1
|
Yuan D, Jiang S, Xu R. Clinical features and progress in diagnosis and treatment of amyotrophic lateral sclerosis. Ann Med 2024; 56:2399962. [PMID: 39624969 PMCID: PMC11616751 DOI: 10.1080/07853890.2024.2399962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/27/2024] [Accepted: 08/26/2024] [Indexed: 12/06/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the central nervous system. Despite a large number of studies, the current prognosis of ALS is still not ideal. This article briefly describes the clinical features including epidemiology, genetic structure and clinical manifestations, as well as the progress of new diagnostic criteria and treatment of ALS. Meanwhile, we also discussed further both developments and improvements to enhance understanding and accelerating the introduction of the effective treatments of ALS.
Collapse
Affiliation(s)
- Dongxiang Yuan
- Department of Neurology, Jiangxi Provincial People’s Hospital; The Clinical College of Nanchang Medical College; The First Affiliated Hospital of Nanchang Medical College; Xiangya Hospital of Center South University, Jiangxi Hospital; National Regional Center for Neurological Disease, Honggutan District, Nanchang, Jiangxi Province, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People’s Hospital; The Clinical College of Nanchang Medical College; The First Affiliated Hospital of Nanchang Medical College; Xiangya Hospital of Center South University, Jiangxi Hospital; National Regional Center for Neurological Disease, Honggutan District, Nanchang, Jiangxi Province, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital; The Clinical College of Nanchang Medical College; The First Affiliated Hospital of Nanchang Medical College; Xiangya Hospital of Center South University, Jiangxi Hospital; National Regional Center for Neurological Disease, Honggutan District, Nanchang, Jiangxi Province, China
| |
Collapse
|
2
|
Saez-Atienzar S, Souza CDS, Chia R, Beal SN, Lorenzini I, Huang R, Levy J, Burciu C, Ding J, Gibbs JR, Jones A, Dewan R, Pensato V, Peverelli S, Corrado L, van Vugt JJFA, van Rheenen W, Tunca C, Bayraktar E, Xia M, Iacoangeli A, Shatunov A, Tiloca C, Ticozzi N, Verde F, Mazzini L, Kenna K, Al Khleifat A, Opie-Martin S, Raggi F, Filosto M, Piccinelli SC, Padovani A, Gagliardi S, Inghilleri M, Ferlini A, Vasta R, Calvo A, Moglia C, Canosa A, Manera U, Grassano M, Mandrioli J, Mora G, Lunetta C, Tanel R, Trojsi F, Cardinali P, Gallone S, Brunetti M, Galimberti D, Serpente M, Fenoglio C, Scarpini E, Comi GP, Corti S, Del Bo R, Ceroni M, Pinter GL, Taroni F, Bella ED, Bersano E, Curtis CJ, Lee SH, Chung R, Patel H, Morrison KE, Cooper-Knock J, Shaw PJ, Breen G, Dobson RJB, Dalgard CL, Scholz SW, Al-Chalabi A, van den Berg LH, McLaughlin R, Hardiman O, Cereda C, Sorarù G, D'Alfonso S, Chandran S, Pal S, Ratti A, Gellera C, Johnson K, Doucet-O'Hare T, Pasternack N, Wang T, Nath A, Siciliano G, Silani V, Başak AN, Veldink JH, Camu W, Glass JD, Landers JE, Chiò A, Sattler R, Shaw CE, Ferraiuolo L, Fogh I, Traynor BJ. Mechanism-free repurposing of drugs for C9orf72-related ALS/FTD using large-scale genomic data. CELL GENOMICS 2024; 4:100679. [PMID: 39437787 PMCID: PMC11605688 DOI: 10.1016/j.xgen.2024.100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024]
Abstract
Repeat expansions in the C9orf72 gene are the most common genetic cause of (ALS) and frontotemporal dementia (FTD). Like other genetic forms of neurodegeneration, pinpointing the precise mechanism(s) by which this mutation leads to neuronal death remains elusive, and this lack of knowledge hampers the development of therapy for C9orf72-related disease. We used an agnostic approach based on genomic data (n = 41,273 ALS and healthy samples, and n = 1,516 C9orf72 carriers) to overcome these bottlenecks. Our drug-repurposing screen, based on gene- and expression-pattern matching and information about the genetic variants influencing onset age among C9orf72 carriers, identified acamprosate, a γ-aminobutyric acid analog, as a potentially repurposable treatment for patients carrying C9orf72 repeat expansions. We validated its neuroprotective effect in cell models and showed comparable efficacy to riluzole, the current standard of care. Our work highlights the potential value of genomics in repurposing drugs in situations where the underlying pathomechanisms are inherently complex. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 20892, USA; Department of Neurology, Ohio State University, Columbus, OH 43210, USA.
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Ruth Chia
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Selina N Beal
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Ileana Lorenzini
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Ruili Huang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850, USA
| | - Jennifer Levy
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Camelia Burciu
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | - J Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | - Ashley Jones
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Ramita Dewan
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Viviana Pensato
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Peverelli
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Lucia Corrado
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Joke J F A van Vugt
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ceren Tunca
- Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Elif Bayraktar
- Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Menghang Xia
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850, USA
| | - Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; National Institute for Health Research Biomedical Research Centre and Dementia Unit, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Aleksey Shatunov
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Cinzia Tiloca
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Letizia Mazzini
- Amyotrophic Lateral Sclerosis Center, Department of Neurology "Maggiore della Carità" University Hospital, Novara, Italy
| | - Kevin Kenna
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ahmad Al Khleifat
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Sarah Opie-Martin
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Flavia Raggi
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Massimiliano Filosto
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, University of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Cotti Piccinelli
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, University of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stella Gagliardi
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Maurizio Inghilleri
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, 00185 Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Rosario Vasta
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Andrea Calvo
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Cristina Moglia
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Antonio Canosa
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy; Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy
| | - Umberto Manera
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Maurizio Grassano
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Gabriele Mora
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Christian Lunetta
- Department of Neurorehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Institute of Milan, Milan, Italy; NEMO Clinical Center Milano, Fondazione Serena Onlus, Milan, Italy
| | - Raffaella Tanel
- Operative Unit of Neurology, S. Chiara Hospital, Trento, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | | | - Salvatore Gallone
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Maura Brunetti
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Maria Serpente
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fenoglio
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Elio Scarpini
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo P Comi
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy; Neurology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy; Neurology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Del Bo
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy; Neurology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Ceroni
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Giuseppe Lauria Pinter
- 3rd Neurology Unit, Motor Neuron Diseases Center, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Dalla Bella
- 3rd Neurology Unit, Motor Neuron Diseases Center, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Enrica Bersano
- 3rd Neurology Unit, Motor Neuron Diseases Center, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; "L. Sacco" Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Charles J Curtis
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM), London, UK
| | - Sang Hyuck Lee
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM), London, UK
| | - Raymond Chung
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM), London, UK
| | - Hamel Patel
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM), London, UK
| | - Karen E Morrison
- School of Medicine, Dentistry, and Biomedical Sciences, Faculty of Medicine Health and Life Sciences, Queen's University, Belfast, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, and the NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, and the NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | - Gerome Breen
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM), London, UK
| | - Richard J B Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK; NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK; Health Data Research UK London, University College London, London, UK; Institute of Health Informatics, University College London, London, UK; NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust, London, UK
| | - Clifton L Dalgard
- Department of Anatomy, Physiology, & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, King's College Hospital, London SE5 9RS, UK
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Russell McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Siddharthan Chandran
- Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK; UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Suvankar Pal
- Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK; Centre for Neuroregeneration and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Kory Johnson
- Bioinformatics Section, Information Technology Program (ITP), Division of Intramural Research (DIR), National Institute of Neurological Disorders & Stroke, NIH, Bethesda, MD 20892, USA
| | - Tara Doucet-O'Hare
- Neuro-oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Nicholas Pasternack
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Tongguang Wang
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Avindra Nath
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Ayşe Nazlı Başak
- Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - William Camu
- ALS Center, CHU Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Jonathan D Glass
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Adriano Chiò
- "Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy; Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy
| | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Christopher E Shaw
- United Kingdom Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Isabella Fogh
- United Kingdom Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 20892, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK; National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA; RNA Therapeutics Laboratory, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850, USA.
| |
Collapse
|
3
|
Boura I, Giannopoulou IA, Pavlaki V, Xiromerisiou G, Mitsias P, Spanaki C. FIG4-Related Parkinsonism and the Particularities of the I41T Mutation: A Review of the Literature. Genes (Basel) 2024; 15:1344. [PMID: 39457468 PMCID: PMC11507139 DOI: 10.3390/genes15101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The genetic underpinnings of Parkinson's disease (PD) and parkinsonism have drawn increasing attention in recent years. Mutations in the Factor-Induced Gene 4 (FIG4) have been implicated in various neurological disorders, including Charcot-Marie-Tooth disease type 4J (CMT4J), amyotrophic lateral sclerosis (ALS), and Yunis-Varón syndrome. This review aims to explore the association between FIG4 mutations and parkinsonism, with a specific focus on the rare missense mutation p.Ile41Thr (I41T). Methods: We identified 12 cases from 10 different families in which parkinsonism was reported in conjunction with CMT4J polyneuropathy. All cases involved the I41T mutation in a compound heterozygous state, combined with a FIG4 loss-of-function mutation. Data from clinical observations, neuroimaging studies, and genetic analyses were evaluated to understand the characteristics of parkinsonism in these patients. Results: In all 12 cases, parkinsonism developed either concurrently or following the onset of CMT4J neuropathy, but was never observed in isolation. Cases of both early- and late-onset parkinsonism were identified, reflecting similarities to genetic forms of parkinsonism with autosomal recessive inheritance. Imaging studies, including Dopamine transporter Single Photon Emission Computed Tomography (DaTscan) and brain magnetic resonance imaging (MRI), revealed abnormalities indicative of neurodegeneration, consistent with findings in other neurodegenerative disorders. Conclusions: The co-occurrence of parkinsonism with CMT4J in patients carrying the I41T mutation suggests an expanded spectrum of FIG4-related disorders, potentially implicating the same molecular mechanisms seen in other neurodegenerative disorders. Further research into FIG4-mediated pathways may offer valuable insights into potential therapeutic targets for disorders of both the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Iro Boura
- School of Medicine, University of Crete, Crete, 70013 Heraklion, Greece; (I.B.); (I.A.G.); (V.P.); (P.M.)
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 9RT, UK
| | - Irene Areti Giannopoulou
- School of Medicine, University of Crete, Crete, 70013 Heraklion, Greece; (I.B.); (I.A.G.); (V.P.); (P.M.)
- Department of Neurology, University General Hospital of Heraklion, Crete, 71500 Heraklion, Greece
| | - Vasiliki Pavlaki
- School of Medicine, University of Crete, Crete, 70013 Heraklion, Greece; (I.B.); (I.A.G.); (V.P.); (P.M.)
| | - Georgia Xiromerisiou
- School of Medicine, University of Thessaly, 41500 Larissa, Greece;
- Department of Neurology, University General Hospital of Larissa, 41334 Larissa, Greece
| | - Panayiotis Mitsias
- School of Medicine, University of Crete, Crete, 70013 Heraklion, Greece; (I.B.); (I.A.G.); (V.P.); (P.M.)
- Department of Neurology, University General Hospital of Heraklion, Crete, 71500 Heraklion, Greece
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
- School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Cleanthe Spanaki
- School of Medicine, University of Crete, Crete, 70013 Heraklion, Greece; (I.B.); (I.A.G.); (V.P.); (P.M.)
- Department of Neurology, University General Hospital of Heraklion, Crete, 71500 Heraklion, Greece
| |
Collapse
|
4
|
Xu J, Hörner M, Nagel M, Perhat P, Korneck M, Noß M, Hauser S, Schöls L, Admard J, Casadei N, Schüle R. Unraveling Axonal Transcriptional Landscapes: Insights from iPSC-Derived Cortical Neurons and Implications for Motor Neuron Degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586780. [PMID: 38585749 PMCID: PMC10996649 DOI: 10.1101/2024.03.26.586780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Neuronal function and pathology are deeply influenced by the distinct molecular profiles of the axon and soma. Traditional studies have often overlooked these differences due to the technical challenges of compartment specific analysis. In this study, we employ a robust RNA-sequencing (RNA-seq) approach, using microfluidic devices, to generate high-quality axonal transcriptomes from iPSC-derived cortical neurons (CNs). We achieve high specificity of axonal fractions, ensuring sample purity without contamination. Comparative analysis revealed a unique and specific transcriptional landscape in axonal compartments, characterized by diverse transcript types, including protein-coding mRNAs, RNAs encoding ribosomal proteins (RPs), mitochondrial-encoded RNAs, and long non-coding RNAs (lncRNAs). Previous works have reported the existence of transcription factors (TFs) in the axon. Here, we detect a set of TFs specific to the axon and indicative of their active participation in transcriptional regulation. To investigate transcripts and pathways essential for central motor neuron (MN) degeneration and maintenance we analyzed KIF1C-knockout (KO) CNs, modeling hereditary spastic paraplegia (HSP), a disorder associated with prominent length-dependent degeneration of central MN axons. We found that several key factors crucial for survival and health were absent in KIF1C-KO axons, highlighting a possible role of these also in other neurodegenerative diseases. Taken together, this study underscores the utility of microfluidic devices in studying compartment-specific transcriptomics in human neuronal models and reveals complex molecular dynamics of axonal biology. The impact of KIF1C on the axonal transcriptome not only deepens our understanding of MN diseases but also presents a promising avenue for exploration of compartment specific disease mechanisms.
