1
|
Nappi M, Alberini G, Berselli A, Roscioni A, Soldovieri MV, Servettini I, Barrese V, Weckhuysen S, Chiu TGA, Scheffer IE, Benfenati F, Maragliano L, Miceli F, Taglialatela M. Constitutive opening of the Kv7.2 pore activation gate causes KCNQ2-developmental encephalopathy. Proc Natl Acad Sci U S A 2024; 121:e2412388121. [PMID: 39602259 PMCID: PMC11626135 DOI: 10.1073/pnas.2412388121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Pathogenic variants in KCNQ2 encoding Kv7.2 voltage-gated potassium channel subunits cause developmental encephalopathies (KCNQ2-encephalopathies), both with and without epilepsy. We herein describe the clinical, in vitro, and in silico features of two encephalopathy-causing variants (A317T, L318V) in Kv7.2 affecting two consecutive residues in the S6 activation gate that undergoes large structural rearrangements during pore opening; the disease-causing A356T variant in KCNQ3, paralogous to the A317T variant in KCNQ2, was also investigated. Currents through KCNQ2 mutant channels displayed increased density, hyperpolarizing shifts in activation gating, faster activation and slower deactivation kinetics, and resistance to changes in the cellular concentrations of phosphatidylinositol 4,5-bisphosphate (PIP2), a critical regulator of Kv7 channel function; all these features are consistent with a strong gain-of-function effect. An increase in the probability of single-channel opening, with no change in membrane abundance or single-channel conductance, was responsible for the observed gain-of-function effects. All-atom molecular dynamics simulations revealed that the mutations widened the inner pore gate and stabilized a constitutively open channel configuration in the closed state, with minimal effects on the open conformation. Thus, mutation-induced stabilization of the inner pore gate open configuration is a molecular pathogenetic mechanism for KCNQ2-related encephalopathies.
Collapse
Affiliation(s)
- Mario Nappi
- Department of Neuroscience, Section of Pharmacology, University of Naples Federico II, Naples80131, Italy
| | - Giulio Alberini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova16132, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova16132, Italy
| | - Alessandro Berselli
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova16132, Italy
- Department of Experimental Medicine, Università degli Studi di Genova, Genova16132, Italy
| | - Agnese Roscioni
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova16132, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona60131, Italy
| | | | - Ilenio Servettini
- Department of Medicine and Health Science, University of Molise, Campobasso86100, Italy
| | - Vincenzo Barrese
- Department of Neuroscience, Section of Pharmacology, University of Naples Federico II, Naples80131, Italy
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, Antwerp2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp2610, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp2610, Belgium
| | - Ting-Gee Annie Chiu
- Division of Medicine, Dentistry and Health Sciences, University of Melbourne, Austin Health, Melbourne, VIC3084, Australia
| | - Ingrid E. Scheffer
- The Florey Institute of Neuroscience and Mental Health and Murdoch Children’s Research Institutes, University of Melbourne, Austin and Royal Children’s Hospital, Melbourne, VIC3052, Australia
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova16132, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova16132, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova16132, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona60131, Italy
| | - Francesco Miceli
- Department of Neuroscience, Section of Pharmacology, University of Naples Federico II, Naples80131, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, Section of Pharmacology, University of Naples Federico II, Naples80131, Italy
| |
Collapse
|
2
|
Fan L, Li Q, Shi Y, Li X, Liu Y, Chen J, Sun Y, Chen A, Yang Y, Zhang X, Wang J, Wu L. Involvement of sphingosine-1-phosphate receptor 1 in pain insensitivity in a BTBR mouse model of autism spectrum disorder. BMC Med 2024; 22:504. [PMID: 39497100 PMCID: PMC11533282 DOI: 10.1186/s12916-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Abnormal sensory perception, particularly pain insensitivity (PAI), is a typical symptom of autism spectrum disorder (ASD). Despite the role of myelin metabolism in the regulation of pain perception, the mechanisms underlying ASD-related PAI remain unclear. METHODS The pain-associated gene sphingosine-1-phosphate receptor 1 (S1PR1) was identified in ASD samples through bioinformatics analysis. Its expression in the dorsal root ganglion (DRG) tissues of BTBR ASD model mice was validated using RNA-seq, western blot, RT-qPCR, and immunofluorescence. Pain thresholds were assessed using the von Frey and Hargreaves tests. Patch-clamp techniques measured KCNQ/M channel activity and neuronal action potentials. The expression of S1PR1, KCNQ/M, mitogen-activated protein kinase (MAPK), and cyclic AMP/protein kinase A (cAMP/PKA) signaling proteins was analyzed before and after inhibiting the S1P-S1PR1-KCNQ/M pathway via western blot and RT-qPCR. RESULTS Through integrated transcriptomic analysis of ASD samples, we identified the upregulated gene S1PR1, which is associated with sphingolipid metabolism and linked to pain perception, and confirmed its role in the BTBR mouse model of ASD. This mechanism involves the regulation of KCNQ/M channels in DRG neurons. The enhanced activity of KCNQ/M channels and the decreased action potentials in small and medium DRG neurons were correlated with PAI in a BTBR mouse model of ASD. Inhibition of the S1P/S1PR1 pathway rescued baseline insensitivity to pain by suppressing KCNQ/M channels in DRG neurons, mediated through the MAPK and cAMP/PKA pathways. Investigating the modulation and underlying mechanisms of the non-opioid pathway involving S1PR1 will provide new insights into clinical targeted interventions for PAI in ASD. CONCLUSIONS S1PR1 may contribute to PAI in the PNS in ASD. The mechanism involves KCNQ/M channels and the MAPK and cAMP/PKA signaling pathways. Targeting S1PR1 in the PNS could offer novel therapeutic strategies for the intervention of pain dysesthesias in individuals with ASD.
