1
|
Bergonzini L, Carli S, Pelle S, Pettenuzzo I, Bonetti S, Santi E, Visconti C, Maffei M, Sheremet M, Lamantea E, Marsala A, Klub O, Gentile V, Cordelli DM, Garone C. Infantile TK2 Deficiency Causing Mitochondrial Encephalomyopathy With Migrating Focal Seizures. Neurology 2025; 104:e213373. [PMID: 40030095 DOI: 10.1212/wnl.0000000000213373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/11/2024] [Indexed: 03/06/2025] Open
Abstract
OBJECTIVE Recessive variants in the TK2 gene cause thymidine kinase 2 deficiency (TK2d) presenting with infantile, childhood, or adult-onset myopathy. CNS involvement is reported in only 25% of the infantile form. Compassionate use of deoxynucleoside substrate enhancement therapy (dC/dT) has been demonstrated safe and effective in TK2d myopathy, but no data are available on the potential efficacy on the human brain disease. METHODS Here, we report for the first time a patient with infantile TK2d epileptic encephalomyopathy enrolled in an early access program with dC/dT treatment (MT1621). RESULTS At age 3 months, he presented progressive hypotonia, motor regression, failure to thrive, and respiratory failure. At age 8 months, he developed drug-resistant epilepsy with migrating focal seizures. Brain MRI showed progressive atrophy and bilateral subcortical lesions with lactate peak. Exome sequencing revealed 2 novel biallelic heterozygous variants in the TK2 gene (c.182G>A, p.Ser61Asn, c.704 T>C, p.Ile235Thr) whose pathogenicity was confirmed with in vitro studies. Early access compassionate use of dC/dT at 400 mg/kg prolonged the survival and stabilized the muscle disease but was not effective on the brain. DISCUSSION Our report highlights the importance of deep-phenotyping infantile TK2d before dC/dT supplementation to stratify disease severity further and suggests a limited tissue-specific brain efficacy.
Collapse
Affiliation(s)
- Luca Bergonzini
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Sara Carli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Silvia Pelle
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Ilaria Pettenuzzo
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Silvia Bonetti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Erika Santi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Caterina Visconti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Monica Maffei
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Marta Sheremet
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Eleonora Lamantea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Andrea Marsala
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Olena Klub
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Valentina Gentile
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Duccio Maria Cordelli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Caterina Garone
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| |
Collapse
|
2
|
Berrahmoune S, Dassi C, Pekeles H, Cheung ACT, Gagnon T, Waters PJ, Buhas D, Myers KA. Investigating the safety and efficacy of deoxycytidine/deoxythymidine in mitochondrial DNA depletion disorders: phase 2 open-label trial. J Neurol 2025; 272:307. [PMID: 40175578 DOI: 10.1007/s00415-025-13060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
OBJECTIVE Mitochondrial DNA depletion disorders are rare genetic disorders involving mitochondrial dysfunction. These diseases are genetically and clinically heterogeneous but share the common feature of progressively degenerative courses. At present, there are no approved treatments for mitochondrial DNA depletion disorders, though recent reports have suggested that treatment with deoxycytidine/deoxythymidine could be effective for subtypes caused by pathogenic variants in two specific genes, POLG and TK2. We investigated the therapeutic potential of deoxycytidine/deoxythymidine for people with mitochondrial DNA depletion disorders due to pathogenic variants in genes other than POLG and TK2. METHODS We analyzed interim data from an open-label clinical trial of deoxycytidine/deoxythymidine for treatment of mitochondrial DNA depletion disorders, specifically examining disorders due to pathogenic variants in genes other than POLG and TK2. Outcome measures included Newcastle Mitochondrial Disease Scale score and serum growth differentiation factor 15, a mitochondrial function biomarker. RESULTS Data were available from eight individuals having pathogenic variants in FBXL4, SUCLG1, SUCLA2, or RRM2B. Newcastle Mitochondrial Disease Scale score improved in all individuals except for one who withdrew before the first follow-up visit; group level analysis was significant at 1-month and 6-month timepoints. Five patients had elevated growth differentiation factor 15 at baseline; of these, levels improved in four, including three whose values normalized. CONCLUSION These data suggest deoxycytidine/deoxythymidine is a safe and therapeutically promising intervention for a broad range of mitochondrial DNA depletion disorders.
Collapse
Affiliation(s)
- Saoussen Berrahmoune
- Research Institute of the McGill University Health Centre, 2155 Guy Street, Suite 500, Montreal, QC, H3H 2R9, Canada
| | - Christelle Dassi
- Research Institute of the McGill University Health Centre, 2155 Guy Street, Suite 500, Montreal, QC, H3H 2R9, Canada
| | - Heather Pekeles
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, 1001 Décarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Anthony C T Cheung
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, 1001 Décarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Tommy Gagnon
- Medical Genetics Service, Department of Laboratory Medicine, CHUS and Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Paula J Waters
- Medical Genetics Service, Department of Laboratory Medicine, CHUS and Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), 12E Avenue N Porte 6, Sherbrooke, QC, J1H 5N4, Canada
| | - Daniela Buhas
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, 1001 Décarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Kenneth A Myers
- Research Institute of the McGill University Health Centre, 2155 Guy Street, Suite 500, Montreal, QC, H3H 2R9, Canada.
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, 1001 Décarie Boulevard, Montreal, QC, H4A 3J1, Canada.
- Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, 1001 Décarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
3
|
Li D, Shi Y, Sun H, Yan C, Lin Y. Novel biallelic TK2 mutations cause mitochondrial DNA depletion syndrome with infantile early-onset lipid storage myopathy. Orphanet J Rare Dis 2025; 20:130. [PMID: 40098049 PMCID: PMC11912596 DOI: 10.1186/s13023-025-03639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Mutations in the TK2 gene are strongly associated with mitochondrial DNA depletion syndrome (MDS), a severe condition with high mortality and poor outcomes. Although many MDS cases are reported, those linked to TK2 mutations with lipid deposition are rare. Large deletions in the TK2 gene are even rarer. METHODS We conducted whole-exome sequencing to find the gene linked to MDS, followed by genomic and structural analyses, histopathological, and functional analyses to assess the mutations' pathogenicity. Additionally, a HEK293T cell model with TK2 mutations was created to investigate the impact of large deletions on mitochondrial function. RESULTS The patient was found to have a novel compound heterozygous mutation in the TK2 gene, consisting of a large deletion spanning exons 5-10 (E5-E10 del) and a previously reported missense mutation (c.311C > A, p.Arg104His). Analysis of the patient's muscle tissue demonstrated a marked reduction in mtDNA content and a significant impairment in overall mitochondrial function. In the HEK293T cell model, the group with the deletion mutation exhibited a notable reduction in TK2 protein expression and levels of mitochondrial complex subunits when compared to the control group. Furthermore, there was an observed increase in ROS levels, a decrease in ATP production, and compromised mitochondrial respiratory chain function. Moreover, we conducted a comprehensive review of the previously reported genotypic and phenotypic spectrum of TK2 mutations in the literature. CONCLUSIONS This case report underscores the detrimental impact of large fragment deletion mutations in the TK2 gene and elucidates their role in the pathogenesis of MDS. It broadens the spectrum of known TK2 mutations and enhances our understanding of the structural and functional consequences of these mutations.
Collapse
Affiliation(s)
- Duoling Li
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Yixin Shi
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Hanhan Sun
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Chuanzhu Yan
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Yan Lin
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
4
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
5
|
Hidalgo-Gutierrez A, Shintaku J, Ramon J, Barriocanal-Casado E, Pesini A, Saneto RP, Garrabou G, Milisenda JC, Matas-Garcia A, Gort L, Ugarteburu O, Gu Y, Koganti L, Wang T, Tadesse S, Meneri M, Sciacco M, Wang S, Tanji K, Horwitz MS, Dorschner MO, Mansukhani M, Comi GP, Ronchi D, Marti R, Ribes A, Tort F, Hirano M. Guanylate Kinase 1 Deficiency: A Novel and Potentially Treatable Mitochondrial DNA Depletion/Deletions Disease. Ann Neurol 2024; 96:1209-1224. [PMID: 39230499 PMCID: PMC11563867 DOI: 10.1002/ana.27071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE Mitochondrial DNA (mtDNA) depletion/deletions syndrome (MDDS) comprises a group of diseases caused by primary autosomal defects of mtDNA maintenance. Our objective was to study the etiology of MDDS in 4 patients who lack pathogenic variants in known genetic causes. METHODS Whole exome sequencing of the probands was performed to identify pathogenic variants. We validated the mitochondrial defect by analyzing mtDNA, mitochondrial dNTP pools, respiratory chain activities, and GUK1 activity. To confirm pathogenicity of GUK1 deficiency, we expressed 2 GUK1 isoforms in patient cells. RESULTS We identified biallelic GUK1 pathogenic variants in all 4 probands who presented with ptosis, ophthalmoparesis, and myopathic proximal limb weakness, as well as variable hepatopathy and altered T-lymphocyte profiles. Muscle biopsies from all probands showed mtDNA depletion, deletions, or both, as well as reduced activities of mitochondrial respiratory chain enzymes. GUK1 encodes guanylate kinase, originally identified as a cytosolic enzyme. Long and short isoforms of GUK1 exist. We observed that the long isoform is intramitochondrial and the short is cytosolic. In probands' fibroblasts, we noted decreased GUK1 activity causing unbalanced mitochondrial dNTP pools and mtDNA depletion in both replicating and quiescent fibroblasts indicating that GUK1 deficiency impairs de novo and salvage nucleotide pathways. Proband fibroblasts treated with deoxyguanosine and/or forodesine, a purine phosphatase inhibitor, ameliorated mtDNA depletion, indicating potential pharmacological therapies. INTERPRETATION Primary GUK1 deficiency is a new and potentially treatable cause of MDDS. The cytosolic isoform of GUK1 may contribute to the T-lymphocyte abnormality, which has not been observed in other MDDS disorders. ANN NEUROL 2024;96:1209-1224.