Collapse
|
5
|
Wang S, Jiang Q, Zheng X, Wei Q, Lin J, Yang T, Xiao Y, Li C, Shang H. Genotype-phenotype correlation of SQSTM1 variants in patients with amyotrophic lateral sclerosis. J Med Genet 2024; 61:966-972. [PMID: 39122262 DOI: 10.1136/jmg-2023-109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Several variants of sequestosome 1 (SQSTM1) were screened in patients with amyotrophic lateral sclerosis (ALS), while the pathogenicity and genotype-phenotype correlation remains unclear. METHODS We screened variants of SQSTM1 gene in 2011 Chinese patients with ALS and performed a burden analysis focusing on the rare variants. Furthermore, we conducted a comprehensive analysis of patients with variants of SQSTM1 gene in patients with ALS from our cohort and published studies. RESULTS In our cohort, we identified 32 patients with 25 different SQSTM1 variants with a mutant frequency of 1.6%. Notably, 26% (5/19) of the patients with ALS with SQSTM1 variant in our cohort had comorbid cognitive impairment and 43% (3/7) of them had behavioural variant frontotemporal dementia (FTD). Our meta-analysis found a total frequency of SQSTM1 variants in 7183 patients with ALS was 2.4%; burden analysis indicated that patients with ALS had enrichment of ultra-rare (minor allele frequency<0.01%) probably pathogenic variants in SQSTM1. Most variants were missense variants and distributed in various domains of p62 protein, some of which might be related to comorbidities of Paget's disease of bone and FTD. CONCLUSION Our study established the largest cohort of patients with ALS with SQSTM1 variants, expanded the mutation spectrum and investigated the genotype-phenotype correlations of SQSTM1 variants.
Collapse
Affiliation(s)
- Shichan Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoting Zheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Flores-Lagunes L, Del Pozo-Yauner L, Carrillo-Sánchez K, Molina-Garay C, Jiménez-Olivares M, Garcia-Solorio J, Rodríguez Corona U, Herrera GA, Ricardez-Marcial E, Alaez-Verson C. First family with Perry syndrome from Mexico. Biomed Rep 2024; 21:120. [PMID: 38978535 PMCID: PMC11229396 DOI: 10.3892/br.2024.1808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 07/10/2024] Open
Abstract
Perry syndrome (PS) is a rare autosomal dominant disease characterized by parkinsonism, central hypoventilation, weight loss and depression and is caused by pathogenic mutations in the dynactin subunit 1 (DCTN1) gene (encoding p150glued protein). To date, only two cases have been reported in Latin America, specifically in Colombia and Argentina. The present study, to the best of our knowledge, reports the first recorded Mexican family with PS. The clinical features of the proband and a family history of early parkinsonism led to the suspicion of PS. The pathogenic variant NM_004082:c.212G>A, causing a (p.Gly71Glu) mutation in the p150glued protein, was identified in exon 2 of the DCTN1 gene by exome sequencing, confirming the diagnosis of PS. (p.Gly71Glu) has been previously identified in at least 4 cases of PS from different ethnic backgrounds. Genetic counseling was provided to the available family members. To clarify the impact of the (p.Gly71Glu) variant on the structure and function of the cytoskeleton-associated protein Gly rich (CAP-Gly) domain of p150glued, Glu71 mutated CAP-Gly domains were modeled and compared with the wild-type. It was hypothesized that the larger and more charged side chain of Glu may induce conformational and electrostatic changes, imposing a conformational restriction on the peptide backbone that would affect interaction with the p150glued protein partners, causing dysfunction in the dynactin protein complex.
Collapse
Affiliation(s)
- Leonardo Flores-Lagunes
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Luis Del Pozo-Yauner
- Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama 36617, USA
| | - Karol Carrillo-Sánchez
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Carolina Molina-Garay
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Marco Jiménez-Olivares
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Joaquin Garcia-Solorio
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Ulises Rodríguez Corona
- Montreal Clinical Research Institute Ribonucleoprotein Biochemistry Research Unit, Montréal, Quebec H2W1R7, Canada
| | - Guillermo A. Herrera
- Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama 36617, USA
| | - Edgar Ricardez-Marcial
- Department of Medical Genetics, La Raza National Medical Center, Mexican Social Security Institute, Mexico City 02990, Mexico
| | - Carmen Alaez-Verson
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| |
Collapse
|
7
|
Min JH, Sarlus H, Harris RA. Copper toxicity and deficiency: the vicious cycle at the core of protein aggregation in ALS. Front Mol Neurosci 2024; 17:1408159. [PMID: 39050823 PMCID: PMC11267976 DOI: 10.3389/fnmol.2024.1408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The pathophysiology of ALS involves many signs of a disruption in copper homeostasis, with both excess free levels and functional deficiency likely occurring simultaneously. This is crucial, as many important physiological functions are performed by cuproenzymes. While it is unsurprising that many ALS symptoms are related to signs of copper deficiency, resulting in vascular, antioxidant system and mitochondrial oxidative respiration deficiencies, there are also signs of copper toxicity such as ROS generation and enhanced protein aggregation. We discuss how copper also plays a key role in proteostasis and interacts either directly or indirectly with many of the key aggregate-prone proteins implicated in ALS, such as TDP-43, C9ORF72, SOD1 and FUS as well as the effect of their aggregation on copper homeostasis. We suggest that loss of cuproprotein function is at the core of ALS pathology, a condition that is driven by a combination of unbound copper and ROS that can either initiate and/or accelerate protein aggregation. This could trigger a positive feedback cycle whereby protein aggregates trigger the aggregation of other proteins in a chain reaction that eventually captures elements of the proteostatic mechanisms in place to counteract them. The end result is an abundance of aggregated non-functional cuproproteins and chaperones alongside depleted intracellular copper stores, resulting in a general lack of cuproenzyme function. We then discuss the possible aetiology of ALS and illustrate how strong risk factors including environmental toxins such as BMAA and heavy metals can functionally behave to promote protein aggregation and disturb copper metabolism that likely drives this vicious cycle in sporadic ALS. From this synthesis, we propose restoration of copper balance using copper delivery agents in combination with chaperones/chaperone mimetics, perhaps in conjunction with the neuroprotective amino acid serine, as a promising strategy in the treatment of this incurable disease.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
8
|
Mishra PS, Phaneuf D, Boutej H, Picher-Martel V, Dupre N, Kriz J, Julien JP. Inhibition of NF-κB with an Analog of Withaferin-A Restores TDP-43 Homeostasis and Proteome Profiles in a Model of Sporadic ALS. Biomedicines 2024; 12:1017. [PMID: 38790979 PMCID: PMC11118033 DOI: 10.3390/biomedicines12051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
The current knowledge on pathogenic mechanisms in amyotrophic lateral sclerosis (ALS) has widely been derived from studies with cell and animal models bearing ALS-linked genetic mutations. However, it remains unclear to what extent these disease models are of relevance to sporadic ALS. Few years ago, we reported that the cerebrospinal fluid (CSF) from sporadic ALS patients contains toxic factors for disease transmission in mice via chronic intracerebroventricular (i.c.v.) infusion. Thus a 14-day i.c.v. infusion of pooled CSF samples from ALS cases in mice provoked motor impairment as well as ALS-like pathological features. This offers a unique paradigm to test therapeutics in the context of sporadic ALS disease. Here, we tested a new Withaferin-A analog (IMS-088) inhibitor of NF-κB that was found recently to mitigate disease phenotypes in mouse models of familial disease expressing TDP-43 mutant. Our results show that oral intake of IMS-088 ameliorated motor performance of mice infused with ALS-CSF and it alleviated pathological changes including TDP-43 proteinopathy, neurofilament disorganization, and neuroinflammation. Moreover, CSF infusion experiments were carried out with transgenic mice having neuronal expression of tagged ribosomal protein (hNfL-RFP mice), which allowed immunoprecipitation of neuronal ribosomes for analysis by mass spectrometry of the translational peptide signatures. The results indicate that treatment with IMS-088 prevented many proteomic alterations associated with exposure to ALS-CSF involving pathways related to cytoskeletal changes, inflammation, metabolic dysfunction, mitochondria, UPS, and autophagy dysfunction. The effective disease-modifying effects of this drug in a mouse model based on i.c.v. infusion of ALS-CSF suggest that the NF-κB signaling pathway represents a compelling therapeutic target for sporadic ALS.
Collapse
Affiliation(s)
- Pooja Shree Mishra
- CERVO Brain Research Centre, 2601 Chemin de la Canardière, Quebec, QC G1J 2G3, Canada; (P.S.M.); (D.P.); (H.B.); (J.K.)
| | - Daniel Phaneuf
- CERVO Brain Research Centre, 2601 Chemin de la Canardière, Quebec, QC G1J 2G3, Canada; (P.S.M.); (D.P.); (H.B.); (J.K.)
| | - Hejer Boutej
- CERVO Brain Research Centre, 2601 Chemin de la Canardière, Quebec, QC G1J 2G3, Canada; (P.S.M.); (D.P.); (H.B.); (J.K.)
| | - Vincent Picher-Martel
- Division of Neurosciences, Centre Hospitalier Universitaire de Québec, Laval University, Quebec, QC G1V 4G2, Canada; (V.P.-M.); (N.D.)
| | - Nicolas Dupre
- Division of Neurosciences, Centre Hospitalier Universitaire de Québec, Laval University, Quebec, QC G1V 4G2, Canada; (V.P.-M.); (N.D.)
| | - Jasna Kriz
- CERVO Brain Research Centre, 2601 Chemin de la Canardière, Quebec, QC G1J 2G3, Canada; (P.S.M.); (D.P.); (H.B.); (J.K.)
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Jean-Pierre Julien
- CERVO Brain Research Centre, 2601 Chemin de la Canardière, Quebec, QC G1J 2G3, Canada; (P.S.M.); (D.P.); (H.B.); (J.K.)
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
9
|
Tarot P, Lasbleiz C, Liévens JC. NRF2 signaling cascade in amyotrophic lateral sclerosis: bridging the gap between promise and reality. Neural Regen Res 2024; 19:1006-1012. [PMID: 37862202 PMCID: PMC10749620 DOI: 10.4103/1673-5374.385283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 10/22/2023] Open
Abstract
Amyotrophic lateral sclerosis is a very disabling disease due to the degeneration of motor neurons. Symptoms include muscle weakness and atrophy, spasticity, and progressive paralysis. Currently, there is no treatment to reverse damage to motor neurons and cure amyotrophic lateral sclerosis. The only two treatments actually approved, riluzole and edaravone, have shown mitigated beneficial effects. The difficulty to find a cure lies in the complexity and multifaceted pattern of amyotrophic lateral sclerosis pathogenesis. Among mechanisms, abnormal RNA metabolism, nucleocytoplasmic transport defects, accumulation of unfolded protein, and mitochondrial dysfunction would in fine induce oxidative damage and vice versa. A potent therapeutic strategy will be to find molecules that break this vicious circle. Sharpening the nuclear factor erythroid-2 related factor 2 signaling may fulfill this objective since nuclear factor erythroid-2 related factor 2 has a multitarget profile controlling antioxidant defense, mitochondrial functioning, and inflammation. We here discuss the interest of developing nuclear factor erythroid-2 related factor 2-based therapy in regard to the pathophysiological mechanisms and we provide a general overview of the attempted clinical assays in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Pauline Tarot
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | | |
Collapse
|
10
|
Hu N, Zhang L, Shen D, Yang X, Liu M, Cui L. Incidence of amyotrophic lateral sclerosis-associated genetic variants: a clinic-based study. Neurol Sci 2024; 45:1515-1522. [PMID: 37952009 DOI: 10.1007/s10072-023-07178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVE This study is to determine the incidence of genetic forms of amyotrophic lateral sclerosis (ALS) in clinic-based population. METHODS Next-generation sequencing (NGS) of whole exome sequencing (WES) was conducted among a total of 374 patients with definite or probable ALS to identify ALS-associated genes based on ALSoD database ( https://alsod.ac.uk ) [2023-07-01]. RESULTS Variants of ALS-associated genes were detected in 54.01% (202/374) ALS patients, among which 8.29% (31/374) were pathogenic/likely pathogenic (P/LP). The detection rates of P/LP variants were significantly higher in familial ALS than sporadic ALS (42.31% vs 5.75%, p < 0.001), while VUS mutations were more commonly detected in sporadic ALS (23.07% vs 47.13%, p = 0.018). There is no significant difference in detection rate between patients with and without early onset (8.93% vs 7.77%), rapid progression (9.30% vs 8.91%), cognitive decline (15.00% vs 7.93%), and cerebellar ataxia (20.00% vs 8.15%) (p > 0.05). CONCLUSION Over half of our ALS patients carried variants of ALS-related genes, most of which were variants of uncertain significance (VUS). Family history of ALS could work as strong evidence for carrying P/LP variants regarding ALS. There was no additionally suggestive effect of indicators including early onset, progression rate, cognitive decline, or cerebellar ataxia on the recommendation of genetic testing in clinical practice.
Collapse
Affiliation(s)
- Nan Hu
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Lei Zhang
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Liying Cui
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
11
|
Tang L, Tang X, Zhao Q, Li Y, Bu Y, Liu Z, Li J, Guo J, Shen L, Jiang H, Tang B, Xu R, Cao W, Yuan Y, Wang J. Mutation and clinical analysis of the CLCC1 gene in amyotrophic lateral sclerosis patients from Central South China. Ann Clin Transl Neurol 2024; 11:79-88. [PMID: 37916886 PMCID: PMC10791024 DOI: 10.1002/acn3.51934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
INTRODUCTION Recently, chloride channel CLIC-like 1 (CLCC1) was reported to be a novel ALS-related gene. We aimed to screen CLCC1 variants in our ALS cohort and further explore the genotype-phenotype correlation of CLCC1-related ALS. METHODS We screened rare damaging variants in CLCC1 from our cohorts of 1005 ALS patients and 1224 healthy controls with whole-exome sequencing in Central South China. Fisher's exact test was conducted for association analysis at the entire gene level and single variant level. RESULTS In total, four heterozygous missense variants in CLCC1 were identified from four unrelated sporadic ALS patients and predicted to be putative pathogenic by in silico tools and protein model prediction, accounting for 0.40% of all patients (4/1005). The four variants were c.A275C (p.Q92P), c.G1139A (p.R380K), c.C1244T (p.T415M), and c.G1328A (p.R443Q), respectively, which had not been reported in ALS patients previously. Three of four variants were located in exon 10. Patients harboring CLCC1 variants seemed to share a group of similar clinical features, including earlier age at onset, rapid progression, spinal onset, and vulnerable cognitive status. Statistically, we did not find CLCC1 to be associated with the risk of ALS at the entire gene level or single variant level. CONCLUSION Our findings further expanded the genetic and clinical spectrum of CLCC1-related ALS and provided more genetic evidence for anion channel involvement in the pathogenesis of ALS, but further investigations are needed to verify our findings.