Collapse
Affiliation(s)
- Lili Fan
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Qi Li
- School of Nursing, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yaxin Shi
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xiang Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yutong Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Jiaqi Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yaqi Sun
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Anjie Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yuan Yang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xirui Zhang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
- Department of Developmental Behavioral Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150023, China.
| |
Collapse
|
3
|
Viswanathan S, Oliver KL, Regan BM, Schneider AL, Myers CT, Mehaffey MG, LaCroix AJ, Antony J, Webster R, Cardamone M, Subramanian GM, Chiu ATG, Roza E, Teleanu RI, Malone S, Leventer RJ, Gill D, Berkovic SF, Hildebrand MS, Goad BS, Howell KB, Symonds JD, Brunklaus A, Sadleir LG, Zuberi SM, Mefford HC, Scheffer IE. Solving the Etiology of Developmental and Epileptic Encephalopathy with Spike-Wave Activation in Sleep (D/EE-SWAS). Ann Neurol 2024; 96:932-943. [PMID: 39096015 PMCID: PMC11496008 DOI: 10.1002/ana.27041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/31/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE To understand the etiological landscape and phenotypic differences between 2 developmental and epileptic encephalopathy (DEE) syndromes: DEE with spike-wave activation in sleep (DEE-SWAS) and epileptic encephalopathy with spike-wave activation in sleep (EE-SWAS). METHODS All patients fulfilled International League Against Epilepsy (ILAE) DEE-SWAS or EE-SWAS criteria with a Core cohort (n = 91) drawn from our Epilepsy Genetics research program, together with 10 etiologically solved patients referred by collaborators in the Expanded cohort (n = 101). Detailed phenotyping and analysis of molecular genetic results were performed. We compared the phenotypic features of individuals with DEE-SWAS and EE-SWAS. Brain-specific gene co-expression analysis was performed for D/EE-SWAS genes. RESULTS We identified the etiology in 42/91 (46%) patients in our Core cohort, including 29/44 (66%) with DEE-SWAS and 13/47 (28%) with EE-SWAS. A genetic etiology was identified in 31/91 (34%). D/EE-SWAS genes were highly co-expressed in brain, highlighting the importance of channelopathies and transcriptional regulators. Structural etiologies were found in 12/91 (13%) individuals. We identified 10 novel D/EE-SWAS genes with a range of functions: ATP1A2, CACNA1A, FOXP1, GRIN1, KCNMA1, KCNQ3, PPFIA3, PUF60, SETD1B, and ZBTB18, and 2 novel copy number variants, 17p11.2 duplication and 5q22 deletion. Although developmental regression patterns were similar in both syndromes, DEE-SWAS was associated with a longer duration of epilepsy and poorer intellectual outcome than EE-SWAS. INTERPRETATION DEE-SWAS and EE-SWAS have highly heterogeneous genetic and structural etiologies. Phenotypic analysis highlights valuable clinical differences between DEE-SWAS and EE-SWAS which inform clinical care and prognostic counseling. Our etiological findings pave the way for the development of precision therapies. ANN NEUROL 2024;96:932-943.
Collapse
Affiliation(s)
- Sindhu Viswanathan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Department of Paediatrics, Hospital Pulau Pinang, Pulau Pinang, Malaysia
| | - Karen L. Oliver
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, the University of Melbourne, Melbourne, VIC 3010, Australia
| | - Brigid M. Regan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Amy L. Schneider
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Candace T. Myers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Michele G. Mehaffey
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | - Amy J. LaCroix
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | - Jayne Antony
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Richard Webster
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Michael Cardamone
- Sydney Children’s Hospital, Randwick; School of Clinical Medicine, UNSW Sydney, New South Wales, Australia
| | | | - Annie TG Chiu
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Eugenia Roza
- Faculty of Medicine, Clinical Neurosciences Department, Paediatric Neurology, Carol Davila University of Medicine and Pharmacy, Romania
- Pediatric Neurology Department, Dr. Victor Gomoiu Children’s Hospital, Romania
| | - Raluca I. Teleanu
- Faculty of Medicine, Clinical Neurosciences Department, Paediatric Neurology, Carol Davila University of Medicine and Pharmacy, Romania
- Pediatric Neurology Department, Dr. Victor Gomoiu Children’s Hospital, Romania
| | - Stephen Malone
- Centre for Advanced Imaging, University of Queensland, St Lucia, Australia
- Neurosciences Department, Queensland Children’s Hospital, South Brisbane Queensland, Australia
| | - Richard J. Leventer
- Department of Neurology, Royal Children’s Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Deepak Gill
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Kids Neuroscience Centre, Kids Research Institute, Sydney, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Michael S. Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Beatrice S. Goad
- Department of Neurology, Royal Children’s Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Katherine B. Howell
- Department of Neurology, Royal Children’s Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Joseph D. Symonds
- School of Health and Wellbeing, University of Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Andreas Brunklaus
- School of Health and Wellbeing, University of Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Lynette G. Sadleir
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
| | - Sameer M. Zuberi
- School of Health and Wellbeing, University of Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Heather C. Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
- Centre for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN,USA
| | - Ingrid E. Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Department of Neurology, Royal Children’s Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- The Florey Institute of Neurosciences and Mental Health, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Edmond MA, Hinojo-Perez A, Efrem M, Yi-Chun L, Shams I, Hayoz S, de la Cruz A, Perez Rodriguez ME, Diaz-Solares M, Dykxhoorn DM, Luo YL, Barro-Soria R. Lipophilic compounds restore function to neurodevelopmental-associated KCNQ3 mutations. Commun Biol 2024; 7:1181. [PMID: 39300259 DOI: 10.1038/s42003-024-06873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
A major driver of neuronal hyperexcitability is dysfunction of K+ channels, including voltage-gated KCNQ2/3 channels. Their hyperpolarized midpoint of activation and slow activation and deactivation kinetics produce a current that regulates membrane potential and impedes repetitive firing. Inherited mutations in KCNQ2 and KCNQ3 are linked to a wide spectrum of neurodevelopmental disorders (NDDs), ranging from benign familial neonatal seizures to severe epileptic encephalopathies and autism spectrum disorders. However, the impact of these variants on the molecular mechanisms underlying KCNQ3 channel function remains poorly understood and existing treatments have significant side effects. Here, we use voltage clamp fluorometry, molecular dynamic simulations, and electrophysiology to investigate NDD-associated variants in KCNQ3 channels. We identified two distinctive mechanisms by which loss- and gain-of function NDD-associated mutations in KCNQ3 affect channel gating: one directly affects S4 movement while the other changes S4-to-pore coupling. MD simulations and electrophysiology revealed that polyunsaturated fatty acids (PUFAs) primarily target the voltage-sensing domain in its activated conformation and form a weaker interaction with the channel's pore. Consistently, two such compounds yielded partial and complete functional restoration in R227Q- and R236C-containing channels, respectively. Our results reveal the potential of PUFAs to be developed into therapies for diverse KCNQ3-based channelopathies.