Collapse
Affiliation(s)
| | - Jonathan Shintaku
- Department of Neurology, Columbia University Irving Medical Center; New York, NY, USA
| | - Javier Ramon
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Vall d’Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Alba Pesini
- Department of Neurology, Columbia University Irving Medical Center; New York, NY, USA
| | | | - Gloria Garrabou
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Inherited Metabolic Diseases and Muscle Disorder’s Lab, Cellex – IDIBAPS. Faculty of Medicine and Health Science – University of Barcelona (UB); Barcelona, Spain
| | - Jose Cesar Milisenda
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Inherited Metabolic Diseases and Muscle Disorder’s Lab, Cellex – IDIBAPS. Faculty of Medicine and Health Science – University of Barcelona (UB); Barcelona, Spain
- Department of Internal Medicine, Hospital Clínic of Barcelona; Barcelona, Spain
| | - Ana Matas-Garcia
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Inherited Metabolic Diseases and Muscle Disorder’s Lab, Cellex – IDIBAPS. Faculty of Medicine and Health Science – University of Barcelona (UB); Barcelona, Spain
- Department of Internal Medicine, Hospital Clínic of Barcelona; Barcelona, Spain
| | - Laura Gort
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Section of Inborn Errors of Metabolism-IBC. Department of Biochemistry and Molecular Genetics. Hospital Clinic de Barcelona-IDIBAPS; Barcelona, Spain
| | - Olatz Ugarteburu
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Section of Inborn Errors of Metabolism-IBC. Department of Biochemistry and Molecular Genetics. Hospital Clinic de Barcelona-IDIBAPS; Barcelona, Spain
| | - Yue Gu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center; New York, NY, USA
| | - Lahari Koganti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center; New York, NY, USA
| | - Tian Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University; New York, NY, USA
| | - Saba Tadesse
- Department of Neurology, Columbia University Irving Medical Center; New York, NY, USA
| | - Megi Meneri
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan; Milan, Italy
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit; Milan, Italy
| | - Monica Sciacco
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit; Milan, Italy
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University; New York, NY, USA
| | - Kurenai Tanji
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center; New York, NY, USA
| | - Marshall S. Horwitz
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, USA
| | - Michael O. Dorschner
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, USA
| | - Mahesh Mansukhani
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center; New York, NY, USA
| | - Giacomo Pietro Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan; Milan, Italy
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit; Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan; Milan, Italy
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit; Milan, Italy
| | - Ramon Marti
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Vall d’Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Antonia Ribes
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Section of Inborn Errors of Metabolism-IBC. Department of Biochemistry and Molecular Genetics. Hospital Clinic de Barcelona-IDIBAPS; Barcelona, Spain
| | - Frederic Tort
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Section of Inborn Errors of Metabolism-IBC. Department of Biochemistry and Molecular Genetics. Hospital Clinic de Barcelona-IDIBAPS; Barcelona, Spain
| | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center; New York, NY, USA
| |
Collapse
|
6
|
Pekeles H, Berrahmoune S, Dassi C, Cheung AC, Gagnon T, Waters PJ, Eberhard R, Buhas D, Myers KA. Safety and efficacy of deoxycytidine/deoxythymidine combination therapy in POLG-related disorders: 6-month interim results of an open-label, single arm, phase 2 trial. EClinicalMedicine 2024; 74:102740. [PMID: 39091670 PMCID: PMC11293517 DOI: 10.1016/j.eclinm.2024.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Background DNA polymerase gamma (POLG)-related disorders are a group of rare neurodegenerative mitochondrial diseases caused by pathogenic variants in POLG, the gene encoding POLG. Patients may experience a range of signs and symptoms, including seizures, vision loss, myopathy, neuropathy, developmental impairment or regression, and liver failure. The diseases follow a progressive, degenerative course, with most affected individuals dying within 3 months-12 years of diagnosis. At present, there are no effective treatments for POLG-related disorders. Methods In this study we report the interim 6-month data from a long term open-label, single arm phase 2 trial, in which we assessed the safety and efficacy of combination therapy with deoxycytidine and deoxythymidine (dC/dT) in children with POLG-related disorders. dC/dT was given enterally in powder form, dissolved in water. The primary outcome measures included Newcastle Mitochondrial Disease Scale (NMDS) score, serum growth differentiation factor 15 (GDF-15; a biomarker of mitochondrial dysfunction), electroencephalography (EEG), seizure diary, and blood and urine tests to assess end organ and mitochondrial function. Secondary outcome measures included recording of all adverse events to evaluate the safety of the intervention. The trial is registered with ClinicalTrials.gov, NCT04802707 (https://clinicaltrials.gov/ct2/show/NCT04802707). Data were collected from 14 October, 2021 to 13 December, 2023. Findings We present 6-month interim data from the first ten people with POLG-related disorders enrolled in the trial, six with Alpers-Huttenlocher syndrome, two with ataxia-neuropathy spectrum, and two who do not fit into a classical POLG-related phenotype. During the 6 months of treatment, NMDS score improved from a mean of 27.3 at baseline to 20.7 at 6 months (estimated difference 6.0; 95% CI 2.5-∞). GDF-15 values remained stable or decreased in all patients; the mean decreased from 1031 pg/ml to 729 pg/ml (estimated difference 200; 95% CI 12-∞). 8/10 patients had abnormal baseline EEG; improvement in EEG was seen in 5 of these 8. There were no significant changes in other blood and urine testing. Regarding adverse events, two patients experienced diarrhea that spontaneously resolved. Interpretation dC/dT is a promising treatment option for people with POLG-related disorders. Further research is needed to assess the long-term safety and efficacy in POLG-related disorders, as well as safety and efficacy in other mitochondrial DNA depletion disorders. Funding This study was primarily funded by the Liam Foundation, with additional funding from the Savoy Foundation, Grand Défi Pierre Lavoie Foundation, and Fonds de Recherche du Québec - Santé.
Collapse
Affiliation(s)
- Heather Pekeles
- Division of Neurology, Department of Pediatrics, Montreal Children’s Hospital, McGill University Health Centre, 1001 Décarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Saoussen Berrahmoune
- Research Institute of the McGill University Health Centre, 2155 Guy Street, Suite 500, Montreal, Quebec, H3H 2R9, Canada
| | - Christelle Dassi
- Research Institute of the McGill University Health Centre, 2155 Guy Street, Suite 500, Montreal, Quebec, H3H 2R9, Canada
| | - Anthony C.T. Cheung
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, 1001 Décarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Tommy Gagnon
- Medical Genetics Service, Department of Laboratory Medicine, CHUS and Department of Pediatrics, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Paula J. Waters
- Medical Genetics Service, Department of Laboratory Medicine, CHUS and Department of Pediatrics, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), 12e Avenue N Porte 6, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Ralf Eberhard
- Division of Neurology, Department of Pediatrics, Montreal Children’s Hospital, McGill University Health Centre, 1001 Décarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Daniela Buhas
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, 1001 Décarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Kenneth A. Myers
- Division of Neurology, Department of Pediatrics, Montreal Children’s Hospital, McGill University Health Centre, 1001 Décarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, 2155 Guy Street, Suite 500, Montreal, Quebec, H3H 2R9, Canada
- Department of Neurology and Neurosurgery, Montreal Children’s Hospital, McGill University Health Centre, 1001 Décarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| |
Collapse
|
7
|
Mittur A, VanMeter SA, Orujov E, Glidden P. Pharmacokinetics and Safety of a 1:1 Mixture of Doxecitine and Doxribtimine: Open-label Phase 1 Single Ascending Dose and Food Effect Studies in Healthy Adults. Clin Ther 2024; 46:576-587. [PMID: 39025716 DOI: 10.1016/j.clinthera.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/08/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Doxecitine (deoxycytidine [dC]) and doxribtimine (deoxythymidine [dT]) powder for oral solution is a 1:1 mixture consisting of equal weights 2'-deoxycytidine (dC) and 2'-deoxythymidine (dT). Doxecitine and doxribtimine (referred to as study drug) is being developed as treatment for people with thymidine kinase 2 deficiency (TK2d). TK2d is an ultra-rare mitochondrial DNA depletion and multiple deletion syndrome characterized by progressive muscle weakness and premature death. Here, we report the pharmacokinetics (PK), the effect of food, and the tolerability of 2 study drug formulations, evaluated in 2 studies (Study MT-1621-103 and Study MT-1621-105). METHODS A sequential, ascending 1:1 dose ratio was used for both studies (n = 14 healthy volunteer adult participants/study). After a 28-day (Study MT-1621-103) or 35-day (Study MT-1621-105) screening period, participants fasted overnight and sequentially received 86.6, 173.4, and 266.6 mg/kg study drug with a 48-hour PK assessment period and 48-hour washout period between doses. After 48 additional hours, participants were fed a high-fat meal and received 266.6 mg/kg study drug. Plasma and urine were collected before dosing and throughout the 48-hour PK period. dC and dT concentrations were analyzed by validated liquid chromatography mass spectrometry methods. Safety was evaluated throughout the study and at 2-week follow-up. FINDINGS Plasma levels of dC and dT increased rapidly and dose-dependently above endogenous levels for both formulations, with a median Tmax of 1 to 2 hours under fasting conditions. Post-dose plasma dC and dT concentrations declined to nearly pre-dose (baseline) concentrations after 8 to 12 hours, suggesting rapid elimination. Peak and extent of plasma exposure (baseline-corrected Cmax and AUC0-t) tended to increase less than dose-proportionally for plasma dC and greater than dose-proportionally for plasma dT. PK variability of dC and dT was moderate-to-high (>30%). Administration with food delayed Tmax to a median of 2 to 4 hours and increased plasma exposure: baseline-corrected plasma dC Cmax and AUC0-t increased by ∼79% to 96% and 137% to 250%, respectively, and dT Cmax and AUC0-t increased by 27% to 29% and 74% to 89%, respectively, indicating a significant food effect. Renal clearance played a minor role in the elimination of systemically available intact dC and dT (Fe<0.3%). The study drug was generally well tolerated; most frequent study-drug-related adverse events (AEs) were diarrhea (n = 4/29, 14%) and dizziness (n = 3/29, 10%). Most AEs were mild-to-moderate in severity. IMPLICATIONS Doxecitine and doxribtimine are orally bioavailable in the intended clinical dose range. The PK profile supports a formulation consisting of equal doses of doxecitine and doxribtimine, a 3-times-daily dosing regimen, and administration with food.
Collapse
Affiliation(s)
| | | | - Elmar Orujov
- Aurinia Pharmaceuticals Inc., Rockville, Maryland
| | - Paul Glidden
- Corino Therapeutics Inc., New York, New York; Pierrepont Therapeutics Inc., New York, New York
| |
Collapse
|
8
|
Wang L. Zebrafish as a model for study of disorders in pyrimidine nucleotide metabolism. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:722-733. [PMID: 38153103 DOI: 10.1080/15257770.2023.2298742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Pyrimidine nucleotides are not only the building blocks of DNA and RNA but also participate in multiple cellular metabolic processes, including protein, lipid and polysaccharide biosynthesis. Pyrimidine nucleotides are synthesized by two distinct pathways-the de novo and salvage pathways. Disorders in pyrimidine nucleotide metabolism cause severe neurodegenerative disorders in human. For example, deficiency in thymidylate kinase, an essential enzyme in dTTP synthesis, causes severe microcephaly in human patients. Zebrafish mutants selected by insertion mutagenesis that results in inactive enzymes in pyrimidine metabolism showed also neurological and developmental disorders. In this work I have summarized current data on neurological and developmental disorders caused by defects in enzymes in pyrimidine nucleotide metabolism in zebrafish and compared to human. All these data suggest that zebrafish is a useful animal model to study pathogenic mechanism of neurological disorders due to defect in pyrimidine nucleotide metabolism.
