1
|
Bolton C. Review of evidence linking exposure to environmental stressors and associated alterations in the dynamics of immunosenescence (ISC) with the global increase in multiple sclerosis (MS). Immun Ageing 2024; 21:73. [PMID: 39438909 PMCID: PMC11494837 DOI: 10.1186/s12979-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Historical survey confirms that, over the latter part of the 20th century, autoimmune-based diseases, including multiple sclerosis (MS), have shown a worldwide increase in incidence and prevalence. Analytical population studies have established that the exponential rise in MS is not solely due to improvements in diagnosis and healthcare but relates to an increase in autoimmune risk factors. Harmful environmental exposures, including non-communicable social determinants of health, anthropogens and indigenous or transmissible microbes, constitute a group of causal determinants that have been closely linked with the global rise in MS cases. Exposure to environmental stressors has profound effects on the adaptive arm of the immune system and, in particular, the associated intrinsic process of immune ageing or immunosenescence (ISC). Stressor-related disturbances to the dynamics of ISC include immune cell-linked untimely or premature (p) alterations and an accelerated replicative (ar) change. A recognised immune-associated feature of MS is pISC and current evidence supports the presence of an arISC during the disease. Moreover, collated data illustrates the immune-associated alterations that characterise pISC and arISC are inducible by environmental stressors strongly implicated in causing duplicate changes in adaptive immune cells during MS. The close relationship between exposure to environmental risk factors and the induction of pISC and arISC during MS offers a valid mechanism through which pro-immunosenescent stressors may act and contribute to the recorded increase in the global rate and number of new cases of the disease. Confirmation of alterations to the dynamics of ISC during MS provides a rational and valuable therapeutic target for the use of senolytic drugs to either prevent accumulation and enhance ablation of less efficient untimely senescent adaptive immune cells or decelerate the dysregulated process of replicative proliferation. A range of senotherapeutics are available including kinase and transcriptase inhibitors, rapalogs, flavanols and genetically-engineered T cells and the use of selective treatments to control emerging and unspecified aspects of pISC and arISC are discussed.
Collapse
|
2
|
Comi G, Dalla Costa G, Stankoff B, Hartung HP, Soelberg Sørensen P, Vermersch P, Leocani L. Assessing disease progression and treatment response in progressive multiple sclerosis. Nat Rev Neurol 2024; 20:573-586. [PMID: 39251843 DOI: 10.1038/s41582-024-01006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Progressive multiple sclerosis poses a considerable challenge in the evaluation of disease progression and treatment response owing to its multifaceted pathophysiology. Traditional clinical measures such as the Expanded Disability Status Scale are limited in capturing the full scope of disease and treatment effects. Advanced imaging techniques, including MRI and PET scans, have emerged as valuable tools for the assessment of neurodegenerative processes, including the respective role of adaptive and innate immunity, detailed insights into brain and spinal cord atrophy, lesion dynamics and grey matter damage. The potential of cerebrospinal fluid and blood biomarkers is increasingly recognized, with neurofilament light chain levels being a notable indicator of neuro-axonal damage. Moreover, patient-reported outcomes are crucial for reflecting the subjective experience of disease progression and treatment efficacy, covering aspects such as fatigue, cognitive function and overall quality of life. The future incorporation of digital technologies and wearable devices in research and clinical practice promises to enhance our understanding of functional impairments and disease progression. This Review offers a comprehensive examination of these diverse evaluation tools, highlighting their combined use in accurately assessing disease progression and treatment efficacy in progressive multiple sclerosis, thereby guiding more effective therapeutic strategies.
Collapse
Affiliation(s)
- Giancarlo Comi
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy.
| | | | - Bruno Stankoff
- Sorbonne Université, Paris Brain Institute, Institut du Cerveau et de la Moelle Épinière, Centre National de la Recherche Scientifique, Inserm, Paris, France
| | - Hans-Peter Hartung
- Brain and Mind Center, University of Sydney, Sydney, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Per Soelberg Sørensen
- Department of Neurology, Danish Multiple Sclerosis Center, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Patrick Vermersch
- University of Lille, Inserm U1172, Lille Neuroscience & Cognition, Centre Hospitalier Universitaire de Lille, Fédération Hospitalo-Universitaire Precision Medicine in Psychiatry, Lille, France
| | - Letizia Leocani
- Vita-Salute San Raffaele University, Milan, Italy
- Multiple Sclerosis Center, Casa di Cura Igea, Milan, Italy
| |
Collapse
|
3
|
Gallwitz M, Lindqvist I, Mulder J, Rasmusson AJ, Larsson A, Husén E, Borin J, van der Spek PJ, Sabbagh N, Widgren A, Bergquist J, Cervenka S, Burman J, Cunningham JL. Three cases with chronic obsessive compulsive disorder report gains in wellbeing and function following rituximab treatment. Mol Psychiatry 2024:10.1038/s41380-024-02750-y. [PMID: 39304742 DOI: 10.1038/s41380-024-02750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Immunological aetiology is supported for a subgroup with obsessive compulsive disorder (OCD) and conceptualized as autoimmune OCD. The longitudinal clinical course is detailed for three severely ill cases with OCD and indications of immunological involvement with off-label rituximab treatment every six months. All cases showed clear and sustained gains regarding symptom burden and function for over 2.5 years. Brief Psychiatric Rating Scale and Yale-Brown Obsessive-Compulsive Inventory Scale scores decreased 67-100% and 44-92%, respectively. These complex cases, prior to rituximab, had very low functioning and disease duration has been eight, nine and 16 years respectively. All three patients had been unsuccessfully treated with at least two antidepressants or anxiolytics, one neuroleptic and cognitive behavioural therapy. Clinical phenotypes and findings were suggestive of possible autoimmune OCD. Indirect immunohistochemistry detected cerebral spinal fluid (CSF) antibodies in all three cases including a novel anti-neuronal staining pattern against mouse thalamic cells. Exploratory analyses of CSF markers and proteomics identified elevated levels of sCD27 and markers indicative of complement pathway activation when compared to CSF from healthy controls. Multidisciplinary collaboration, advanced clinical investigations and rituximab treatment are feasible in a psychiatric setting. The case histories provide a proof of principle for the newly proposed criteria for autoimmune OCD. The findings suggest that clinical red flags and biological measures may predict rituximab response in chronic treatment-resistant OCD. The report provides orientation that may inform the hypotheses and design of future treatment trials.
Collapse
Affiliation(s)
- Maike Gallwitz
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Isa Lindqvist
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Annica J Rasmusson
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Evelina Husén
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jesper Borin
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Nour Sabbagh
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Anna Widgren
- Department of Chemistry - BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Simon Cervenka
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institute and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Joachim Burman
- Department of Medical Sciences, Translational Neurology, Uppsala University, Uppsala, Sweden
| | - Janet L Cunningham
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Cobanovic S, Blaabjerg M, Illes Z, Nissen MS, Nielsen CH, Kondziella D, Buhelt S, Mahler MR, Sellebjerg F, Romme Christensen J. Cerebrospinal fluid soluble CD27 is a sensitive biomarker of inflammation in autoimmune encephalitis. J Neurol Sci 2024; 466:123226. [PMID: 39278170 DOI: 10.1016/j.jns.2024.123226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Autoimmune encephalitis (AE) comprises a group of rare, severe neuroinflammatory conditions. Current biomarkers of neuroinflammation are often normal in AE which therefore can be difficult to rule out in patients with seizures, cognitive and/or neuropsychiatric symptoms. Cerebrospinal fluid (CSF) soluble CD27 (sCD27) and soluble B-cell maturation antigen (sBCMA) have high sensitivity for neuroinflammation in other neuroinflammatory conditions. In this exploratory study we investigate the potential of sCD27 and sBCMA in CSF as biomarkers of neuroinflammation in AE. METHODS Concentrations of sCD27 and sBCMA were measured in CSF from 40 AE patients (20 patients were untreated (12 with anti-N-Methyl-d-Aspartate receptor antibodies (NMDA) and 8 with anti-Leucine-rich Glioma-Inactivated 1 antibodies (LGI1)), and 37 symptomatic controls (SCs). RESULTS CSF concentrations of sCD27 were increased in untreated NMDA AE patients (median 1571 pg/ml; p < 0.001) and untreated LGI1 AE patients (median 551 pg/ml; p < 0.05) compared to SCs (median 250 pg/ml). CSF sBCMA was increased in untreated NMDA AE patients (median 832 pg/ml) compared to SCs (median 429 pg/ml). CSF sCD27 and sBCMA correlated with the CSF cell count. Receiver operating characteristic curve analysis of untreated AE patients versus SCs showed an area under the curve of 0.97 for sCD27 and 0.76 for sBCMA. CONCLUSION CSF sCD27 is a suitable biomarker of neuroinflammation in AE with an ability to discriminate patients with NMDA AE and LGI1 AE from symptomatic controls. CSF sCD27 may be suited for ruling out AE and other neuroinflammatory conditions in the early phase of the diagnostic work-up.
Collapse
Affiliation(s)
- Stefan Cobanovic
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Morten Blaabjerg
- Department of Neurology, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5220, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5220, Odense, Denmark
| | - Mette Scheller Nissen
- Department of Neurology, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5220, Odense, Denmark
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital, Ole Maaløes Vej 26, 2200 Copenhagen, Denmark
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns Vej 8, 2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sophie Buhelt
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Mie Reith Mahler
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jeppe Romme Christensen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark.
| |
Collapse
|
5
|
Toljan K, Daboul L, Raza P, Martin ML, Cao Q, O'Donnell CM, Rodrigues P, Derbyshire J, Azevedo CJ, Bar-Or A, Caverzasi E, Calabresi PA, Cree BA, Freeman L, Henry RG, Longbrake EE, Oh J, Papinutto N, Pelletier D, Samudralwar RD, Schindler MK, Sotirchos ES, Sicotte NL, Solomon AJ, Shinohara RT, Reich DS, Sati P, Ontaneda D. Diagnostic performance of central vein sign versus oligoclonal bands for multiple sclerosis. Mult Scler 2024; 30:1268-1277. [PMID: 39234802 PMCID: PMC11421977 DOI: 10.1177/13524585241271988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) oligoclonal bands (OCB) are a diagnostic biomarker in multiple sclerosis (MS). The central vein sign (CVS) is an imaging biomarker for MS that may improve diagnostic accuracy. OBJECTIVES The objective of the study is to examine the diagnostic performance of simplified CVS methods in comparison to OCB in participants with clinical or radiological suspicion for MS. METHODS Participants from the CentrAl Vein Sign in MS (CAVS-MS) pilot study with CSF testing were included. Select-3 and Select-6 (counting up to three or six CVS+ lesions per scan) were rated on post-gadolinium FLAIR* images. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value for Select-3, Select-6, OCB, and combinations thereof were calculated for MS diagnosis at baseline and at 12 months. RESULTS Of 53 participants, 25 were OCB+. At baseline, sensitivity for MS diagnosis was 0.75 for OCB, 0.83 for Select-3, and 0.71 for Select-6. Specificity for MS diagnosis was 0.76 for OCB, 0.48 for Select-3, and 0.86 for Select-6. At 12 months, PPV for MS diagnosis was 0.95 for Select-6 and 1.00 for Select-6 with OCB+ status. DISCUSSION Results suggest similar diagnostic performance of simplified CVS methods and OCB. Ongoing studies will refine whether CVS could be used in replacement or in conjunction with OCB.
Collapse
Affiliation(s)
- Karlo Toljan
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lynn Daboul
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA/Department of Neurology, Brigham and Women's Hospital, MA, USA
| | - Praneeta Raza
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Melissa L Martin
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Endeavor, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Quy Cao
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Endeavor, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carly M O'Donnell
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Endeavor, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - John Derbyshire
- Functional MRI Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Christina J Azevedo
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Amit Bar-Or
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eduardo Caverzasi
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Bruce Ac Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Leorah Freeman
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | | | - Jiwon Oh
- Division of Neurology, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Nico Papinutto
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Daniel Pelletier
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Rohini D Samudralwar
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Matthew K Schindler
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elias S Sotirchos
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew J Solomon
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Endeavor, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
6
|
Sempik I, Dziadkowiak E, Moreira H, Zimny A, Pokryszko-Dragan A. Primary Progressive Multiple Sclerosis-A Key to Understanding and Managing Disease Progression. Int J Mol Sci 2024; 25:8751. [PMID: 39201438 PMCID: PMC11354232 DOI: 10.3390/ijms25168751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Primary progressive multiple sclerosis (PPMS), the least frequent type of multiple sclerosis (MS), is characterized by a specific course and clinical symptoms, and it is associated with a poor prognosis. It requires extensive differential diagnosis and often a long-term follow-up before its correct recognition. Despite recent progress in research into and treatment for progressive MS, the diagnosis and management of this type of disease still poses a challenge. Considering the modern concept of progression "smoldering" throughout all the stages of disease, a thorough exploration of PPMS may provide a better insight into mechanisms of progression in MS, with potential clinical implications. The goal of this study was to review the current evidence from investigations of PPMS, including its background, clinical characteristics, potential biomarkers and therapeutic opportunities. Processes underlying CNS damage in PPMS are discussed, including chronic immune-mediated inflammation, neurodegeneration, and remyelination failure. A review of potential clinical, biochemical and radiological biomarkers is presented, which is useful in monitoring and predicting the progression of PPMS. Therapeutic options for PPMS are summarized, with approved therapies, ongoing clinical trials and future directions of investigations. The clinical implications of findings from PPMS research would be associated with reliable assessments of disease outcomes, improvements in individualized therapeutic approaches and, hopefully, novel therapeutic targets, relevant for the management of progression.
