of motor capabilities is vital to maintaining independent daily living throughout a person's lifespan and may mitigate aging-related parkinsonism, a progressive and prevalent motor impairment. Physically active lifestyles can mitigate aging-related motor impairment. However, the metrics of physical activity necessary for mitigating parkinsonian signs are not established. Consistent moderate intensity (~10 m/min) treadmill exercise can reverse aging-related parkinsonian signs by 20 weeks in a 2-week on, 2-week off, regimen in previously sedentary advanced middle-aged rats. In this study, we initiated treadmill exercise in sedentary 18-month-old male rats to address two questions: (1) if a rest period not longer than 1-week off exercise, with 15 exercise sessions per month, could attenuate parkinsonian signs within 2 months after exercise initiation, and the associated impact on heart rate (HR) and mean arterial pressure (MAP) and (2) if continuation of this regimen, up to 20 weeks, will be associated with continual prevention of parkinsonian signs. The intensity and frequency of treadmill exercise attenuated aging-related parkinsonian signs by 8 weeks and were maintained till 23 months old. The exercise regimen increased HR by 25% above baseline and gradually reduced pre-intervention MAP. Together, these studies indicate that a practicable frequency and intensity of exercise reduces parkinsonian sign severity commensurate with a modest increase in HR after exercise. These cardiovascular changes provide a baseline of metrics, easily measured in humans, for predictive validity that practicable exercise intensity and schedule can be initiated in previously sedentary older adults to delay the onset of aging-related parkinsonian signs.
Collapse
Affiliation(s)
- Ella A Kasanga
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Joel Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Tamara R McInnis
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Nicoleta Bugnariu
- School of Health Sciences, University of the Pacific, Sacramento, CA, United States
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Michael F Salvatore
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
45
|
Halliday G. Neglected cytotoxic T cell invasion of the brain: how specific for Parkinson's disease? Brain 2020; 143:3518-3521. [PMID: 33439981 DOI: 10.1093/brain/awaa390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
This scientific commentary refers to ‘CD8 T cell nigral infiltration precedes synucleinopathy in early stages of Parkinson’s disease’, by Galiano-Landeira et al. (doi:10.1093/brain/awaa269).
Collapse
Affiliation(s)
- Glenda Halliday
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, 2006 Australia
| |
Collapse
|
46
|
Wang Y, Kang Y, Qi C, Zhang T, Zhao H, Ji X, Yan W, Huang Y, Cui R, Zhang G, Shi G. Pentoxifylline enhances antioxidative capability and promotes mitochondrial biogenesis for improving age-related behavioral deficits. Aging (Albany NY) 2020; 12:25487-25504. [PMID: 33231568 PMCID: PMC7803534 DOI: 10.18632/aging.104155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022]
Abstract
Pentoxifylline (PTX) is a non-specific phosphodiesterase inhibitor with pleiotropic effects that is routinely used to treat peripheral vascular disease. In this study, we tested whether PTX could also counteract the detrimental effects of aging in the brain. To accomplish that, we treated aged rats with PTX and measured resulting behavioral alterations as well as changes in dopaminergic neurochemical levels, oxidative balance markers, mitochondrial function, nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator activated receptor-gamma coactivator 1-alpha (PGC-1α) and downstream gene expression, and cyclic adenosine monophosphate (cAMP) content in the brain. The results demonstrated that PTX improved motor and cognitive deficits and restored levels of dopamine and its metabolites in the brains of aged rats. PTX also reduced malondialdehyde levels and increased the GSH/GSSG ratio, mitochondrial ATP, nuclear Nrf2, and cAMP levels, and upregulated PGC-1α, nuclear respiratory factor 1, and mitochondrial transcription factor A expression in the substantia nigra and hippocampus of aged rats. Thus, increased nuclear Nrf2 levels and upregulation of PGC-1α, which enhance antioxidative capability and promote mitochondrial biogenesis, may be responsible for PTX-induced amelioration of behavioral deficits in aged rats.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yunxiao Kang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chunxiao Qi
- Department of Anatomy, Hebei Medical University, Shijiazhuang 050017, China
| | - Tianyun Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Hui Zhao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoming Ji
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Wensheng Yan
- Department of Sports Medicine, Hebei Sport University, Shijiazhuang 050017, China
| | - Yuanxiang Huang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang 050017, China
| | - Guoliang Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China.,Department of Anatomy, Hebei Medical University, Shijiazhuang 050017, China
| | - Geming Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China.,Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
47
|