Collapse
Affiliation(s)
- Michaela A Edmond
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Texas A&M University Health Science Center, Department of Neuroscience & Experimental Therapeutics, Bryan, USA
| | - Andy Hinojo-Perez
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mekedlawit Efrem
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Lin Yi-Chun
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Iqra Shams
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sebastien Hayoz
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Physiology, University of Arizona, Tucson, USA
| | - Alicia de la Cruz
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Linkoping University, Department of Biomedical and Clinical Sciences (BKV), Linkoping, Sweden
| | | | - Maykelis Diaz-Solares
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yun Lyna Luo
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Rene Barro-Soria
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
5
|
Scheffer IE, Zuberi S, Mefford HC, Guerrini R, McTague A. Developmental and epileptic encephalopathies. Nat Rev Dis Primers 2024; 10:61. [PMID: 39237642 DOI: 10.1038/s41572-024-00546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Developmental and epileptic encephalopathies, the most severe group of epilepsies, are characterized by seizures and frequent epileptiform activity associated with developmental slowing or regression. Onset typically occurs in infancy or childhood and includes many well-defined epilepsy syndromes. Patients have wide-ranging comorbidities including intellectual disability, psychiatric features, such as autism spectrum disorder and behavioural problems, movement and musculoskeletal disorders, gastrointestinal and sleep problems, together with an increased mortality rate. Problems change with age and patients require substantial support throughout life, placing a high psychosocial burden on parents, carers and the community. In many patients, the aetiology can be identified, and a genetic cause is found in >50% of patients using next-generation sequencing technologies. More than 900 genes have been identified as monogenic causes of developmental and epileptic encephalopathies and many cell components and processes have been implicated in their pathophysiology, including ion channels and transporters, synaptic proteins, cell signalling and metabolism and epigenetic regulation. Polygenic risk score analyses have shown that common variants also contribute to phenotypic variability. Holistic management, which encompasses antiseizure therapies and care for multimorbidities, is determined both by epilepsy syndrome and aetiology. Identification of the underlying aetiology enables the development of precision medicines to improve the long-term outcome of patients with these devastating diseases.
Collapse
Affiliation(s)
- Ingrid E Scheffer
- Epilepsy Research Centre, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
- Florey and Murdoch Children's Research Institutes, Melbourne, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Sameer Zuberi
- Paediatric Neurosciences Research Group, School of Health & Wellbeing, University of Glasgow, Glasgow, UK
- Paediatric Neurosciences, Royal Hospital for Children, Glasgow, UK
| | - Heather C Mefford
- Center for Paediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
6
|
Nissenkorn A, Bar L, Ben-Bassat A, Rothstein L, Abdelrahim H, Sokol R, Gabis LV, Attali B. Donepezil as a new therapeutic potential in KCNQ2- and KCNQ3-related autism. Front Cell Neurosci 2024; 18:1380442. [PMID: 39175503 PMCID: PMC11338814 DOI: 10.3389/fncel.2024.1380442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction The KCNQ2/KCNQ3 genes encode the voltage-gated K channel underlying the neuronal M-current, regulating neuronal excitability. Loss-of-function (LoF) variants cause neonatal epilepsy, treatable with the M-current-opener retigabine, which is no longer marketed due to side effects. Gain-of-function (GoF) variants cause developmental encephalopathy and autism that could be amenable to M-current, but such therapies are not clinically available. In this translational project, we investigated whether donepezil, a cholinergic drug used in Alzheimer's, suppresses M currents in vitro and improves cognitive symptoms in patients with GoF variants. Methods (1) The effect of 1 μM donepezil on the amplitude of the M-current was measured in excitatory and inhibitory neurons of mouse primary cultured hippocampal cells. M-current was measured using the standard deactivation protocol (holding at 0 mV and deactivation at -60 mV) in the voltage-clamp configuration of the whole-cell patch clamp technique. The impact of donepezil was also examined on the spontaneous firing activity of hippocampal neurons in the current-clamp configuration. (2) Four children with autism, aged 2.5-8 years, with the following GoF variants were enrolled: KCNQ2 (p. Arg144Gln) and KCNQ 3 (p.Arg227Gln, p.Arg230Cys). Patients were treated off-label with donepezil 2.5-5 mg/d for 12 months and assessed with: clinical Global Impression of Change (CGI-c), Childhood Autism Rating Scale 2 (CARS-2), Adaptive Behavior Assessment System-II (ABAS-II), and Child Development Inventory (CDI). Results (1) Application of donepezil for at least 6 min produced a significant inhibition of the M-current with an IC50 of 0.4 μM. At 1 μM, donepezil reduced by 67% the M-current density of excitatory neurons (2.4 ± 0.46 vs. 0.89 ± 0.15 pA/pF, p < 0.05*). In inhibitory neurons, application of 1 μM donepezil produced a lesser inhibition of 59% of the M-current density (1.39 ± 0.43 vs. 0.57 ± 0.21, p > 0.05). Donepezil (1 μM) potently increased by 2.6-fold the spontaneous firing frequency, which was prevented by the muscarinic receptor antagonist atropine (10 μM). (2) The CARS-2 decreased by 3.8 ± 4.9 points (p > 0.05), but in two patients with KCNQ3 variants, the improvement was over the 4.5 clinically relevant threshold. The global clinical change was also clinically significant in these patients (CGI-c = 1). The CDI increased by 65% (p < 0.05*), while the ABAS-II remained unchanged. Discussion Donepezil should be repurposed as a novel alternative treatment for GoF variants in KCNQ2/KCNQ3 encephalopathy.