Collapse
Affiliation(s)
- Izabela Sempik
- Department of Neurology, Regional Hospital in Legnica, Iwaszkiewicza 5, 59-220 Legnica, Poland;
| | - Edyta Dziadkowiak
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Helena Moreira
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Anna Zimny
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Anna Pokryszko-Dragan
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
7
|
Asakura M, Mizutani Y, Shima S, Kawamura Y, Ueda A, Ito M, Mutoh T, Yoshikawa T, Watanabe H. Elevated cerebrospinal fluid IgG index in herpes simplex encephalitis post-HSV-1 clearance: A preliminary study. J Med Virol 2024; 96:e29850. [PMID: 39119996 DOI: 10.1002/jmv.29850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Herpes simplex encephalitis (HSE) is an acute form of encephalitis that can lead to poor neurological outcomes. Although the exact pathogenesis of HSE remains elusive, recent reports suggest a significant role for postinfectious immune-inflammatory processes in the central nervous system (CNS). This study aimed to clarify the association between CNS autoimmune responses and clinical presentation in patients with HSE, focusing on cerebrospinal fluid (CSF) characteristics, particularly the IgG index. We retrospectively analyzed 176 consecutive patients suspected of having aseptic meningitis /encephalitis for chronological changes in CSF findings and clinical presentations. These patients underwent PCR screening for herpesviruses (HV) in their CSF. We identified seven patients positive for herpes simplex virus type 1 (HSV-1), 20 patients positive for varicella-zoster virus, and 17 patients who met the criteria for aseptic meningitis but were PCR-negative for HV. Patients in the HSV-1-positive group exhibited a significant increase in the IgG index at the time of PCR-negative conversion compared with on admission (p = 0.0156), while such a change was not observed in the other two groups. Additionally, all patients in the HSV-1-positive group tested negative for anti-neural autoantibodies in CSF and serum samples collected approximately 3 weeks after onset. This study, therefore, highlights that CSF IgG index elevation occurs even after PCR-confirmed HSV-1 clearance, which might indicate immunopathogenesis that is independent of antibody-mediated mechanisms.
Collapse
Affiliation(s)
- Mao Asakura
- Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yasuaki Mizutani
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Sayuri Shima
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University Okazaki Medical Center, Okazaki, Aichi, Japan
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Mizuki Ito
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Tatsuro Mutoh
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Fujita Health University Central Japan International Airport Clinic, Tokoname, Aichi, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
8
|
Tigchelaar C, Cunningham JL, Rasmusson AJ, Thulin M, Burman J, Kema IP, Larsson A, Absalom AR. Cerebrospinal fluid and plasma concentrations of the inflammatory marker soluble CD27 in a large surgical population. iScience 2024; 27:110036. [PMID: 38883839 PMCID: PMC11179565 DOI: 10.1016/j.isci.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Soluble CD27 (sCD27) is a potential biomarker for diseases involving immune dysfunction. As there is currently little data on cerebrospinal fluid (CSF) sCD27 concentrations in the general population we measured CSF and plasma concentrations in 486 patients (age range 18-92 years, 57% male) undergoing spinal anesthesia for elective surgery. Across the complete cohort the median [range] sCD27 concentrations were 163 [<50 to 7474] pg/mL in CSF and 4624 [1830 to >400,000] pg/mL in plasma. Plasma sCD27, age and Qalb were the factors most strongly associated with CSF sCD27 levels. Reference sCD27 concentration intervals (central 95% of values) in a sub-group without the indication of neuropsychiatric, inflammatory or systemic disease (158 patients) were <50 pg/mL - 419 pg/mL for CSF and 2344-36422 pg/mL for plasma. These data provide preliminary reference ranges that could inform future studies of the validity of sCD27 as a biomarker for neuro- and systemic inflammatory disorders.
Collapse
Affiliation(s)
- Celien Tigchelaar
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janet L Cunningham
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Annica J Rasmusson
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Måns Thulin
- Department of Mathematics, Uppsala University, Uppsala, Sweden
| | - Joachim Burman
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Anthony R Absalom
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
9
|
Cooze B, Neal J, Vineed A, Oliveira JC, Griffiths L, Allen KH, Hawkins K, Yadanar H, Gerhards K, Farkas I, Reynolds R, Howell O. Digital Pathology Identifies Associations between Tissue Inflammatory Biomarkers and Multiple Sclerosis Outcomes. Cells 2024; 13:1020. [PMID: 38920650 PMCID: PMC11201856 DOI: 10.3390/cells13121020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a clinically heterogeneous disease underpinned by inflammatory, demyelinating and neurodegenerative processes, the extent of which varies between individuals and over the course of the disease. Recognising the clinicopathological features that most strongly associate with disease outcomes will inform future efforts at patient phenotyping. AIMS We used a digital pathology workflow, involving high-resolution image acquisition of immunostained slides and opensource software for quantification, to investigate the relationship between clinical and neuropathological features in an autopsy cohort of progressive MS. METHODS Sequential sections of frontal, cingulate and occipital cortex, thalamus, brain stem (pons) and cerebellum including dentate nucleus (n = 35 progressive MS, females = 28, males = 7; age died = 53.5 years; range 38-98 years) were immunostained for myelin (anti-MOG), neurons (anti-HuC/D) and microglia/macrophages (anti-HLA). The extent of demyelination, neurodegeneration, the presence of active and/or chronic active lesions and quantification of brain and leptomeningeal inflammation was captured by digital pathology. RESULTS Digital analysis of tissue sections revealed the variable extent of pathology that characterises progressive MS. Microglia/macrophage activation, if found at a higher level in a single block, was typically elevated across all sampled blocks. Compartmentalised (perivascular/leptomeningeal) inflammation was associated with age-related measures of disease severity and an earlier death. CONCLUSION Digital pathology identified prognostically important clinicopathological correlations in MS. This methodology can be used to prioritise the principal pathological processes that need to be captured by future MS biomarkers.
Collapse
Affiliation(s)
- Benjamin Cooze
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - James Neal
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Alka Vineed
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - J. C. Oliveira
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Lauren Griffiths
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - K. H. Allen
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Kristen Hawkins
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Htoo Yadanar
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Krisjanis Gerhards
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| | - Ildiko Farkas
- Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK; (I.F.); (R.R.)
| | - Richard Reynolds
- Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK; (I.F.); (R.R.)
| | - Owain Howell
- Faculty of Medicine, Health & Life and Health Sciences, Swansea University, Swansea SA2 8PP, UK; (B.C.); (A.V.); (J.C.O.); (L.G.); (K.H.A.); (K.H.); (H.Y.); (K.G.); (O.H.)
| |
Collapse
|
10
|
Hinsinger G, Du Trieu De Terdonck L, Urbach S, Salvetat N, Rival M, Galoppin M, Ripoll C, Cezar R, Laurent-Chabalier S, Demattei C, Agherbi H, Castelnovo G, Lehmann S, Rigau V, Marin P, Thouvenot E. CD138 as a Specific CSF Biomarker of Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200230. [PMID: 38669615 PMCID: PMC11057439 DOI: 10.1212/nxi.0000000000200230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/30/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to identify novel biomarkers for multiple sclerosis (MS) diagnosis and prognosis, addressing the critical need for specific and prognostically valuable markers in the field. METHODS We conducted an extensive proteomic investigation, combining analysis of (1) CSF proteome from symptomatic controls, fast and slow converters after clinically isolated syndromes, and patients with relapsing-remitting MS (n = 10 per group) using label-free quantitative proteomics and (2) oligodendrocyte secretome changes under proinflammatory or proapoptotic conditions using stable isotope labeling by amino acids in cell culture. Proteins exhibiting differential abundance in both proteomic analyses were combined with other putative MS biomarkers, yielding a comprehensive list of 87 proteins that underwent quantification through parallel reaction monitoring (PRM) in a novel cohort, comprising symptomatic controls, inflammatory neurologic disease controls, and patients with MS at various disease stages (n = 10 per group). The 11 proteins that passed this qualification step were subjected to a new PRM assay within an expanded cohort comprising 158 patients with either MS at different disease stages or other inflammatory or noninflammatory neurologic disease controls. RESULTS This study unveiled a promising biomarker signature for MS, including previously established candidates, such as chitinase 3-like protein 1, chitinase 3-like protein 2, chitotriosidase, immunoglobulin kappa chain region C, neutrophil gelatinase-associated lipocalin, and CD27. In addition, we identified novel markers, namely cat eye syndrome critical region protein 1 (adenosine deaminase 2, a therapeutic target in multiple sclerosis) and syndecan-1, a proteoglycan, also known as plasma cell surface marker CD138 and acting as chitinase 3-like protein 1 receptor implicated in inflammation and cancer signaling. CD138 exhibited good diagnostic accuracy in distinguishing MS from inflammatory neurologic disorders (area under the curve [AUC] = 0.85, CI 0.75-0.95). CD138 immunostaining was also observed in the brains of patients with MS and cultured oligodendrocyte precursor cells but was absent in astrocytes. DISCUSSION These findings identify CD138 as a specific CSF biomarker for MS and suggest the selective activation of the chitinase 3-like protein 1/CD138 pathway within the oligodendrocyte lineage in MS. They offer promising prospects for improving MS diagnosis and prognosis by providing much-needed specificity and clinical utility. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that CD138 distinguishes multiple sclerosis from other inflammatory neurologic disorders with an AUC of 0.85 (95% CI 0.75-0.95).
Collapse
Affiliation(s)
- Geoffrey Hinsinger
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Lucile Du Trieu De Terdonck
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Serge Urbach
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Nicolas Salvetat
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Manon Rival
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Manon Galoppin
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Chantal Ripoll
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Renaud Cezar
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Sabine Laurent-Chabalier
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Christophe Demattei
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Hanane Agherbi
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Giovanni Castelnovo
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Sylvain Lehmann
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Valérie Rigau
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Philippe Marin
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Eric Thouvenot
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| |
Collapse
|
11
|
Field SE, Curle AJ, Barker RA. Inflammation and Huntington's disease - a neglected therapeutic target? Expert Opin Investig Drugs 2024; 33:451-467. [PMID: 38758356 DOI: 10.1080/13543784.2024.2348738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Huntington's Disease (HD) is a genetic neurodegenerative disease for which there is currently no disease-modifying treatment. One of several underlying mechanisms proposed to be involved in HD pathogenesis is inflammation; there is now accumulating evidence that the immune system may play an integral role in disease pathology and progression. As such, modulation of the immune system could be a potential therapeutic target for HD. AREAS COVERED To date, the number of trials targeting immune aspects of HD has been limited. However, targeting it, may have great advantages over other therapeutic areas, given that many drugs already exist that have actions in this system coupled to the fact that inflammation can be measured both peripherally and, to some extent, centrally using CSF and PET imaging. In this review, we look at evidence that the immune system and the newly emerging area of the microbiome are altered in HD patients, and then present and discuss clinical trials that have targeted different parts of the immune system. EXPERT OPINION We then conclude by discussing how this field might develop going forward, focusing on the role of imaging and other biomarkers to monitor central immune activation and response to novel treatments in HD.
Collapse
Affiliation(s)
- Sophie E Field
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Annabel J Curle
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Cencioni MT, Magliozzi R, Palmisano I, Suwan K, Mensi A, Fuentes-Font L, Villar LM, Fernández-Velasco JI, Migallón NV, Costa-Frossard L, Monreal E, Ali R, Romozzi M, Mazarakis N, Reynolds R, Nicholas R, Muraro PA. Soluble CD27 is an intrathecal biomarker of T-cell-mediated lesion activity in multiple sclerosis. J Neuroinflammation 2024; 21:91. [PMID: 38609999 PMCID: PMC11015621 DOI: 10.1186/s12974-024-03077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE Soluble CD27 is a promising cerebrospinal fluid inflammatory biomarker in multiple sclerosis. In this study, we investigate relevant immune and neuro-pathological features of soluble CD27 in multiple sclerosis. METHODS Protein levels of soluble CD27 were correlated to inflammatory cell subpopulations and inflammatory cytokines and chemokines detected in cerebrospinal fluid of 137 patients with multiple sclerosis and 47 patients with inflammatory and non-inflammatory neurological disease from three independent cohorts. Production of soluble CD27 was investigated in cell cultures of activated T and B cells and CD27-knockout T cells. In a study including matched cerebrospinal fluid and post-mortem brain tissues of patients with multiple sclerosis and control cases, levels of soluble CD27 were correlated with perivascular and meningeal infiltrates and with neuropathological features. RESULTS We demonstrate that soluble CD27 favours the differentiation of interferon-γ-producing T cells and is released through a secretory mechanism activated by TCR engagement and regulated by neutral sphingomyelinase. We also show that the levels of soluble CD27 correlate with the representation of inflammatory T cell subsets in the CSF of patients with relapsing-remitting multiple sclerosis and with the magnitude of perivascular and meningeal CD27 + CD4 + and CD8 + T cell infiltrates in post-mortem central nervous system tissue, defining a subgroup of patients with extensive active inflammatory lesions. INTERPRETATION Our results demonstrate that soluble CD27 is a biomarker of disease activity, potentially informative for personalized treatment and monitoring of treatment outcomes.