Collapse
Affiliation(s)
- Liya Wang
- Department of Anatomy, Physiology and Biochemistry, The Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
9
|
Hong S, Kim S, Kim K, Lee H. Clinical Approaches for Mitochondrial Diseases. Cells 2023; 12:2494. [PMID: 37887337 PMCID: PMC10605124 DOI: 10.3390/cells12202494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Mitochondria are subcontractors dedicated to energy production within cells. In human mitochondria, almost all mitochondrial proteins originate from the nucleus, except for 13 subunit proteins that make up the crucial system required to perform 'oxidative phosphorylation (OX PHOS)', which are expressed by the mitochondria's self-contained DNA. Mitochondrial DNA (mtDNA) also encodes 2 rRNA and 22 tRNA species. Mitochondrial DNA replicates almost autonomously, independent of the nucleus, and its heredity follows a non-Mendelian pattern, exclusively passing from mother to children. Numerous studies have identified mtDNA mutation-related genetic diseases. The consequences of various types of mtDNA mutations, including insertions, deletions, and single base-pair mutations, are studied to reveal their relationship to mitochondrial diseases. Most mitochondrial diseases exhibit fatal symptoms, leading to ongoing therapeutic research with diverse approaches such as stimulating the defective OXPHOS system, mitochondrial replacement, and allotropic expression of defective enzymes. This review provides detailed information on two topics: (1) mitochondrial diseases caused by mtDNA mutations, and (2) the mechanisms of current treatments for mitochondrial diseases and clinical trials.
Collapse
Affiliation(s)
- Seongho Hong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| | - Sanghun Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea;
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyunji Lee
- Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| |
Collapse
|
10
|
Wang P, Cheng T, Pan J. Nucleoside Analogs: A Review of Its Source and Separation Processes. Molecules 2023; 28:7043. [PMID: 37894522 PMCID: PMC10608831 DOI: 10.3390/molecules28207043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Nucleoside analogs play a crucial role in the production of high-value antitumor and antimicrobial drugs. Currently, nucleoside analogs are mainly obtained through nucleic acid degradation, chemical synthesis, and biotransformation. However, these methods face several challenges, such as low concentration of the main product, the presence of complex matrices, and the generation of numerous by-products that significantly limit the development of new drugs and their pharmacological studies. Therefore, this work aims to summarize the universal separation methods of nucleoside analogs, including crystallization, high-performance liquid chromatography (HPLC), column chromatography, solvent extraction, and adsorption. The review also explores the application of molecular imprinting techniques (MITs) in enhancing the identification of the separation process. It compares existing studies reported on adsorbents of molecularly imprinted polymers (MIPs) for the separation of nucleoside analogs. The development of new methods for selective separation and purification of nucleosides is vital to improving the efficiency and quality of nucleoside production. It enables us to obtain nucleoside products that are essential for the development of antitumor and antiviral drugs. Additionally, these methods possess immense potential in the prevention and control of serious diseases, offering significant economic, social, and scientific benefits to the fields of environment, biomedical research, and clinical therapeutics.
Collapse
Affiliation(s)
| | | | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (P.W.); (T.C.)
| |
Collapse
|
11
|
Zhao Q, Zhou X, Yan J, Kuiper R, Curbo S, Karlsson A. Long term survival and abnormal liver fat accumulation in mice with specific thymidine kinase 2 deficiency in liver tissue. PLoS One 2023; 18:e0285242. [PMID: 37796969 PMCID: PMC10553353 DOI: 10.1371/journal.pone.0285242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/11/2023] [Indexed: 10/07/2023] Open
Abstract
Deficiency in thymidine kinase 2 (TK2) causes mitochondrial DNA depletion. Liver mitochondria are severely affected in Tk2 complete knockout models and have been suggested to play a role in the pathogenesis of the Tk2 knockout phenotype, characterized by loss of hypodermal fat tissue, growth retardation and reduced life span. Here we report a liver specific Tk2 knockout (KO) model to further study mechanisms contributing to the phenotypic changes associated with Tk2 deficiency. Interestingly, the liver specific Tk2 KO mice had a normal life span despite a much lower mtDNA level in liver tissue. Mitochondrial DNA encoded peptide COXI did not differ between the Tk2 KO and control mice. However, the relative liver weight was significantly increased in the male Tk2 KO mouse model. Histology analysis indicated an increased lipid accumulation. We conclude that other enzyme activities can partly compensate Tk2 deficiency to maintain mtDNA at a low but stable level throughout the life span of the liver specific Tk2 KO mice. The lower level of mtDNA was sufficient for survival but led to an abnormal lipid accumulation in liver tissue.
Collapse
Affiliation(s)
- Qian Zhao
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Xiaoshan Zhou
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Jingyi Yan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Raoul Kuiper
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- Norwegian Veterinary Institute, Ås, Norway
| | - Sophie Curbo
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Tokatly Latzer I, Pearl PL. Treatment of neurometabolic epilepsies: Overview and recent advances. Epilepsy Behav 2023; 142:109181. [PMID: 37001467 DOI: 10.1016/j.yebeh.2023.109181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 05/08/2023]
Abstract
The rarity and heterogeneity of neurometabolic diseases make it challenging to reach evidence-based principles for their specific treatments. Indeed, current treatments for many of these diseases remain symptomatic and supportive. However, an ongoing scientific and medical revolution has led to dramatic breakthroughs in molecular sciences and genetics, revealing precise pathophysiologic mechanisms. Accordingly, this has led to significant progress in the development of novel therapeutic approaches aimed at treating epilepsy resulting from these conditions, as well as their other manifestations. We overview recent notable treatment advancements, from vitamins, trace minerals, and diets to unique medications targeting the elemental pathophysiology at a molecular or cellular level, including enzyme replacement therapy, enzyme enhancing therapy, antisense oligonucleotide therapy, stem cell transplantation, and gene therapy.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Karaa A, Klopstock T. Clinical trials in mitochondrial diseases. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:229-250. [PMID: 36813315 DOI: 10.1016/b978-0-12-821751-1.00002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Primary mitochondrial diseases are some of the most common and complex inherited inborn errors of metabolism. Their molecular and phenotypic diversity has led to difficulties in finding disease-modifying therapies and clinical trial efforts have been slow due to multiple significant challenges. Lack of robust natural history data, difficulties in finding specific biomarkers, absence of well-validated outcome measures, and small patient numbers have made clinical trial design and conduct difficult. Encouragingly, new interest in treating mitochondrial dysfunction in common diseases and regulatory incentives to develop therapies for rare conditions have led to significant interest and efforts to develop drugs for primary mitochondrial diseases. Here, we review past and present clinical trials and future strategies of drug development in primary mitochondrial diseases.
Collapse
Affiliation(s)
- Amel Karaa
- Mitochondrial Disease Program, Division of Medical Genetics and Metabolism, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Network for mitochondrial disorders (mitoNET), Munich, Germany
| |
Collapse
|
14
|
Viscomi C, Zeviani M. Experimental therapy for mitochondrial diseases. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:259-277. [PMID: 36813318 DOI: 10.1016/b978-0-12-821751-1.00013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial diseases are extremely heterogeneous genetic disorders due to faulty oxidative phosphorylation (OxPhos). No cure is currently available for these conditions, beside supportive interventions aimed at relieving complications. Mitochondria are under a double genetic control carried out by the mitochondrial DNA (mtDNA) and by nuclear DNA. Thus, not surprisingly, mutations in either genome can cause mitochondrial disease. Although mitochondria are usually associated with respiration and ATP synthesis, they play fundamental roles in a large number of other biochemical, signaling, and execution pathways, each being a potential target for therapeutic interventions. These can be classified as general therapies, i.e., potentially applicable to a number of different mitochondrial conditions, or therapies tailored to a single disease, i.e., personalized approaches, such as gene therapy, cell therapy, and organ replacement. Mitochondrial medicine is a particularly lively research field, and the last few years witnessed a steady increase in the number of clinical applications. This chapter will present the most recent therapeutic attempts emerged from preclinical work and an update of the currently ongoing clinical applications. We think that we are starting a new era in which the etiologic treatment of these conditions is becoming a realistic option.
Collapse
Affiliation(s)
- Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Massimo Zeviani
- Department of Neurosciences, University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
15
|
Kumar S, Choudhary N, Faruq M, Kumar A, Saran RK, Indercanti PK, Singh V, Sait H, Jaitley S, Valis M, Kuca K, Polipalli SK, Kumar M, Singh T, Suravajhala P, Sharma R, Kapoor S. Anastrozole-mediated modulation of mitochondrial activity by inhibition of mitochondrial permeability transition pore opening: an initial perspective. J Biomol Struct Dyn 2023; 41:14063-14079. [PMID: 36815262 DOI: 10.1080/07391102.2023.2176927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023]
Abstract
The mitochondrial permeability transition pore (mtPTP) plays a vital role in altering the structure and function of mitochondria. Cyclophilin D (CypD) is a mitochondrial protein that regulates mtPTP function and a known drug target for therapeutic studies involving mitochondria. While the effect of aromatase inhibition on the mtPTP has been studied previously, the effect of anastrozole on the mtPTP has not been completely elucidated. The role of anastrozole in modulating the mtPTP was evaluated by docking, molecular dynamics and network-guided studies using human CypD data. The peripheral blood mononuclear cells (PBMCs) of patients with mitochondrial disorders and healthy controls were treated with anastrozole and evaluated for mitochondrial permeability transition pore (mtPTP) function and apoptosis using a flow cytometer. Spectrophotometry was employed for estimating total ATP levels. The anastrozole-CypD complex is more stable than cyclosporin A (CsA)-CypD. Anastrozole performed better than cyclosporine in inhibiting mtPTP. Additional effects included inducing mitochondrial membrane depolarization and a reduction in mitochondrial swelling and superoxide generation, intrinsic caspase-3 activity and cellular apoptosis, along with an increase in ATP levels. Anastrozole may serve as a potential therapeutic agent for mitochondrial disorders and ameliorate the clinical phenotype by regulating the activity of mtPTP. However, further studies are required to substantiate our preliminary findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Somesh Kumar
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated LN Hospital, Delhi, India
| | - Neha Choudhary
- Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dharamsala, India
| | - Mohammed Faruq
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Arun Kumar
- Department of Emergency Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi, India
| | - Ravindra K Saran
- Department of Pathology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, Delhi, India
| | | | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dharamsala, India
| | - Haseena Sait
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated LN Hospital, Delhi, India
| | - Sunita Jaitley
- Department of Biomedical Sciences, Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Martin Valis
- Department of Neurology of the Medical Faculty of Charles University and University Hospital in Hradec Králové, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Sunil K Polipalli
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated LN Hospital, Delhi, India
| | - Manoj Kumar
- Department of Emergency Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
- Department of Microbiology, World College of Medical Science and Research, Jhajjar, Haryana, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | | | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Seema Kapoor
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated LN Hospital, Delhi, India
| |
Collapse
|
16
|
Mitochondrial Unfolded Protein Response and Integrated Stress Response as Promising Therapeutic Targets for Mitochondrial Diseases. Cells 2022; 12:cells12010020. [PMID: 36611815 PMCID: PMC9818186 DOI: 10.3390/cells12010020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The development and application of high-throughput omics technologies have enabled a more in-depth understanding of mitochondrial biosynthesis metabolism and the pathogenesis of mitochondrial diseases. In accordance with this, a host of new treatments for mitochondrial disease are emerging. As an essential pathway in maintaining mitochondrial proteostasis, the mitochondrial unfolded protein response (UPRmt) is not only of considerable significance for mitochondrial substance metabolism but also plays a fundamental role in the development of mitochondrial diseases. Furthermore, in mammals, the integrated stress response (ISR) and UPRmt are strongly coupled, functioning together to maintain mitochondrial function. Therefore, ISR and UPRmt show great application prospects in the treatment of mitochondrial diseases. In this review, we provide an overview of the molecular mechanisms of ISR and UPRmt and focus on them as potential targets for mitochondrial disease therapy.