Collapse
Affiliation(s)
- Linxin Tang
- Department of Neurology, Xiangya HospitalCentral South University, Jiangxi Hospital, National Regional Center for Neurological DiseasesNanchangP. R. China
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaP. R. China
| | - Xuxiong Tang
- Department of Neurology, Xiangya HospitalCentral South University, Jiangxi Hospital, National Regional Center for Neurological DiseasesNanchangP. R. China
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaP. R. China
| | - Qianqian Zhao
- Department of Neurology, Xiangya HospitalCentral South University, Jiangxi Hospital, National Regional Center for Neurological DiseasesNanchangP. R. China
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaP. R. China
| | - Yongchao Li
- Department of Neurology, Xiangya HospitalCentral South University, Jiangxi Hospital, National Regional Center for Neurological DiseasesNanchangP. R. China
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaP. R. China
| | - Yue Bu
- Department of Neurology, Xiangya HospitalCentral South University, Jiangxi Hospital, National Regional Center for Neurological DiseasesNanchangP. R. China
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaP. R. China
| | - Zhen Liu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaP. R. China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Diseases, Xiangya HospitalCentral South UniversityChangshaP. R. China
- Center for Medical Genetics, School of Life SciencesCentral South UniversityChangshaP. R. China
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaP. R. China
| | - Jifeng Guo
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaP. R. China
- National Clinical Research Center for Geriatric Diseases, Xiangya HospitalCentral South UniversityChangshaP. R. China
- Center for Medical Genetics, School of Life SciencesCentral South UniversityChangshaP. R. China
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaP. R. China
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaP. R. China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaP. R. China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative DiseasesChangshaP. R. China
| | - Lu Shen
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaP. R. China
- National Clinical Research Center for Geriatric Diseases, Xiangya HospitalCentral South UniversityChangshaP. R. China
- Center for Medical Genetics, School of Life SciencesCentral South UniversityChangshaP. R. China
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaP. R. China
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaP. R. China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaP. R. China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative DiseasesChangshaP. R. China
| | - Hong Jiang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaP. R. China
- National Clinical Research Center for Geriatric Diseases, Xiangya HospitalCentral South UniversityChangshaP. R. China
- Center for Medical Genetics, School of Life SciencesCentral South UniversityChangshaP. R. China
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaP. R. China
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaP. R. China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaP. R. China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative DiseasesChangshaP. R. China
| | - Beisha Tang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaP. R. China
- National Clinical Research Center for Geriatric Diseases, Xiangya HospitalCentral South UniversityChangshaP. R. China
- Center for Medical Genetics, School of Life SciencesCentral South UniversityChangshaP. R. China
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaP. R. China
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaP. R. China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaP. R. China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative DiseasesChangshaP. R. China
| | - Renshi Xu
- Department of Neurology, Xiangya HospitalCentral South University, Jiangxi Hospital, National Regional Center for Neurological DiseasesNanchangP. R. China
- Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical CollegeFirst Affiliated Hospital of Nanchang Medical CollegeNanchangP. R. China
| | - Wenfeng Cao
- Department of Neurology, Xiangya HospitalCentral South University, Jiangxi Hospital, National Regional Center for Neurological DiseasesNanchangP. R. China
- Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical CollegeFirst Affiliated Hospital of Nanchang Medical CollegeNanchangP. R. China
| | - Yanchun Yuan
- Department of Neurology, Xiangya HospitalCentral South University, Jiangxi Hospital, National Regional Center for Neurological DiseasesNanchangP. R. China
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaP. R. China
| | - Junling Wang
- Department of Neurology, Xiangya HospitalCentral South University, Jiangxi Hospital, National Regional Center for Neurological DiseasesNanchangP. R. China
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaP. R. China
- National Clinical Research Center for Geriatric Diseases, Xiangya HospitalCentral South UniversityChangshaP. R. China
- Center for Medical Genetics, School of Life SciencesCentral South UniversityChangshaP. R. China
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaP. R. China
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaP. R. China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaP. R. China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative DiseasesChangshaP. R. China
| |
Collapse
|
12
|
Baumgartner D, Mušová Z, Zídková J, Hedvičáková P, Vlčková E, Joppeková L, Kramářová T, Fajkusová L, Stránecký V, Geryk J, Votýpka P, Mazanec R. Genetic Landscape of Amyotrophic Lateral Sclerosis in Czech Patients. J Neuromuscul Dis 2024; 11:1035-1048. [PMID: 39058450 PMCID: PMC11380243 DOI: 10.3233/jnd-230236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Background Genetic factors are involved in the pathogenesis of familial and sporadic amyotrophic lateral sclerosis (ALS) and constitute a link to its association with frontotemporal dementia (FTD). Gene-targeted therapies for some forms of ALS (C9orf72, SOD1) have recently gained momentum. Genetic architecture in Czech ALS patients has not been comprehensively assessed so far. Objective We aimed to deliver pilot data on the genetic landscape of ALS in our country. Methods A cohort of patients with ALS (n = 88), recruited from two Czech Neuromuscular Centers, was assessed for hexanucleotide repeat expansion (HRE) in C9orf72 and also for genetic variations in other 36 ALS-linked genes via next-generation sequencing (NGS). Nine patients (10.1%) had a familial ALS. Further, we analyzed two subgroups of sporadic patients - with concomitant FTD (n = 7) and with young-onset of the disease (n = 22). Results We detected the pathogenic HRE in C9orf72 in 12 patients (13.5%) and three other pathogenic variants in FUS, TARDBP and TBK1, each in one patient. Additional 7 novel and 9 rare known variants with uncertain causal significance have been detected in 15 patients. Three sporadic patients with FTD (42.9%) were harbouring a pathogenic variant (all HRE in C9orf72). Surprisingly, none of the young-onset sporadic patients harboured a pathogenic variant and we detected no pathogenic SOD1 variant in our cohort. Conclusion Our findings resemble those from other European populations, with the highest prevalence of HRE in the C9orf72 gene. Further, our findings suggest a possibility of a missing genetic variability among young-onset patients.
Collapse
Affiliation(s)
- Daniel Baumgartner
- Department of Neurology, Neuromuscular Center, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Zuzana Mušová
- Department of Biology and Medical Genetics, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jana Zídková
- Center for Molecular Biology and Genetics, Internal Haematology and Oncology Clinic, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Petra Hedvičáková
- Department of Biology and Medical Genetics, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Eva Vlčková
- Department of Neurology, Neuromuscular Center, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lubica Joppeková
- Department of Neurology, Neuromuscular Center, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tereza Kramářová
- Center for Molecular Biology and Genetics, Internal Haematology and Oncology Clinic, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Lenka Fajkusová
- Center for Molecular Biology and Genetics, Internal Haematology and Oncology Clinic, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Viktor Stránecký
- Department of Pediatrics and Inherited Metabolic Disorders, Research Unit for Rare Diseases, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Jan Geryk
- Department of Biology and Medical Genetics, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Pavel Votýpka
- Department of Biology and Medical Genetics, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Radim Mazanec
- Department of Neurology, Neuromuscular Center, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
13
|
Barberio J, Lally C, Kupelian V, Hardiman O, Flanders WD. Estimated Familial Amyotrophic Lateral Sclerosis Proportion: A Literature Review and Meta-analysis. Neurol Genet 2023; 9:e200109. [PMID: 38045991 PMCID: PMC10689005 DOI: 10.1212/nxg.0000000000200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/22/2023] [Indexed: 12/05/2023]
Abstract
Background and Objectives Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disorder. Familial (fALS) cases are usually reported to constitute 5%-10% of all ALS cases; however, no recent literature review or meta-analysis of this proportion (referred to throughout as "proportion fALS") has been conducted. Our objective was to estimate the proportion fALS by geographic region and to assess the effect of study characteristics on the estimates. Methods A comprehensive literature review was performed to identify all original studies reporting the number of fALS cases in an ALS cohort. The results were stratified by geographic region, study design (case series or population-based), and decade of study publication. Subgroup analyses were conducted according to family history criteria used to define fALS. We report pooled estimates of the proportion fALS from random-effects meta-analyses when >2 studies are available and I2 is < 90%; weighted averages and ranges are otherwise presented. Results The overall pooled proportion fALS based on a total 165 studies was 8% (0%, 71%). The proportion fALS was 9% (0%, 71%) among 107 case series and 5% (4%, 6%) among 58 population-based studies. Among population-based studies, proportion fALS by geographic region was 6% (5%, 7%; N = 37) for Europe, 5% (3%, 7%; N = 5) for Latin America, and 5% (4%, 7%; N = 12) for North America. Criteria used to define fALS were reported by 21 population-based studies (36%), and proportion fALS was 5% (4%, 5%; N = 9) for first-degree relative, 7% (4%, 11%; N = 4) for first or second-degree relative, and 11% (N = 1) for more distant ALS family history. Population-based studies published in the 2000s or earlier generated a lower pooled proportion fALS than studies published in the 2010s or later. Discussion The results suggest that variability in the reported proportion fALS in the literature may be, in part, due to the differences in geography, study design, fALS definition, and decade of case ascertainment. Few studies outside of European ancestral populations were available. The proportion fALS was marginally higher among case series compared with population-based studies, likely because of referral bias. Criteria used to define fALS were largely unreported. Consensus criteria for fALS and additional population-based studies in non-European ancestral populations are needed.
Collapse
Affiliation(s)
- Julie Barberio
- From the Epidemiologic Research and Methods LLC (J.B., C.L., W.D.F.); Rollins School of Public Health (J.B., W.D.F.), Emory University, Atlanta, GA; Biogen (V.K.), Cambridge, MA; and Trinity Biomedical Sciences Institute (O.H.), Dublin, Ireland
| | - Cathy Lally
- From the Epidemiologic Research and Methods LLC (J.B., C.L., W.D.F.); Rollins School of Public Health (J.B., W.D.F.), Emory University, Atlanta, GA; Biogen (V.K.), Cambridge, MA; and Trinity Biomedical Sciences Institute (O.H.), Dublin, Ireland
| | - Varant Kupelian
- From the Epidemiologic Research and Methods LLC (J.B., C.L., W.D.F.); Rollins School of Public Health (J.B., W.D.F.), Emory University, Atlanta, GA; Biogen (V.K.), Cambridge, MA; and Trinity Biomedical Sciences Institute (O.H.), Dublin, Ireland
| | - Orla Hardiman
- From the Epidemiologic Research and Methods LLC (J.B., C.L., W.D.F.); Rollins School of Public Health (J.B., W.D.F.), Emory University, Atlanta, GA; Biogen (V.K.), Cambridge, MA; and Trinity Biomedical Sciences Institute (O.H.), Dublin, Ireland
| | - W Dana Flanders
- From the Epidemiologic Research and Methods LLC (J.B., C.L., W.D.F.); Rollins School of Public Health (J.B., W.D.F.), Emory University, Atlanta, GA; Biogen (V.K.), Cambridge, MA; and Trinity Biomedical Sciences Institute (O.H.), Dublin, Ireland
| |
Collapse
|
14
|
Rizzuti M, Sali L, Melzi V, Scarcella S, Costamagna G, Ottoboni L, Quetti L, Brambilla L, Papadimitriou D, Verde F, Ratti A, Ticozzi N, Comi GP, Corti S, Gagliardi D. Genomic and transcriptomic advances in amyotrophic lateral sclerosis. Ageing Res Rev 2023; 92:102126. [PMID: 37972860 DOI: 10.1016/j.arr.2023.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder and the most common motor neuron disease. ALS shows substantial clinical and molecular heterogeneity. In vitro and in vivo models coupled with multiomic techniques have provided important contributions to unraveling the pathomechanisms underlying ALS. To date, despite promising results and accumulating knowledge, an effective treatment is still lacking. Here, we provide an overview of the literature on the use of genomics, epigenomics, transcriptomics and microRNAs to deeply investigate the molecular mechanisms developing and sustaining ALS. We report the most relevant genes implicated in ALS pathogenesis, discussing the use of different high-throughput sequencing techniques and the role of epigenomic modifications. Furthermore, we present transcriptomic studies discussing the most recent advances, from microarrays to bulk and single-cell RNA sequencing. Finally, we discuss the use of microRNAs as potential biomarkers and promising tools for molecular intervention. The integration of data from multiple omic approaches may provide new insights into pathogenic pathways in ALS by shedding light on diagnostic and prognostic biomarkers, helping to stratify patients into clinically relevant subgroups, revealing novel therapeutic targets and supporting the development of new effective therapies.
Collapse
Affiliation(s)
- Mafalda Rizzuti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Sali
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Melzi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Scarcella
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Gianluca Costamagna
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Linda Ottoboni
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Quetti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Brambilla
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Federico Verde
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy.
| | - Delia Gagliardi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
15
|
Salemi M, Lanza G, Salluzzo MG, Schillaci FA, Di Blasi FD, Cordella A, Caniglia S, Lanuzza B, Morreale M, Marano P, Tripodi M, Ferri R. A Next-Generation Sequencing Study in a Cohort of Sicilian Patients with Parkinson's Disease. Biomedicines 2023; 11:3118. [PMID: 38137339 PMCID: PMC10740523 DOI: 10.3390/biomedicines11123118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a multisystem and multifactorial disorder and, therefore, the application of modern genetic techniques may assist in unraveling its complex pathophysiology. We conducted a clinical-demographic evaluation of 126 patients with PD, all of whom were Caucasian and of Sicilian ancestry. DNA was extracted from the peripheral blood for each patient, followed by sequencing using a Next-Generation Sequencing system. This system was based on a custom gene panel comprising 162 genes. The sample underwent further filtering, taking into account the allele frequencies of genetic variants, their presence in the Human Gene Mutation Database, and their association in the literature with PD or other movement/neurodegenerative disorders. The largest number of variants was identified in the leucine-rich repeat kinase 2 (LRRK2) gene. However, variants in other genes, such as acid beta-glucosidase (GBA), DNA polymerase gamma catalytic subunit (POLG), and parkin RBR E3 ubiquitin protein ligase (PRKN), were also discovered. Interestingly, some of these variants had not been previously associated with PD. Enhancing our understanding of the genetic basis of PD and identifying new variants possibly linked to the disease will contribute to improved diagnostic accuracy, therapeutic developments, and prognostic insights for affected individuals.