Collapse
Affiliation(s)
- Maria T Cencioni
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK.
| | - Roberta Magliozzi
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Ilaria Palmisano
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK
- Department of Neuroscience, Department of plastic and reconstructive surgery, The Ohio State University College of Medicine, Columbus, OH, US
| | - Keittisak Suwan
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK
| | - Antonella Mensi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Laura Fuentes-Font
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK
| | - Luisa M Villar
- Department of Immunology, Hospital Universitario Ramón y Cajal, REEM, IRYCIS, Madrid, Spain
| | | | | | | | - Enric Monreal
- Department of Neurology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Rehiana Ali
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK
| | - Marina Romozzi
- Department of Neuroscience, Universita'Cattolica del Sacro Cuore, Rome, Italy
- Department of Neuroscience, Organi di Senso e Torace, Fondazione Policlinico Universtario Agostino Gemelli IRCCS, Rome, Italy
| | - Nicholas Mazarakis
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK
| | - Richard Reynolds
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK
| | - Richard Nicholas
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK
| | - Paolo A Muraro
- Department of Brain Sciences, Imperial College London, Du Cane Road 160, London, W12 0NN, UK.
| |
Collapse
|
13
|
Kodosaki E, Watkins WJ, Loveless S, Kreft KL, Richards A, Anderson V, Hurler L, Robertson NP, Zelek WM, Tallantyre EC. Combination protein biomarkers predict multiple sclerosis diagnosis and outcomes. J Neuroinflammation 2024; 21:52. [PMID: 38368354 PMCID: PMC10874571 DOI: 10.1186/s12974-024-03036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
Establishing biomarkers to predict multiple sclerosis diagnosis and prognosis has been challenging using a single biomarker approach. We hypothesised that a combination of biomarkers would increase the accuracy of prediction models to differentiate multiple sclerosis from other neurological disorders and enhance prognostication for people with multiple sclerosis. We measured 24 fluid biomarkers in the blood and cerebrospinal fluid of 77 people with multiple sclerosis and 80 people with other neurological disorders, using ELISA or Single Molecule Array assays. Primary outcomes were multiple sclerosis versus any other diagnosis, time to first relapse, and time to disability milestone (Expanded Disability Status Scale 6), adjusted for age and sex. Multivariate prediction models were calculated using the area under the curve value for diagnostic prediction, and concordance statistics (the percentage of each pair of events that are correctly ordered in time for each of the Cox regression models) for prognostic predictions. Predictions using combinations of biomarkers were considerably better than single biomarker predictions. The combination of cerebrospinal fluid [chitinase-3-like-1 + TNF-receptor-1 + CD27] and serum [osteopontin + MCP-1] had an area under the curve of 0.97 for diagnosis of multiple sclerosis, compared to the best discriminative single marker in blood (osteopontin: area under the curve 0.84) and in cerebrospinal fluid (chitinase-3-like-1 area under the curve 0.84). Prediction for time to next relapse was optimal with a combination of cerebrospinal fluid[vitamin D binding protein + Factor I + C1inhibitor] + serum[Factor B + Interleukin-4 + C1inhibitor] (concordance 0.80), and time to Expanded Disability Status Scale 6 with cerebrospinal fluid [C9 + Neurofilament-light] + serum[chitinase-3-like-1 + CCL27 + vitamin D binding protein + C1inhibitor] (concordance 0.98). A combination of fluid biomarkers has a higher accuracy to differentiate multiple sclerosis from other neurological disorders and significantly improved the prediction of the development of sustained disability in multiple sclerosis. Serum models rivalled those of cerebrospinal fluid, holding promise for a non-invasive approach. The utility of our biomarker models can only be established by robust validation in different and varied cohorts.
Collapse
Affiliation(s)
- Eleftheria Kodosaki
- UK Dementia Research Institute at University College London, London, WC1E6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N3BG, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - W John Watkins
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Sam Loveless
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - Karim L Kreft
- Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Aidan Richards
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - Valerie Anderson
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - Lisa Hurler
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, 1085, Hungary
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
- Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Wioleta M Zelek
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Emma C Tallantyre
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK.
- Department of Neurology, University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
14
|
Hargarten JC, Ssebambulidde K, Anjum SH, Vaughan MJ, Xu J, Song B, Ganguly A, Park YD, Scott T, Hammoud DA, Olszewski MA, Williamson PR. JAK/STAT Signaling Predominates in Human and Murine Fungal Post-infectious Inflammatory Response Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.18.24301483. [PMID: 38293201 PMCID: PMC10827263 DOI: 10.1101/2024.01.18.24301483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Post-infection inflammatory syndromes have been increasingly recognized as a cause of host damage in a variety of infectious diseases including tuberculosis, bacterial meningitis, and COVID-19. Recently, a post-infectious inflammatory response syndrome (PIIRS) was described in non-HIV-infected cryptococcal fungal meningoencephalitis (CM) as a major cause of mortality. Inflammatory syndromes are particularly severe in neurological infections due to the skull's rigid structure which limits unchecked tissue expansion from inflammatory-induced edema. In the present studies, neurologic transcriptional pathway analysis utilizing a murine PIIRS model demonstrated a predominance of Janus kinase/signal transducer and activator of transcription (JAK/STAT) activation. JAK/STAT inhibitor treatment resulted in improvements in CNS damage markers, reductions in intrathecal CD44hiCD62lo CD4+ effector CD4+ T-cells and MHC II+ inflammatory myeloid cells, and weight gains in mice, the latter after treatment with antifungals. Based on these data, pathway-driven steroid-sparing human treatment for steroid-refractory PIIRS was initiated using short courses of the JAK/STAT inhibitor ruxolitinib. These were well tolerated and reduced activated HLA-DR+ CD4+ and CD8+ cells and inflammatory monocytes as well as improved brain imaging. Together, these findings support the role of JAK/STAT in PIIRS as well as further study of JAK/STAT inhibitors as potential adjunctive therapy for PIRS and other neural inflammatory syndromes.
Collapse
Affiliation(s)
- Jessica C. Hargarten
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kenneth Ssebambulidde
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Seher H. Anjum
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Malcolm J. Vaughan
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Brian Song
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Anutosh Ganguly
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Yoon-dong Park
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Terri Scott
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Michal A. Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Peter R. Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
15
|
Ulutekin C, Galli E, Schreiner B, Khademi M, Callegari I, Piehl F, Sanderson N, Kirschenbaum D, Mundt S, Filippi M, Furlan R, Olsson T, Derfuss T, Ingelfinger F, Becher B. B cell depletion attenuates CD27 signaling of T helper cells in multiple sclerosis. Cell Rep Med 2024; 5:101351. [PMID: 38134930 PMCID: PMC10829729 DOI: 10.1016/j.xcrm.2023.101351] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/12/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system. Whereas T cells are likely the main drivers of disease development, the striking efficacy of B cell-depleting therapies (BCDTs) underscore B cells' involvement in disease progression. How B cells contribute to multiple sclerosis (MS) pathogenesis-and consequently the precise mechanism of action of BCDTs-remains elusive. Here, we analyze the impact of BCDTs on the immune landscape in patients with MS using high-dimensional single-cell immunophenotyping. Algorithm-guided analysis reveals a decrease in circulating T follicular helper-like (Tfh-like) cells alongside increases in CD27 expression in memory T helper cells and Tfh-like cells. Elevated CD27 indicates disrupted CD27/CD70 signaling, as sustained CD27 activation in T cells leads to its cleavage. Immunohistological analysis shows CD70-expressing B cells at MS lesion sites. These results suggest that the efficacy of BCDTs may partly hinge upon the disruption of Th cell and B cell interactions.
Collapse
Affiliation(s)
- Can Ulutekin
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Edoardo Galli
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Bettina Schreiner
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Neurology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18A, 171 76 Stockholm, Sweden
| | - Ilaria Callegari
- Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18A, 171 76 Stockholm, Sweden
| | - Nicholas Sanderson
- Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Daniel Kirschenbaum
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Massimo Filippi
- Neurology Unit, Neurorehabilitation Unit, Neurophysiology Service, and Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Via Olgettina n. 60 - 20132, Italy; Vita-Salute San Raffaele University, Milan, Via Olgettina n. 60 - 20132, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina n. 60 - 20132, Milan, Italy
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18A, 171 76 Stockholm, Sweden
| | - Tobias Derfuss
- Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
16
|
Hargarten JC, Anjum SH, Ssebambulidde K, Park YD, Vaughan MJ, Scott TL, Hammoud DA, Billioux BJ, Williamson PR. Tocilizumab as a Potential Adjunctive Therapy to Corticosteroids in Cryptococcal Post-infectious Inflammatory Response Syndrome (PIIRS): a Report of Two Cases. J Clin Immunol 2023; 43:2146-2155. [PMID: 37814084 DOI: 10.1007/s10875-023-01592-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE Non-HIV cryptococcal meningoencephalitis (CM) in previously healthy individuals is often complicated by a post-infectious inflammatory response syndrome (c-PIIRS) characterized by neurologic deterioration after appropriate antifungal therapy with sterilization of CSF fungal cultures. c-PIIRS results from an excessive inflammatory response to fungal antigens released during fungal lysis, mediated by IFN-γ, IL-6, and activated T-helper cells, leading to immune-mediated host damage that responds to pulse-corticosteroid taper therapy (PCT). Typically, oral steroids may take up to a year to taper, and occasionally, patients will be refractory to steroid therapy or may demonstrate high-risk lesions such as those involving intracranial arteries. Also, patients can have problematic side effects from prolonged corticosteroids. Hence, appropriate adjunctive agents are needed to reduce corticosteroid doses in the treatment of c-PIIRS. Due to a possible role of IL-6 in pathogenesis, IL-6 receptor blockade by tocilizumab may be useful in the treatment of c-PIIRS. METHODS Two previously healthy patients with non-HIV cPIIRS were seen at the NIH. Due to concerns for intracranial vascular rupture in an area of inflammation (Patient 1) and intractable symptoms on high-dose oral corticosteroids (Patient 2) with evidence of persistent CSF inflammation, patients were treated with 4-8 mg/kg tocilizumab every 2 weeks while maintained on a constant dose of prednisone. RESULTS Two patients exhibited rapid immunological improvement following treatment with tocilizumab. Patient 1 remained vascularly stable, and Patient 2 had near resolution of headaches with improvement in mental status as evidenced by improved MOCA score. The two had improved CSF inflammatory parameters and no significant side effects. Both CSF cultures remained negative throughout treatment. CONCLUSIONS Tocilizumab may be a safe adjunctive treatment for CM-related PIIRS suggesting further study.
Collapse
Affiliation(s)
- Jessica C Hargarten
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Seher H Anjum
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Kenneth Ssebambulidde
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Yoon-Dong Park
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Malcolm J Vaughan
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Terri L Scott
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Bridgette Jeanne Billioux
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Pogoda-Wesołowska A, Dziedzic A, Maciak K, Stȩpień A, Dziaduch M, Saluk J. Neurodegeneration and its potential markers in the diagnosing of secondary progressive multiple sclerosis. A review. Front Mol Neurosci 2023; 16:1210091. [PMID: 37781097 PMCID: PMC10535108 DOI: 10.3389/fnmol.2023.1210091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Approximately 70% of relapsing-remitting multiple sclerosis (RRMS) patients will develop secondary progressive multiple sclerosis (SPMS) within 10-15 years. This progression is characterized by a gradual decline in neurological functionality and increasing limitations of daily activities. Growing evidence suggests that both inflammation and neurodegeneration are associated with various pathological processes throughout the development of MS; therefore, to delay disease progression, it is critical to initiate disease-modifying therapy as soon as it is diagnosed. Currently, a diagnosis of SPMS requires a retrospective assessment of physical disability exacerbation, usually over the previous 6-12 months, which results in a delay of up to 3 years. Hence, there is a need to identify reliable and objective biomarkers for predicting and defining SPMS conversion. This review presents current knowledge of such biomarkers in the context of neurodegeneration associated with MS, and SPMS conversion.
Collapse
Affiliation(s)
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Adam Stȩpień
- Clinic of Neurology, Military Institute of Medicine–National Research Institute, Warsaw, Poland
| | - Marta Dziaduch
- Medical Radiology Department of Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
18
|
Lundblad K, Zjukovskaja C, Larsson A, Cherif H, Kultima K, Burman J. CSF Concentrations of CXCL13 and sCD27 Before and After Autologous Hematopoietic Stem Cell Transplantation for Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200135. [PMID: 37311645 DOI: 10.1212/nxi.0000000000200135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/01/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVES In the past decade, autologous hematopoietic stem cell transplantation (AHSCT) has emerged as a treatment for relapsing-remitting multiple sclerosis (RRMS). How this procedure affects biomarkers of B- and T-cell activation is currently unknown. The objective of this study was to investigate CXCL13 and sCD27 concentrations in CSF before and after AHSCT. METHODS This prospective cohort study was conducted at a specialized MS clinic in a university hospital. Patients with a diagnosis of RRMS, treated with AHSCT between January 1, 2011, and December 31, 2018, were evaluated for participation. Patients were included if CSF samples from baseline plus at least 1 follow-up were available on June 30, 2020. A control group of volunteers without neurologic disease was included as a reference. CSF concentrations of CXCL13 and sCD27 were measured with ELISA. RESULTS The study comprised 29 women and 16 men with RRMS, aged 19-46 years at baseline, and 15 women and 17 men, aged 18-48 years, in the control group. At baseline, patients had higher CXCL13 and sCD27 concentrations than controls, with a median (IQR) of 4 (4-19) vs 4 (4-4) pg/mL (p < 0.0001) for CXCL13 and 352 (118-530) vs 63 (63-63) pg/mL (p < 0.0001) for sCD27. After AHSCT, the CSF concentrations of CXCL13 were considerably lower at the first follow-up at 1 year than at baseline, with a median (IQR) of 4 (4-4) vs 4 (4-19) pg/mL (p < 0.0001), and then stable throughout follow-up. The CSF concentrations of sCD27 were also lower at 1 year than at baseline, with a median (IQR) of 143 (63-269) vs 354 (114-536) pg/mL (p < 0.0001). Thereafter, sCD27 concentrations continued to decrease and were lower at 2 years than at 1 year, with a median (IQR) of 120 (63-231) vs 183 (63-290) pg/mL (p = 0.017). DISCUSSION After AHSCT for RRMS, CSF concentrations of CXCL13 were rapidly normalized, whereas sCD27 decreased gradually over the course of 2 years. Thereafter, the concentrations remained stable throughout follow-up, indicating that AHSCT induced long-lasting biological changes.