Collapse
|
17
|
Almannai M, El-Hattab AW, Azamian MS, Ali M, Scaglia F. Mitochondrial DNA maintenance defects: potential therapeutic strategies. Mol Genet Metab 2022; 137:40-48. [PMID: 35914366 PMCID: PMC10401187 DOI: 10.1016/j.ymgme.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Mitochondrial DNA (mtDNA) replication depends on the mitochondrial import of hundreds of nuclear encoded proteins that control the mitochondrial genome maintenance and integrity. Defects in these processes result in an expanding group of disorders called mtDNA maintenance defects that are characterized by mtDNA depletion and/or multiple mtDNA deletions with variable phenotypic manifestations. As it applies for mitochondrial disorders in general, current treatment options for mtDNA maintenance defects are limited. Lately, with the development of model organisms, improved understanding of the pathophysiology of these disorders, and a better knowledge of their natural history, the number of preclinical studies and existing and planned clinical trials has been increasing. In this review, we discuss recent preclinical studies and current and future clinical trials concerning potential therapeutic options for the different mtDNA maintenance defects.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mahshid S Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - May Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong.
| |
Collapse
|
18
|
Metrics of progression and prognosis in untreated adults with thymidine kinase 2 deficiency: An observational study. Neuromuscul Disord 2022; 32:728-735. [PMID: 35907766 DOI: 10.1016/j.nmd.2022.07.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022]
Abstract
This historical cohort study evaluated clinical characteristics of progression and prognosis in adults with thymidine kinase 2 deficiency (TK2d). Records were available for 17 untreated adults with TK2d (mean age of onset, 32 years), including longitudinal data from 6 patients (mean follow-up duration, 26.5 months). Pearson's correlation assessed associations between standard motor and respiratory assessments, clinical characteristics, and laboratory values. Longitudinal data were assessed by linear regression mixed models. Respiratory involvement progressed at an annual rate of 8.16% decrement in forced vital capacity (FVC). Most patients under noninvasive ventilation (NIV) remained ambulant (12/14, 86%), reduced FVC was not associated with concomitant decline in 6-minute walk test (6MWT), and 6MWT results were not correlated with FVC. Disease severity, assessed by age at NIV onset, correlated most strongly at diagnosis with: creatinine levels (r = 0.8036; P = 0.0009), followed by FVC (r = 0.7265; P = 0.0033), mtDNA levels in muscle (r = 0.7933; P = 0.0188), and age at disease onset (r = 0.7128; P = 0.0042). This population of adults with TK2d demonstrates rapid deterioration of respiratory muscles, which progresses independently of motor impairment. The results support FVC at diagnosis, mtDNA levels in muscle, and age at disease onset as prognostic indicators. Creatinine levels may also be potentially prognostic, as previously reported in other neuromuscular disorders.
Collapse
|
19
|
López-Gómez C, Cámara Y, Hirano M, Martí R. 232nd ENMC international workshop: Recommendations for treatment of mitochondrial DNA maintenance disorders. 16 - 18 June 2017, Heemskerk, The Netherlands. Neuromuscul Disord 2022; 32:609-620. [PMID: 35641351 DOI: 10.1016/j.nmd.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
Affiliation(s)
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Michio Hirano
- Columbia University Irving Medical Center, New York, USA
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
20
|
Hanaford AR, Cho YJ, Nakai H. AAV-vector based gene therapy for mitochondrial disease: progress and future perspectives. Orphanet J Rare Dis 2022; 17:217. [PMID: 35668433 PMCID: PMC9169410 DOI: 10.1186/s13023-022-02324-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/09/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial diseases are a group of rare, heterogeneous diseases caused by gene mutations in both nuclear and mitochondrial genomes that result in defects in mitochondrial function. They are responsible for significant morbidity and mortality as they affect multiple organ systems and particularly those with high energy-utilizing tissues, such as the nervous system, skeletal muscle, and cardiac muscle. Virtually no effective treatments exist for these patients, despite the urgent need. As the majority of these conditions are monogenic and caused by mutations in nuclear genes, gene replacement is a highly attractive therapeutic strategy. Adeno-associated virus (AAV) is a well-characterized gene replacement vector, and its safety profile and ability to transduce quiescent cells nominates it as a potential gene therapy vehicle for several mitochondrial diseases. Indeed, AAV vector-based gene replacement is currently being explored in clinical trials for one mitochondrial disease (Leber hereditary optic neuropathy) and preclinical studies have been published investigating this strategy in other mitochondrial diseases. This review summarizes the preclinical findings of AAV vector-based gene replacement therapy for mitochondrial diseases including Leigh syndrome, Barth syndrome, ethylmalonic encephalopathy, and others.
Collapse
Affiliation(s)
- Allison R Hanaford
- Center for Integrative Brain Research, Seattle Children's Reserach Institute, Seattle, WA, 98101, USA.
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Yoon-Jae Cho
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Pediatric Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Hiroyuki Nakai
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Molecular Immunology and Microbiology, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| |
Collapse
|
21
|
Hsu YS, Wu PJ, Jeng YM, Hu CM, Lee WH. Differential effects of glucose and N-acetylglucosamine on genome instability. Am J Cancer Res 2022; 12:1556-1576. [PMID: 35530290 PMCID: PMC9077085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023] Open
Abstract
Aberrant sugar metabolism is linked to an increased risk of pancreatic cancer. Previously, we found that high glucose induces genome instability and de novo oncogenic KRAS mutation preferentially in pancreatic cells through dysregulation of O-GlcNAcylation. Increasing O-GlcNAcylation by extrinsically supplying N-acetyl-D-glucosamine (GlcNAc) causes genome instability in all kinds of cell types regardless of pancreatic origin. Since many people consume excessive amount of sugar (glucose, fructose, and sucrose) in daily life, whether high sugar consumption directly causes genome instability in animals remains to be elucidated. In this communication, we show that excess sugar in the daily drink increases DNA damage and protein O-GlcNAcylation preferentially in pancreatic tissue but not in other kinds of tissue of mice. The effect of high sugar on the pancreatic tissue may be attributed to the intrinsic ratio of GFAT and PFK activity, a limiting factor that dictates UDP-GlcNAc levels. On the other hand, GlcNAc universally induces DNA damage in all six organs examined. Either inhibiting O-GlcNAcylation or supplementing dNTP pool diminishes the induced DNA damage in these organs, indicating that the mechanism of action is similar to that of high glucose treatment in pancreatic cells. Taken together, these results suggest the potential hazards of high sugar drinks and high glucosamine intake to genomic instability and possibly cancer initiation.
Collapse
Affiliation(s)
- Yuan-Sheng Hsu
- Graduate Institute of Biomedical Science, China Medical UniversityTaichung 40402, Taiwan
- Genomics Research Center, Academia SinicaTaipei 11529, Taiwan
| | - Pei-Jung Wu
- Genomics Research Center, Academia SinicaTaipei 11529, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Graduate Institute of Pathology, College of Medicine, National Taiwan UniversityTaipei 10041, Taiwan
| | - Chun-Mei Hu
- Graduate Institute of Biomedical Science, China Medical UniversityTaichung 40402, Taiwan
- Genomics Research Center, Academia SinicaTaipei 11529, Taiwan
| | - Wen-Hwa Lee
- Genomics Research Center, Academia SinicaTaipei 11529, Taiwan
- Drug Development Center, China Medical UniversityTaichung 40402, Taiwan
- Department of Biological Chemistry, University of CaliforniaIrvine, California 92697, USA
| |
Collapse
|
22
|
Fang H, Xie A, Du M, Li X, Yang K, Fu Y, Yuan X, Fan R, Yu W, Zhou Z, Sang T, Nie K, Li J, Zhao Q, Chen Z, Yang Y, Hong C, Lyu J. SERAC1 is a component of the mitochondrial serine transporter complex required for the maintenance of mitochondrial DNA. Sci Transl Med 2022; 14:eabl6992. [PMID: 35235340 DOI: 10.1126/scitranslmed.abl6992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SERAC1 deficiency is associated with the mitochondrial 3-methylglutaconic aciduria with deafness, (hepatopathy), encephalopathy, and Leigh-like disease [MEGD(H)EL] syndrome, but the role of SERAC1 in mitochondrial physiology remains unknown. Here, we generated Serac1-/- mice that mimic the major diagnostic clinical and biochemical phenotypes of the MEGD(H)EL syndrome. We found that SERAC1 localizes to the outer mitochondrial membrane and is a protein component of the one-carbon cycle. By interacting with the mitochondrial serine transporter protein SFXN1, SERAC1 facilitated and was required for SFXN1-mediated serine transport from the cytosol to the mitochondria. Loss of SERAC1 impaired the one-carbon cycle and disrupted the balance of the nucleotide pool, which led to primary mitochondrial DNA (mtDNA) depletion in mice, HEK293T cells, and patient-derived immortalized lymphocyte cells due to insufficient supply of nucleotides. Moreover, both in vitro and in vivo supplementation of nucleosides/nucleotides restored mtDNA content and mitochondrial function. Collectively, our findings suggest that MEGD(H)EL syndrome shares both clinical and molecular features with the mtDNA depletion syndrome, and nucleotide supplementation may be an effective therapeutic strategy for MEGD(H)EL syndrome.