Collapse
Affiliation(s)
- Michele Salemi
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Giuseppe Lanza
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, CT, Italy
| | - Maria Grazia Salluzzo
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Francesca A. Schillaci
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Francesco Domenico Di Blasi
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Angela Cordella
- Genomix4Life Srl, 84081 Baronissi, SA, Italy;
- Genome Research Center for Health—CRGS, 84081 Baronissi, SA, Italy
| | - Salvatore Caniglia
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Bartolo Lanuzza
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Manuela Morreale
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Pietro Marano
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Mariangela Tripodi
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Raffaele Ferri
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| |
Collapse
|
16
|
Corcia P, Vourc'h P, Bernard E, Cassereau J, Codron P, Fleury MC, Guy N, Mouzat K, Pradat PF, Soriani MH, Couratier P. French National Protocol for genetic of amyotrophic lateral sclerosis. Rev Neurol (Paris) 2023; 179:1020-1029. [PMID: 37735015 DOI: 10.1016/j.neurol.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 09/23/2023]
Abstract
Relationships between genes and amyotrophic lateral sclerosis (ALS) have been widely accepted since the first studies highlighting pathogenic mutations in the SOD1 gene 30years ago. Over the last three decades, scientific literature has clearly highlighted the central role played by genetic factors in the disease, in both clinics and pathophysiology, as well as in therapeutics. This implies that health professionals who care for patients with ALS are increasingly faced with patients and relatives eager to have answers to questions related to the role of genetic factors in the occurrence of the disease and the risk for their relatives to develop ALS. In order to address these public health issues, the French ALS network FILSLAN proposed to the Haute Autorité de santé (HAS) the drafting of a French National Protocol (PNDS) on ALS genetics. This PNDS was developed according to the "method for developing a national diagnosis and care protocol for rare diseases" published by the HAS in 2012 (methodological guide for PNDS available on the HAS website: http://www.has-sante.fr/). This document aims to provide the most recent data on the role of genes in ALS and to detail the implications for diagnosis and care.
Collapse
Affiliation(s)
- P Corcia
- CRMR SLA, CHRU Bretonneau, Tours, France; UMR 1253 iBrain, Tours, France.
| | - P Vourc'h
- UMR 1253 iBrain, Tours, France; Laboratoire de biochimie et biologie moléculaire, CHRU Bretonneau, Tours, France
| | | | | | - P Codron
- CRMR SLA, CHU d'Angers, Angers, France
| | - M-C Fleury
- CRC SLA, CHU de Strasbourg, Strasbourg, France
| | - N Guy
- CRC SLA, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - K Mouzat
- Laboratoire de biochimie et biologie moléculaire, CHU de Nîmes, Nîmes, France
| | - P-F Pradat
- CRMR SLA, CHU Pitié-Salpêtrière, Paris, France
| | | | | |
Collapse
|
17
|
Yang W, Chen X, Zhou Y, Tang X, Sun Y, Dong Y, Yang H, Chen Y, Zhang M. Investigation of a Fused in Sarcoma Splicing Mutation in a Chinese Amyotrophic Lateral Sclerosis Patient. Can J Neurol Sci 2023; 50:891-896. [PMID: 36511129 DOI: 10.1017/cjn.2022.336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Genetic mutations of fused in sarcoma (FUS) causing amyotrophic lateral sclerosis (ALS) may disrupt mRNA splicing events. For example, the FUS c.1394-2delA variant was reported in two western ALS patients, but its molecular mechanism is unclear. In this study, we aim to investigate FUS splice site mutations in Chinese ALS patients. METHODS Sanger sequencing was used to identify FUS splicing mutations in Chinese ALS patients. We combined a deep learning tool (SpliceAI), RNA sequencing, and RT-PCR/RT-qPCR to analyze the effect of FUS c.1394-2delA mutation on RNA splicing and expression. AlphaFold was used to predict the protein structure of mutant FUS. In transfected cell lines, we used immunofluorescence to assess cytoplasmic mislocalization of mutant FUS protein. RESULTS We identified a de novo FUS splice acceptor site mutation (c.1394-2delA, p. Gly466Valfs*14) in one Chinese sporadic ALS patient, which is linked to exon 14 skipping, and upregulated total FUS mRNA expression. The FUS splice site mutation was predicted to be translated into a truncated protein product at C-terminal. In vitro studies revealed that the FUS mutation increased cytoplasmic mislocalization in both HEK293T and SH-SY5Y cells. CONCLUSIONS We identified a de novo FUS splicing mutation (c.1394-2delA, p. Gly466Valfs*14) in 1 out of 233 Chinese ALS patients. It caused abnormal RNA splicing, upregulated gene expression, truncated FUS translation, and cytosolic mislocalization. Our findings suggested that FUS splice site mutation is rare in Chinese ALS patients and extended our knowledge of molecular mechanisms of the FUS c.1394-2delA mutation.
Collapse
Affiliation(s)
- Wanli Yang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, China
| | - Xi Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Zhou
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, China
| | - Xuelin Tang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, China
| | - Yimin Sun
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong Yang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, China
| | - Yan Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming Zhang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
- Institute for Advanced Study, Tongji University, Shanghai, China
| |
Collapse
|
18
|
Bennett CL, Dastidar S, Arnold FJ, McKinstry SU, Stockford C, Freibaum BD, Sopher BL, Wu M, Seidner G, Joiner W, Taylor JP, West RJH, La Spada AR. Senataxin helicase, the causal gene defect in ALS4, is a significant modifier of C9orf72 ALS G4C2 and arginine-containing dipeptide repeat toxicity. Acta Neuropathol Commun 2023; 11:164. [PMID: 37845749 PMCID: PMC10580588 DOI: 10.1186/s40478-023-01665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Identifying genetic modifiers of familial amyotrophic lateral sclerosis (ALS) may reveal targets for therapeutic modulation with potential application to sporadic ALS. GGGGCC (G4C2) repeat expansions in the C9orf72 gene underlie the most common form of familial ALS, and generate toxic arginine-containing dipeptide repeats (DPRs), which interfere with membraneless organelles, such as the nucleolus. Here we considered senataxin (SETX), the genetic cause of ALS4, as a modifier of C9orf72 ALS, because SETX is a nuclear helicase that may regulate RNA-protein interactions involved in ALS dysfunction. After documenting that decreased SETX expression enhances arginine-containing DPR toxicity and C9orf72 repeat expansion toxicity in HEK293 cells and primary neurons, we generated SETX fly lines and evaluated the effect of SETX in flies expressing either (G4C2)58 repeats or glycine-arginine-50 [GR(50)] DPRs. We observed dramatic suppression of disease phenotypes in (G4C2)58 and GR(50) Drosophila models, and detected a striking relocalization of GR(50) out of the nucleolus in flies co-expressing SETX. Next-generation GR(1000) fly models, that show age-related motor deficits in climbing and movement assays, were similarly rescued with SETX co-expression. We noted that the physical interaction between SETX and arginine-containing DPRs is partially RNA-dependent. Finally, we directly assessed the nucleolus in cells expressing GR-DPRs, confirmed reduced mobility of proteins trafficking to the nucleolus upon GR-DPR expression, and found that SETX dosage modulated nucleolus liquidity in GR-DPR-expressing cells and motor neurons. These findings reveal a hitherto unknown connection between SETX function and cellular processes contributing to neuron demise in the most common form of familial ALS.
Collapse
Affiliation(s)
- Craig L Bennett
- Departments of Pathology, Laboratory Medicine, Neurology, and Biological Chemistry, UCI Center for Neurotherapeutics, University of California Irvine School of Medicine, Irvine, CA, 92697, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Somasish Dastidar
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Molecular Neurosciences, Kasturba Medical College, Manipal, 576104, India
| | - Frederick J Arnold
- Departments of Pathology, Laboratory Medicine, Neurology, and Biological Chemistry, UCI Center for Neurotherapeutics, University of California Irvine School of Medicine, Irvine, CA, 92697, USA
| | - Spencer U McKinstry
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cameron Stockford
- Departments of Pathology, Laboratory Medicine, Neurology, and Biological Chemistry, UCI Center for Neurotherapeutics, University of California Irvine School of Medicine, Irvine, CA, 92697, USA
| | - Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bryce L Sopher
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, 98195, USA
| | - Meilin Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Glen Seidner
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - William Joiner
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, 98195, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Ryan J H West
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Albert R La Spada
- Departments of Pathology, Laboratory Medicine, Neurology, and Biological Chemistry, UCI Center for Neurotherapeutics, University of California Irvine School of Medicine, Irvine, CA, 92697, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurobiology and Behavior, University of California Irvine School of Biosciences, Irvine, CA, 92697, USA.
- UCI Center for Neurotherapeutics, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
19
|
Van Daele SH, Moisse M, van Vugt JJFA, Zwamborn RAJ, van der Spek R, van Rheenen W, Van Eijk K, Kenna K, Corcia P, Vourc'h P, Couratier P, Hardiman O, McLaughin R, Gotkine M, Drory V, Ticozzi N, Silani V, Ratti A, de Carvalho M, Mora Pardina JS, Povedano M, Andersen PM, Weber M, Başak NA, Shaw C, Shaw PJ, Morrison KE, Landers JE, Glass JD, van Es MA, van den Berg LH, Al-Chalabi A, Veldink J, Van Damme P. Genetic variability in sporadic amyotrophic lateral sclerosis. Brain 2023; 146:3760-3769. [PMID: 37043475 PMCID: PMC10473563 DOI: 10.1093/brain/awad120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 04/13/2023] Open
Abstract
With the advent of gene therapies for amyotrophic lateral sclerosis (ALS), there is a surge in gene testing for this disease. Although there is ample experience with gene testing for C9orf72, SOD1, FUS and TARDBP in familial ALS, large studies exploring genetic variation in all ALS-associated genes in sporadic ALS (sALS) are still scarce. Gene testing in a diagnostic setting is challenging, given the complex genetic architecture of sALS, for which there are genetic variants with large and small effect sizes. Guidelines for the interpretation of genetic variants in gene panels and for counselling of patients are lacking. We aimed to provide a thorough characterization of genetic variability in ALS genes by applying the American College of Medical Genetics and Genomics (ACMG) criteria on whole genome sequencing data from a large cohort of 6013 sporadic ALS patients and 2411 matched controls from Project MinE. We studied genetic variation in 90 ALS-associated genes and applied customized ACMG-criteria to identify pathogenic and likely pathogenic variants. Variants of unknown significance were collected as well. In addition, we determined the length of repeat expansions in C9orf72, ATXN1, ATXN2 and NIPA1 using the ExpansionHunter tool. We found C9orf72 repeat expansions in 5.21% of sALS patients. In 50 ALS-associated genes, we did not identify any pathogenic or likely pathogenic variants. In 5.89%, a pathogenic or likely pathogenic variant was found, most commonly in SOD1, TARDBP, FUS, NEK1, OPTN or TBK1. Significantly more cases carried at least one pathogenic or likely pathogenic variant compared to controls (odds ratio 1.75; P-value 1.64 × 10-5). Isolated risk factors in ATXN1, ATXN2, NIPA1 and/or UNC13A were detected in 17.33% of cases. In 71.83%, we did not find any genetic clues. A combination of variants was found in 2.88%. This study provides an inventory of pathogenic and likely pathogenic genetic variation in a large cohort of sALS patients. Overall, we identified pathogenic and likely pathogenic variants in 11.13% of ALS patients in 38 known ALS genes. In line with the oligogenic hypothesis, we found significantly more combinations of variants in cases compared to controls. Many variants of unknown significance may contribute to ALS risk, but diagnostic algorithms to reliably identify and weigh them are lacking. This work can serve as a resource for counselling and for the assembly of gene panels for ALS. Further characterization of the genetic architecture of sALS is necessary given the growing interest in gene testing in ALS.
Collapse
Affiliation(s)
- Sien Hilde Van Daele
- Department of Neurosciences, Experimental Neurology, KU Leuven—University of Leuven, and Leuven Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Human genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology, KU Leuven—University of Leuven, and Leuven Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Joke J F A van Vugt
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Ramona A J Zwamborn
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Rick van der Spek
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Kristel Van Eijk
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Kevin Kenna
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Philippe Corcia
- Centre SLA, CHRU de Tours, 37044 Tours, France
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Patrick Vourc'h
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | | | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin D02 PN40, Republic of Ireland
| | - Russell McLaughin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin D02 PN40, Republic of Ireland
| | - Marc Gotkine
- The Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Vivian Drory
- Department of Neurology, Tel-Aviv Sourasky Medical Centre, 64239 Tel Aviv, Israel
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milano, Italy
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, 20122 Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milano, Italy
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, 20122 Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milano, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milano, Italy
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | | | | | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, 901 87 Umeå, Sweden
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Nazli A Başak
- Koç University, School of Medicine, KUTTAM-NDAL, 34010 Istanbul, Turkey
| | - Chris Shaw
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, London SE5 9RT, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Karen E Morrison
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jonathan D Glass
- Department Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael A van Es
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, London SE5 9RT, UK
| | - Jan Veldink
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, KU Leuven—University of Leuven, and Leuven Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
20
|
Abstract
Neurons are markedly compartmentalized, which makes them reliant on axonal transport to maintain their health. Axonal transport is important for anterograde delivery of newly synthesized macromolecules and organelles from the cell body to the synapse and for the retrograde delivery of signaling endosomes and autophagosomes for degradation. Dysregulation of axonal transport occurs early in neurodegenerative diseases and plays a key role in axonal degeneration. Here, we provide an overview of mechanisms for regulation of axonal transport; discuss how these mechanisms are disrupted in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, hereditary spastic paraplegia, amyotrophic lateral sclerosis, and Charcot-Marie-Tooth disease; and discuss therapeutic approaches targeting axonal transport.