Collapse
Affiliation(s)
- Katarina Lundblad
- From the Department of Medical Sciences, Neurology, Uppsala University, Sweden
| | | | - Anders Larsson
- From the Department of Medical Sciences, Neurology, Uppsala University, Sweden
| | - Honar Cherif
- From the Department of Medical Sciences, Neurology, Uppsala University, Sweden
| | - Kim Kultima
- From the Department of Medical Sciences, Neurology, Uppsala University, Sweden
| | - Joachim Burman
- From the Department of Medical Sciences, Neurology, Uppsala University, Sweden.
| |
Collapse
|
19
|
El Mahdaoui S, Husted SR, Hansen MB, Cobanovic S, Mahler MR, Buhelt S, von Essen MR, Sellebjerg F, Romme Christensen J. Cerebrospinal fluid soluble CD27 is associated with CD8 + T cells, B cells and biomarkers of B cell activity in relapsing-remitting multiple sclerosis. J Neuroimmunol 2023; 381:578128. [PMID: 37321014 DOI: 10.1016/j.jneuroim.2023.578128] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Cerebrospinal fluid (CSF) soluble CD27 (sCD27) is a sensitive biomarker of intrathecal inflammation. Although generally considered a biomarker of T cell activation, CSF sCD27 has been shown to correlate with biomarkers of B cell activity in multiple sclerosis. We analyzed CSF from 40 patients with relapsing-remitting multiple sclerosis (RRMS) and nine symptomatic controls using flow cytometry and multiplex electrochemiluminescence immunoassays. CSF sCD27 levels were increased in RRMS and correlated with IgG index, soluble B cell maturation antigen, cell count, B cell frequency and CD8+ T cell frequency. We provide new data indicating that CSF sCD27 is associated with CD8+ T cells and B cells in RRMS.
Collapse
Affiliation(s)
- Sahla El Mahdaoui
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| | - Signe Refstrup Husted
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Malene Bredahl Hansen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Stefan Cobanovic
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Mie Reith Mahler
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Sophie Buhelt
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Marina Rode von Essen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Romme Christensen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
20
|
Prajjwal P, Marsool MDM, Asharaf S, Inban P, Gadam S, Yadav R, Vora N, Nandwana V, Marsool ADM, Amir O. Comparison of recent updates in genetics, immunology, biomarkers, and neuroimaging of primary-progressive and relapsing-remitting multiple sclerosis and the role of ocrelizumab in the management of their refractory cases. Health Sci Rep 2023; 6:e1422. [PMID: 37448727 PMCID: PMC10337274 DOI: 10.1002/hsr2.1422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Background Primary-progressive multiple sclerosis (PPMS) and relapsing-remitting multiple sclerosis (RRMS) are two frequent multiple sclerosis (MS) subtypes that involve 10%-15% of patients. PPMS progresses slowly and is diagnosed later in life. Both subtypes are influenced by genetic and environmental factors such as smoking, obesity, and vitamin D insufficiency. Although there is no cure, ocrelizumab can reduce symptoms and delay disease development. RRMS is an autoimmune disease that causes inflammation, demyelination, and disability. Early detection, therapy, and lifestyle changes are critical. This study delves into genetics, immunology, biomarkers, neuroimaging, and the usefulness of ocrelizumab in the treatment of refractory patients of PPMS. Method In search of published literature providing up-to-date information on PPMS and RRMS, this review conducted numerous searches in databases such as PubMed, Google Scholar, MEDLINE, and Scopus. We looked into genetics, immunology, biomarkers, current breakthroughs in neuroimaging, and the role of ocrelizumab in refractory cases. Results Our comprehensive analysis found considerable advances in genetics, immunology, biomarkers, neuroimaging, and the efficacy of ocrelizumab in the treatment of refractory patients. Conclusion Early detection, timely intervention, and the adoption of lifestyle modifications play pivotal roles in enhancing treatment outcomes. Notably, ocrelizumab has demonstrated potential in symptom control and mitigating the rate of disease advancement, further underscoring its clinical significance in the management of MS.
Collapse
Affiliation(s)
- Priyadarshi Prajjwal
- Department of NeurologyBharati Vidyapeeth University Medical College PunePuneIndia
| | | | | | | | | | - Rukesh Yadav
- Internal Medicine, Maharajgunj Medical CampusTribhuvan UniversityKathmanduNepal
| | - Neel Vora
- Internal Medicine, B.J. Medical CollegeAhmedabadIndia
| | - Varsha Nandwana
- Department of NeurologyVirginia Tech Carilion School of MedicineRoanokeVirginiaUSA
| | | | - Omniat Amir
- Internal Medicine, Al Manhal AcademyKhartoumSudan
| |
Collapse
|
21
|
Khan Z, Gupta GD, Mehan S. Cellular and Molecular Evidence of Multiple Sclerosis Diagnosis and Treatment Challenges. J Clin Med 2023; 12:4274. [PMID: 37445309 DOI: 10.3390/jcm12134274] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that impacts the central nervous system and can result in disability. Although the prevalence of MS has increased in India, diagnosis and treatment continue to be difficult due to several factors. The present study examines the difficulties in detecting and treating multiple sclerosis in India. A lack of MS knowledge among healthcare professionals and the general public, which delays diagnosis and treatment, is one of the significant issues. Inadequate numbers of neurologists and professionals with knowledge of MS management also exacerbate the situation. In addition, MS medications are expensive and not covered by insurance, making them inaccessible to most patients. Due to the absence of established treatment protocols and standards for MS care, India's treatment techniques vary. In addition, India's population diversity poses unique challenges regarding genetic variations, cellular and molecular abnormalities, and the potential for differing treatment responses. MS is more difficult to accurately diagnose and monitor due to a lack of specialized medical supplies and diagnostic instruments. Improved awareness and education among healthcare professionals and the general public, as well as the development of standardized treatment regimens and increased investment in MS research and infrastructure, are required to address these issues. By addressing these issues, it is anticipated that MS diagnosis and treatment in India will improve, leading to better outcomes for those affected by this chronic condition.
Collapse
Affiliation(s)
- Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| |
Collapse
|
22
|
Berek K, Bauer A, Rudzki D, Auer M, Barket R, Zinganell A, Lerch M, Hofer L, Grams A, Poskaite P, Wurth S, Berger T, Di Pauli F, Deisenhammer F, Hegen H, Reindl M. Immune profiling in multiple sclerosis: a single-center study of 65 cytokines, chemokines, and related molecules in cerebrospinal fluid and serum. Front Immunol 2023; 14:1200146. [PMID: 37383229 PMCID: PMC10294231 DOI: 10.3389/fimmu.2023.1200146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction The understanding of the pathophysiology of multiple sclerosis (MS) has evolved alongside the characterization of cytokines and chemokines in cerebrospinal fluid (CSF) and serum. However, the complex interplay of pro- and anti-inflammatory cytokines and chemokines in different body fluids in people with MS (pwMS) and their association with disease progression is still not well understood and needs further investigation. Therefore, the aim of this study was to profile a total of 65 cytokines, chemokines, and related molecules in paired serum and CSF samples of pwMS at disease onset. Methods Multiplex bead-based assays were performed and baseline routine laboratory diagnostics, magnetic resonance imaging (MRI), and clinical characteristics were assessed. Of 44 participants included, 40 had a relapsing-remitting disease course and four a primary progressive MS. Results There were 29 cytokines and chemokines that were significantly higher in CSF and 15 in serum. Statistically significant associations with moderate effect sizes were found for 34 of 65 analytes with sex, age, CSF, and MRI parameters and disease progression. Discussion In conclusion, this study provides data on the distribution of 65 different cytokines, chemokines, and related molecules in CSF and serum in newly diagnosed pwMS.
Collapse
Affiliation(s)
- Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Angelika Bauer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Dagmar Rudzki
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Barket
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Magdalena Lerch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Livia Hofer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Astrid Grams
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Paulina Poskaite
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Wurth
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Reindl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Pezzini F, Pisani A, Mazziotti V, Marastoni D, Tamanti A, Borroni E, Magon S, Zinnhardt B, Magliozzi R, Calabrese M. Intrathecal versus Peripheral Inflammatory Protein Profile in MS Patients at Diagnosis: A Comprehensive Investigation on Serum and CSF. Int J Mol Sci 2023; 24:ijms24043768. [PMID: 36835179 PMCID: PMC9964553 DOI: 10.3390/ijms24043768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Intrathecal inflammation plays a key role in the pathogenesis of multiple sclerosis (MS). To better elucidate its relationship with peripheral inflammation, we investigated the correlation between cerebrospinal fluid (CSF) and serum levels of 61 inflammatory proteins. Paired CSF and serum samples were collected from 143 treatment-naïve MS patients at diagnosis. A customized panel of 61 inflammatory molecules was analyzed by a multiplex immunoassay. Correlations between serum and CSF expression levels for each molecule were performed by Spearman's method. The expression of sixteen CSF proteins correlated with their serum expression (p-value < 0.001): only five molecules (CXCL9, sTNFR2, IFNα2, Pentraxin-3, and TSLP) showed a Rho value >0.40, suggesting moderate CSF/serum correlation. No correlation between inflammatory serum patterns and Qalb was observed. Correlation analysis of serum expression levels of these sixteen proteins with clinical and MRI parameters pinpointed a subset of five molecules (CXCL9, sTNFR2, IFNα2, IFNβ, and TSLP) negatively correlating with spinal cord lesion volume. However, following FDR correction, only the correlation of CXCL9 remained significant. Our data support the hypothesis that the intrathecal inflammation in MS only partially associates with the peripheral one, except for the expression of some immunomodulators that might have a key role in the initial MS immune response.
Collapse
Affiliation(s)
- Francesco Pezzini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37134 Verona, Italy
| | - Annalisa Pisani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Valentina Mazziotti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Agnese Tamanti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Edilio Borroni
- Roche Pharma Research & Early Development (pRED), Biomarkers & Translational Technologies (BTT), F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Stefano Magon
- Roche Pharma Research & Early Development (pRED), Biomarkers & Translational Technologies (BTT), F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Bastian Zinnhardt
- Roche Pharma Research & Early Development (pRED), Biomarkers & Translational Technologies (BTT), F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Roberta Magliozzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Correspondence: (R.M.); (M.C.)
| | - Massimiliano Calabrese
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Correspondence: (R.M.); (M.C.)
| |
Collapse
|
24
|
Kosa P, Barbour C, Varosanec M, Wichman A, Sandford M, Greenwood M, Bielekova B. Molecular models of multiple sclerosis severity identify heterogeneity of pathogenic mechanisms. Nat Commun 2022; 13:7670. [PMID: 36509784 PMCID: PMC9744737 DOI: 10.1038/s41467-022-35357-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
While autopsy studies identify many abnormalities in the central nervous system (CNS) of subjects dying with neurological diseases, without their quantification in living subjects across the lifespan, pathogenic processes cannot be differentiated from epiphenomena. Using machine learning (ML), we searched for likely pathogenic mechanisms of multiple sclerosis (MS). We aggregated cerebrospinal fluid (CSF) biomarkers from 1305 proteins, measured blindly in the training dataset of untreated MS patients (N = 129), into models that predict past and future speed of disability accumulation across all MS phenotypes. Healthy volunteers (N = 24) data differentiated natural aging and sex effects from MS-related mechanisms. Resulting models, validated (Rho 0.40-0.51, p < 0.0001) in an independent longitudinal cohort (N = 98), uncovered intra-individual molecular heterogeneity. While candidate pathogenic processes must be validated in successful clinical trials, measuring them in living people will enable screening drugs for desired pharmacodynamic effects. This will facilitate drug development making, it hopefully more efficient and successful.