Collapse
Affiliation(s)
- Hezhi Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Anran Xie
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Miaomiao Du
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310000, China.,Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Xueyun Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China.,Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 318000, China
| | - Kaiqiang Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yinxu Fu
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiangshu Yuan
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Runxiao Fan
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weidong Yu
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhuohua Zhou
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tiantian Sang
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ke Nie
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jin Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiongya Zhao
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Zhehui Chen
- Department of Pediatrics, Peking University First Hospital, Beijing 100000, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing 100000, China
| | - Chaoyang Hong
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Jianxin Lyu
- Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310000, China.,Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
23
|
Hernández-Ainsa C, Nascimento A, Jou C, Artuch R, Montoya J, Ruiz-Pesini E, Emperador S. Generation of an induced pluripotent stem cell line from a compound heterozygous patient in TK2 gene. Stem Cell Res 2022; 59:102632. [PMID: 34973561 DOI: 10.1016/j.scr.2021.102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/19/2021] [Indexed: 11/25/2022] Open
Abstract
Autosomal recessive mutations in Thymidine kinase 2 (TK2) gene cause depletion and multiple deletions in mtDNA which normally lead to fatal and progressive neuromyopathy in infants and children. We have generated an induced pluripotent stem cell (iPSC) line by reprogramming fibroblasts derived from a patient carrying TK2 mutations. New iPSC line pluripotency was evaluated by verifying the expression of pluripotency-related genes and the in vitro differentiation into the three germ layers. This human-derived model will be useful for studying the pathogenic mechanisms triggered by these mutations and for testing therapies in cell types normally affected in patients.
Collapse
Affiliation(s)
- Carmen Hernández-Ainsa
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), 50009 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | | | - Cristina Jou
- Hospital Sant Joan de Dèu, 08950 Barcelona, Spain
| | - Rafael Artuch
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; Hospital Sant Joan de Dèu, 08950 Barcelona, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), 50009 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), 50009 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| | - Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), 50009 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
24
|
Molecular Genetics Overview of Primary Mitochondrial Myopathies. J Clin Med 2022; 11:jcm11030632. [PMID: 35160083 PMCID: PMC8836969 DOI: 10.3390/jcm11030632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial disorders are the most common inherited conditions, characterized by defects in oxidative phosphorylation and caused by mutations in nuclear or mitochondrial genes. Due to its high energy request, skeletal muscle is typically involved. According to the International Workshop of Experts in Mitochondrial Diseases held in Rome in 2016, the term Primary Mitochondrial Myopathy (PMM) should refer to those mitochondrial disorders affecting principally, but not exclusively, the skeletal muscle. The clinical presentation may include general isolated myopathy with muscle weakness, exercise intolerance, chronic ophthalmoplegia/ophthalmoparesis (cPEO) and eyelids ptosis, or multisystem conditions where there is a coexistence with extramuscular signs and symptoms. In recent years, new therapeutic targets have been identified leading to the launch of some promising clinical trials that have mainly focused on treating muscle symptoms and that require populations with defined genotype. Advantages in next-generation sequencing techniques have substantially improved diagnosis. So far, an increasing number of mutations have been identified as responsible for mitochondrial disorders. In this review, we focused on the principal molecular genetic alterations in PMM. Accordingly, we carried out a comprehensive review of the literature and briefly discussed the possible approaches which could guide the clinician to a genetic diagnosis.
Collapse
|
25
|
Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability. Genes (Basel) 2021; 12:genes12121866. [PMID: 34946817 PMCID: PMC8701800 DOI: 10.3390/genes12121866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial DNA (mtDNA) maintenance is critical for oxidative phosphorylation (OXPHOS) since some subunits of the respiratory chain complexes are mitochondrially encoded. Pathological mutations in nuclear genes involved in the mtDNA metabolism may result in a quantitative decrease in mtDNA levels, referred to as mtDNA depletion, or in qualitative defects in mtDNA, especially in multiple deletions. Since, in the last decade, most of the novel mutations have been identified through whole-exome sequencing, it is crucial to confirm the pathogenicity by functional analysis in the appropriate model systems. Among these, the yeast Saccharomyces cerevisiae has proved to be a good model for studying mutations associated with mtDNA instability. This review focuses on the use of yeast for evaluating the pathogenicity of mutations in six genes, MPV17/SYM1, MRM2/MRM2, OPA1/MGM1, POLG/MIP1, RRM2B/RNR2, and SLC25A4/AAC2, all associated with mtDNA depletion or multiple deletions. We highlight the techniques used to construct a specific model and to measure the mtDNA instability as well as the main results obtained. We then report the contribution that yeast has given in understanding the pathogenic mechanisms of the mutant variants, in finding the genetic suppressors of the mitochondrial defects and in the discovery of molecules able to improve the mtDNA stability.
Collapse
|
26
|
Domínguez-González C, Madruga-Garrido M, Hirano M, Martí I, Martín MA, Munell F, Nascimento A, Olivé M, Quan J, Sardina MD, Martí R, Paradas C. Collaborative model for diagnosis and treatment of very rare diseases: experience in Spain with thymidine kinase 2 deficiency. Orphanet J Rare Dis 2021; 16:407. [PMID: 34600563 PMCID: PMC8487573 DOI: 10.1186/s13023-021-02030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/18/2021] [Indexed: 11/22/2022] Open
Abstract
Background Mitochondrial diseases are difficult to diagnose and treat. Recent advances in genetic diagnostics and more effective treatment options can improve patient diagnosis and prognosis, but patients with mitochondrial disease typically experience delays in diagnosis and treatment. Here, we describe a unique collaborative practice model among physicians and scientists in Spain focused on identifying TK2 deficiency (TK2d), an ultra-rare mitochondrial DNA depletion and deletions syndrome.
Main Body This collaboration spans research and clinical care, including laboratory scientists, adult and pediatric neuromuscular clinicians, geneticists, and pathologists, and has resulted in diagnosis and consolidation of care for patients with TK2d. The incidence of TK2d is not known; however, the first clinical cases of TK2d were reported in 2001, and only ~ 107 unique cases had been reported as of 2018. This unique collaboration in Spain has led to the diagnosis of more than 30 patients with genetically confirmed TK2d across different regions of the country. Research affiliate centers have led investigative treatment with nucleosides based on understanding of TK2d clinical manifestations and disease mechanisms, which resulted in successful treatment of a TK2d mouse model with nucleotide therapy in 2010. Only 1 year later, this collaboration enabled rapid adoption of treatment with pyrimidine nucleotides (and later, nucleosides) under compassionate use. Success in TK2d diagnosis and treatment in Spain is attributable to two important factors: Spain’s fully public national healthcare system, and the designation in 2015 of major National Reference Centers for Neuromuscular Disorders (CSURs). CSUR networking and dissemination facilitated development of a collaborative care network for TK2d disease, wherein participants share information and protocols to request approval from the Ministry of Health to initiate nucleoside therapy. Data have recently been collected in a retrospective study conducted under a Good Clinical Practice–compliant protocol to support development of a new therapeutic approach for TK2d, a progressive disease with no approved therapies. Conclusions The Spanish experience in diagnosis and treatment of TK2d is a model for the diagnosis and development of new treatments for very rare diseases within an existing healthcare system.
Collapse
Affiliation(s)
- Cristina Domínguez-González
- Neuromuscular Disorders Unit, Neurology Department, Hospital 12 de Octubre, Madrid, Spain.,Instituto de Investigación imas12, Hospital 12 de Octubre, Madrid, Spain.,Center for Biomedical Network Research On Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Michio Hirano
- Neurology Department, H. Houston Merritt Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Itxaso Martí
- Pediatric Department, Donostia University Hospital, Biodonostia Health Research Institute, University of the Basque Country, San Sebastián, Spain
| | - Miguel A Martín
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Mitochondrial Diseases Laboratory, Department of Biochemistry, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Francina Munell
- Pediatric Department, Vall d'Hebron Hospital, Barcelona, Spain
| | - Andrés Nascimento
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Pediatric Department, Vall d'Hebron Hospital, Barcelona, Spain.,Neuromuscular Unit, Neurology Department, Sant Joan de Déu Research Institute, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Montse Olivé
- Neuromuscular Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau/Center for Biomedical Network Research On Rare Diseases (CIBERER), Barcelona, Spain
| | | | - M Dolores Sardina
- Pediatric Neurology Department, Badajoz Hospital Complex, Badajoz, Spain
| | - Ramon Martí
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Research Group On Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Carmen Paradas
- Neurology Department, Neuromuscular Disorders Unit, Instituto de Biomedicina de Sevilla, Hospital U. Virgen del Rocío, CSIC, Universidad de Sevilla, Avd. Manuel Siurot s/n, 41013, Sevilla, Spain. .,Center for Biomedical Network Research On Neurodegenerative Disorders (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
27
|
Lopez-Gomez C, Sanchez-Quintero MJ, Lee EJ, Kleiner G, Tadesse S, Xie J, Akman HO, Gao G, Hirano M. Synergistic Deoxynucleoside and Gene Therapies for Thymidine Kinase 2 Deficiency. Ann Neurol 2021; 90:640-652. [PMID: 34338329 PMCID: PMC9307066 DOI: 10.1002/ana.26185] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Autosomal recessive human thymidine kinase 2 (TK2) mutations cause TK2 deficiency, which typically manifests as a progressive and fatal mitochondrial myopathy in infants and children. Treatment with pyrimidine deoxynucleosides deoxycytidine and thymidine ameliorates mitochondrial defects and extends the lifespan of Tk2 knock-in mouse (Tk2KI ) and compassionate use deoxynucleoside therapy in TK2 deficient patients have shown promising indications of efficacy. To augment therapy for Tk2 deficiency, we assessed gene therapy alone and in combination with deoxynucleoside therapy in Tk2KI mice. METHODS We generated pAAVsc CB6 PI vectors containing human TK2 cDNA (TK2). Adeno-associated virus (AAV)-TK2 was administered to Tk2KI , which were serially assessed for weight, motor functions, and survival as well as biochemical functions in tissues. AAV-TK2 treated mice were further treated with deoxynucleosides. RESULTS AAV9 delivery of human TK2 cDNA to Tk2KI mice efficiently rescued Tk2 activity in all the tissues tested except the kidneys, delayed disease onset, and increased lifespan. Sequential treatment of Tk2KI mice with AAV9 first followed by AAV2 at different ages allowed us to reduce the viral dose while further prolonging the lifespan. Furthermore, addition of deoxycytidine and deoxythymidine supplementation to AAV9 + AAV2 treated Tk2KI mice dramatically improved mtDNA copy numbers in the liver and kidneys, animal growth, and lifespan. INTERPRETATION Our data indicate that AAV-TK2 gene therapy as well as combination deoxynucleoside and gene therapies is more effective in Tk2KI mice than pharmacological alone. Thus, combination of gene therapy with substrate enhancement is a promising therapeutic approach for TK2 deficiency and potentially other metabolic disorders. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Carlos Lopez-Gomez
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY.,Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria/Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Maria J Sanchez-Quintero
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY.,Area del Corazón. Hospital Clínico Universitario Virgen de la Victoria, CIBERCV. Instituto de Investigación Biomédica de Málaga-IBIMA. UMA, Málaga, Spain
| | - Eung Jeon Lee
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Gulio Kleiner
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Saba Tadesse
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Jun Xie
- Microbiology and Physiological Systems, University of Massachusetts Medical Center, Worcester, MA.,Horae Gene Therapy Center, University of Massachusetts Medical Center, Worcester, MA
| | - Hasan Orhan Akman
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Guangping Gao
- Microbiology and Physiological Systems, University of Massachusetts Medical Center, Worcester, MA.,Horae Gene Therapy Center, University of Massachusetts Medical Center, Worcester, MA
| | - Michio Hirano
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
28
|
Landoni JC, Wang L, Suomalainen A. Whole-Cell and Mitochondrial dNTP Pool Quantification from Cells and Tissues. Methods Mol Biol 2021; 2276:143-151. [PMID: 34060038 DOI: 10.1007/978-1-0716-1266-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Deoxynucleoside 5'-triphosphates (dNTPs) are the molecular building blocks for DNA synthesis, and their balanced concentration in the cell is fundamental for health. dNTP imbalance can lead to genomic instability and other metabolic disturbances, resulting in devastating mitochondrial diseases.The accurate and efficient measurement of dNTPs from different biological samples and cellular compartments is vital to understand the mechanisms behind these diseases and develop and scrutinize their possible treatments. This chapter describes an update on the most recent development of the traditional radiolabeled polymerase extension method and its adaptation for the measurement of whole-cell and mitochondrial dNTP pools from cultured cells and tissue samples. The solid-phase reaction setting enables an increase in efficiency, accuracy, and measurement scale.