Collapse
Affiliation(s)
- Andreea Nissenkorn
- Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel
- Magen National Center for Rare Disorders, Edith Wolfson Medical Center, Holon, Israel
- Department of Pediatric, School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Lior Bar
- Department of Electrophysiology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Ben-Bassat
- Department of Electrophysiology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lynn Rothstein
- Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel
- Magen National Center for Rare Disorders, Edith Wolfson Medical Center, Holon, Israel
| | - Hoda Abdelrahim
- Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel
- Magen National Center for Rare Disorders, Edith Wolfson Medical Center, Holon, Israel
| | - Riki Sokol
- Pediatric Neurology Unit, Edith Wolfson Medical Center, Holon, Israel
| | - Lidia V. Gabis
- Magen National Center for Rare Disorders, Edith Wolfson Medical Center, Holon, Israel
- Department of Pediatric, School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Bernard Attali
- Department of Electrophysiology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Wong SH, Liou YM, Yang JJ, Lee IC. KCNQ2 mutations cause unique neonatal behavior arrests without motor seizures: Functional characterization. Epilepsy Behav 2024; 156:109798. [PMID: 38788659 DOI: 10.1016/j.yebeh.2024.109798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 04/14/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE KCNQ2 gene mutation usually manifests as neonatal seizures in the first week of life. Nonsense mutations cause a unique self-limited familial neonatal epilepsy (SLFNE), which is radically different from developmental epileptic encephalopathy (DEE). However, the exact underlying mechanisms remain unclear. METHODS The proband, along with their mother and grandmother, carried the c.1342C > T (p.Arg448Ter) mutation in the KCNQ2 gene. The clinical phenotypes, electroencephalography (EEG) findings, and neurodevelopmental outcomes were comprehensively surveyed. The mutant variants were transfected into HEK293 cells to investigate functional changes. RESULTS The proband exhibited behavior arrests, autonomic and non-motor neonatal seizures with changes in heart rate and respiration. EEG exhibited focal sharp waves. Seizures were remitted after three months of age. The neurodevelopmental outcomes at three years of age were unremarkable. A functional study demonstrated that the currents of p.Arg448Ter were non-functional in homomeric p.Arg448Ter compared with that of the KCNQ2 wild type. However, the current density and V1/2 exhibited significant improvement and close to that of the wild-type after transfection with heteromeric KCNQ2 + p.Arg448Ter and KCNQ2 + KCNQ3 + p.Arg448Ter respectively. Channel expression on the cell membrane was not visible after homomeric transfection, but not after heteromeric transfection. Retigabine did not affect homomeric p.Arg448Ter but improved heteromeric p. Arg448Ter + KCNQ2 and heteromeric KCNQ2 + Arg448Ter + KCNQ3. CONCLUSIONS The newborn carrying the p. Arg448Ter mutation presented frequent behavioral arrests, autonomic, and non-motor neonatal seizures. This unique pattern differs from KCNQ2 seizures, which typically manifest as motor seizures. Although p.Arg448Ter is a non-sense decay, the functional study demonstrated an almost-full compensation mechanism after transfection of heteromeric KCNQ2 and KCNQ3.
Collapse
Affiliation(s)
- Swee-Hee Wong
- Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, Rong Hsing Research Center for Translational Medicine, Natinal Chung Hsing University, Taichung 40227, Taiwan
| | - Jiann-Jou Yang
- Genetics Laboratory and Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Inn-Chi Lee
- Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Graziano B, Wang L, White OR, Kaplan DH, Fernandez-Abascal J, Bianchi L. Glial KCNQ K + channels control neuronal output by regulating GABA release from glia in C. elegans. Neuron 2024; 112:1832-1847.e7. [PMID: 38460523 PMCID: PMC11156561 DOI: 10.1016/j.neuron.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 03/11/2024]
Abstract
KCNQs are voltage-gated K+ channels that control neuronal excitability and are mutated in epilepsy and autism spectrum disorder (ASD). KCNQs have been extensively studied in neurons, but their function in glia is unknown. Using voltage, calcium, and GABA imaging, optogenetics, and behavioral assays, we show here for the first time in Caenorhabditis elegans (C. elegans) that glial KCNQ channels control neuronal excitability by mediating GABA release from glia via regulation of the function of L-type voltage-gated Ca2+ channels. Further, we show that human KCNQ channels have the same role when expressed in nematode glia, underscoring conservation of function across species. Finally, we show that pathogenic loss-of-function and gain-of-function human KCNQ2 mutations alter glia-to-neuron GABA signaling in distinct ways and that the KCNQ channel opener retigabine exerts rescuing effects. This work identifies glial KCNQ channels as key regulators of neuronal excitability via control of GABA release from glia.