Collapse
Affiliation(s)
- Peter Kosa
- grid.94365.3d0000 0001 2297 5165Neuroimmunological Diseases Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Christopher Barbour
- grid.94365.3d0000 0001 2297 5165Neuroimmunological Diseases Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Mihael Varosanec
- grid.94365.3d0000 0001 2297 5165Neuroimmunological Diseases Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Alison Wichman
- grid.94365.3d0000 0001 2297 5165Neuroimmunological Diseases Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Mary Sandford
- grid.94365.3d0000 0001 2297 5165Neuroimmunological Diseases Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Mark Greenwood
- grid.41891.350000 0001 2156 6108Department of Mathematical Sciences, Montana State University, Bozeman, MT USA
| | - Bibiana Bielekova
- grid.94365.3d0000 0001 2297 5165Neuroimmunological Diseases Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
25
|
Ssebambulidde K, Anjum SH, Hargarten JC, Chittiboina P, Shoham S, Seyedmousavi S, Marr KA, Hammoud DA, Billioux BJ, Williamson PR. Treatment recommendations for non-HIV associated cryptococcal meningoencephalitis including management of post-infectious inflammatory response syndrome. Front Neurol 2022; 13:994396. [PMID: 36530631 PMCID: PMC9751747 DOI: 10.3389/fneur.2022.994396] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/04/2022] [Indexed: 08/29/2023] Open
Abstract
Cryptococcal meningoencephalitis (CM) continues to cause major morbidity and mortality in a range of patients such as those immunosuppressed from HIV and with biologic immunosuppressants, including treatments of autoimmunity, malignancies, and conditioning regimens for transplantation. It is currently the most common cause of non-viral meningitis in the United States. Infections in previously healthy patients also develop with autoantibodies to granulocyte-macrophage colony stimulating factor or with monogenetic defects. In all populations, mortality and significant long-term morbidity occur in 30-50% despite therapy, and immune reconstitution and post-infectious inflammatory response syndromes complicate management. To help with these difficult cases, we present here a practical tutorial of the care of a range of patients with CM in the absence of HIV/AIDS.
Collapse
Affiliation(s)
- Kenneth Ssebambulidde
- Translational Mycology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Seher H. Anjum
- Translational Mycology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jessica C. Hargarten
- Translational Mycology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Shmuel Shoham
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Seyedmojtaba Seyedmousavi
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Kieren A. Marr
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Bridgette Jeanne Billioux
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Peter R. Williamson
- Translational Mycology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Kee R, Naughton M, McDonnell GV, Howell OW, Fitzgerald DC. A Review of Compartmentalised Inflammation and Tertiary Lymphoid Structures in the Pathophysiology of Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10102604. [PMID: 36289863 PMCID: PMC9599335 DOI: 10.3390/biomedicines10102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system (CNS). The most common form of MS is a relapsing–remitting disease characterised by acute episodes of demyelination associated with the breakdown of the blood–brain barrier (BBB). In the relapsing–remitting phase there is often relative recovery (remission) from relapses characterised clinically by complete or partial resolution of neurological symptoms. In the later and progressive stages of the disease process, accrual of neurological disability occurs in a pathological process independent of acute episodes of demyelination and is accompanied by a trapped or compartmentalised inflammatory response, most notable in the connective tissue spaces of the vasculature and leptomeninges occurring behind an intact BBB. This review focuses on compartmentalised inflammation in MS and in particular, what we know about meningeal tertiary lymphoid structures (TLS; also called B cell follicles) which are organised clusters of immune cells, associated with more severe and progressive forms of MS. Meningeal inflammation and TLS could represent an important fluid or imaging marker of disease activity, whose therapeutic abrogation might be necessary to stop the most severe outcomes of disease.
Collapse
Affiliation(s)
- Rachael Kee
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Correspondence:
| | - Michelle Naughton
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| | | | - Owain W. Howell
- Institute of Life Sciences, Swansea University, Wales SA2 8QA, UK
| | - Denise C. Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
27
|
A Scoping Review on Body Fluid Biomarkers for Prognosis and Disease Activity in Patients with Multiple Sclerosis. J Pers Med 2022; 12:jpm12091430. [PMID: 36143216 PMCID: PMC9501898 DOI: 10.3390/jpm12091430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is a complex demyelinating disease of the central nervous system, presenting with different clinical forms, including clinically isolated syndrome (CIS), which is a first clinical episode suggestive of demyelination. Several molecules have been proposed as prognostic biomarkers in MS. We aimed to perform a scoping review of the potential use of prognostic biomarkers in MS clinical practice. We searched MEDLINE up to 25 November 2021 for review articles assessing body fluid biomarkers for prognostic purposes, including any type of biomarkers, cell types and tissues. Original articles were obtained to confirm and detail the data reported by the review authors. We evaluated the reliability of the biomarkers based on the sample size used by various studies. Fifty-two review articles were included. We identified 110 molecules proposed as prognostic biomarkers. Only six studies had an adequate sample size to explore the risk of conversion from CIS to MS. These confirm the role of oligoclonal bands, immunoglobulin free light chain and chitinase CHI3L1 in CSF and of serum vitamin D in the prediction of conversion from CIS to clinically definite MS. Other prognostic markers are not yet explored in adequately powered samples. Serum and CSF levels of neurofilaments represent a promising biomarker.
Collapse
|
28
|
Liu J, Kelly E, Bielekova B. Current Status and Future Opportunities in Modeling Clinical Characteristics of Multiple Sclerosis. Front Neurol 2022; 13:884089. [PMID: 35720098 PMCID: PMC9198703 DOI: 10.3389/fneur.2022.884089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
Development of effective treatments requires understanding of disease mechanisms. For diseases of the central nervous system (CNS), such as multiple sclerosis (MS), human pathology studies and animal models tend to identify candidate disease mechanisms. However, these studies cannot easily link the identified processes to clinical outcomes, such as MS severity, required for causality assessment of candidate mechanisms. Technological advances now allow the generation of thousands of biomarkers in living human subjects, derived from genes, transcripts, medical images, and proteins or metabolites in biological fluids. These biomarkers can be assembled into computational models of clinical value, provided such models are generalizable. Reproducibility of models increases with the technical rigor of the study design, such as blinding, control implementation, the use of large cohorts that encompass the entire spectrum of disease phenotypes and, most importantly, model validation in independent cohort(s). To facilitate the growth of this important research area, we performed a meta-analysis of publications (n = 302) that model MS clinical outcomes extracting effect sizes, while also scoring the technical quality of the study design using predefined criteria. Finally, we generated a Shiny-App-based website that allows dynamic exploration of the data by selective filtering. On average, the published studies fulfilled only one of the seven criteria of study design rigor. Only 15.2% of the studies used any validation strategy, and only 8% used the gold standard of independent cohort validation. Many studies also used small cohorts, e.g., for magnetic resonance imaging (MRI) and blood biomarker predictors, the median sample size was <100 subjects. We observed inverse relationships between reported effect sizes and the number of study design criteria fulfilled, expanding analogous reports from non-MS fields, that studies that fail to limit bias overestimate effect sizes. In conclusion, the presented meta-analysis represents a useful tool for researchers, reviewers, and funders to improve the design of future modeling studies in MS and to easily compare new studies with the published literature. We expect that this will accelerate research in this important area, leading to the development of robust models with proven clinical value.
Collapse
Affiliation(s)
| | | | - Bibiana Bielekova
- Neuroimmunological Diseases Section (NDS), National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
29
|
Rival M, Galoppin M, Thouvenot E. Biological Markers in Early Multiple Sclerosis: the Paved Way for Radiologically Isolated Syndrome. Front Immunol 2022; 13:866092. [PMID: 35572543 PMCID: PMC9094445 DOI: 10.3389/fimmu.2022.866092] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Radiologically Isolated Syndrome (RIS) is characterized by MRI-typical brain lesions fulfilling the 2009 Okuda criteria, detected in patients without clinical conditions suggestive of MS. Half of all RIS patients convert to MS within 10 years. The individual course of the disease, however, is highly variable with 12% of RIS converting directly to progressive MS. Demographic and imaging markers have been associated with the risk of clinical MS in RIS: male sex, younger age, infra-tentorial, and spinal cord lesions on the index scan and gadolinium-enhancing lesions on index or follow-up scans. Although not considered as a distinct MS phenotype, RIS certainly shares common pathological features with early active and progressive MS. In this review, we specifically focus on biological markers that may help refine the risk stratification of clinical MS and disability for early treatment. Intrathecal B-cell activation with cerebrospinal fluid (CSF) oligoclonal bands, elevated kappa free light chains, and cytokine production is specific to MS, whereas neurofilament light chain (NfL) levels reflect disease activity associated with neuroaxonal injury. Specific microRNA profiles have been identified in RIS converters in both CSF and blood. CSF levels of chitinases and glial acidic fibrillary protein (GFAP) reflecting astrogliosis might help predict the evolution of RIS to progressive MS. Innovative genomic, proteomic, and metabolomic approaches have provided several new candidate biomarkers to be explored in RIS. Leveraging data from randomized controlled trials and large prospective RIS cohorts with extended follow-up to identify, as early as possible, biomarkers for predicting greater disease severity would be invaluable for counseling patients, managing treatment, and monitoring.
Collapse
Affiliation(s)
- Manon Rival
- Department of Neurology, Nîmes University Hospital Center, Univ. Montpellier, Nîmes, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Manon Galoppin
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Eric Thouvenot
- Department of Neurology, Nîmes University Hospital Center, Univ. Montpellier, Nîmes, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
30
|
Pachner AR. The Neuroimmunology of Multiple Sclerosis: Fictions and Facts. Front Neurol 2022; 12:796378. [PMID: 35197914 PMCID: PMC8858985 DOI: 10.3389/fneur.2021.796378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
There have been tremendous advances in the neuroimmunology of multiple sclerosis over the past five decades, which have led to improved diagnosis and therapy in the clinic. However, further advances must take into account an understanding of some of the complex issues in the field, particularly an appreciation of "facts" and "fiction." Not surprisingly given the incredible complexity of both the nervous and immune systems, our understanding of the basic biology of the disease is very incomplete. This lack of understanding has led to many controversies in the field. This review identifies some of these controversies and facts/fictions with relation to the basic neuroimmunology of the disease (cells and molecules), and important clinical issues. Fortunately, the field is in a healthy transition from excessive reliance on animal models to a broader understanding of the disease in humans, which will likely lead to many improved treatments especially of the neurodegeneration in multiple sclerosis (MS).
Collapse
Affiliation(s)
- Andrew R. Pachner
- Dartmouth–Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
31
|
Cooze BJ, Dickerson M, Loganathan R, Watkins LM, Grounds E, Pearson BR, Bevan RJ, Morgan BP, Magliozzi R, Reynolds R, Neal JW, Howell OW. The association between neurodegeneration and local complement activation in the thalamus to progressive multiple sclerosis outcome. Brain Pathol 2022; 32:e13054. [PMID: 35132719 PMCID: PMC9425007 DOI: 10.1111/bpa.13054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/17/2021] [Accepted: 01/17/2022] [Indexed: 01/22/2023] Open
Abstract
The extent of grey matter demyelination and neurodegeneration in the progressive multiple sclerosis (PMS) brains at post‐mortem associates with more severe disease. Regional tissue atrophy, especially affecting the cortical and deep grey matter, including the thalamus, is prognostic for poor outcomes. Microglial and complement activation are important in the pathogenesis and contribute to damaging processes that underlie tissue atrophy in PMS. We investigated the extent of pathology and innate immune activation in the thalamus in comparison to cortical grey and white matter in blocks from 21 cases of PMS and 10 matched controls. Using a digital pathology workflow, we show that the thalamus is invariably affected by demyelination and had a far higher proportion of active inflammatory lesions than forebrain cortical tissue blocks from the same cases. Lesions were larger and more frequent in the medial nuclei near the ventricular margin, whilst neuronal loss was greatest in the lateral thalamic nuclei. The extent of thalamic neuron loss was not associated with thalamic demyelination but correlated with the burden of white matter pathology in other forebrain areas (Spearman r = 0.79, p < 0.0001). Only thalamic neuronal loss, and not that seen in other forebrain cortical areas, correlated with disease duration (Spearman r = −0.58, p = 0.009) and age of death (Spearman r = −0.47, p = 0.045). Immunoreactivity for the complement pattern recognition molecule C1q, and products of complement activation (C4d, Bb and C3b) were elevated in thalamic lesions with an active inflammatory pathology. Complement regulatory protein, C1 inhibitor, was unchanged in expression. We conclude that active inflammatory demyelination, neuronal loss and local complement synthesis and activation in the thalamus, are important to the pathological and clinical disease outcomes of PMS.
Collapse
Affiliation(s)
- Benjamin J Cooze
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | - Matthew Dickerson
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | | | - Lewis M Watkins
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | - Ethan Grounds
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | - Ben R Pearson
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | - Ryan Jack Bevan
- UK Dementia Research Institute at Cardiff University, Cardiff, UK
| | - B Paul Morgan
- UK Dementia Research Institute at Cardiff University, Cardiff, UK
| | - Roberta Magliozzi
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | | | - James W Neal
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| | - Owain W Howell
- Faculty of Medical, Health and Life Sciences, Swansea University, Swansea, UK
| |
Collapse
|
32
|
Masvekar R, Kosa P, Barbour C, Milstein JL, Bielekova B. Drug library screen identifies inhibitors of toxic astrogliosis. Mult Scler Relat Disord 2022; 58:103499. [PMID: 35030368 PMCID: PMC8926038 DOI: 10.1016/j.msard.2022.103499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/09/2021] [Accepted: 01/02/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic neuroinflammatory disorder, in which activated immune cells directly or indirectly induce demyelination and axonal degradation. Inflammatory stimuli also change the phenotype of astrocytes, making them neurotoxic. The resulting 'toxic astrocyte' phenotype has been observed in animal models of neuroinflammation and in MS lesions. Proteins secreted by toxic astrocytes are elevated in the cerebrospinal fluid (CSF) of MS patients and reproducibly correlate with the rates of accumulation of neurological disability and brain atrophy. This suggests a pathogenic role for neurotoxic astrocytes in MS. METHODS Here, we applied a commercially available library of small molecules that are either Food and Drug Administration-approved or in clinical development to an in vitro model of toxic astrogliosis to identify drugs and signaling pathways that inhibit inflammatory transformation of astrocytes to a neurotoxic phenotype. RESULTS Inhibitors of three pathways related to the endoplasmic reticulum stress: (1) proteasome, (2) heat shock protein 90 and (3) mammalian target of rapamycin reproducibly decreased inflammation-induced conversion of astrocytes to toxic phenotype. Dantrolene, an anti-spasticity drug that inhibits calcium release through ryanodine receptors expressed in the endoplasmic reticulum of central nervous system cells, also exerted inhibitory effect at in vivo achievable concentrations. Finally, we established CSF SERPINA3 as a relevant pharmacodynamic marker for inhibiting toxic astrocytes in clinical trials. CONCLUSION Drug library screening provides mechanistic insight into the generation of toxic astrocytes and identifies candidates for immediate proof-of-principle clinical trial(s).