Hall DA, Nag S, Ouyang B, Bennett DA, Liu Y, Ali A, Zhou L, Berry-Kravis E. Fragile X Gray Zone Alleles Are Associated With Signs of Parkinsonism and Earlier Death. Mov Disord 2020; 35:1448-1456. [PMID: 32463542 DOI: 10.1002/mds.28086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/02/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Premutation size (55-199 CGG repeats) in the fragile X mental retardation 1 (FMR1) gene cause fragile X-associated tremor/ataxia syndrome, but it is unclear whether smaller "gray" zone expansions of 41-54 repeats are also associated with movement disorders. The objectives of this study were to determine the association between the FMR1 gene gray zone expansions, AGG interspersions, and the presence of parkinsonism and motor and cognitive function in an elderly community-based population. METHODS Automated FMR1 polymerase chain reaction was performed on existing samples from 2 longitudinal aging studies whose subjects agreed to brain donation. A detailed clinical evaluation including a modified Unified Parkinson's Disease Rating Scale score, a composite score of global motor function, 17 cognitive tests summarized as a global measure of cognition, and neuropathological examination were obtained for genotyped participants. RESULTS The average age of the population (n = 2362) was 85.9 ± 7.3 years, and average age at death was 88.6 ± 6.4 years (n = 1326), with 72% women. The prevalence of FMR1 gray zone alleles was 5.2% (122 of 2362). There was no difference between participants with gray zone expansions or those lacking AGG interspersions compared with normal participants in global cognition, global motor function, clinical diagnosis, or pathological changes. Gray zone alleles were associated with signs of parkinsonism in men (P = 0.01), and gray zone carrier men were more likely to die (hazard ratio, 2.34; 95% confidence interval, 1.31-4.16). CONCLUSIONS This is the largest study to investigate gray zone alleles in a community population. The key findings are that in men, the gray zone allele is associated with signs of parkinsonism and higher risk of death, but not with intranuclear neuronal inclusions. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sukriti Nag
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA.,Rush Alzheimer's Disease Center, Chicago, Illinois, USA
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA.,Rush Alzheimer's Disease Center, Chicago, Illinois, USA
| | - Yuanqing Liu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Aisha Ali
- University of Illinois, Chicago, Illinois, USA
| | - Lili Zhou
- Department of Pediatrics, Rush University Medical Center, Chicago, Illinois, USA
| | - Elizabeth Berry-Kravis
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
48
|
Thomas R, Hallett PJ, Isacson O. Experimental studies of mitochondrial and lysosomal function in in vitro and in vivo models relevant to Parkinson's disease genetic risk. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:279-302. [PMID: 32739007 DOI: 10.1016/bs.irn.2020.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several studies have identified the involvement of mitochondrial and lysosomal dysfunction in Parkinson's disease (PD) pathology. In this review we discuss recent work that has identified deficits in mitophagy, mitochondrial network formation, increased sensitivity to mitochondrial stressors and alterations in proteins regulating mitochondrial fission and fusion associated with patient-derived fibroblasts harboring mutations in LRRK2 gene and from sporadic PD patient cells. We further focus on alterations of lysosomal enzymes, in particular glucocerebrosidase activity, and resultant lipid dyshomeostasis in PD and aging, in human tissue and in vivo rodent models. Future studies aimed at understanding the convergence of mitochondrial and lysosomal pathways will be of essence for the identification of unique cellular defects in PD and for the development of new treatments.
Collapse
Affiliation(s)
- Ria Thomas
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, United States.
| | - Penelope J Hallett
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, United States.
| | - Ole Isacson
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, United States.
| |
Collapse
|
49
|
Miller-Patterson C, Han J, Yaffe K, Rosso AL, Launer LJ, Kritchevsky SB, Boudreau RM, Rosano C. Clinical and neuroimaging correlates of progression of mild parkinsonian signs in community-dwelling older adults. Parkinsonism Relat Disord 2020; 75:85-90. [PMID: 32505084 DOI: 10.1016/j.parkreldis.2020.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Mild parkinsonian signs (MPS) are associated with morbidity. Identification of MPS progression markers may be vital for preventive management, yet has not been pursued. This study aimed to ascertain clinical/neuroimaging features predictive of MPS progression. METHODS 205 participants in the Health ABC Study were included. MPS was defined using published guidelines. MPS progression was evaluated by determining UPDRS-III change between baseline and follow-up ≥2 years later. Standard brain MRI and DTI were obtained at baseline. Correlation coefficients between demographics, vascular risk factors, imaging markers, and UPDRS-III change were adjusted for follow-up time. Linear regression was used to adjust for possible confounders in the relationship between imaging markers and MPS progression. RESULTS 30% of participants had baseline MPS. Demographics and risk factors did not differ significantly between participants with MPS (MPS+) and without MPS (MPS-). Mean follow-up time was 3.8±0.8 years. Older age, male gender, diabetes were associated with faster rate of UPDRS-III change in MPS- but not MPS+ participants. Among MPS- participants, the only imaging marker associated with faster UPDRS-III progression was higher gray matter mean diffusivity (MD), widespread in various cortico-subcortical bihemispheric regions, independent of age, gender, diabetes. No imaging features were associated with UPDRS-III change among MPS+ participants. CONCLUSIONS Lower gray matter integrity predicted MPS progression in those who did not have baseline MPS. Microstructural imaging may capture early changes related to MPS development, prior to macrostructural change. Any future management promoting gray matter preservation may inhibit MPS development.