Collapse
|
21
|
Hatano Y, Ishihara T, Onodera O. Accuracy of a machine learning method based on structural and locational information from AlphaFold2 for predicting the pathogenicity of TARDBP and FUS gene variants in ALS. BMC Bioinformatics 2023; 24:206. [PMID: 37208601 DOI: 10.1186/s12859-023-05338-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND In the sporadic form of amyotrophic lateral sclerosis (ALS), the pathogenicity of rare variants in the causative genes characterizing the familial form remains largely unknown. To predict the pathogenicity of such variants, in silico analysis is commonly used. In some ALS causative genes, the pathogenic variants are concentrated in specific regions, and the resulting alterations in protein structure are thought to significantly affect pathogenicity. However, existing methods have not taken this issue into account. To address this, we have developed a technique termed MOVA (method for evaluating the pathogenicity of missense variants using AlphaFold2), which applies positional information for structural variants predicted by AlphaFold2. Here we examined the utility of MOVA for analysis of several causative genes of ALS. METHODS We analyzed variants of 12 ALS-related genes (TARDBP, FUS, SETX, TBK1, OPTN, SOD1, VCP, SQSTM1, ANG, UBQLN2, DCTN1, and CCNF) and classified them as pathogenic or neutral. For each gene, the features of the variants, consisting of their positions in the 3D structure predicted by AlphaFold2, pLDDT score, and BLOSUM62 were trained into a random forest and evaluated by the stratified fivefold cross validation method. We compared how accurately MOVA predicted mutant pathogenicity with other in silico prediction methods and evaluated the prediction accuracy at TARDBP and FUS hotspots. We also examined which of the MOVA features had the greatest impact on pathogenicity discrimination. RESULTS MOVA yielded useful results (AUC ≥ 0.70) for TARDBP, FUS, SOD1, VCP, and UBQLN2 of 12 ALS causative genes. In addition, when comparing the prediction accuracy with other in silico prediction methods, MOVA obtained the best results among those compared for TARDBP, VCP, UBQLN2, and CCNF. MOVA demonstrated superior predictive accuracy for the pathogenicity of mutations at hotspots of TARDBP and FUS. Moreover, higher accuracy was achieved by combining MOVA with REVEL or CADD. Among the features of MOVA, the x, y, and z coordinates performed the best and were highly correlated with MOVA. CONCLUSIONS MOVA is useful for predicting the virulence of rare variants in which they are concentrated at specific structural sites, and for use in combination with other prediction methods.
Collapse
Affiliation(s)
- Yuya Hatano
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata-shi, Niigata, 951-8585, Japan
| | - Tomohiko Ishihara
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata-shi, Niigata, 951-8585, Japan.
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata-shi, Niigata, 951-8585, Japan
| |
Collapse
|
22
|
Dong S, Yin X, Wang K, Yang W, Li J, Wang Y, Zhou Y, Liu X, Wang J, Chen X. Presence of Rare Variants is Associated with Poorer Survival in Chinese Patients with Amyotrophic Lateral Sclerosis. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:167-181. [PMID: 37197644 PMCID: PMC10110782 DOI: 10.1007/s43657-022-00093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 05/19/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with phenotypic and genetic heterogeneity. Recent studies have suggested an oligogenic basis of ALS, in which the co-occurrence of two or more genetic variants has additive or synergistic deleterious effects. To assess the contribution of possible oligogenic inheritance, we profiled a panel of 43 relevant genes in 57 sporadic ALS (sALS) patients and eight familial ALS (fALS) patients from five pedigrees in east China. We filtered rare variants using the combination of the Exome Aggregation Consortium, the 1000 Genomes and the HuaBiao Project. We analyzed patients with multiple rare variants in 43 known ALS causative genes and the genotype-phenotype correlation. Overall, we detected 30 rare variants in 16 different genes and found that 16 of the sALS patients and all the fALS patients examined harbored at least one variant in the investigated genes, among which two sALS and four fALS patients harbored two or more variants. Of note, the sALS patients with one or more variants in ALS genes had worse survival than the patients with no variants. Typically, in one fALS pedigree with three variants, the family member with three variants (Superoxide dismutase 1 (SOD1) p.V48A, Optineurin (OPTN) p.A433V and TANK binding kinase 1 (TBK1) p.R573H) exhibited much more severe disease phenotype than the member carrying one variant (TBK1 p.R573H). Our findings suggest that rare variants could exert a negative prognostic effect, thereby supporting the oligogenic inheritance of ALS.
Collapse
Affiliation(s)
- Siqi Dong
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
| | - Xianhong Yin
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| | - Kun Wang
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Wenbo Yang
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
| | - Jiatong Li
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
| | - Yi Wang
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| | - Yanni Zhou
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xiaoni Liu
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
| | - Jiucun Wang
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| |
Collapse
|
23
|
Suzuki N, Nishiyama A, Warita H, Aoki M. Genetics of amyotrophic lateral sclerosis: seeking therapeutic targets in the era of gene therapy. J Hum Genet 2023; 68:131-152. [PMID: 35691950 PMCID: PMC9968660 DOI: 10.1038/s10038-022-01055-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an intractable disease that causes respiratory failure leading to mortality. The main locus of ALS is motor neurons. The success of antisense oligonucleotide (ASO) therapy in spinal muscular atrophy (SMA), a motor neuron disease, has triggered a paradigm shift in developing ALS therapies. The causative genes of ALS and disease-modifying genes, including those of sporadic ALS, have been identified one after another. Thus, the freedom of target choice for gene therapy has expanded by ASO strategy, leading to new avenues for therapeutic development. Tofersen for superoxide dismutase 1 (SOD1) was a pioneer in developing ASO for ALS. Improving protocols and devising early interventions for the disease are vital. In this review, we updated the knowledge of causative genes in ALS. We summarized the genetic mutations identified in familial ALS and their clinical features, focusing on SOD1, fused in sarcoma (FUS), and transacting response DNA-binding protein. The frequency of the C9ORF72 mutation is low in Japan, unlike in Europe and the United States, while SOD1 and FUS are more common, indicating that the target mutations for gene therapy vary by ethnicity. A genome-wide association study has revealed disease-modifying genes, which could be the novel target of gene therapy. The current status and prospects of gene therapy development were discussed, including ethical issues. Furthermore, we discussed the potential of axonal pathology as new therapeutic targets of ALS from the perspective of early intervention, including intra-axonal transcription factors, neuromuscular junction disconnection, dysregulated local translation, abnormal protein degradation, mitochondrial pathology, impaired axonal transport, aberrant cytoskeleton, and axon branching. We simultaneously discuss important pathological states of cell bodies: persistent stress granules, disrupted nucleocytoplasmic transport, and cryptic splicing. The development of gene therapy based on the elucidation of disease-modifying genes and early intervention in molecular pathology is expected to become an important therapeutic strategy in ALS.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| |
Collapse
|
24
|
Tang X, Yuan Y, Liu Z, Bu Y, Tang L, Zhao Q, Jiao B, Guo J, Shen L, Jiang H, Tang B, Wang J. Genetic and clinical analysis of TP73 gene in amyotrophic lateral sclerosis patients from Chinese mainland. Front Aging Neurosci 2023; 15:1114022. [PMID: 36845660 PMCID: PMC9947132 DOI: 10.3389/fnagi.2023.1114022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction TP73 was recently identified as a novel causative gene for amyotrophic lateral sclerosis (ALS). We aimed to determine the contribution of variations in TP73 in the Chinese ALS population and to further explore the genotype-phenotype correlations. Methods We screened rare, putative pathogenic TP73 mutations in a large Chinese ALS cohort and performed association analysis of both rare and common TP73 variations between cases and controls. Results Of the 985 ALS patients studied, six rare, heterozygous putative pathogenic variants in TP73 were identified among six unrelated sALS patients. Exon 14 of TP73 might be a mutant hotspot in our cohort. Patients with ALS with only rare, putative pathogenic TP73 mutations exhibited a characteristic clinical profile. Patients harboring multiple mutations in TP73 and other ALS-related genes displayed a significantly earlier onset of ALS. Association analysis revealed that rare TP73 variants in the untranslated regions (UTRs) were enriched among ALS patients; meanwhile, two common variants in the exon-intron boundary were discovered to be associated with ALS. Discussion We demonstrate that TP73 variations also have contributed to ALS in the Asian population and broaden the genotypic and phenotypic spectrum of TP73 variants in the ALS-frontotemporal dementia (FTD) spectrum. Furthermore, our findings first suggest that TP73 is not only a causative gene, but also exerts a disease-modifying effect. These results may contribute to a better understanding of the molecular mechanism of ALS.
Collapse
Affiliation(s)
- Xuxiong Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue Bu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linxin Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianqian Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China,School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China,*Correspondence: Junling Wang, ✉
| |
Collapse
|
25
|
Muzio L, Ghirelli A, Agosta F, Martino G. Novel therapeutic approaches for motor neuron disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:523-537. [PMID: 37620088 DOI: 10.1016/b978-0-323-98817-9.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to the neurodegeneration and death of upper and lower motor neurons (MNs). Although MNs are the main cells involved in the process of neurodegeneration, a growing body of evidence points toward other cell types as concurrent to disease initiation and propagation. Given the current absence of effective therapies, the quest for other therapeutic targets remains open and still challenges the scientific community. Both neuronal and extra-neuronal mechanisms of cellular stress and damage have been studied and have posed the basis for the development of novel therapies that have been investigated on both animal models and humans. In this chapter, a thorough review of the main mechanisms of cellular damage and the respective therapeutic attempts targeting them is reported. The main areas covered include neuroinflammation, protein aggregation, RNA metabolism, and oxidative stress.
Collapse
Affiliation(s)
- Luca Muzio
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy
| | - Alma Ghirelli
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Gianvito Martino
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
26
|
Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, Sobue G. Amyotrophic lateral sclerosis. Lancet 2022; 400:1363-1380. [PMID: 36116464 PMCID: PMC10089700 DOI: 10.1016/s0140-6736(22)01272-7] [Citation(s) in RCA: 372] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 01/07/2023]
Abstract
Amyotrophic lateral sclerosis is a fatal CNS neurodegenerative disease. Despite intensive research, current management of amyotrophic lateral sclerosis remains suboptimal from diagnosis to prognosis. Recognition of the phenotypic heterogeneity of amyotrophic lateral sclerosis, global CNS dysfunction, genetic architecture, and development of novel diagnostic criteria is clarifying the spectrum of clinical presentation and facilitating diagnosis. Insights into the pathophysiology of amyotrophic lateral sclerosis, identification of disease biomarkers and modifiable risks, along with new predictive models, scales, and scoring systems, and a clinical trial pipeline of mechanism-based therapies, are changing the prognostic landscape. Although most recent advances have yet to translate into patient benefit, the idea of amyotrophic lateral sclerosis as a complex syndrome is already having tangible effects in the clinic. This Seminar will outline these insights and discuss the status of the management of amyotrophic lateral sclerosis for the general neurologist, along with future prospects that could improve care and outcomes for patients with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Eva L Feldman
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Stephen A Goutman
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Letizia Mazzini
- ALS Centre, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy; Department of Neurology, University of Piemonte Orientale, Novara, Italy
| | - Masha G Savelieff
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Gen Sobue
- Department of Neurology, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
27
|
Marshall JNG, Fröhlich A, Li L, Pfaff AL, Middlehurst B, Spargo TP, Iacoangeli A, Lang B, Al-Chalabi A, Koks S, Bubb VJ, Quinn JP. A polymorphic transcriptional regulatory domain in the amyotrophic lateral sclerosis risk gene CFAP410 correlates with differential isoform expression. Front Mol Neurosci 2022; 15:954928. [PMID: 36131690 PMCID: PMC9484465 DOI: 10.3389/fnmol.2022.954928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022] Open
Abstract
We describe the characterisation of a variable number tandem repeat (VNTR) domain within intron 1 of the amyotrophic lateral sclerosis (ALS) risk gene CFAP410 (Cilia and flagella associated protein 410) (previously known as C21orf2), providing insight into how this domain could support differential gene expression and thus be a modulator of ALS progression or risk. We demonstrated the VNTR was functional in a reporter gene assay in the HEK293 cell line, exhibiting both the properties of an activator domain and a transcriptional start site, and that the differential expression was directed by distinct repeat number in the VNTR. These properties embedded in the VNTR demonstrated the potential for this VNTR to modulate CFAP410 expression. We extrapolated these findings in silico by utilisation of tagging SNPs for the two most common VNTR alleles to establish a correlation with endogenous gene expression. Consistent with in vitro data, CFAP410 isoform expression was found to be variable in the brain. Furthermore, although the number of matched controls was low, there was evidence for one specific isoform being correlated with lower expression in those with ALS. To address if the genotype of the VNTR was associated with ALS risk, we characterised the variation of the CFAP410 VNTR in ALS cases and matched controls by PCR analysis of the VNTR length, defining eight alleles of the VNTR. No significant difference was observed between cases and controls, we noted, however, the cohort was unlikely to contain sufficient power to enable any firm conclusion to be drawn from this analysis. This data demonstrated that the VNTR domain has the potential to modulate CFAP410 expression as a regulatory element that could play a role in its tissue-specific and stimulus-inducible regulation that could impact the mechanism by which CFAP410 is involved in ALS.
Collapse
Affiliation(s)
- Jack N. G. Marshall
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Alexander Fröhlich
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Li Li
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Psychiatry, National Clinical Research Centre for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Abigail L. Pfaff
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Ben Middlehurst
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Thomas P. Spargo
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, United Kingdom
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, United Kingdom
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Centre for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Neurology, King's College Hospital, London, United Kingdom
| | - Sulev Koks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Vivien J. Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
28
|
An Atypical Presentation of Upper Motor Neuron Predominant Juvenile Amyotrophic Lateral Sclerosis Associated with TARDBP Gene: A Case Report and Review of the Literature. Genes (Basel) 2022; 13:genes13081483. [PMID: 36011394 PMCID: PMC9407925 DOI: 10.3390/genes13081483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that can rarely affect young individuals. Juvenile ALS (JALS) is defined for individuals with an onset of the disease before the age of 25. The contribution of genetics to ALS pathology is a field of growing interest. One of the differences between adult-onset ALS and JALS is their genetic background, with a higher contribution of genetic causes in JALS. We report a patient with JALS and a pathogenic variant in the TARDBP gene (c.1035C > G; p.Asn345Lys), previously reported only in adult-onset ALS, and with an atypical phenotype of marked upper motor neuron predominance. In addition, the proband presented an additional variant in the NEK1 gene, c.2961C > G (p.Phe987Leu), which is classified as a variant of unknown significance. Segregation studies showed a paternal origin of the TARDBP variant, while the variant in NEK1 was inherited from the mother. We hypothesize that the NEK1 variant acts as a disease modifier and suggests the possibility of a functional interaction between both genes in our case. This hypothesis could explain the peculiarities of the phenotype, penetrance, and the age of onset. This report highlights the heterogeneity of the phenotypic presentation of ALS associated with diverse pathogenic genetic variants.