Collapse
Affiliation(s)
- Ruturaj Masvekar
- National Institute of Allergy and Infectious Diseases(NIAID), Neuroimmunological Diseases Section (NDS), National Institutes of Health(NIH), Building 10, Room 5N248, 10 Center Drive, MSC1444, Bethesda, MD 20892, USA.
| | - Peter Kosa
- National Institute of Allergy and Infectious Diseases(NIAID), Neuroimmunological Diseases Section (NDS), National Institutes of Health(NIH), Building 10, Room 5N248, 10 Center Drive, MSC1444, Bethesda, MD 20892, USA.
| | - Christopher Barbour
- National Institute of Allergy and Infectious Diseases(NIAID), Neuroimmunological Diseases Section (NDS), National Institutes of Health(NIH), Building 10, Room 5N248, 10 Center Drive, MSC1444, Bethesda, MD 20892, USA
| | - Joshua L Milstein
- National Institute of Allergy and Infectious Diseases(NIAID), Neuroimmunological Diseases Section (NDS), National Institutes of Health(NIH), Building 10, Room 5N248, 10 Center Drive, MSC1444, Bethesda, MD 20892, USA
| | - Bibiana Bielekova
- National Institute of Allergy and Infectious Diseases(NIAID), Neuroimmunological Diseases Section (NDS), National Institutes of Health(NIH), Building 10, Room 5N248, 10 Center Drive, MSC1444, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. Nat Rev Neurol 2021; 18:40-55. [PMID: 34732831 DOI: 10.1038/s41582-021-00581-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
In contrast to the multiple disease-modifying therapies that are available for relapsing-remitting multiple sclerosis (MS), the therapeutic options for progressive MS (PMS) are limited. Recent advances in our understanding of the neuroimmunology of PMS, including the mechanisms that drive slowly expanding lesions, have fuelled optimism for improved treatment of this condition. In this Review, we highlight the commonly observed neuropathology of PMS and discuss the associated mechanisms of CNS injury. We then apply this knowledge to formulate criteria for therapeutic efficacy in PMS, beginning with the need for early treatment owing to the substantial neuropathology that is already present at the initial clinical presentation. Other requirements include: antagonism of neuroaxonal injury mediators such as pro-inflammatory microglia and lymphocytes; remediation of oxidative stress resulting from iron deposition and mitochondrial dysfunction; and promotion of neuroprotection through remyelination. We consider whether current disease-modifying therapies for relapsing-remitting MS meet the criteria for successful therapeutics in PMS and suggest that the evidence favours the early introduction of sphingosine 1-phosphate receptor modulators. Finally, we weigh up emerging medications, including repurposed generic medications and Bruton's tyrosine kinase inhibitors, against these fundamental criteria. In this new therapeutic era in PMS, success depends collectively on understanding disease mechanisms, drug characteristics (including brain penetration) and rational use.
Collapse
|
34
|
Højsgaard Chow H, Talbot J, Lundell H, Gøbel Madsen C, Marstrand L, Lange T, Mahler MR, Buhelt S, Holm Hansen R, Blinkenberg M, Romme Christensen J, Soelberg Sørensen P, Rode von Essen M, Siebner HR, Sellebjerg F. Dimethyl Fumarate Treatment in Patients With Primary Progressive Multiple Sclerosis: A Randomized, Controlled Trial. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/5/e1037. [PMID: 34429340 PMCID: PMC8407149 DOI: 10.1212/nxi.0000000000001037] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/17/2021] [Indexed: 11/15/2022]
Abstract
Background and Objective To study whether dimethyl fumarate is superior to placebo in decreasing CSF concentrations of neurofilament light chain (NFL) in patients with primary progressive MS (PPMS). Methods In the double-blind, placebo-controlled phase 2 study dimethyl FUMArate treatment in Progressive Multiple Sclerosis (FUMAPMS), patients with PPMS were randomly assigned to treatment with 240 mg dimethyl fumarate or placebo in a 1:1 ratio for 48 weeks. The primary endpoint was change in concentration of NFL in the CSF. Secondary endpoints included other CSF biomarkers and clinical and MRI measures. Efficacy was evaluated for the full data set by multiple imputations to account for missing data. Safety was assessed for the full data set. Results Fifty-four patients (mean age 54.9 years [SD 6.1], median Expanded Disability Status Scale 4.0 [nterquartile range 4.0–6.0], disease duration 14.1 [SD 9.4], and 21 [39%] female) were randomized to either placebo (n = 27) or dimethyl fumarate (n = 27) therapy. At screening CSF concentrations, adjusted for age and sex, of NFL, myelin basic protein (MBP), soluble CD27, chitinase 3-like 1, and B-cell maturation antigen were higher than in a group of symptomatic controls. Twenty-six patients (96%) in the dimethyl fumarate group and 24 patients (89%) in the placebo group completed the randomized phase. Mean change in CSF concentrations of NFL did not differ between groups (mean difference 99 ng/L; 95% CI −292 to 491 ng/L). MBP in CSF decreased in the treatment group (−182 ng/L, 95% CI −323 to −41 ng/L compared with placebo). The difference observed in the multiple imputation data set was not significant in a per protocol analysis. This was nominally significant in the multiple imputation data set but not in the per protocol analysis This was not found in the per protocol analysis Other secondary and tertiary outcomes were not affected. Various infections, lymphopenia, flushing, and gastrointestinal side effects were more frequent in the dimethyl fumarate group. Serious adverse events were similar between groups. Discussion Dimethyl fumarate treatment for 48 weeks had no effect on any of the investigated efficacy measures in patients with PPMS. We did not observe adverse events not anticipated for dimethyl fumarate treatment. Trial Registration Information Clinicaltrials.gov identifier NCT02959658. Classification of Evidence This study provides Class I evidence that for patients with PPMS, dimethyl fumarate treatment has no effect on CSF NFL levels compared with placebo treatment.
Collapse
Affiliation(s)
- Helene Højsgaard Chow
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Jacob Talbot
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Henrik Lundell
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Camilla Gøbel Madsen
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Lisbet Marstrand
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Theis Lange
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Mie Reith Mahler
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Sophie Buhelt
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Rikke Holm Hansen
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Morten Blinkenberg
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Jeppe Romme Christensen
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Per Soelberg Sørensen
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Marina Rode von Essen
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Hartwig Roman Siebner
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Finn Sellebjerg
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
35
|
Epstein S, Fong KT, De Jager PL, Levine L, Riley C, Wesley S, Vargas WS, Farber R. Evaluation of ocrelizumab in older progressive multiple sclerosis patients. Mult Scler Relat Disord 2021; 55:103171. [PMID: 34329872 DOI: 10.1016/j.msard.2021.103171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/24/2021] [Accepted: 07/22/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Seminal trials evaluating anti-CD20 therapy in progressive MS primarily found benefit in younger, less-disabled patients with more inflammatory disease activity. The risks and benefits of ocrelizumab use in older patients with progressive froms of MS are not known. METHODS Retrospective chart review was performed for patients older than 55 with primary or secondary progressive MS at the time of ocrelizumab initiation. Clinical endpoints from 2 years prior to anti-CD20 therapy served as a within-subject control. RESULTS Data was reviewed for 56 patients older than the age of 55 at the time of ocrelizumab initiation. Of 37 patients with 2-years of follow up on ocrelizumab, 40%(n=15) experienced confirmed disability progression (CDP) while 60% (n=22) remained stable or improved. 24 patients had data available for the within-subject control; for these patients, median age was 67, baseline EDSS 6.3, and disease duration 20.5 years. Prior to anti-CD20 therapy, 58% (n=14) of patients remained stable and 42% (n=10) experienced CDP. After ocrelizumab initiation, 71% (n=17) remained stable and 29% (n=7) experienced CDP. There was no difference between CDP (p=0.54) or change in EDSS (p=0.09) between time periods. Ocrelizumab was well tolerated and no difference in infection rate was seen using the within-subject control. CONCLUSIONS We found no difference in clinical endpoints for patients on ocrelizumab compared to prior to anti-CD20 therapy; however, we could not exclude a modest effect given our sample size. Larger trials are needed to evaluate ocrelizumab use in this understudied MS subpopulation.
Collapse
Affiliation(s)
- Samantha Epstein
- Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Kathryn T Fong
- Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Swedish Neuroscience Institute, Seattle, WA, USA
| | - Philip L De Jager
- Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Libby Levine
- Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Claire Riley
- Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah Wesley
- Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wendy S Vargas
- Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Rebecca Farber
- Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
36
|
Ioannides ZA, Csurhes PA, Swayne A, Foubert P, Aftab BT, Pender MP. Correlations between macrophage/microglial activation marker sTREM-2 and measures of T-cell activation, neuroaxonal damage and disease severity in multiple sclerosis. Mult Scler J Exp Transl Clin 2021; 7:20552173211019772. [PMID: 34158970 PMCID: PMC8182190 DOI: 10.1177/20552173211019772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/29/2021] [Indexed: 01/06/2023] Open
Abstract
Background Soluble triggering receptor expressed on myeloid cells-2 (sTREM-2) is a marker of macrophage and microglial activation and is increased in the cerebrospinal fluid (CSF) in multiple sclerosis (MS). Objective To determine the relationships among sTREM-2, T cell activation, neuroaxonal damage and clinical features of MS. Methods Enzyme-linked immunosorbent assays were used to measure the levels of sTREM-2, soluble CD27 (sCD27, a marker of T cell activation), neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH) in the CSF of 42 patients with MS (including nine with clinically isolated syndrome) and 15 patients with other neurological diseases (OND) and in the serum of 164 patients with MS, 87 patients with OND and 62 healthy controls. Results sTREM-2 was significantly elevated in the CSF (p = 0.012), but not in the serum, in MS compared to OND. In MS, CSF sTREM-2 correlated positively with CSF sCD27 (p = 0.005), CSF NfL (p = 0.0001), CSF pNfH (p = 0.0006), Expanded Disability Status Scale (EDSS) score (p = 0.0079) and MS Severity Score (MSSS) (p = 0.0006). Conclusion In MS the level of sTREM-2 in the CSF is related to measures of T cell activation (sCD27), neuroaxonal damage (NfL and pNfH), disability (EDSS) and disease severity (MSSS).
Collapse
Affiliation(s)
- Zara A Ioannides
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Peter A Csurhes
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Andrew Swayne
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | - Blake T Aftab
- Preclinical Science and Translational Medicine, Atara Biotherapeutics, South San Francisco, CA, USA
| | - Michael P Pender
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
37
|
Deeb O, Nabulsi M. Exploring Multiple Sclerosis (MS) and Amyotrophic Lateral Scler osis (ALS) as Neurodegenerative Diseases and their Treatments: A Review Study. Curr Top Med Chem 2021; 20:2391-2403. [PMID: 32972341 DOI: 10.2174/1568026620666200924114827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Growing concern about neurodegenerative diseases is becoming a global issue. It is estimated that not only will their prevalence increase but also morbidity and health burden will be concerning. Scientists, researchers and clinicians share the responsibility of raising the awareness and knowledge about the restricting and handicapping health restrains related to these diseases. Multiple Sclerosis (MS), as one of the prevalent autoimmune diseases, is characterized by abnormal regulation of the immune system that periodically attacks parts of the nervous system; brain and spinal cord. Symptoms and impairments include weakness, numbness, visual problems, tingling pain that are quietly variable among patients. Amyotrophic Lateral Sclerosis (ALS) is another neurodegenerative disease that is characterized by the degeneration of motor neurons in the brain and spinal cord. Unlike MS, symptoms begin with muscle weakness and progress to affect speech, swallowing and finally breathing. Despite the major differences between MS and ALS, misdiagnosis is still influencing disease prognosis and patient's quality of life. Diagnosis depends on obtaining a careful history and neurological examination as well as the use of Magnetic Resonance Imaging (MRI), which are considered challenging and depend on the current disease status in individuals. Fortunately, a myriad of treatments is available now for MS. Most of the cases are steroid responsive. Disease modifying therapy is amongst the most important set of treatments. In ALS, few medications that slow down disease progression are present. The aim of this paper is to summarize what has been globally known and practiced about MS and ALS, as they are currently classified as important growing key players among autoimmune diseases. In terms of treatments, it is concluded that special efforts and input should be directed towards repurposing of older drugs and on stem cells trials. As for ALS, it is highlighted that supportive measurements and supplementary treatments remain essentially needed for ALS patients and their families. On the other hand, it is noteworthy to clarify that the patient-doctor communication is relatively a cornerstone in selecting the best treatment for each MS patient.