Collapse
Affiliation(s)
- Juan C Landoni
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
| | - Liya Wang
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anu Suomalainen
- University Hospital, Department of Neurology, Helsinki, Finland.
- Neuroscience Center, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
29
|
Ramón J, Vila-Julià F, Molina-Granada D, Molina-Berenguer M, Melià MJ, García-Arumí E, Torres-Torronteras J, Cámara Y, Martí R. Therapy Prospects for Mitochondrial DNA Maintenance Disorders. Int J Mol Sci 2021; 22:6447. [PMID: 34208592 PMCID: PMC8234938 DOI: 10.3390/ijms22126447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial DNA depletion and multiple deletions syndromes (MDDS) constitute a group of mitochondrial diseases defined by dysfunctional mitochondrial DNA (mtDNA) replication and maintenance. As is the case for many other mitochondrial diseases, the options for the treatment of these disorders are rather limited today. Some aggressive treatments such as liver transplantation or allogeneic stem cell transplantation are among the few available options for patients with some forms of MDDS. However, in recent years, significant advances in our knowledge of the biochemical pathomechanisms accounting for dysfunctional mtDNA replication have been achieved, which has opened new prospects for the treatment of these often fatal diseases. Current strategies under investigation to treat MDDS range from small molecule substrate enhancement approaches to more complex treatments, such as lentiviral or adenoassociated vector-mediated gene therapy. Some of these experimental therapies have already reached the clinical phase with very promising results, however, they are hampered by the fact that these are all rare disorders and so the patient recruitment potential for clinical trials is very limited.
Collapse
Affiliation(s)
- Javier Ramón
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ferran Vila-Julià
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David Molina-Granada
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Molina-Berenguer
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Jesús Melià
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena García-Arumí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
30
|
Preferent Diaphragmatic Involvement in TK2 Deficiency: An Autopsy Case Study. Int J Mol Sci 2021; 22:ijms22115598. [PMID: 34070501 PMCID: PMC8199166 DOI: 10.3390/ijms22115598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
Our goal was to analyze postmortem tissues of an adult patient with late-onset thymidine kinase 2 (TK2) deficiency who died of respiratory failure. Compared with control tissues, we found a low mtDNA content in the patient’s skeletal muscle, liver, kidney, small intestine, and particularly in the diaphragm, whereas heart and brain tissue showed normal mtDNA levels. mtDNA deletions were present in skeletal muscle and diaphragm. All tissues showed a low content of OXPHOS subunits, and this was especially evident in diaphragm, which also exhibited an abnormal protein profile, expression of non-muscular β-actin and loss of GAPDH and α-actin. MALDI-TOF/TOF mass spectrometry analysis demonstrated the loss of the enzyme fructose-bisphosphate aldolase, and enrichment for serum albumin in the patient’s diaphragm tissue. The TK2-deficient patient’s diaphragm showed a more profound loss of OXPHOS proteins, with lower levels of catalase, peroxiredoxin 6, cytosolic superoxide dismutase, p62 and the catalytic subunits of proteasome than diaphragms of ventilated controls. Strong overexpression of TK1 was observed in all tissues of the patient with diaphragm showing the highest levels. TK2 deficiency induces a more profound dysfunction of the diaphragm than of other tissues, which manifests as loss of OXPHOS and glycolytic proteins, sarcomeric components, antioxidants and overactivation of the TK1 salvage pathway that is not attributed to mechanical ventilation.
Collapse
|
31
|
Tinker RJ, Lim AZ, Stefanetti RJ, McFarland R. Current and Emerging Clinical Treatment in Mitochondrial Disease. Mol Diagn Ther 2021; 25:181-206. [PMID: 33646563 PMCID: PMC7919238 DOI: 10.1007/s40291-020-00510-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 12/11/2022]
Abstract
Primary mitochondrial disease (PMD) is a group of complex genetic disorders that arise due to pathogenic variants in nuclear or mitochondrial genomes. Although PMD is one of the most prevalent inborn errors of metabolism, it often exhibits marked phenotypic variation and can therefore be difficult to recognise. Current treatment for PMD revolves around supportive and preventive approaches, with few disease-specific therapies available. However, over the last decade there has been considerable progress in our understanding of both the genetics and pathophysiology of PMD. This has resulted in the development of a plethora of new pharmacological and non-pharmacological therapies at varying stages of development. Many of these therapies are currently undergoing clinical trials. This review summarises the latest emerging therapies that may become mainstream treatment in the coming years. It is distinct from other recent reviews in the field by comprehensively addressing both pharmacological non-pharmacological therapy from both a bench and a bedside perspective. We highlight the current and developing therapeutic landscape in novel pharmacological treatment, dietary supplementation, exercise training, device use, mitochondrial donation, tissue replacement gene therapy, hypoxic therapy and mitochondrial base editing.
Collapse
Affiliation(s)
- Rory J Tinker
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Albert Z Lim
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Renae J Stefanetti
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders for Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
32
|
Darin N, Siibak T, Peter B, Hedberg-Oldfors C, Kollberg G, Kalbin V, Moslemi AR, Macao B, Oldfors A, Falkenberg M. Functional analysis of a novel POLγA mutation associated with a severe perinatal mitochondrial encephalomyopathy. Neuromuscul Disord 2021; 31:348-358. [PMID: 33579567 DOI: 10.1016/j.nmd.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
Mutations in the mitochondrial DNA polymerase gamma catalytic subunit (POLγA) compromise the stability of mitochondrial DNA (mtDNA) by leading to mutations, deletions and depletions in mtDNA. Patients with mutations in POLγA often differ remarkably in disease severity and age of onset. In this work we have studied the functional consequence of POLγA mutations in a patient with an uncommon and a very severe disease phenotype characterized by prenatal onset with intrauterine growth restriction, lactic acidosis from birth, encephalopathy, hepatopathy, myopathy, and early death. Muscle biopsy identified scattered COX-deficient muscle fibers, respiratory chain dysfunction and mtDNA depletion. We identified a novel POLγA mutation (p.His1134Tyr) in trans with the previously identified p.Thr251Ile/Pro587Leu double mutant. Biochemical characterization of the purified recombinant POLγA variants showed that the p.His1134Tyr mutation caused severe polymerase dysfunction. The p.Thr251Ile/Pro587Leu mutation caused reduced polymerase function in conditions of low dNTP concentration that mimic postmitotic tissues. Critically, when p.His1134Tyr and p.Thr251Ile/Pro587Leu were combined under these conditions, mtDNA replication was severely diminished and featured prominent stalling. Our data provide a molecular explanation for the patient´s mtDNA depletion and clinical features, particularly in tissues such as brain and muscle that have low dNTP concentration.
Collapse
Affiliation(s)
- Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Triinu Siibak
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
| | - Carola Hedberg-Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gittan Kollberg
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Vassili Kalbin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
| | - Ali-Reza Moslemi
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Bertil Macao
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
| | - Anders Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 40530 Gothenburg, Sweden.
| |
Collapse
|
33
|
Pitceathly RD, Keshavan N, Rahman J, Rahman S. Moving towards clinical trials for mitochondrial diseases. J Inherit Metab Dis 2021; 44:22-41. [PMID: 32618366 PMCID: PMC8432143 DOI: 10.1002/jimd.12281] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
Primary mitochondrial diseases represent some of the most common and severe inherited metabolic disorders, affecting ~1 in 4,300 live births. The clinical and molecular diversity typified by mitochondrial diseases has contributed to the lack of licensed disease-modifying therapies available. Management for the majority of patients is primarily supportive. The failure of clinical trials in mitochondrial diseases partly relates to the inefficacy of the compounds studied. However, it is also likely to be a consequence of the significant challenges faced by clinicians and researchers when designing trials for these disorders, which have historically been hampered by a lack of natural history data, biomarkers and outcome measures to detect a treatment effect. Encouragingly, over the past decade there have been significant advances in therapy development for mitochondrial diseases, with many small molecules now transitioning from preclinical to early phase human interventional studies. In this review, we present the treatments and management strategies currently available to people with mitochondrial disease. We evaluate the challenges and potential solutions to trial design and highlight the emerging pharmacological and genetic strategies that are moving from the laboratory to clinical trials for this group of disorders.