Collapse
|
29
|
Grassano M, Calvo A, Moglia C, Sbaiz L, Brunetti M, Barberis M, Casale F, Manera U, Vasta R, Canosa A, D'Alfonso S, Corrado L, Mazzini L, Dalgard C, Karra R, Chia R, Traynor B, Chiò A. Systematic evaluation of genetic mutations in ALS: a population-based study. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-328931. [PMID: 35896380 PMCID: PMC9606529 DOI: 10.1136/jnnp-2022-328931] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/22/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND A genetic diagnosis in Amyotrophic Lateral Sclerosis (ALS) can inform genetic counselling, prognosis and, in the light of incoming gene-targeted therapy, management. However, conventional genetic testing strategies are often costly and time-consuming. OBJECTIVE To evaluate the diagnostic yield and advantages of whole-genome sequencing (WGS) as a standard diagnostic genetic test for ALS. METHODS In this population-based cohort study, 1043 ALS patients from the Piemonte and Valle d'Aosta Register for ALS and 755 healthy individuals were screened by WGS for variants in 42 ALS-related genes and for repeated-expansions in C9orf72 and ATXN2. RESULTS A total of 279 ALS cases (26.9%) received a genetic diagnosis, namely 75.2% of patients with a family history of ALS and 21.5% of sporadic cases. The mutation rate among early-onset ALS patients was 43.9%, compared with 19.7% of late-onset patients. An additional 14.6% of the cohort carried a genetic factor that worsen prognosis. CONCLUSIONS Our results suggest that, because of its high diagnostic yield and increasingly competitive costs, along with the possibility of retrospectively reassessing newly described genes, WGS should be considered as standard genetic testing for all ALS patients. Additionally, our results provide a detailed picture of the genetic basis of ALS in the general population.
Collapse
Affiliation(s)
- Maurizio Grassano
- Department of Neuroscience, University of Turin, Torino, Italy
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, Porter Neuroscience Research Center, National Institute on Aging, Bethesda, Maryland, USA
| | - Andrea Calvo
- Department of Neuroscience, University of Turin, Torino, Italy
- S.C. Neurologia 1U, Azienda Ospedaliero Universitaria Citta della Salute e della Scienza di Torino, Torino, Italy
| | - Cristina Moglia
- Department of Neuroscience, University of Turin, Torino, Italy
- S.C. Neurologia 1U, Azienda Ospedaliero Universitaria Citta della Salute e della Scienza di Torino, Torino, Italy
| | - Luca Sbaiz
- Laboratory of Genetics, Department of Clinical Pathology, Azienda Ospedaliero Universitaria Citta della Salute e della Scienza di Torino, Torino, Italy
| | - Maura Brunetti
- Laboratory of Genetics, Department of Clinical Pathology, Azienda Ospedaliero Universitaria Citta della Salute e della Scienza di Torino, Torino, Italy
| | - Marco Barberis
- Laboratory of Genetics, Department of Clinical Pathology, Azienda Ospedaliero Universitaria Citta della Salute e della Scienza di Torino, Torino, Italy
| | - Federico Casale
- Department of Neuroscience, University of Turin, Torino, Italy
| | - Umberto Manera
- Department of Neuroscience, University of Turin, Torino, Italy
- S.C. Neurologia 1U, Azienda Ospedaliero Universitaria Citta della Salute e della Scienza di Torino, Torino, Italy
| | - Rosario Vasta
- Department of Neuroscience, University of Turin, Torino, Italy
| | - Antonio Canosa
- Department of Neuroscience, University of Turin, Torino, Italy
- S.C. Neurologia 1U, Azienda Ospedaliero Universitaria Citta della Salute e della Scienza di Torino, Torino, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, University of Eastern Piedmont Amedeo Avogadro School of Medicine, Novara, Piemonte, Italy
| | - Lucia Corrado
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, University of Eastern Piedmont Amedeo Avogadro School of Medicine, Novara, Piemonte, Italy
| | - Letizia Mazzini
- Department of Neurology, University Hospital Maggiore della Carità, Novara, Italy
| | - Clifton Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ramita Karra
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, Porter Neuroscience Research Center, National Institute on Aging, Bethesda, Maryland, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, Porter Neuroscience Research Center, National Institute on Aging, Bethesda, Maryland, USA
| | - Bryan Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, Porter Neuroscience Research Center, National Institute on Aging, Bethesda, Maryland, USA
- Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
- ASO Rapid Development Laboratory, Therapeutics Development Branch, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Adriano Chiò
- Department of Neuroscience, University of Turin, Torino, Italy
- S.C. Neurologia 1U, Azienda Ospedaliero Universitaria Citta della Salute e della Scienza di Torino, Torino, Italy
- Institute of Cognitive Sciences and Technologies, National Council of Research, Rome, Italy
| |
Collapse
|
30
|
Spinelli EG, Ghirelli A, Riva N, Canu E, Castelnovo V, Domi T, Pozzi L, Carrera P, Silani V, Chiò A, Filippi M, Agosta F. Profiling morphologic MRI features of motor neuron disease caused by TARDBP mutations. Front Neurol 2022; 13:931006. [PMID: 35911889 PMCID: PMC9334911 DOI: 10.3389/fneur.2022.931006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Objective Mutations in the TARDBP gene are a rare cause of genetic motor neuron disease (MND). Morphologic MRI characteristics of MND patients carrying this mutation have been poorly described. Our objective was to investigate distinctive clinical and MRI features of a relatively large sample of MND patients carrying TARDBP mutations. Methods Eleven MND patients carrying a TARDBP mutation were enrolled. Eleven patients with sporadic MND (sMND) and no genetic mutations were also selected and individually matched by age, sex, clinical presentation and disease severity, along with 22 healthy controls. Patients underwent clinical and cognitive evaluations, as well as 3D T1-weighted and diffusion tensor (DT) MRI on a 3 Tesla scanner. Gray matter (GM) atrophy was first investigated at a whole-brain level using voxel-based morphometry (VBM). GM volumes and DT MRI metrics of the main white matter (WM) tracts were also obtained. Clinical, cognitive and MRI features were compared between groups. Results MND with TARDBP mutations was associated with all possible clinical phenotypes, including isolated upper/lower motor neuron involvement, with no predilection for bulbar or limb involvement at presentation. Greater impairment at naming tasks was found in TARDBP mutation carriers compared with sMND. VBM analysis showed significant atrophy of the right lateral parietal cortex in TARDBP patients, compared with controls. A distinctive reduction of GM volumes was found in the left precuneus and right angular gyrus of TARDBP patients compared to controls. WM microstructural damage of the corticospinal tract (CST) and inferior longitudinal fasciculi (ILF) was found in both sMND and TARDBP patients, compared with controls, although decreased fractional anisotropy of the right CST and increased axial diffusivity of the left ILF (p = 0.017) was detected only in TARDBP mutation carriers. Conclusions TARDBP patients showed a distinctive parietal pattern of cortical atrophy and greater damage of motor and extra-motor WM tracts compared with controls, which sMND patients matched for disease severity and clinical presentation were lacking. Our findings suggest that TDP-43 pathology due to TARDBP mutations may cause deeper morphologic alterations in both GM and WM.
Collapse
Affiliation(s)
- Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alma Ghirelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Nilo Riva
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Laboratory of Clinical Molecular Biology, Unit of Genomics for Human Disease Diagnosis, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Adriano Chiò
- Rita Levi Montalcini “Department of Neuroscience, ” ALS Center, University of Torino, Turin, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- *Correspondence: Federica Agosta
| |
Collapse
|
31
|
Kirola L, Mukherjee A, Mutsuddi M. Recent Updates on the Genetics of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Mol Neurobiol 2022; 59:5673-5694. [PMID: 35768750 DOI: 10.1007/s12035-022-02934-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) primarily affect the motor and frontotemporal areas of the brain, respectively. These disorders share clinical, genetic, and pathological similarities, and approximately 10-15% of ALS-FTD cases are considered to be multisystemic. ALS-FTD overlaps have been linked to families carrying an expansion in the intron of C9orf72 along with inclusions of TDP-43 in the brain. Other overlapping genes (VCP, FUS, SQSTM1, TBK1, CHCHD10) are also involved in similar functions that include RNA processing, autophagy, proteasome response, protein aggregation, and intracellular trafficking. Recent advances in genome sequencing have identified new genes that are involved in these disorders (TBK1, CCNF, GLT8D1, KIF5A, NEK1, C21orf2, TBP, CTSF, MFSD8, DNAJC7). Additional risk factors and modifiers have been also identified in genome-wide association studies and array-based studies. However, the newly identified genes show higher disease frequencies in combination with known genes that are implicated in pathogenesis, thus indicating probable digenetic/polygenic inheritance models, along with epistatic interactions. Studies suggest that these genes play a pleiotropic effect on ALS-FTD and other diseases such as Alzheimer's disease, Ataxia, and Parkinsonism. Besides, there have been numerous improvements in the genotype-phenotype correlations as well as clinical trials on stem cell and gene-based therapies. This review discusses the possible genetic models of ALS and FTD, the latest therapeutics, and signaling pathways involved in ALS-FTD.
Collapse
Affiliation(s)
- Laxmi Kirola
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
32
|
Multiple roles for the cytoskeleton in ALS. Exp Neurol 2022; 355:114143. [PMID: 35714755 PMCID: PMC10163623 DOI: 10.1016/j.expneurol.2022.114143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease caused by more than sixty genes identified through classic linkage analysis and new sequencing methods. Yet no clear mechanism of onset, cure, or effective treatment is known. Popular discourse classifies the proteins encoded from ALS-related genes into four disrupted processes: proteostasis, mitochondrial function and ROS, nucleic acid regulation, and cytoskeletal dynamics. Surprisingly, the mechanisms detailing the contribution of the neuronal cytoskeletal in ALS are the least explored, despite involvement in these cell processes. Eight genes directly regulate properties of cytoskeleton function and are essential for the health and survival of motor neurons, including: TUBA4A, SPAST, KIF5A, DCTN1, NF, PRPH, ALS2, and PFN1. Here we review the properties and studies exploring the contribution of each of these genes to ALS.
Collapse
|
33
|
McNeill A, Amador MDM, Bekker H, Clarke A, Crook A, Cummings C, McEwen A, McDermott C, Quarrell O, Renieri A, Roggenbuck J, Salmon K, Volk A, Weishaupt J. Predictive genetic testing for Motor neuron disease: time for a guideline? Eur J Hum Genet 2022; 30:635-636. [PMID: 35379930 PMCID: PMC9177585 DOI: 10.1038/s41431-022-01093-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Alisdair McNeill
- Department of Neuroscience, the University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, UK.
| | - Maria-Del-Mar Amador
- Département de Neurologie, Centre de Référence SLA de Paris, Assistance Publique-Hôpitaux de Paris, Sorbonne Université Hospital Pitié-Salpêtrière, Paris, France
| | - Hilary Bekker
- Leeds Unit of Complex Intervention Development (LUCID), Leeds Institute of Health Science, University of Leeds, Leeds, UK
| | - Angus Clarke
- Medical Genetics, School of Medicine, Cardiff University, Wales, CF10 3AT, UK
| | - Ashley Crook
- Centre for MND Research, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Cathy Cummings
- International Aliance of ALS/MND Associations, Northampton, UK
| | - Alison McEwen
- Graduate School of Health, University of Technology Sydney, Chippendale, NSW, Australia
| | - Christopher McDermott
- Department of Neuroscience, the University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Oliver Quarrell
- Department of Neuroscience, the University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | | | - Jennifer Roggenbuck
- Department of Neurology and Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43212, USA
| | - Kristiana Salmon
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Alexander Volk
- Institute of Human Genetics, University Medical Center Hamburg Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany
| | - Jochen Weishaupt
- Division of Neurodegeneration, Department of Neurology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | |
Collapse
|
34
|
The Amyotrophic Lateral Sclerosis M114T PFN1 Mutation Deregulates Alternative Autophagy Pathways and Mitochondrial Homeostasis. Int J Mol Sci 2022; 23:ijms23105694. [PMID: 35628504 PMCID: PMC9143529 DOI: 10.3390/ijms23105694] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 12/10/2022] Open
Abstract
Mutations in profilin 1 (PFN1) have been identified in rare familial cases of Amyotrophic Lateral Sclerosis (ALS). PFN1 is involved in multiple pathways that could intervene in ALS pathology. However, the specific pathogenic role of PFN1 mutations in ALS is still not fully understood. We hypothesized that PFN1 could play a role in regulating autophagy pathways and that PFN1 mutations could disrupt this function. We used patient cells (lymphoblasts) or tissue (post-mortem) carrying PFN1 mutations (M114T and E117G), and designed experimental models expressing wild-type or mutant PFN1 (cell lines and novel PFN1 mice established by lentiviral transgenesis) to study the effects of PFN1 mutations on autophagic pathway markers. We observed no accumulation of PFN1 in the spinal cord of one E117G mutation carrier. Moreover, in patient lymphoblasts and transfected cell lines, the M114T mutant PFN1 protein was unstable and deregulated the RAB9-mediated alternative autophagy pathway involved in the clearance of damaged mitochondria. In vivo, motor neurons expressing M114T mutant PFN1 showed mitochondrial abnormalities. Our results demonstrate that the M114T PFN1 mutation is more deleterious than the E117G variant in patient cells and experimental models and suggest a role for the RAB9-dependent autophagic pathway in ALS.
Collapse
|
35
|
Fernández-Santiago R, Sharma M. What have we learned from genome-wide association studies (GWAS) in Parkinson's disease? Ageing Res Rev 2022; 79:101648. [PMID: 35595184 DOI: 10.1016/j.arr.2022.101648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/01/2022]
Abstract
After fifteen years of genome-wide association studies (GWAS) in Parkinson's disease (PD), what have we learned? Addressing this question will help catalogue the progress made towards elucidating disease mechanisms, improving the clinical utility of the identified loci, and envisioning how we can harness the strides to develop translational GWAS strategies. Here we review the advances of PD GWAS made to date while critically addressing the challenges and opportunities for next-generation GWAS. Thus, deciphering the missing heritability in underrepresented populations is currently at the reach of hand for a truly comprehensive understanding of the genetics of PD across the different ethnicities. Moreover, state-of-the-art GWAS designs hold a true potential for enhancing the clinical applicability of genetic findings, for instance, by improving disease prediction (PD risk and progression). Lastly, advanced PD GWAS findings, alone or in combination with clinical and environmental parameters, are expected to have the capacity for defining patient enriched cohorts stratified by genetic risk profiles and readily available for neuroprotective clinical trials. Overall, envisioning future strategies for advanced GWAS is currently timely and can be instrumental in providing novel genetic readouts essential for a true clinical translatability of PD genetic findings.