Collapse
Affiliation(s)
- Bianca Graziano
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lei Wang
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Olivia R White
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daryn H Kaplan
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jesus Fernandez-Abascal
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Laura Bianchi
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
9
|
Zhao T, Wang L, Chen F. Potassium channel-related epilepsy: Pathogenesis and clinical features. Epilepsia Open 2024; 9:891-905. [PMID: 38560778 PMCID: PMC11145612 DOI: 10.1002/epi4.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Variants in potassium channel-related genes are one of the most important mechanisms underlying abnormal neuronal excitation and disturbances in the cellular resting membrane potential. These variants can cause different forms of epilepsy, which can seriously affect the physical and mental health of patients, especially those with refractory epilepsy or status epilepticus, which are common among pediatric patients and are potentially life-threatening. Variants in potassium ion channel-related genes have been reported in few studies; however, to our knowledge, no systematic review has been published. This study aimed to summarize the epilepsy phenotypes, functional studies, and pharmacological advances associated with different potassium channel gene variants to assist clinical practitioners and drug development teams to develop evidence-based medicine and guide research strategies. PubMed and Google Scholar were searched for relevant literature on potassium channel-related epilepsy reported in the past 5-10 years. Various common potassium ion channel gene variants can lead to heterogeneous epilepsy phenotypes, and functional effects can result from gene deletions and compound effects. Administration of select anti-seizure medications is the primary treatment for this type of epilepsy. Most patients are refractory to anti-seizure medications, and some novel anti-seizure medications have been found to improve seizures. Use of targeted drugs to correct aberrant channel function based on the type of potassium channel gene variant can be used as an evidence-based pathway to achieve precise and individualized treatment for children with epilepsy. PLAIN LANGUAGE SUMMARY: In this article, the pathogenesis and clinical characteristics of epilepsy caused by different types of potassium channel gene variants are reviewed in the light of the latest research literature at home and abroad, with the expectation of providing a certain theoretical basis for the diagnosis and treatment of children with this type of disease.
Collapse
Affiliation(s)
- Tong Zhao
- Hebei Children's HospitalShijiazhuangHebeiChina
| | - Le Wang
- Hebei Children's HospitalShijiazhuangHebeiChina
| | - Fang Chen
- Hebei Children's HospitalShijiazhuangHebeiChina
| |
Collapse
|
10
|
Everson TM, Sehgal N, Barr DB, Panuwet P, Yakimavets V, Perez C, Shankar K, Eick SM, Pearson KJ, Andres A. Placental PFAS concentrations are associated with perturbations of placental DNA methylation at loci with important roles on cardiometabolic health. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.06.24306905. [PMID: 38766233 PMCID: PMC11100840 DOI: 10.1101/2024.05.06.24306905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The placenta is crucial for fetal development, is affected by PFAS toxicity, and evidence is accumulating that gestational PFAS perturb the epigenetic activity of the placenta. Gestational PFAS exposure is can adversely affect offspring, yet individual and cumulative impacts of PFAS on the placental epigenome remain underexplored. Here, we conducted an epigenome-wide association study (EWAS) to examine the relationships between placental PFAS levels and DNA methylation in a cohort of mother-infant dyads in Arkansas. We measured 17 PFAS in human placental tissues and quantified placental DNA methylation levels via the Illumina EPIC Microarray. We tested for differential DNA methylation with individual PFAS, and with mixtures of multiple PFAS. Our results demonstrated that numerous epigenetic loci were perturbed by PFAS, with PFHxS exhibiting the most abundant effects. Mixture analyses suggested cumulative effects of PFOA and PFOS, while PFHxS may act more independently. We additionally explored whether sex-specific effects may be present and concluded that future large studies should explicitly test for sex-specific effects. The genes that are annotated to our PFAS-associated epigenetic loci are primarily involved in growth processes and cardiometabolic health, while some genes are involved in neurodevelopment. These findings shed light on how prenatal PFAS exposures affect birth outcomes and children's health, emphasizing the importance of understanding PFAS mechanisms in the in-utero environment.
Collapse
Affiliation(s)
- Todd M. Everson
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Neha Sehgal
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Cynthia Perez
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO
| | - Stephanie M. Eick
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Kevin J. Pearson
- Department of Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine
| | - Aline Andres
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
- Arkansas Children’s Nutrition Center, Little Rock, AR
| |
Collapse
|
11
|
Mosca I, Freri E, Ambrosino P, Belperio G, Granata T, Canafoglia L, Ragona F, Solazzi R, Filareto I, Castellotti B, Messina G, Gellera C, DiFrancesco JC, Soldovieri MV, Taglialatela M. Case report: Marked electroclinical improvement by fluoxetine treatment in a patient with KCNT1-related drug-resistant focal epilepsy. Front Cell Neurosci 2024; 18:1367838. [PMID: 38644974 PMCID: PMC11027738 DOI: 10.3389/fncel.2024.1367838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
Variants in KCNT1 are associated with a wide spectrum of epileptic phenotypes, including epilepsy of infancy with migrating focal seizures (EIMFS), non-EIMFS developmental and epileptic encephalopathies, autosomal dominant or sporadic sleep-related hypermotor epilepsy, and focal epilepsy. Here, we describe a girl affected by drug-resistant focal seizures, developmental delay and behavior disorders, caused by a novel, de novo heterozygous missense KCNT1 variant (c.2809A > G, p.S937G). Functional characterization in transiently transfected Chinese Hamster Ovary (CHO) cells revealed a strong gain-of-function effect determined by the KCNT1 p.S937G variant compared to wild-type, consisting in an increased maximal current density and a hyperpolarizing shift in current activation threshold. Exposure to the antidepressant drug fluoxetine inhibited currents expressed by both wild-type and mutant KCNT1 channels. Treatment of the proband with fluoxetine led to a prolonged electroclinical amelioration, with disappearance of seizures and better EEG background organization, together with an improvement in behavior and mood. Altogether, these results suggest that, based on the proband's genetic and functional characteristics, the antidepressant drug fluoxetine may be repurposed for the treatment of focal epilepsy caused by gain-of-function variants in KCNT1. Further studies are needed to verify whether this approach could be also applied to other phenotypes of the KCNT1-related epilepsies spectrum.