Collapse
Affiliation(s)
- Robert D.S. Pitceathly
- Department of Neuromuscular DiseasesUCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryLondonUK
| | - Nandaki Keshavan
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Joyeeta Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Shamima Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| |
Collapse
|
34
|
Bharadwaj A, Wahi N, Saxena A. Occurrence of Inborn Errors of Metabolism in Newborns, Diagnosis and Prophylaxis. Endocr Metab Immune Disord Drug Targets 2020; 21:592-616. [PMID: 33357204 DOI: 10.2174/1871530321666201223110918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 11/22/2022]
Abstract
Inborn errors of metabolism (IEM) are a heterogeneous group of rare genetic disorders that are generally transmitted as autosomal or X-linked recessive disorders. These defects arise due to mutations associated with specific gene(s), especially the ones associated with key metabolic enzymes. These enzymes or their product(s) are involved in various metabolic pathways, leading to the accumulation of intermediary metabolite(s), reflecting their toxic effects upon mutations. The diagnosis of these metabolic disorders is based on the biochemical analysis of the clinical manifestations produced and their molecular mechanism. Therefore, it is imperative to devise diagnostic tests with high sensitivity and specificity for early detection of IEM. Recent advances in biochemical and polymerase chain reaction-based genetic analysis along with pedigree and prenatal diagnosis can be life-saving in nature. The latest development in exome sequencing for rapid diagnosis and enzyme replacement therapy would facilitate the successful treatment of these metabolic disorders in the future. However, the longterm clinical implications of these genetic manipulations is still a matter of debate among intellectuals and requires further research.
Collapse
Affiliation(s)
- Alok Bharadwaj
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Nitin Wahi
- Department of Bioinformatics, Pathfinder Research and Training Foundation, Greater Noida - 201308, Uttar Pradesh, India
| | - Aditya Saxena
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
35
|
Koňaříková E, Marković A, Korandová Z, Houštěk J, Mráček T. Current progress in the therapeutic options for mitochondrial disorders. Physiol Res 2020; 69:967-994. [PMID: 33129249 PMCID: PMC8549882 DOI: 10.33549/physiolres.934529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders manifest enormous genetic and clinical heterogeneity - they can appear at any age, present with various phenotypes affecting any organ, and display any mode of inheritance. What mitochondrial diseases do have in common, is impairment of respiratory chain activity, which is responsible for more than 90% of energy production within cells. While diagnostics of mitochondrial disorders has been accelerated by introducing Next-Generation Sequencing techniques in recent years, the treatment options are still very limited. For many patients only a supportive or symptomatic therapy is available at the moment. However, decades of basic and preclinical research have uncovered potential target points and numerous compounds or interventions are now subjects of clinical trials. In this review, we focus on current and emerging therapeutic approaches towards the treatment of mitochondrial disorders. We focus on small compounds, metabolic interference, such as endurance training or ketogenic diet and also on genomic approaches.
Collapse
Affiliation(s)
- E Koňaříková
- Laboratory of Bioenergetics, Institute of Physiology Czech Acad. Sci., Prague, Czech Republic. ,
| | | | | | | | | |
Collapse
|
36
|
Hernandez-Voth A, Sayas Catalan J, Corral Blanco M, Castaño Mendez A, Martin MA, De Fuenmayor Fernandez de la Hoz C, Villena Garrido V, Dominguez-Gonzalez C. Deoxynucleoside therapy for respiratory involvement in adult patients with thymidine kinase 2-deficient myopathy. BMJ Open Respir Res 2020; 7:7/1/e000774. [PMID: 33246973 PMCID: PMC7703425 DOI: 10.1136/bmjresp-2020-000774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Recessive mutations in the thymidine
kinase 2 (TK2) gene cause a rare mitochondrial myopathy, frequently with severe respiratory involvement. Deoxynucleoside therapy is currently under investigation. Research question What is the impact of nucleosides in respiratory function in patients with TK2-deficient myopathy? Study design and methods Retrospective observational study of patients treated with deoxycytidine and deoxythymidine. Evaluations were performed every 3 to 4 months after treatment during approximately 30 months. Forced vital capacity (FVC), maximuminspiratory and expiratory pressures (MIP/MEP), sniff nasal inspiratory pressure (SNIP), cough peak flow (CPF), arterial blood gas and nocturnal pulse oximeter (SpO2) were collected. Results We studied six patients, five of which were women, with a median age at onset of symptoms was 35.8 (range 5 to 60) years old. Patients presented a restrictive ventilatory pattern (median FVC of 50 (26 to 71)%) and severe neuromuscular respiratory weakness (MIP 38 (12 to 47)% and SNIP 14 (8 to 19) cmH2O). Four patients required ventilatory support before starting the treatment. FVC improved by 6%, proportion of sleep time with SpO2 <90% diminished from 14% to 0%, CPF increased by 23%, MEP increased by 73%, production and management of bronchial secretions improved and respiratory infections diminished. Interpretation Early detection of respiratory involvement requires an active search, even in asymptomatic patients. The nucleosides therapy may improve respiratory function, and stabilise the loss of respiratory capacity.
Collapse
Affiliation(s)
- Ana Hernandez-Voth
- Servicio de Neumología, Unidad de Ventilación Mecánica, Hospital Universitario 12 de Octubre, Madrid, Spain .,Servicio de Neurologia, Unidad de Enfermedades Neuromusculares, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Javier Sayas Catalan
- Servicio de Neumología, Unidad de Ventilación Mecánica, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Neurologia, Unidad de Enfermedades Neuromusculares, Hospital Universitario 12 de Octubre, Madrid, Spain.,Instituto de Investigacion imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marta Corral Blanco
- Servicio de Neumología, Unidad de Ventilación Mecánica, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Neurologia, Unidad de Enfermedades Neuromusculares, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alba Castaño Mendez
- Servicio de Neumología, Unidad de Ventilación Mecánica, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Miguel Angel Martin
- Instituto de Investigacion imas12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Bioquímica, Laboratorio de Enfermedades Mitocondriales, Hospital Universitario 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Victoria Villena Garrido
- Instituto de Investigacion imas12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Neumología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Cristina Dominguez-Gonzalez
- Servicio de Neurologia, Unidad de Enfermedades Neuromusculares, Hospital Universitario 12 de Octubre, Madrid, Spain.,Instituto de Investigacion imas12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic Approaches to Treat Mitochondrial Diseases: "One-Size-Fits-All" and "Precision Medicine" Strategies. Pharmaceutics 2020; 12:E1083. [PMID: 33187380 PMCID: PMC7696526 DOI: 10.3390/pharmaceutics12111083] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Primary mitochondrial diseases (PMD) refer to a group of severe, often inherited genetic conditions due to mutations in the mitochondrial genome or in the nuclear genes encoding for proteins involved in oxidative phosphorylation (OXPHOS). The mutations hamper the last step of aerobic metabolism, affecting the primary source of cellular ATP synthesis. Mitochondrial diseases are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. The limited information of the natural history, the limitations of currently available preclinical models, coupled with the large variability of phenotypical presentations of PMD patients, have strongly penalized the development of effective therapies. However, new therapeutic strategies have been emerging, often with promising preclinical and clinical results. Here we review the state of the art on experimental treatments for mitochondrial diseases, presenting "one-size-fits-all" approaches and precision medicine strategies. Finally, we propose novel perspective therapeutic plans, either based on preclinical studies or currently used for other genetic or metabolic diseases that could be transferred to PMD.
Collapse
Affiliation(s)
- Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, 37134 Verona, Italy
| | - Costanza Lamperti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Clinic Düsseldorf (UKD), Heinrich Heine University (HHU), 40225 Dusseldorf, Germany;
| | - Valeria Tiranti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Nicola Persico
- Department of Clinical Science and Community Health, University of Milan, 20122 Milan, Italy;
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
38
|
Lee YK, Thong OM, Sunderasan E, Norazreen AR, Sreeramanan S. Cytotoxicity and genotoxicity of Hevea brasiliensis latex C-serum DCS sub-fraction as anticancer agents. J RUBBER RES 2020. [DOI: 10.1007/s42464-020-00056-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Almannai M, El-Hattab AW, Ali M, Soler-Alfonso C, Scaglia F. Clinical trials in mitochondrial disorders, an update. Mol Genet Metab 2020; 131:1-13. [PMID: 33129691 PMCID: PMC7537630 DOI: 10.1016/j.ymgme.2020.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Mitochondrial disorders comprise a molecular and clinically diverse group of diseases that are associated with mitochondrial dysfunction leading to multi-organ disease. With recent advances in molecular technologies, the understanding of the pathomechanisms of a growing list of mitochondrial disorders has been greatly expanded. However, the therapeutic approaches for mitochondrial disorders have lagged behind with treatment options limited mainly to symptom specific therapies and supportive measures. There is an increasing number of clinical trials in mitochondrial disorders aiming for more specific and effective therapies. This review will cover different treatment modalities currently used in mitochondrial disorders, focusing on recent and ongoing clinical trials.
Collapse
Affiliation(s)
- Mohammed Almannai
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - May Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong.
| |
Collapse
|
40
|
Wilkinson D. The Charlie Gard Case, and the Ethics of Obstructing International Transfer of Seriously Ill Children. Pediatrics 2020; 146:S54-S59. [PMID: 32737233 DOI: 10.1542/peds.2020-0818k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2020] [Indexed: 11/24/2022] Open
Abstract
In 2017, the court case over medical treatment of UK infant, Charlie Gard, reached global attention. In this article, I will analyze one of the more distinctive elements of the case. The UK courts concluded that treatment of Charlie Gard was not in his best interests and that it would be permissible to withdraw life-sustaining treatment. However, in addition, the court ruled that Charlie should not be transferred overseas for the treatment that his parents sought, even though specialists in Italy and the US were willing to provide that treatment. Is it ethical to prevent parents from pursuing life-prolonging treatment overseas for their children? If so, when is it ethical to do this? I will outline arguments in defense of obstructing transfer in some situations. I will argue, however, that this is only justified if there is good reason to think that the proposed treatment would cause harm.
Collapse
Affiliation(s)
- Dominic Wilkinson
- Faculty of Philosophy, Oxford Uehiro Centre for Practical Ethics, University of Oxford, Oxford, United Kingdom; John Radcliffe Hospital, Oxford, United Kingdom; and Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Hämäläinen RH, Landoni JC, Ahlqvist KJ, Goffart S, Ryytty S, Rahman MO, Brilhante V, Icay K, Hautaniemi S, Wang L, Laiho M, Suomalainen A. Reply to: Proofreading deficiency in mitochondrial DNA polymerase does not affect total dNTP pools in mouse embryos. Nat Metab 2020; 2:676-677. [PMID: 32778835 DOI: 10.1038/s42255-020-0265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/14/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Riikka H Hämäläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland.
| | - Juan C Landoni
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
| | - Kati J Ahlqvist
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Sanna Ryytty
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Obaidur Rahman
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Virginia Brilhante
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
| | - Katherine Icay
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland
| | - Liya Wang
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marikki Laiho
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anu Suomalainen
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland.
- University Hospital, Department of Neurology, Helsinki, Finland.