Collapse
|
36
|
Re DB, Yan B, Calderón-Garcidueñas L, Andrew AS, Tischbein M, Stommel EW. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: identifying exposures determining higher ALS risk. J Neurol 2022; 269:2359-2377. [PMID: 34973105 PMCID: PMC9021134 DOI: 10.1007/s00415-021-10928-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Multiple studies indicate that United States veterans have an increased risk of developing amyotrophic lateral sclerosis (ALS) compared to civilians. However, the responsible etiological factors are unknown. In the general population, specific occupational (e.g. truck drivers, airline pilots) and environmental exposures (e.g. metals, pesticides) are associated with an increased ALS risk. As such, the increased prevalence of ALS in veterans strongly suggests that there are exposures experienced by military personnel that are disproportionate to civilians. During service, veterans may encounter numerous neurotoxic exposures (e.g. burn pits, engine exhaust, firing ranges). So far, however, there is a paucity of studies investigating environmental factors contributing to ALS in veterans and even fewer assessing their exposure using biomarkers. Herein, we discuss ALS pathogenesis in relation to a series of persistent neurotoxicants (often emitted as mixtures) including: chemical elements, nanoparticles and lipophilic toxicants such as dioxins, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. We propose these toxicants should be directly measured in veteran central nervous system tissue, where they may have accumulated for decades. Specific toxicants (or mixtures thereof) may accelerate ALS development following a multistep hypothesis or act synergistically with other service-linked exposures (e.g. head trauma/concussions). Such possibilities could explain the lower age of onset observed in veterans compared to civilians. Identifying high-risk exposures within vulnerable populations is key to understanding ALS etiopathogenesis and is urgently needed to act upon modifiable risk factors for military personnel who deserve enhanced protection during their years of service, not only for their short-term, but also long-term health.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Science, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Beizhan Yan
- Department of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Lilian Calderón-Garcidueñas
- Department Biomedical Sciences, College of Health, University of Montana, Missoula, MT, USA
- Universidad del Valle de México, Mexico City, Mexico
| | - Angeline S Andrew
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Maeve Tischbein
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
37
|
Yilmaz R, Weishaupt K, Valkadinov I, Knehr A, Brenner D, Weishaupt JH. Quadruple genetic variants in a sporadic ALS patient. Mol Genet Genomic Med 2022; 10:e1953. [PMID: 35426263 PMCID: PMC9266611 DOI: 10.1002/mgg3.1953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives Due to upcoming gene‐specific therapy approaches for ALS patients, understanding familial and sporadic ALS genetics is becoming increasingly important. In this study, we wanted to investigate underlying genetic causes for an SALS patient. Methods We performed ALS gene panel sequencing and subsequent segregation analysis in the family. Results Genetic studies suggest that a proportion of SALS cases has an oligogenic origin due to the combination of low‐effect size mutations in several ALS genes. Maximally three mutations in different ALS disease genes have been described in isolated ALS patients. Here, we report for the first time the co‐occurrence of rare nonsynonymous variants in four known ALS genes in a SALS patient (c.859G > A/p.Gly287Ser in TARDBP, c.304G > T/p.Glu102* in NEK1, c.3446C > A/p.Gly1149Val in ERBB4, and c.1015C > T/p.Arg339Trp in VEGFA). All four variants were unique for the patient, whereas up to three of these variants were detected in the unaffected family members, all older than the patient. Discussion Our study suggests that SALS can be caused by the additive or synergistic action of low‐effect size mutations. Broader use of gene panel analysis or whole exome/genome sequencing may reveal a potentially treatable oligogenic causation in a higher percentage of SALS than previously thought.
Collapse
Affiliation(s)
- Rüstem Yilmaz
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Kanchi Weishaupt
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Ivan Valkadinov
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Antje Knehr
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - David Brenner
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Jochen H Weishaupt
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| |
Collapse
|
38
|
Dharmadasa T, Scaber J, Edmond E, Marsden R, Thompson A, Talbot K, Turner MR. Genetic testing in motor neurone disease. Pract Neurol 2022; 22:107-116. [PMID: 35027459 PMCID: PMC8938673 DOI: 10.1136/practneurol-2021-002989] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2021] [Indexed: 11/21/2022]
Abstract
A minority (10%-15%) of cases of amyotrophic lateral sclerosis (ALS), the most common form of motor neurone disease (MND), are currently attributable to pathological variants in a single identifiable gene. With the emergence of new therapies targeting specific genetic subtypes of ALS, there is an increasing role for routine genetic testing for all those with a definite diagnosis. However, potential harm to both affected individuals and particularly to asymptomatic relatives can arise from the indiscriminate use of genetic screening, not least because of uncertainties around incomplete penetrance and variants of unknown significance. The most common hereditary cause of ALS, an intronic hexanucleotide repeat expansion in C9ORF72, may be associated with frontotemporal dementia independently within the same pedigree. The boundary of what constitutes a possible family history of MND has therefore extended to include dementia and associated psychiatric presentations. Notwithstanding the important role of clinical genetics specialists, all neurologists need a basic understanding of the current place of genetic testing in MND, which holds lessons for other neurological disorders.
Collapse
Affiliation(s)
- Thanuja Dharmadasa
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Jakub Scaber
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Evan Edmond
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Rachael Marsden
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alexander Thompson
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| |
Collapse
|
39
|
Mehta S, Goel A, Singh D, Ray S, Tigari B, Takkar A, Lal V. Dystonia and Optic Neuropathy: Expanded Phenotype of Dynactin 1 Related Neurodegeneration. Mov Disord Clin Pract 2022; 9:535-539. [PMID: 35586532 PMCID: PMC9092729 DOI: 10.1002/mdc3.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Sahil Mehta
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Abeer Goel
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Deependra Singh
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Sucharita Ray
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Basavaraj Tigari
- Department of OphthalmologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Aastha Takkar
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Vivek Lal
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| |
Collapse
|
40
|
Feng SY, Lin H, Che CH, Huang HP, Liu CY, Zou ZY. Phenotype of VCP Mutations in Chinese Amyotrophic Lateral Sclerosis Patients. Front Neurol 2022; 13:790082. [PMID: 35197922 PMCID: PMC8858817 DOI: 10.3389/fneur.2022.790082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in the valosin-containing protein (VCP) gene have been linked to amyotrophic lateral sclerosis (ALS) in the Caucasian populations. However, the phenotype of VCP mutations in Chinese patients with (ALS) remains unclear. Targeted next-generation sequencing covered 28 ALS-related genes including the VCP gene was undertaken to screen in a Chinese cohort of 275 sporadic ALS cases and 15 familial ALS pedigrees. An extensive literature review was performed to identify all patients with ALS carrying VCP mutations previously reported. The clinical characteristics and genetic features of ALS patients with VCP mutations were reviewed. One known p.R155C mutation in the VCP gene was detected in two siblings from a familial ALS pedigree and two sporadic individuals. In addition, the same VCP p.R155C mutation was detected in an additional patient with ALS referred in 2021. Three patients with VCP p.R155C mutation presented with muscular weakness starting from proximal extremities to distal extremities. The other patient developed a phenotype of Paget's disease of bone in addition to the progressive muscular atrophy. We reported the first VCP mutation carrier manifesting ALS with Paget's disease of bone in the Chinese population. Our findings expand the phenotypic spectrum of the VCP mutations in Chinese patients with ALS and suggest that ALS patients with VCP p.R155C mutations tend to present with relatively young onset, symmetrical involvement of proximal muscles weakness of arms or legs, and then progressed to distal muscles of limbs.
Collapse
Affiliation(s)
- Shu-Yan Feng
- Department of Neurophysiology, Henan Provincial People's Hospital, Zhengzhou, China
- Zhengzhou University People's Hospital, Zhengzhou, China
| | - Han Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- *Correspondence: Zhang-Yu Zou
| |
Collapse
|
41
|
Liu CY, Lin JL, Feng SY, Che CH, Huang HP, Zou ZY. Novel Variants in the FIG4 Gene Associated With Chinese Sporadic Amyotrophic Lateral Sclerosis With Slow Progression. J Clin Neurol 2022; 18:41-47. [PMID: 35021275 PMCID: PMC8762508 DOI: 10.3988/jcn.2022.18.1.41] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Purpose Mutations in the FIG4 gene have been linked to amyotrophic lateral sclerosis (ALS) type 11 in Caucasian populations. The purpose of this study was to identify FIG4 variants in a cohort of 15 familial ALS (FALS) indexes and 275 sporadic ALS (SALS) patients of Han Chinese origin. Methods All 23 exons of FIG4 were sequenced using targeted next-generation sequencing. An extensive literature review was performed to detect genotype-phenotype associations of FIG4 mutations. Results No FIG4 variants were identified in the FALS patients. One novel heterozygous missense variant (c.352G>T [p.D118Y]) and one novel heterozygous nonsense variant (c.2158G>T [p.E720X]) in FIG4 were identified in two SALS patients. The p.E720X variant is interpreted as likely pathogenic while the p.D118Y variant is a variant of uncertain significance. The patient carrying the p.E720X mutation developed lower-limb-onset slowly progressive ALS, and survived for 11.5 years. The patient harboring the FIG4 p.D118Y variant also presented with progressive ALS, with the score on the ALS Functional Rating Scale–Revised (ALSFRS-R) decreasing by 0.4 per month. The rate of decrease in the ALSFRS-R scores from symptom onset to diagnosis seemed to be lower in the patients carrying FIG4 variants than the no-FIG4-mutation ALS patients in this study. Conclusions Our findings suggest that ALS patients carrying FIG4 mutations are not common in the Chinese population and are more likely to exhibit slow progression.
Collapse
Affiliation(s)
- Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Ji-Lan Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shu-Yan Feng
- Department of Neurophysiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
42
|
Chen LX, Xu HF, Wang PS, Yang XX, Wu ZY, Li HF. SOD1 Mutation Spectrum and Natural History of ALS Patients in a 15-Year Cohort in Southeastern China. Front Genet 2021; 12:746060. [PMID: 34721532 PMCID: PMC8551486 DOI: 10.3389/fgene.2021.746060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Mutations in superoxide dismutase 1 gene (SOD1) are the most frequent high penetrant genetic cause for amyotrophic lateral sclerosis (ALS) in the Chinese population. A detailed natural history of SOD1-mutated ALS patients will provide key information for ongoing genetic clinical trials. Methods: We screened for SOD1 mutations using whole exome sequencing (WES) in Chinese ALS cases from 2017 to 2021. Functional studies were then performed to confirm the pathogenicity of novel variants. In addition, we enrolled previously reported SOD1 mutations in our centers from 2007 to 2017. The SOD1 mutation spectrum, age at onset (AAO), diagnostic delay, and survival duration were analyzed. Results: We found two novel SOD1 variants (p.G17H and p.E134*) that exerted both gain-of-function and loss-of-function effects in vitro. Combined with our previous SOD1-mutated patients, 32 probands with 21 SOD1 mutations were included with the four most frequently occurring mutations of p.V48A, p.H47R, p.C112Y, and p.G148D. SOD1 mutations account for 58.9% of familial ALS (FALS) cases. The mean (SD) AAO was 46 ± 11.4 years with a significant difference between patients carrying mutations in exon 1 [n = 5, 34.6 (12.4) years] and exon 2 [n = 8, 51.4 (8.2) years] (p = 0.038). The mean of the diagnostic delay of FALS patients is significantly earlier than the sporadic ALS (SALS) patients [9.5 (4.8) vs. 20.3 (9.3) years, p = 0.0026]. In addition, male patients survived longer than female patients (40 vs. 16 months, p = 0.05). Conclusion: Our results expanded the spectrum of SOD1 mutations, highlighted the mutation distribution, and summarized the natural history of SOD1-mutated patients in southeastern China. Male patients were found to have better survival, and FALS patients received an earlier diagnosis. Our findings assist in providing a detailed clinical picture, which is important for ongoing genetic clinical trials.
Collapse
Affiliation(s)
- Lu-Xi Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Feng Xu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Pei-Shan Wang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Xia Yang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Xu X, Shen D, Gao Y, Zhou Q, Ni Y, Meng H, Shi H, Le W, Chen S, Chen S. A perspective on therapies for amyotrophic lateral sclerosis: can disease progression be curbed? Transl Neurodegener 2021; 10:29. [PMID: 34372914 PMCID: PMC8353789 DOI: 10.1186/s40035-021-00250-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/09/2021] [Indexed: 01/17/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease involving both upper and lower motor neurons, leading to paralysis and eventually death. Symptomatic treatments such as inhibition of salivation, alleviation of muscle cramps, and relief of spasticity and pain still play an important role in enhancing the quality of life. To date, riluzole and edaravone are the only two drugs approved by the Food and Drug Administration for the treatment of ALS in a few countries. While there is adequate consensus on the modest efficacy of riluzole, there are still open questions concerning the efficacy of edaravone in slowing the disease progression. Therefore, identification of novel therapeutic strategies is urgently needed. Impaired autophagic process plays a critical role in ALS pathogenesis. In this review, we focus on therapies modulating autophagy in the context of ALS. Furthermore, stem cell therapies, gene therapies, and newly-developed biomaterials have great potentials in alleviating neurodegeneration, which might halt the disease progression. In this review, we will summarize the current and prospective therapies for ALS.
Collapse
Affiliation(s)
- Xiaojiao Xu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, 610031, China
| | - Dingding Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Yining Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - You Ni
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Huanyu Meng
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Hongqin Shi
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China.,Department of Neurology, Xinrui Hospital, Wuxi, 214028, China
| | - Weidong Le
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China. .,Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, 610031, China. .,Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China.