Collapse
Affiliation(s)
- Cameron Miller-Patterson
- University of Pittsburgh School of Medicine, Department of Neurology, 3550 Terrace St, Pittsburgh, PA, 15213, USA.
| | - Jennifer Han
- University of Pittsburgh School of Medicine, Department of Neurology, 3550 Terrace St, Pittsburgh, PA, 15213, USA
| | - Kristine Yaffe
- University of California San Francisco School of Medicine, Department of Psychiatry, 533 Parnassus Ave, San Francisco, CA, 94143, USA; University of California San Francisco School of Medicine, Department of Neurology, 533 Parnassus Ave, San Francisco, CA, 94143, USA; University of California San Francisco School of Medicine, Department of Epidemiology, 533 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Andrea L Rosso
- University of Pittsburgh School of Public Health, Department of Epidemiology, 130 De Soto St, Pittsburgh, PA, 15213, USA
| | - Lenore J Launer
- National Institutes of Health, 251 Bayview Blvd, Bethesda, MD, 21224, USA; National Institute on Aging, 251 Bayview Blvd, Bethesda, MD, 21224, USA
| | - Stephen B Kritchevsky
- Wake Forest University School of Medicine, Stricht Center for Healthy Aging and Alzheimer's Prevention, Winston-Salem, NC, USA
| | - Robert M Boudreau
- University of Pittsburgh School of Public Health, Department of Epidemiology, 130 De Soto St, Pittsburgh, PA, 15213, USA
| | - Caterina Rosano
- University of Pittsburgh School of Public Health, Department of Epidemiology, 130 De Soto St, Pittsburgh, PA, 15213, USA
| |
Collapse
|
50
|
Buciuc M, Whitwell JL, Boeve BF, Ferman TJ, Graff-Radford J, Savica R, Kantarci K, Fields JA, Knopman DS, Petersen RC, Parisi JE, Murray ME, Dickson DW, Josephs KA. TDP-43 is associated with a reduced likelihood of rendering a clinical diagnosis of dementia with Lewy bodies in autopsy-confirmed cases of transitional/diffuse Lewy body disease. J Neurol 2020; 267:1444-1453. [PMID: 32006160 PMCID: PMC7189897 DOI: 10.1007/s00415-020-09718-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/02/2020] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Trans-active response DNA-binding protein of 43 kDa (TDP-43) can be detected in up to 63% of autopsy-confirmed Lewy body disease (LBD) cases. It is unclear whether TDP-43 is associated with a decreased likelihood of a clinical diagnosis of probable dementia with Lewy bodies (pDLB) during life. METHODS In an autopsy cohort of 395 cognitively impaired patients from the Mayo Clinic Alzheimer's Disease Research Center, we determined the presence of TDP-43 in the hippocampus [hTDP-43(+)] and examined associations between hTDP-43 and an antemortem pDLB clinical diagnosis with multiple regression analyses. For this study, given our specific question, we only counted transitional and diffuse Lewy body disease as LBD positive (LBD+). RESULTS One-hundred forty-five cases (37%) were hTDP-43(+) and 156 (39%) were LBD+; co-pathology was noted in 63 (16%) cases. Patients with pDLB- LBD+ were more likely to be older, hTDP-43(+) and have high Braak neurofibrillary tangle (NFT) status compared to the pDLB+ LBD+ patients. After accounting for older age at death and high Braak NFT status, hTDP-43(+) status was associated with the absence of a clinical diagnosis of pDLB despite LBD+ status (p < 0.05). CONCLUSION The absence of a diagnosis of pDLB during life in patients with LBD is associated with older age, high Braak NFT stage and hTDP-43, each feature contributing independently to a lower likelihood of a clinical diagnosis of pDLB during life.
Collapse
Affiliation(s)
- Marina Buciuc
- Department of Neurology, College of Medicine and Science, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Jennifer L Whitwell
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Bradley F Boeve
- Department of Neurology, College of Medicine and Science, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Tanis J Ferman
- Department of Psychiatry (Neuropsychology), Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Jonathan Graff-Radford
- Department of Neurology, College of Medicine and Science, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Rodolfo Savica
- Department of Neurology, College of Medicine and Science, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Julie A Fields
- Department of Psychiatry (Neuropsychology), Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - David S Knopman
- Department of Neurology, College of Medicine and Science, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Ronald C Petersen
- Department of Neurology, College of Medicine and Science, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Keith A Josephs
- Department of Neurology, College of Medicine and Science, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|