- Neuroscience Center, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
42
|
Growth Differentiation Factor 15 is a potential biomarker of therapeutic response for TK2 deficient myopathy. Sci Rep 2020; 10:10111. [PMID: 32572108 PMCID: PMC7308386 DOI: 10.1038/s41598-020-66940-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
GDF-15 is a biomarker for mitochondrial diseases. We investigated the application of GDF-15 as biomarker of disease severity and response to deoxynucleoside treatment in patients with thymidine kinase 2 (TK2) deficiency and compared it to FGF-21. GDF-15 and FGF-21 were measured in serum from 24 patients with TK2 deficiency treated 1–49 months with oral deoxynucleosides. Patients were grouped according to age at treatment and biomarkers were analyzed at baseline and various time points after treatment initiation. GDF-15 was elevated on average 30-fold in children and 6-fold in adults before the start of treatment. There was a significant correlation between basal GDF-15 and severity based on pretreatment distance walked (6MWT) and weight (BMI). During treatment, GDF-15 significantly declined, and the decrease was accompanied by relevant clinical improvements. The decline was greater in the paediatric group, which included the most severe patients and showed the greatest clinical benefit, than in the adult patients. The decline of FGF-21 was less prominent and consistent. GDF-15 is a potential biomarker of severity and of therapeutic response for patients with TK2 deficiency. In addition, we show evidence of clinical benefit of deoxynucleoside treatment, especially when treatment is initiated at an early age.
Collapse
|
43
|
Viscomi C, Zeviani M. Strategies for fighting mitochondrial diseases. J Intern Med 2020; 287:665-684. [PMID: 32100338 DOI: 10.1111/joim.13046] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/10/2019] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Mitochondrial diseases are extremely heterogeneous genetic conditions characterized by faulty oxidative phosphorylation (OXPHOS). OXPHOS deficiency can be the result of mutation in mtDNA genes, encoding either proteins (13 subunits of the mitochondrial complexes I, III, IV and V) or the tRNA and rRNA components of the in situ mtDNA translation. The remaining mitochondrial disease genes are in the nucleus, encoding proteins with a huge variety of functions, from structural subunits of the mitochondrial complexes, to factors involved in their formation and regulation, components of the mtDNA replication and expression machinery, biosynthetic enzymes for the biosynthesis or incorporation of prosthetic groups, components of the mitochondrial quality control and proteostasis, enzymes involved in the clearance of toxic compounds, factors involved in the formation of the lipid milieu, etc. These different functions represent potential targets for 'general' therapeutic interventions, as they may be adapted to a number of different mitochondrial conditions. This is in contrast with 'tailored', personalized therapeutic approaches, such as gene therapy, cell therapy and organ replacement, that can be useful only for individual conditions. This review will present the most recent concepts emerged from preclinical work and the attempts to translate them into the clinics. The common notion that mitochondrial disorders have no cure is currently challenged by a massive effort of scientists and clinicians, and we do expect that thanks to this intensive investigation work and tangible results for the development of strategies amenable to the treatment of patients with these tremendously difficult conditions are not so far away.
Collapse
Affiliation(s)
- C Viscomi
- From the, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - M Zeviani
- Department of Neurosciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
44
|
Wang L, Sun R, Eriksson S. Basic biochemical characterization of cytosolic enzymes in thymidine nucleotide synthesis in adult rat tissues: implications for tissue specific mitochondrial DNA depletion and deoxynucleoside-based therapy for TK2-deficiency. BMC Mol Cell Biol 2020; 21:33. [PMID: 32345222 PMCID: PMC7189545 DOI: 10.1186/s12860-020-00272-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Deficiency in thymidine kinase 2 (TK2) or p53 inducible ribonucleotide reductase small subunit (p53R2) is associated with tissue specific mitochondrial DNA (mtDNA) depletion. To understand the mechanisms of the tissue specific mtDNA depletion we systematically studied key enzymes in dTMP synthesis in mitochondrial and cytosolic extracts prepared from adult rat tissues. RESULTS In addition to mitochondrial TK2 a cytosolic isoform of TK2 was characterized, which showed similar substrate specificity to the mitochondrial TK2. Total TK activity was highest in spleen and lowest in skeletal muscle. Thymidylate synthase (TS) was detected in cytosols and its activity was high in spleen but low in other tissues. TS protein levels were high in heart, brain and skeletal muscle, which deviated from TS activity levels. The p53R2 proteins were at similar levels in all tissues except liver where it was ~ 6-fold lower. Our results strongly indicate that mitochondria in most tissues are capable of producing enough dTTP for mtDNA replication via mitochondrial TK2, but skeletal muscle mitochondria do not and are most likely dependent on both the salvage and de novo synthesis pathways. CONCLUSION These results provide important information concerning mechanisms for the tissue dependent variation of dTTP synthesis and explained why deficiency in TK2 or p53R2 leads to skeletal muscle dysfunctions. Furthermore, the presence of a putative cytosolic TK2-like enzyme may provide basic knowledge for the understanding of deoxynucleoside-based therapy for mitochondrial disorders.
Collapse
Affiliation(s)
- Liya Wang
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden.
| | - Ren Sun
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| | - Staffan Eriksson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| |
Collapse
|
45
|
Abstract
The POLG gene encodes the mitochondrial DNA polymerase that is responsible for replication of the mitochondrial genome. Mutations in POLG can cause early childhood mitochondrial DNA (mtDNA) depletion syndromes or later-onset syndromes arising from mtDNA deletions. POLG mutations are the most common cause of inherited mitochondrial disorders, with as many as 2% of the population carrying these mutations. POLG-related disorders comprise a continuum of overlapping phenotypes with onset from infancy to late adulthood. The six leading disorders caused by POLG mutations are Alpers-Huttenlocher syndrome, which is one of the most severe phenotypes; childhood myocerebrohepatopathy spectrum, which presents within the first 3 years of life; myoclonic epilepsy myopathy sensory ataxia; ataxia neuropathy spectrum; autosomal recessive progressive external ophthalmoplegia; and autosomal dominant progressive external ophthalmoplegia. This Review describes the clinical features, pathophysiology, natural history and treatment of POLG-related disorders, focusing particularly on the neurological manifestations of these conditions.
Collapse
|
46
|
Abstract
Epilepsy is frequently a severe and sinister symptom in primary mitochondrial diseases, a group of more than 350 different genetic disorders characterized by mitochondrial dysfunction and extreme clinical and biochemical heterogeneity. Mitochondrial epilepsy is notoriously difficult to manage, principally because the vast majority of primary mitochondrial diseases currently lack effective therapies. Treating the underlying mitochondrial disorder is likely to be a more effective strategy than using traditional antiepileptic drugs. This review, initially presented at the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures at the Francis Crick Institute in London, summarizes the currently available and emerging therapies for mitochondrial epilepsy. Potentially treatable mitochondrial diseases include disorders of coenzyme Q10 biosynthesis and a group of mitochondrial respiratory chain complex I subunit and assembly factor defects that respond to riboflavin (vitamin B2). Approaches that have been adopted in actively recruiting clinical trials include redox modulation, harnessing mitochondrial biogenesis, using rapamycin to target mitophagy, nucleoside supplementation, and gene and cell therapies. Most of the clinical trials are at an early stage (Phase 1 or 2) and none of the currently active trials is specifically targeting mitochondrial epilepsy. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".
Collapse
|
47
|
Kurbatov SA, Tsygankova PG, Mollaeva KY, Bychkov IO, Itkis YS, Zabnenkova VV, Umakhanova ZR, Geybatova LG, Zakharova EY. Infantile and early childhood onset of mitochondrial myopathy due to mutations in the TK2 gene with a phenotype of spinal muscular atrophy 5q: the first cases in Russia. ACTA ACUST UNITED AC 2019. [DOI: 10.17650/2222-8721-2019-9-3-57-76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- S. A. Kurbatov
- Voronezh Regional Clinical Consulting and Diagnostic Center; Association of Neuromuscular Disorders Specialists, Medical Center “Practical Neurology
| | - P. G. Tsygankova
- Hereditary metabolic diseases laboratory, Reseasrch Center of Medical Genetics
| | - K. Yu. Mollaeva
- Dagestan State Medical University, Ministry of Health of Russia
| | - I. O. Bychkov
- Hereditary metabolic diseases laboratory, Reseasrch Center of Medical Genetics
| | - Yu. S. Itkis
- Hereditary metabolic diseases laboratory, Reseasrch Center of Medical Genetics
| | | | | | - L. G. Geybatova
- Dagestan State Medical University, Ministry of Health of Russia
| | - E. Yu. Zakharova
- Hereditary metabolic diseases laboratory, Reseasrch Center of Medical Genetics
| |
Collapse
|
48
|
A Brief History of Mitochondrial Pathologies. Int J Mol Sci 2019; 20:ijms20225643. [PMID: 31718067 PMCID: PMC6888695 DOI: 10.3390/ijms20225643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/19/2023] Open
Abstract
The history of "mitochondrial pathologies", namely genetic pathologies affecting mitochondrial metabolism because of mutations in nuclear DNA-encoded genes for proteins active inside mitochondria or mutations in mitochondrial DNA-encoded genes, began in 1988. In that year, two different groups of researchers discovered, respectively, large-scale single deletions of mitochondrial DNA (mtDNA) in muscle biopsies from patients with "mitochondrial myopathies" and a point mutation in the mtDNA gene for subunit 4 of NADH dehydrogenase (MTND4), associated with maternally inherited Leber's hereditary optic neuropathy (LHON). Henceforth, a novel conceptual "mitochondrial genetics", separate from mendelian genetics, arose, based on three features of mtDNA: (1) polyplasmy; (2) maternal inheritance; and (3) mitotic segregation. Diagnosis of mtDNA-related diseases became possible through genetic analysis and experimental approaches involving histochemical staining of muscle or brain sections, single-fiber polymerase chain reaction (PCR) of mtDNA, and the creation of patient-derived "cybrid" (cytoplasmic hybrid) immortal fibroblast cell lines. The availability of the above-mentioned techniques along with the novel sensitivity of clinicians to such disorders led to the characterization of a constantly growing number of pathologies. Here is traced a brief historical perspective on the discovery of autonomous pathogenic mtDNA mutations and on the related mendelian pathology altering mtDNA integrity.
Collapse
|
49
|
The natural history of infantile mitochondrial DNA depletion syndrome due to RRM2B deficiency. Genet Med 2019; 22:199-209. [DOI: 10.1038/s41436-019-0613-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 01/21/2023] Open
|
50
|
Saada A. Insights into deoxyribonucleoside therapy for mitochondrial TK2 deficient mtDNA depletion. EBioMedicine 2019; 47:14-15. [PMID: 31402231 PMCID: PMC6796496 DOI: 10.1016/j.ebiom.2019.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/02/2022] Open
Affiliation(s)
- Ann Saada
- Department of Genetic and Metabolic Diseases and Jacques Roboh, Department of Genetic Research, Hadassah Medical Center, Jerusalem 9112001, Israel; Faculty of Medicine, Hebrew University of Jerusalem, 9112001, Israel.
| |
Collapse
|