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China.
| |
Collapse
|
44
|
Padhi AK, Shukla R, Narain P, Gomes J. A distant angiogenin variant causes amyotrophic lateral sclerosis through loss-of-function mechanisms: Insights from long-timescale atomistic simulations and conformational dynamics. Comput Biol Med 2021; 135:104602. [PMID: 34214939 DOI: 10.1016/j.compbiomed.2021.104602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 01/01/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive and incurable neurodegenerative disorder characterized by the degeneration of motor neurons leading to severe muscle atrophy, respiratory failure and death within 3-5 years of disease onset. Missense mutations in Angiogenin (ANG) cause ALS through loss of either ribonucleolytic activity or nuclear translocation activity or both of these functions. Although loss-of-function mechanisms of several rare and ALS-causing ANG variants have been studied before, the structure-function relationship and subsequent functional loss mechanisms of certain novel and uncharacterized rare variants have not been deciphered hitherto. In this study, the structural and dynamic properties of the distantly-located I71V variant, on the functional sites of ANG have been investigated to understand its role in ALS etiology and progression. The I71V variant has a minor allele frequency of <0.06% and thus is classified as a rare variant. Our extensive in silico investigation comprising 1-μs molecular dynamics (MD) simulations, conformational dynamics and related integrated analyses reveal that the I71V variant induces a characteristic conformational switching of catalytic His114 residue resulting in loss of ribonucleolytic activity. Molecular docking and a residue-residue interaction network propagated by an allosteric pathway further support these findings. Moreover, while no conformational alteration of nuclear localization signal governing the nuclear translocation activity was observed, an escalation in mutant plasticity was detected in the structural and essential dynamics simulations. Overall, our study emphasizes that the structure-function relationship of frequently mutating novel ANG variants needs to be established and prioritized in order to advance the pathophysiology and therapeutics of ALS.
Collapse
Affiliation(s)
- Aditya K Padhi
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Rohit Shukla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, H.P., 173234, India
| | - Priyam Narain
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - James Gomes
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
45
|
Li Y, Sun B, Wang Z, He Z, Yang F, Wang H, Cui F, Chen Z, Ling L, Wang C, Huang X. Mutation Screening of the GLE1 Gene in a Large Chinese Cohort of Amyotrophic Lateral Sclerosis Patients. Front Neurosci 2021; 15:595775. [PMID: 34025336 PMCID: PMC8131544 DOI: 10.3389/fnins.2021.595775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease involving the upper and lower motor neurons of the spinal cord, brainstem, and cerebral cortex. At least 30 genes have been implicated in familial ALS (fALS) and sporadic ALS (sALS). Kaneb et al. (2015) first carried out a large-scale sequencing study in ALS patients and identified two loss-of-function (LOF) variants in the GLE1 gene. The LOF mutation-induced disruption of RNA metabolism through the haploinsufficiency mechanism is implicated in ALS pathogenesis. A total of 628 ALS patients and 522 individuals without neurodegenerative disorders were enrolled in this study to explore the GLE1 gene contribution to ALS in the Chinese population. All 16 exons and the flanking intron of GLE1 were screened by Sanger sequencing. In total, we identified seven rare GLE1 coding variants, including one novel nonsense mutation and six rare missense mutations in 628 ALS patients. The frequency of GLE1 LOF mutations was 0.16% (1/628) among Chinese sALS patients, implying that it is an uncommon genetic determinant of ALS in Chinese patients. Additionally, the rare missense variants in the hCG1-binding domain of GLE1 impairing the distribution of the hGle1B isoform at the nuclear pore complex (NPC) region may be involved in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Yanran Li
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Sun
- Geriatric Neurological Department of the Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhanjun Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhengqing He
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fei Yang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongfen Wang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fang Cui
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Chen
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Li Ling
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xusheng Huang
- Neurological Department of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
46
|
Corcia P, Camu W, Brulard C, Marouillat S, Couratier P, Camdessanché JP, Cintas P, Verschueren A, Soriani MH, Desnuelle C, Fleury MC, Guy N, Cassereau J, Viader F, Pittion-Vouyovitch S, Danel V, Kolev I, Le Masson G, Beltran S, Salachas F, Bernard E, Pradat PF, Blasco H, Lanznaster D, Hergesheimer R, Laumonnier F, Andres CR, Meininger V, Vourc'h P. Effect of familial clustering in the genetic screening of 235 French ALS families. J Neurol Neurosurg Psychiatry 2021; 92:479-484. [PMID: 33408239 DOI: 10.1136/jnnp-2020-325064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVES To determine whether the familial clustering of amyotrophic lateral sclerosis (ALS) cases and the phenotype of the disease may help identify the pathogenic genes involved. METHODS We conducted a targeted next-generation sequencing analysis on 235 French familial ALS (FALS), unrelated probands to identify mutations in 30 genes linked to the disease. The genealogy, that is, number of cases and generations with ALS, gender, age, site of onset and the duration of the disease were analysed. RESULTS Regarding the number of generations, 49 pedigrees had only one affected generation, 152 had two affected generations and 34 had at least three affected generations. Among the 149 pedigrees (63.4%) for which a deleterious variant was found, an abnormal G4C2 expansion in C9orf72 was found in 98 cases as well as SOD1, TARBP or FUS mutations in 30, 9 and 7 cases, respectively. Considering pedigrees from the number of generations, abnormal G4C2 expansion in C9orf72 was more frequent in pedigrees with pairs of affected ALS cases, which represented 65.2% of our cohort. SOD1 mutation involved all types of pedigrees. No TARDBP nor FUS mutation was present in monogenerational pedigrees. TARDBP mutation predominated in bigenerational pedigrees with at least three cases and FUS mutation in multigenerational pedigrees with more than seven cases, on average, and with an age of onset younger than 45 years. CONCLUSION Our results suggest that familial clustering, phenotypes and genotypes are interconnected in FALS, and thus it might be possible to target the genetic screening from the familial architecture and the phenotype of ALS cases.
Collapse
Affiliation(s)
- Philippe Corcia
- ALS Centre, Department of Neurology, CHU Tours, Tours, Centre, France .,UMR 1253 Imaging and Brain, Tours, Centre-Val de Loire, France
| | - William Camu
- Montpellier 2 University, Montpellier, Languedoc-Roussillon, France
| | - Celine Brulard
- UMR 1253 Imaging and Brain, Tours, Centre-Val de Loire, France
| | | | - Philippe Couratier
- ALS Center, Departement of neurology, CHU Limoges, Limoges, Limousin, France.,UMR-S 1094 NET, Limoges, France
| | | | - Pascal Cintas
- Neurology, CHU Toulouse, Toulouse, Midi-Pyrénées, France
| | - Annie Verschueren
- Centre de référence des maladies neuromusculaires et de la SLA, Marseille Public University Hospital System, Marseille, Provence-Alpes-Côte d'Azu, France
| | | | - Claude Desnuelle
- Centre de reference des maladies neuromusculaires SLA, Neurosciences department, CHU Nice, Nice, Provence-Alpes-Côte d'Azu, France
| | | | | | | | | | | | - Veronique Danel
- Medical Pharmacology, Lille University Hospital Center, Lille, Hauts-de-France, France
| | - Ivan Kolev
- Hospital Centre Saint Brieuc, Saint Brieuc, Bretagne, France
| | - Gwendal Le Masson
- Neurology, Centre Hospitalier Universitaire de Bordeaux Groupe Hospitalier Pellegrin, Bordeaux, Aquitaine, France
| | - Stephane Beltran
- ALS Center, Francois-Rabelais University, Tours, Centre-Val de Loire, France
| | - Francois Salachas
- ALS Center, Neurology, Hopital Universitaire Pitie Salpetriere, Paris, Île-de-France, France
| | - Emilien Bernard
- University Hospital Centre Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Pierre-François Pradat
- Fédération de Neurologie, Centre Référent SLA, Hopital Universitaire Pitie Salpetriere, Paris, Île-de-France, France.,CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), Université Pierre et Marie Curie Faculté de Médecine, Paris, Île-de-France, France
| | - Hélène Blasco
- Biochemistry and Molecular Biology Department, Université Francois-Rabelais de Tours, Tours, Centre-Val de Loire, France.,Neurogenetics and Neurometabolomics, Imagerie et cerveau, Tours, France
| | | | | | | | - Christian R Andres
- Biochemistry and Molecular Biology Department, Université Francois-Rabelais de Tours, Tours, Centre-Val de Loire, France
| | - Vincent Meininger
- Neurogenetics and Neurometabolomics, Imagerie et cerveau, Tours, France
| | - Patrick Vourc'h
- Biochemistry and Molecular Biology Department, Université Francois-Rabelais de Tours, Tours, Centre-Val de Loire, France
| |
Collapse
|
47
|
Shepheard SR, Parker MD, Cooper-Knock J, Verber NS, Tuddenham L, Heath P, Beauchamp N, Place E, Sollars ESA, Turner MR, Malaspina A, Fratta P, Hewamadduma C, Jenkins TM, McDermott CJ, Wang D, Kirby J, Shaw PJ. Value of systematic genetic screening of patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2021; 92:510-518. [PMID: 33589474 PMCID: PMC8053339 DOI: 10.1136/jnnp-2020-325014] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The clinical utility of routine genetic sequencing in amyotrophic lateral sclerosis (ALS) is uncertain. Our aim was to determine whether routine targeted sequencing of 44 ALS-relevant genes would have a significant impact on disease subclassification and clinical care. METHODS We performed targeted sequencing of a 44-gene panel in a prospective case series of 100 patients with ALS recruited consecutively from the Sheffield Motor Neuron Disorders Clinic, UK. All participants were diagnosed with ALS by a specialist Consultant Neurologist. 7/100 patients had familial ALS, but the majority were apparently sporadic cases. RESULTS 21% of patients with ALS carried a confirmed pathogenic or likely pathogenic mutation, of whom 93% had no family history of ALS. 15% met the inclusion criteria for a current ALS genetic-therapy trial. 5/21 patients with a pathogenic mutation had an additional variant of uncertain significance (VUS). An additional 21% of patients with ALS carried a VUS in an ALS-associated gene. Overall, 13% of patients carried more than one genetic variant (pathogenic or VUS). Patients with ALS carrying two variants developed disease at a significantly earlier age compared with patients with a single variant (median age of onset=56 vs 60 years, p=0.0074). CONCLUSIONS Routine screening for ALS-associated pathogenic mutations in a specialised ALS referral clinic will impact clinical care in 21% of cases. An additional 21% of patients have variants in the ALS gene panel currently of unconfirmed significance after removing non-specific or predicted benign variants. Overall, variants within known ALS-linked genes are of potential clinical importance in 42% of patients.
Collapse
Affiliation(s)
- Stephanie R Shepheard
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Matthew D Parker
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Nick S Verber
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Lee Tuddenham
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Paul Heath
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Nick Beauchamp
- Human Genetics, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Elsie Place
- Human Genetics, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | | | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrea Malaspina
- Neuroscience and Trauma, Queen Mary University of London, London, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, University College London Institute of Neurology, London, UK
- MRC Centre for Neuromuscular Diseases, University College London Institute of Neurology, London, UK
| | - Channa Hewamadduma
- Academic Directorate of Neuroscience, Department of Clinical Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Thomas M Jenkins
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Dennis Wang
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield, UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
- Academic Directorate of Neuroscience, Department of Clinical Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
48
|
Perrone F, Cacace R, van der Zee J, Van Broeckhoven C. Emerging genetic complexity and rare genetic variants in neurodegenerative brain diseases. Genome Med 2021; 13:59. [PMID: 33853652 PMCID: PMC8048219 DOI: 10.1186/s13073-021-00878-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Knowledge of the molecular etiology of neurodegenerative brain diseases (NBD) has substantially increased over the past three decades. Early genetic studies of NBD families identified rare and highly penetrant deleterious mutations in causal genes that segregate with disease. Large genome-wide association studies uncovered common genetic variants that influenced disease risk. Major developments in next-generation sequencing (NGS) technologies accelerated gene discoveries at an unprecedented rate and revealed novel pathways underlying NBD pathogenesis. NGS technology exposed large numbers of rare genetic variants of uncertain significance (VUS) in coding regions, highlighting the genetic complexity of NBD. Since experimental studies of these coding rare VUS are largely lacking, the potential contributions of VUS to NBD etiology remain unknown. In this review, we summarize novel findings in NBD genetic etiology driven by NGS and the impact of rare VUS on NBD etiology. We consider different mechanisms by which rare VUS can act and influence NBD pathophysiology and discuss why a better understanding of rare VUS is instrumental for deriving novel insights into the molecular complexity and heterogeneity of NBD. New knowledge might open avenues for effective personalized therapies.
Collapse
Affiliation(s)
- Federica Perrone
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| |
Collapse
|
49
|
Harley J, Clarke BE, Patani R. The Interplay of RNA Binding Proteins, Oxidative Stress and Mitochondrial Dysfunction in ALS. Antioxidants (Basel) 2021; 10:antiox10040552. [PMID: 33918215 PMCID: PMC8066094 DOI: 10.3390/antiox10040552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
- Jasmine Harley
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Benjamin E. Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Correspondence: (B.E.C.); (R.P.)
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- National Hospital for Neurology and Neurosurgery, University College London NHS, London WC1N 3BG, UK
- Correspondence: (B.E.C.); (R.P.)
| |
Collapse
|
50
|
Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degenerations: Similarities in Genetic Background. Diagnostics (Basel) 2021; 11:diagnostics11030509. [PMID: 33805659 PMCID: PMC7998502 DOI: 10.3390/diagnostics11030509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal progressive degenerative disorder of motor neurons that overlaps with frontotemporal lobar degeneration (FTLD) clinically, morphologically, and genetically. Although many distinct mutations in various genes are known to cause amyotrophic lateral sclerosis, it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Many of the gene mutations are in proteins that share similar functions. They can be grouped into those associated with cell axon dynamics and those associated with cellular phagocytic machinery, namely protein aggregation and metabolism, apoptosis, and intracellular nucleic acid transport. Analysis of pathways implicated by mutant ALS genes has provided new insights into the pathogenesis of both familial forms of ALS (fALS) and sporadic forms (sALS), although, regrettably, this has not yet yielded definitive treatments. Many genes play an important role, with TARDBP, SQSTM1, VCP, FUS, TBK1, CHCHD10, and most importantly, C9orf72 being critical genetic players in these neurological disorders. In this mini-review, we will focus on the molecular mechanisms of these two diseases.
Collapse
|