Collapse
Affiliation(s)
- Ilaria Mosca
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Campobasso, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Paolo Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Giorgio Belperio
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Laura Canafoglia
- Department of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Roberta Solazzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Ilaria Filareto
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Giuliana Messina
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | | | - Maria Virginia Soldovieri
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Campobasso, Italy
| | | |
Collapse
|
12
|
Soldovieri MV, Ambrosino P, Mosca I, Servettini I, Pietrunti F, Belperio G, Syrbe S, Taglialatela M, Lemke JR. De novo variants in KCNA3 cause developmental and epileptic encephalopathy. Ann Neurol 2024; 95:365-376. [PMID: 37964487 DOI: 10.1002/ana.26826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVE Variants in several potassium channel genes, including KCNA1 and KCNA2, cause Developmental and Epileptic Encephalopathies (DEEs). We investigated whether variants in KCNA3, another mammalian homologue of the Drosophila shaker family and encoding for Kv1.3 subunits, can cause DEE. METHODS Genetic analysis of study individuals was performed by routine exome or genome sequencing, usually of parent-offspring trios. Phenotyping was performed via a standard clinical questionnaire. Currents from wild-type and/or mutant Kv1.3 subunits were investigated by whole-cell patch-clamp upon their heterologous expression. RESULTS Fourteen individuals, each carrying a de novo heterozygous missense variant in KCNA3, were identified. Most (12/14; 86%) had DEE with marked speech delay with or without motor delay, intellectual disability, epilepsy, and autism spectrum disorder. Functional analysis of Kv1.3 channels carrying each variant revealed heterogeneous functional changes, ranging from "pure" loss-of-function (LoF) effects due to faster inactivation kinetics, depolarized voltage-dependence of activation, slower activation kinetics, increased current inactivation, reduced or absent currents with or without dominant-negative effects, to "mixed" loss- and gain-of-function (GoF) effects. Compared to controls, Kv1.3 currents in lymphoblasts from 1 of the proband displayed functional changes similar to those observed upon heterologous expression of channels carrying the same variant. The antidepressant drug fluoxetine inhibited with similar potency the currents from wild-type and 1 of the Kv1.3 GoF variant. INTERPRETATION We describe a novel association of de novo missense variants in KCNA3 with a human DEE, and provide evidence that fluoxetine might represent a potential targeted treatment for individuals carrying variants with significant GoF effects. ANN NEUROL 2024;95:365-376.
Collapse
Affiliation(s)
| | - Paolo Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Ilaria Mosca
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy
| | - Ilenio Servettini
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy
| | - Francesca Pietrunti
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giorgio Belperio
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Steffen Syrbe
- Center for Pediatrics and Adolescent Medicine, Division of Pediatric Epileptology, University Hospital Heidelberg, Heidelberg, Germany
| | - Maurizio Taglialatela
- Department of Neuroscience, Division of Pharmacology, University of Naples "Federico II", Naples, Italy
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
13
|
Hebbar M, Al-Taweel N, Gill I, Boelman C, Dean RA, Goodchild SJ, Mezeyova J, Shuart NG, Johnson JP, Lee J, Michoulas A, Huh LL, Armstrong L, Connolly MB, Demos MK. Expanding the genotype-phenotype spectrum in SCN8A-related disorders. BMC Neurol 2024; 24:31. [PMID: 38233770 PMCID: PMC10792783 DOI: 10.1186/s12883-023-03478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND SCN8A-related disorders are a group of variable conditions caused by pathogenic variations in SCN8A. Online Mendelian Inheritance in Man (OMIM) terms them as developmental and epileptic encephalopathy 13, benign familial infantile seizures 5 or cognitive impairment with or without cerebellar ataxia. METHODS In this study, we describe clinical and genetic results on eight individuals from six families with SCN8A pathogenic variants identified via exome sequencing. RESULTS Clinical findings ranged from normal development with well-controlled epilepsy to significant developmental delay with treatment-resistant epilepsy. Three novel and three reported variants were observed in SCN8A. Electrophysiological analysis in transfected cells revealed a loss-of-function variant in Patient 4. CONCLUSIONS This work expands the clinical and genotypic spectrum of SCN8A-related disorders and provides electrophysiological results on a novel loss-of-function SCN8A variant.
Collapse
Affiliation(s)
- Malavika Hebbar
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nawaf Al-Taweel
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Inderpal Gill
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Cyrus Boelman
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Richard A Dean
- Xenon Pharmaceuticals, 200-3650 Gilmore Way, Burnaby, BC, V5G 4W8, Canada
| | - Samuel J Goodchild
- Xenon Pharmaceuticals, 200-3650 Gilmore Way, Burnaby, BC, V5G 4W8, Canada
| | - Janette Mezeyova
- Xenon Pharmaceuticals, 200-3650 Gilmore Way, Burnaby, BC, V5G 4W8, Canada
| | | | - J P Johnson
- Xenon Pharmaceuticals, 200-3650 Gilmore Way, Burnaby, BC, V5G 4W8, Canada
| | - James Lee
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Aspasia Michoulas
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Linda L Huh
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Linlea Armstrong
- Department of Medical Genetics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mary B Connolly
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michelle K Demos
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Sullivan JA, Spillmann RC, Schoch K, Walley N, Alkelai A, Stong N, Shea PR, Petrovski S, Jobanputra V, McConkie-Rosell A, Shashi V. The best of both worlds: Blending cutting-edge research with clinical processes for a productive exome clinic. Clin Genet 2024; 105:62-71. [PMID: 37853563 DOI: 10.1111/cge.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Genomic medicine has been transformed by next-generation sequencing (NGS), inclusive of exome sequencing (ES) and genome sequencing (GS). Currently, ES is offered widely in clinical settings, with a less prevalent alternative model consisting of hybrid programs that incorporate research ES along with clinical patient workflows. We were among the earliest to implement a hybrid ES clinic, have provided diagnoses to 45% of probands, and have identified several novel candidate genes. Our program is enabled by a cost-effective investment by the health system and is unique in encompassing all the processes that have been variably included in other hybrid/clinical programs. These include careful patient selection, utilization of a phenotype-agnostic bioinformatics pipeline followed by manual curation of variants and phenotype integration by clinicians, close collaborations between the clinicians and the bioinformatician, pursuit of interesting variants, communication of results to patients in categories that are predicated upon the certainty of a diagnosis, and tracking changes in results over time and the underlying mechanisms for such changes. Due to its effectiveness, scalability to GS and its resource efficiency, specific elements of our paradigm can be incorporated into existing clinical settings, or the entire hybrid model can be implemented within health systems that have genomic medicine programs, to provide NGS in a scientifically rigorous, yet pragmatic setting.