Collapse
Affiliation(s)
- Omar Deeb
- Faculty of Pharmacy, Al-Quds University, P.O. Box 20002 Jerusalem, Palestinian Territory, Occupied
| | - Maisa Nabulsi
- Faculty of Pharmacy, Al-Quds University, P.O. Box 20002 Jerusalem, Palestinian Territory, Occupied
| |
Collapse
|
38
|
Rolfes L, Pawlitzki M, Pfeuffer S, Huntemann N, Wiendl H, Ruck T, Meuth SG. Failed, Interrupted, or Inconclusive Trials on Immunomodulatory Treatment Strategies in Multiple Sclerosis: Update 2015-2020. BioDrugs 2021; 34:587-610. [PMID: 32785877 PMCID: PMC7519896 DOI: 10.1007/s40259-020-00435-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past decades, multiple sclerosis (MS) treatment has experienced vast changes resulting from major advances in disease-modifying therapies (DMT). Looking at the overall number of studies, investigations with therapeutic advantages and encouraging results are exceeded by studies of promising compounds that failed due to either negative or inconclusive results or have been interrupted for other reasons. Importantly, these failed clinical trials are informative experiments that can help us to understand the pathophysiological mechanisms underlying MS. In several trials, concepts taken from experimental models were not translatable to humans, although they did not lack a well-considered pathophysiological rationale. The lessons learned from these discrepancies may benefit future studies and reduce the risks for patients. This review summarizes trials on MS since 2015 that have either failed or have been interrupted for various reasons. We identify potential causes of failure or inconclusiveness, looking at the path from basic animal experiments to clinical trials, and discuss the implications for our current view on MS pathogenesis, clinical practice, and future study designs. We focus on anti-inflammatory treatment strategies, without including studies on already approved and effective DMT. Clinical trials addressing neuroprotective and alternative treatment strategies are presented in a separate article.
Collapse
Affiliation(s)
- Leoni Rolfes
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| | - Marc Pawlitzki
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Steffen Pfeuffer
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Niklas Huntemann
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Tobias Ruck
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Sven G Meuth
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| |
Collapse
|
39
|
Masvekar R, Phillips J, Komori M, Wu T, Bielekova B. Cerebrospinal Fluid Biomarkers of Myeloid and Glial Cell Activation Are Correlated With Multiple Sclerosis Lesional Inflammatory Activity. Front Neurosci 2021; 15:649876. [PMID: 33859547 PMCID: PMC8042223 DOI: 10.3389/fnins.2021.649876] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS)-related inflammation can be divided into lesional activity, mediated by immune cells migrating from the periphery to the central nervous system (CNS) and non-lesional activity, mediated by inflammation compartmentalized to CNS tissue. Lesional inflammatory activity, reflected by contrast-enhancing lesions (CELs) on the magnetic resonance imaging (MRI), is effectively inhibited by current disease modifying therapies (DMTs). While, the effect of DMTs on non-lesional inflammatory activity is currently unknown. Reliable and simultaneous measurements of both lesional and non-lesional MS activity is necessary to understand their contribution to CNS tissue destruction in individual patients. We previously demonstrated that CNS compartmentalized inflammation can be measured by combined quantification of cerebrospinal fluid (CSF) immune cells and cell-specific soluble markers. The goal of this study is to develop and validate a CSF-biomarker-based molecular surrogate of MS lesional activity. The training cohort was dichotomized into active (CELs > 1 or clinical relapse) and inactive lesional activity (no CELs or relapse) groups. Matched CSF and serum samples were analyzed for 20 inflammatory and axonal damage biomarkers in a blinded fashion. Only the findings from the training cohort with less than 0.1% probability of false positive (i.e., p < 0.001) were validated in an independent validation cohort. MS patients with lesional activity have elevated IL-12p40, CHI3L1, TNFα, TNFβ, and IL-10, with the first two having the strongest effects and validated statistically-significant association with lesional activity in an independent validation cohort. Marker of axonal damage, neurofilament light (NfL), measured in CSF (cNfL) was also significantly elevated in MS patients with active lesions. NfL measured in serum (sNfL) did not differentiate the two MS subgroups with pre-determined significance, (p = 0.0690) even though cCSF and sNfL correlated (Rho = 0.66, p < 0.0001). Finally, the additive model of IL12p40 and CHI3L1 outperforms any biomarker discretely. IL12p40 and CHI3L1, released predominantly by immune cells of myeloid lineage are reproducibly the best CSF biomarkers of MS lesional activity. The residuals from the IL12p40/CHI3L1-cNfL correlations may identify MS patients with more destructive inflammation or contributing neurodegeneration.
Collapse
Affiliation(s)
- Ruturaj Masvekar
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jonathan Phillips
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mika Komori
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, United States
| | - Tianxia Wu
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, United States
| | - Bibiana Bielekova
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
40
|
No Early Effect of Intrathecal Rituximab in Progressive Multiple Sclerosis (EFFRITE Clinical Trial). Mult Scler Int 2021; 2021:8813498. [PMID: 33763241 PMCID: PMC7964121 DOI: 10.1155/2021/8813498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 11/30/2022] Open
Abstract
Background The progressive phase of multiple sclerosis (MS) is characterized by an intrathecal (IT) compartmentalization of inflammation, involving B-cells within meningeal follicles, and resisting all the available immunosuppressive treatments. A new therapeutic paradigm may be to target this inflammation by injecting immunosuppressive drugs inside the central nervous system compartment. Methods We designed a single-center, open-label, randomized, controlled, phase II study designed to evaluate the safety and efficacy of IT rituximab in progressive MS (EFFRITE trial; ClinicalTrial Registration NCT02545959). Patients were randomized into three arms (1 : 1 : 1): control group, IT rituximab (20 mg, IT) group, and intravenous+IT (IV+IT) group. The main outcome was a change in levels of CSF biomarkers of inflammation (osteopontin). Secondary outcomes were changes in levels of CSF biomarkers of axonal loss (neurofilament light chain) and clinical and MRI changes. Results Ten patients were included (2 : 4 : 4). No adverse event occurred. OPN level remained stable in CSF at each time point, whereas NFL had slightly decreased (-8.7%) at day 21 (p = 0.02). Clinical parameters remained stable and leptomeningeal enhancements remained unchanged. Conclusion Clinical outcome and biomarkers of inflammation were not dramatically modified after IT injection of rituximab, probably due to its limited efficiency in CSF. Drug issues for future studies are discussed.
Collapse
|
41
|
Donninelli G, Studer V, Brambilla L, Zecca C, Peluso D, Laroni A, Michelis D, Mantegazza R, Confalonieri P, Volpe E. Immune Soluble Factors in the Cerebrospinal Fluid of Progressive Multiple Sclerosis Patients Segregate Into Two Groups. Front Immunol 2021; 12:633167. [PMID: 33777018 PMCID: PMC7988186 DOI: 10.3389/fimmu.2021.633167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
Primary-progressive (PP) and secondary-progressive (SP) multiple sclerosis (MS) are characterized by neurological deficits caused by a permanent neuronal damage, clinically quantified by the expanded disability status scale (EDSS). Neuronal tissue damage is also mediated by immune infiltrates producing soluble factors, such as cytokines and chemokines, which are released in the cerebrospinal fluid (CSF). The mechanisms regulating the production of a soluble factor are not completely defined. Using multiplex bead-based assays, we simultaneously measured 27 immune soluble factors in the CSF collected from 38 patients, 26 with PP-MS and 12 with SP-MS. Then, we performed a correlation matrix of all soluble factors expressed in the CSF. The CSF from patients with PP-MS and SP-MS had similar levels of cytokines and chemokines; however, the stratification of patients according to active or inactive magnetic resonance imaging (MRI) unveils some differences. Correlative studies between soluble factors in the CSF of patients with PP-MS and SP-MS revealed two clusters of immune mediators with pro-inflammatory functions, namely IFN-γ, MCP-1, MIP-1α, MIP-1β, IL-8, IP-10, and TNF-α (group 1), and anti-inflammatory functions, namely IL-9, IL-15, VEGF, and IL-1ra (group 2). However, most of the significant correlations between cytokines of group 1 and of group 2 were lost in patients with more severe disability (EDSS ≥ 4) compared to patients with mild to moderate disability (EDSS < 4). These results suggest a common regulation of cytokines and chemokines belonging to the same group and indicate that, in patients with more severe disability, the production of those factors is less coordinated, possibly due to advanced neurodegenerative mechanisms that interfere with the immune response.
Collapse
Affiliation(s)
- Gloria Donninelli
- Molecular Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Valeria Studer
- Neuroimmunology and Neuromuscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy.,Neurology Department, Martini Hospital, Turin, Italy
| | - Laura Brambilla
- Neuroimmunology and Neuromuscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Zecca
- Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Daniele Peluso
- Bioinformatics e Biostatistics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Alice Laroni
- Department of Neuroscience, Rehabilitation, Opthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy
| | - Daniele Michelis
- Department of Neuroscience, Rehabilitation, Opthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Confalonieri
- Neuroimmunology and Neuromuscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisabetta Volpe
- Molecular Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
42
|
Zailaie SA, Siddiqui JJ, Al Saadi RM, Anbari DM, S Alomari A, Cupler EJ. Serum Based miRNA as a Diagnostic Biomarker for Multiple Sclerosis: a Systematic Review and Meta-Analysis. Immunol Invest 2021; 51:947-962. [PMID: 33660581 DOI: 10.1080/08820139.2021.1887888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This systematic review and meta-analysis aimed to identify deferentially expressed serum miRNAs in multiple sclerosis patients and to evaluate their diagnostic value in multiple sclerosis diagnosis. Studies were identified on PubMed, Google scholar and Saudi digital library up to 30 September 2019. Articles that examined miRNA expression level in MS patients compared to healthy control group were included in the review and the data were extracted by three independent author. The comprehensive Meta-Analysis version 3 software was used for meta-analysis and heterogeneity of studies was identified according to I2 value. Our literatures search identified 9 eligible articles concerning the serum miRNA as a diagnostic biomarker for multiple sclerosis in comparison to healthy control group. 19 serum miRNAs differentially expressed in MS patients were identified (8 downregulated, 11 upregulated and 1 with discordant result). In publications that provided information on specific miRNA diagnostic value, the pooled AUC was 72% (95% CI 0.65-0.78, p-value 0.00) for the overall multiple sclerosis patients and primary progressive MS (PPMS) (95% CI 0.66-0.78 p-value 0.00). A miRNA panel of four miRNAs showed high sensitivity (73%) and specificity (68%) in distinguishing multiple sclerosis from control groups. When using single miRNA (miR-145), the sensitivity increased to 79% and the specificity to 87%. The available data from the literature and this meta-analysis suggests the potential use of serum miRNA as biomarkers for early diagnosis of MS with high sensitivity and specificity in distinguishing multiple sclerosis subtypes from healthy controls.Abbreviation: MS: Multiple sclerosis; IDD: inflammatory demyelinating diseases; RRMS: relapsing-remitting Multiple sclerosis; PPMS: primary progressive Multiple sclerosis; SPMS: secondary progressive Multiple sclerosis; NMO: Neuromyelitis optica; miRNA: microRNA; ECmiRNA: extracellular microRNA; AUC: Area Under the Curve; ROC: Receiver Operator Characteristic.
Collapse
Affiliation(s)
- Samar A Zailaie
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Jumana Jamal Siddiqui
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Rawan Mansour Al Saadi
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Dalia Mohammad Anbari
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Amani S Alomari
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Edward James Cupler
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia.,Neuroscience Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
43
|
Ghafouri-Fard S, Honarmand K, Taheri M. A comprehensive review on the role of chemokines in the pathogenesis of multiple sclerosis. Metab Brain Dis 2021; 36:375-406. [PMID: 33404937 DOI: 10.1007/s11011-020-00648-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) as a chronic inflammatory disorder of the central nervous system (CNS) is thought to be caused by the abnormal induction of immune responses. Chemokines as molecules that can engage leukocytes into the location of inflammation, actively participate in the pathogenesis of MS. Several members of this family of chemo attractants have been shown to be dysregulated in the peripheral blood, cerebrospinal fluid or CNS lesions of MS patients. Studies in animal models of MS particularly experimental autoimmune encephalomyelitis have indicated the critical roles of chemokines in the pathophysiology of MS. In the current review, we summarize the data regarding the role of CCL2, CCL3, CCL4, CCL11, CCL20, CXCL1, CXCL2, CXCL8, CXCL10, CXCL12 and CXCL13 in the pathogenesis of MS.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Tigchelaar C, Atmosoerodjo SD, van Faassen M, Wardenaar KJ, De Deyn PP, Schoevers RA, Kema IP, Absalom AR. The Anaesthetic Biobank of Cerebrospinal fluid: a unique repository for neuroscientific biomarker research. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:455. [PMID: 33850852 PMCID: PMC8039635 DOI: 10.21037/atm-20-4498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background The pathophysiology of numerous central nervous system disorders remains poorly understood. Biomarker research using cerebrospinal fluid (CSF) is a promising way to illuminate the neurobiology of neuropsychiatric disorders. CSF biomarker studies performed so far generally included patients with neurodegenerative diseases without an adequate control group. The Anaesthetic Biobank of Cerebrospinal fluid (ABC) was established to address this. The aims are to (I) provide healthy-control reference values for CSF-based biomarkers, and (II) to investigate associations between CSF-based candidate biomarkers and neuropsychiatric symptoms. Methods In this cross-sectional study, we collect and store CSF and blood from adult patients undergoing spinal anaesthesia for elective surgery. Blood (20.5 mL) is collected during intravenous cannulation and CSF (10 mL) is aspirated prior to intrathecal local anaesthetic injection. A portion of the blood and CSF is sent for routine laboratory analyses, the remaining material is stored at -80 °C. Relevant clinical, surgical and anaesthetic data are registered. A neurological examination and Montreal Cognitive Assessment (MoCA) are performed pre-operatively and a subset of patients fill in questionnaires on somatic and mental health (depression, anxiety and stress). Results Four-hundred-fifty patients (58% male; median age: 56 years) have been enrolled in the ABC. The planned spinal anaesthetic procedure was not attempted for various reasons in eleven patients, in fourteen patients the spinal puncture failed and in twelve patients CSF aspiration was unsuccessful. A mean of 9.3 mL CSF was obtained in the remaining 413 of patients. Most patients had a minor medical history and 60% scored in the normal range on the MoCA (median score: 26). Conclusions The ABC is an ongoing biobanking project that can contribute to CSF-based biomarker research. The large sample size with constant sampling methods and extensive patient phenotyping provide excellent conditions for future neuroscientific research.