Collapse
Affiliation(s)
- Jennifer A Sullivan
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Rebecca C Spillmann
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Kelly Schoch
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Nicole Walley
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Predictive Sciences, Bristol Myers Squibb, Summit, New Jersey, USA
| | - Patrick R Shea
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Genomics and Bioinformatics Analysis Resource, Columbia University, New York, New York, USA
| | - Slavè Petrovski
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Allyn McConkie-Rosell
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
15
|
Bayat A, Iavarone S, Miceli F, Jakobsen AV, Johannesen KM, Nikanorova M, Ploski R, Szymanska K, Flamini R, Cooper EC, Weckhuysen S, Taglialatela M, Møller RS. Phenotypic and functional assessment of two novel KCNQ2 gain-of-function variants Y141N and G239S and effects of amitriptyline treatment. Neurotherapeutics 2024; 21:e00296. [PMID: 38241158 PMCID: PMC10903081 DOI: 10.1016/j.neurot.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 01/21/2024] Open
Abstract
While loss-of-function (LoF) variants in KCNQ2 are associated with a spectrum of neonatal-onset epilepsies, gain-of-function (GoF) variants cause a more complex phenotype that precludes neonatal-onset epilepsy. In the present work, the clinical features of three patients carrying a de novo KCNQ2 Y141N (n = 1) or G239S variant (n = 2) respectively, are described. All three patients had a mild global developmental delay, with prominent language deficits, and strong activation of interictal epileptic activity during sleep. Epileptic seizures were not reported. The absence of neonatal seizures suggested a GoF effect and prompted functional testing of the variants. In vitro whole-cell patch-clamp electrophysiological experiments in Chinese Hamster Ovary cells transiently-transfected with the cDNAs encoding Kv7.2 subunits carrying the Y141N or G239S variants in homomeric or heteromeric configurations with Kv7.2 subunits, revealed that currents from channels incorporating mutant subunits displayed increased current densities and hyperpolarizing shifts of about 10 mV in activation gating; both these functional features are consistent with an in vitro GoF phenotype. The antidepressant drug amitriptyline induced a reversible and concentration-dependent inhibition of current carried by Kv7.2 Y141N and G239S mutant channels. Based on in vitro results, amitriptyline was prescribed in one patient (G239S), prompting a significant improvement in motor, verbal, social, sensory and adaptive behavior skillsduring the two-year-treatment period. Thus, our results suggest that KCNQ2 GoF variants Y141N and G239S cause a mild DD with prominent language deficits in the absence of neonatal seizures and that treatment with the Kv7 channel blocker amitriptyline might represent a potential targeted treatment for patients with KCNQ2 GoF variants.
Collapse
Affiliation(s)
- Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Filadelfia, Dianalund, Denmark; Department for Regional Health Research, University of Southern Denmark, Odense, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Stefano Iavarone
- Section of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| | - Francesco Miceli
- Section of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| | - Anne V Jakobsen
- Department of Pediatrics, Danish Epilepsy Center, Filadelfia, Dianalund, Denmark
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Filadelfia, Dianalund, Denmark; Department of Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Marina Nikanorova
- Department of Pediatrics, Danish Epilepsy Center, Filadelfia, Dianalund, Denmark
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Krystyna Szymanska
- Department of Pediatric Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | - Edward C Cooper
- Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston TX, USA
| | - Sarah Weckhuysen
- Applied and Translational Genomics Group, VIB-Center for Molecular Neurology, VIB, University of Antwerp, Antwerp, Belgium; Neurology Department, University Hospital Antwerp, Antwerp, Belgium; Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Maurizio Taglialatela
- Section of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Filadelfia, Dianalund, Denmark; Department for Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
16
|
Soto-Perez J, Cleary CM, Sobrinho CR, Mulkey SB, Carroll JL, Tzingounis AV, Mulkey DK. Phox2b-expressing neurons contribute to breathing problems in Kcnq2 loss- and gain-of-function encephalopathy models. Nat Commun 2023; 14:8059. [PMID: 38052789 PMCID: PMC10698053 DOI: 10.1038/s41467-023-43834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Loss- and gain-of-function variants in the gene encoding KCNQ2 channels are a common cause of developmental and epileptic encephalopathy, a condition characterized by seizures, developmental delays, breathing problems, and early mortality. To understand how KCNQ2 dysfunction impacts behavior in a mouse model, we focus on the control of breathing by neurons expressing the transcription factor Phox2b which includes respiratory neurons in the ventral parafacial region. We find Phox2b-expressing ventral parafacial neurons express Kcnq2 in the absence of other Kcnq isoforms, thus clarifying why disruption of Kcnq2 but not other channel isoforms results in breathing problems. We also find that Kcnq2 deletion or expression of a recurrent gain-of-function variant R201C in Phox2b-expressing neurons increases baseline breathing or decreases the central chemoreflex, respectively, in mice during the light/inactive state. These results uncover mechanisms underlying breathing abnormalities in KCNQ2 encephalopathy and highlight an unappreciated vulnerability of Phox2b-expressing ventral parafacial neurons to KCNQ2 pathogenic variants.