Collapse
Affiliation(s)
- Celien Tigchelaar
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sawal D Atmosoerodjo
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas J Wardenaar
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium.,Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Robert A Schoevers
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anthony R Absalom
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
45
|
Silva BA, Miglietta E, Ferrari CC. Insights into the role of B cells in the cortical pathology of Multiple sclerosis: evidence from animal models and patients. Mult Scler Relat Disord 2021; 50:102845. [PMID: 33636613 DOI: 10.1016/j.msard.2021.102845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/03/2021] [Accepted: 02/13/2021] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disease of the central nervous system (CNS) that affects both white and gray matter. Although it has been traditionally considered as a T cell mediated disease, the role of B cell in MS pathology has become a topic of great research interest. Cortical lesions, key feature of the progressive forms of MS, are involved in cognitive impairment and worsening of the patients' outcome. These lesions present pathognomonic hallmarks, such as: absence of blood-brain barrier (BBB) disruption, limited inflammatory events, reactive microglia, neurodegeneration, demyelination and meningeal inflammation. B cells located in the meninges, either as part of diffuse inflammation or as part of follicle-like structures, are strongly associated with cortical damage. The function of CD20-expressing B cells in MS is further highlighted by the success of specific therapies using anti-CD20 antibodies. The possible roles of B cells in pathology go beyond their ability to produce antibodies, as they also present antigens to T cells, secrete cytokines (both pathogenic and protective) within the CNS to modulate T and myeloid cell functions, and are involved in meningeal inflammation. Here, we will review the contributions of B cells to the pathogenesis of meningeal inflammation and cortical lesions in MS patients as well as in preclinical animal models.
Collapse
Affiliation(s)
- Berenice Anabel Silva
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET, Buenos Aires, Argentina; Leloir Institute Foundation, Institute for Biochemical Investigations, IIBBA, CONICET, Buenos Aires, Argentina; Centro Universitario de Esclerosis Múltiple, División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Esteban Miglietta
- Leloir Institute Foundation, Institute for Biochemical Investigations, IIBBA, CONICET, Buenos Aires, Argentina
| | - Carina Cintia Ferrari
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET, Buenos Aires, Argentina; Leloir Institute Foundation, Institute for Biochemical Investigations, IIBBA, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
46
|
De Masi R, Orlando S, De Donno A. The Age-Related Efficacy of Dimethyl Fumarate and Natalizumab in the Real-World Management of Multiple Sclerosis. Pharmaceuticals (Basel) 2021; 14:ph14020081. [PMID: 33499269 PMCID: PMC7911127 DOI: 10.3390/ph14020081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022] Open
Abstract
We investigated the comparative age-related efficacy of dimethyl fumarate (DMF) and natalizumab (NTZ) in clinical practice on multiple sclerosis (MS). Research in this area is lacking in the previous literature. In a three-year retrospective and clinical–paraclinical study, we compared 173 DMF patients and 94 NTZ patients with a similar average age (40 years) and disease duration (DD) (10 years). Expanded Disability Status Scale (EDSS) scores were higher in the NTZ group than in the DMF group at 3.5 vs. 2.5, respectively (p = 0.001). However, in both groups, age values correlated with DD (r = 0.42; p < 0.001), EDSS (r = 0.52; p < 0.001) and age at onset (r = 0.18; p < 0.001). Furthermore, age-adjusted Kaplan–Meier curves showed that NTZ-treated subjects maintained a 1.0–3.0 EDSS status score (p = 0.003) more frequently and a 3.5–7.0 score (p = 0.022) significantly less frequently compared with DMF-treated subjects. The EDSS percentage mean difference between NTZ and DMF groups was 81.6%, decreasing inversely with age (r = −0.34; p < 0.001). Finally, high EDSS score values were reached at the age of 39–40 years, regardless of their experimental group. We demonstrated age as a major contributor in disability and response to therapy in current management of MS. Thus, age should be considered in the risk/benefit evaluation in decision making for the disease modifying treatments in MS.
Collapse
Affiliation(s)
- Roberto De Masi
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, 73042 Casarano, Lecce, Italy;
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, 73042 Casarano, Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, 73042 Casarano, Lecce, Italy;
- Correspondence: ; Tel.: +39-0833-508-412
| | - Antonella De Donno
- Laboratory of Hygiene, Department of Biological and Environmental Sciences and Technologies, University of the Salento, 73100 Lecce, Italy;
| |
Collapse
|
47
|
Anjum S, Dean O, Kosa P, Magone MT, King KA, Fitzgibbon E, Kim HJ, Zalewski C, Murphy E, Billioux BJ, Chisholm J, Brewer CC, Krieger C, Elsegeiny W, Scott TL, Wang J, Hunsberger S, Bennett JE, Nath A, Marr KA, Bielekova B, Wendler D, Hammoud DA, Williamson P. Outcomes in Previously Healthy Cryptococcal Meningoencephalitis Patients treated with Pulse - Taper Corticosteroids for Post-infectious Inflammatory Syndrome. Clin Infect Dis 2020; 73:e2789-e2798. [PMID: 33383587 DOI: 10.1093/cid/ciaa1901] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cryptococcal meningoencephalitis (CM) is a major cause of mortality in immunosuppressed patients and previously healthy individuals. In the latter, a post-infectious inflammatory response syndrome (PIIRS) is associated with poor clinical response despite antifungal therapy and negative CSF cultures. Data on effective treatment are limited. METHODS Between March 2015 and March 2020, 15 consecutive previously healthy patients with CM and PIIRS were treated with adjunctive pulse corticosteroid taper therapy (PCT) consisting of intravenous methylprednisolone 1 gm daily for 1 week followed by oral prednisone 1 mg/kg/d, tapered based on clinical and radiological response plus oral fluconazole. Montreal Cognitive Assessments (MOCA), Karnofsky Performance scores, MRI brain scanning, ophthalmic and audiologic exams, CSF parameters including cellular and soluble immune responses were compared at PIIRS diagnosis and after methylprednisolone completion. RESULTS The median time from antifungal treatment to steroid initiation was 6 weeks. The most common symptoms at PIIRS diagnosis were altered mental status and vision changes. All patients demonstrated significant improvements in MOCA and Karnofsky scores at 1 month (p<0.0003), which was accompanied by improvements in CSF glucose, WBC, protein, cellular and soluble inflammatory markers 1 week after receiving corticosteroids (CS) (p<0.003). All patients with papilledema and visual field deficits also exhibited improvement (p<0.0005). Five out of 7 patients who underwent audiological testing demonstrated hearing improvement. Brain MRI showed significant improvement of radiological findings (p=0.001). CSF cultures remained negative. CONCLUSIONS PCT in this small cohort of PIIRS was associated with improvements in CM-related complications with minimal toxicity in the acute setting.
Collapse
Affiliation(s)
- Seher Anjum
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Owen Dean
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Peter Kosa
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - M Teresa Magone
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kelly A King
- National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD, USA
| | - Edmond Fitzgibbon
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - H Jeff Kim
- National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD, USA
| | - Chris Zalewski
- National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD, USA
| | - Elizabeth Murphy
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bridgette Jeanne Billioux
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Chisholm
- National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD, USA
| | - Carmen C Brewer
- National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD, USA
| | - Chantal Krieger
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Waleed Elsegeiny
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Terri L Scott
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jing Wang
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - John E Bennett
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kieren A Marr
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Bibiana Bielekova
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Peter Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
48
|
Hannikainen PA, Kosa P, Barbour C, Bielekova B. Extensive Healthy Donor Age/Gender Adjustments and Propensity Score Matching Reveal Physiology of Multiple Sclerosis Through Immunophenotyping. Front Neurol 2020; 11:565957. [PMID: 33329307 PMCID: PMC7732581 DOI: 10.3389/fneur.2020.565957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/04/2020] [Indexed: 01/09/2023] Open
Abstract
Quantifying cell subpopulations in biological fluids aids in diagnosis and understanding of the mechanisms of injury. Although much has been learned from cerebrospinal fluid (CSF) flow cytometry in neuroimmunological disorders, such as multiple sclerosis (MS), previous studies did not contain enough healthy donors (HD) to derive age- and gender-related normative data and sufficient heterogeneity of other inflammatory neurological disease (OIND) controls to identify MS specific changes. The goals of this blinded training and validation study of MS patients and embedded controls, representing 1,240 prospectively acquired paired CSF/blood samples from 588 subjects was (1) to define physiological age-/gender-related changes in CSF cells, (2) to define/validate cellular abnormalities in blood and CSF of untreated MS through disease duration (DD) and determine which are MS-specific, and (3) to compare effect(s) of low-efficacy (i.e., interferon-beta [IFN-beta] and glatiramer acetate [GA]) and high-efficacy drugs (i.e., natalizumab, daclizumab, and ocrelizumab) on MS-related cellular abnormalities using propensity score matching. Physiological gender differences are less pronounced in the CSF compared to blood, and age-related changes suggest decreased immunosurveillance of CNS by activated HLA-DR+T cells associated with natural aging. Results from patient samples support the concept of MS being immunologically single disease evolving in time. Initially, peripherally activated innate and adaptive immune cells migrate into CSF to form MS lesions. With progression, T cells (CD8+ > CD4+), NK cells, and myeloid dendritic cells are depleted from blood as they continue to accumulate, together with B cells, in the CSF and migrate to CNS tissue, forming compartmentalized inflammation. All MS drugs inhibit non-physiological accumulation of immune cells in the CSF. Although low-efficacy drugs tend to normalize it, high-efficacy drugs overshoot some aspects of CSF physiology, suggesting impairment of CNS immunosurveillance. Comparable inhibition of MS-related CSF abnormalities advocates changes within CNS parenchyma responsible for differences in drug efficacy on MS disability progression. Video summarizing all results may become useful educational tool.
Collapse
Affiliation(s)
| | | | | | - Bibiana Bielekova
- Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
49
|
Fresegna D, Bullitta S, Musella A, Rizzo FR, De Vito F, Guadalupi L, Caioli S, Balletta S, Sanna K, Dolcetti E, Vanni V, Bruno A, Buttari F, Stampanoni Bassi M, Mandolesi G, Centonze D, Gentile A. Re-Examining the Role of TNF in MS Pathogenesis and Therapy. Cells 2020; 9:cells9102290. [PMID: 33066433 PMCID: PMC7602209 DOI: 10.3390/cells9102290] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a common neurological disorder of putative autoimmune origin. Clinical and experimental studies delineate abnormal expression of specific cytokines over the course of the disease. One major cytokine that has been shown to play a pivotal role in MS is tumor necrosis factor (TNF). TNF is a pleiotropic cytokine regulating many physiological and pathological functions of both the immune system and the central nervous system (CNS). Convincing evidence from studies in human and experimental MS have demonstrated the involvement of TNF in various pathological hallmarks of MS, including immune dysregulation, demyelination, synaptopathy and neuroinflammation. However, due to the complexity of TNF signaling, which includes two-ligands (soluble and transmembrane TNF) and two receptors, namely TNF receptor type-1 (TNFR1) and type-2 (TNFR2), and due to its cell- and context-differential expression, targeting the TNF system in MS is an ongoing challenge. This review summarizes the evidence on the pathophysiological role of TNF in MS and in different MS animal models, with a special focus on pharmacological treatment aimed at controlling the dysregulated TNF signaling in this neurological disorder.
Collapse
Affiliation(s)
- Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
| | - Silvia Bullitta
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00166 Roma, Italy
| | - Francesca Romana Rizzo
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Francesca De Vito
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
| | - Sara Balletta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Krizia Sanna
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Ettore Dolcetti
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Antonio Bruno
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
| | - Mario Stampanoni Bassi
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00166 Roma, Italy
| | - Diego Centonze
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
- Correspondence: ; Tel.: +39-06-7259-6010; Fax: +39-06-7259-6006
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
| |
Collapse
|
50
|
Mahler MR, Søndergaard HB, Buhelt S, von Essen MR, Romme Christensen J, Enevold C, Sellebjerg F. Multiplex assessment of cerebrospinal fluid biomarkers in multiple sclerosis. Mult Scler Relat Disord 2020; 45:102391. [DOI: 10.1016/j.msard.2020.102391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/25/2022]
|