Collapse
Affiliation(s)
- J Soto-Perez
- Dept of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - C M Cleary
- Dept of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - C R Sobrinho
- Dept of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - S B Mulkey
- Prenatal Pediatrics Institute, Children's National Hospital, Departments of Neurology and Pediatrics, The George Washington Univ. School of Medicine and Health Sciences, Washington, DC, USA
| | - J L Carroll
- Dept. of Pediatrics, Univ. Arkansas for Medical Sciences, Little Rock, AR, USA
| | - A V Tzingounis
- Dept of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
| | - D K Mulkey
- Dept of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
17
|
Shorthouse D, Zhuang L, Rahrmann EP, Kosmidou C, Wickham Rahrmann K, Hall M, Greenwood BM, Devonshire G, Gilbertson RJ, Fitzgerald RC, Hall BA. KCNQ potassium channels modulate Wnt activity in gastro-oesophageal adenocarcinomas. Life Sci Alliance 2023; 6:e202302124. [PMID: 37748809 PMCID: PMC10520261 DOI: 10.26508/lsa.202302124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Voltage-sensitive potassium channels play an important role in controlling membrane potential and ionic homeostasis in the gut and have been implicated in gastrointestinal (GI) cancers. Through large-scale analysis of 897 patients with gastro-oesophageal adenocarcinomas (GOAs) coupled with in vitro models, we find KCNQ family genes are mutated in ∼30% of patients, and play therapeutically targetable roles in GOA cancer growth. KCNQ1 and KCNQ3 mediate the WNT pathway and MYC to increase proliferation through resultant effects on cadherin junctions. This also highlights novel roles of KCNQ3 in non-excitable tissues. We also discover that activity of KCNQ3 sensitises cancer cells to existing potassium channel inhibitors and that inhibition of KCNQ activity reduces proliferation of GOA cancer cells. These findings reveal a novel and exploitable role of potassium channels in the advancement of human cancer, and highlight that supplemental treatments for GOAs may exist through KCNQ inhibitors.
Collapse
Affiliation(s)
- David Shorthouse
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, London, UK
| | - Lizhe Zhuang
- Institute for Early Detection, CRUK Cambridge Centre, Cambridge, UK
| | - Eric P Rahrmann
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | | | - Michael Hall
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Benedict M Greenwood
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, London, UK
| | - Ginny Devonshire
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Richard J Gilbertson
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | - Benjamin A Hall
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, London, UK
| |
Collapse
|
18
|
Bortolami A, Sesti F. Ion channels in neurodevelopment: lessons from the Integrin-KCNB1 channel complex. Neural Regen Res 2023; 18:2365-2369. [PMID: 37282454 PMCID: PMC10360111 DOI: 10.4103/1673-5374.371347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Ion channels modulate cellular excitability by regulating ionic fluxes across biological membranes. Pathogenic mutations in ion channel genes give rise to epileptic disorders that are among the most frequent neurological diseases affecting millions of individuals worldwide. Epilepsies are triggered by an imbalance between excitatory and inhibitory conductances. However, pathogenic mutations in the same allele can give rise to loss-of-function and/or gain-of-function variants, all able to trigger epilepsy. Furthermore, certain alleles are associated with brain malformations even in the absence of a clear electrical phenotype. This body of evidence argues that the underlying epileptogenic mechanisms of ion channels are more diverse than originally thought. Studies focusing on ion channels in prenatal cortical development have shed light on this apparent paradox. The picture that emerges is that ion channels play crucial roles in landmark neurodevelopmental processes, including neuronal migration, neurite outgrowth, and synapse formation. Thus, pathogenic channel mutants can not only cause epileptic disorders by altering excitability, but further, by inducing morphological and synaptic abnormalities that are initiated during neocortex formation and may persist into the adult brain.
Collapse
Affiliation(s)
- Alessandro Bortolami
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, West Piscataway, NJ, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, West Piscataway, NJ, USA
| |
Collapse
|
19
|
Zahra A, Liu R, Wang J, Wu J. Identifying the mechanism of action of the Kv7 channel opener, retigabine in the treatment of epilepsy. Neurol Sci 2023; 44:3819-3825. [PMID: 37442907 DOI: 10.1007/s10072-023-06955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Epilepsy is characterized by recurrent epileptic seizures caused by high levels of neuronal excitability in the brain. Voltage-sensitive K+ channels (Kv) of the Kv7 (KCNQ) family encoded by the KCNQ gene are involved in a wide range of cellular processes, i.e., KCNQ2 and KCNQ3 channels mediate M-currents to inhibit neuronal excitability and reduce transmitter release throughout the nervous system. Thus, as a positive allosteric modulator (or opener) of KCNQ channels, retigabine has been the only clinically approved anti-seizure medication that acts on the KCNQ channels. This review discusses the biochemical mechanisms about how retigabine acts on Kv7 channels, significance in neuronal pathophysiology, preclinical efficacy, and clinical stage of development. Additional efforts are being made to emphasize the possible benefits and drawbacks of retigabine compared to currently available medications for treatment-resistant epilepsy.
Collapse
Affiliation(s)
- Aqeela Zahra
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Loushi Rd, Wuhan, 430070, China
- Department of Zoology, University of Sialkot, Sialkot, 51310, Pakistan
| | - Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- National Clinical Research Center for Neurological Disease, Beijing, 100070, China
| | - Jingjing Wang
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Loushi Rd, Wuhan, 430070, China
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Loushi Rd, Wuhan, 430070, China.
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China.
- National Clinical Research Center for Neurological Disease, Beijing, 100070, China.
| |
Collapse
|
20
|
López-Zamora M, Cano-Villagrasa A, Cortés-Ramos A, Porcar-Gozalbo N. The Influence of Sleep Disorders on Neurobiological Structures and Cognitive Processes in Pediatric Population with ASD and Epilepsy: A Systematic Review. Eur J Investig Health Psychol Educ 2023; 13:2358-2372. [PMID: 37998056 PMCID: PMC10670909 DOI: 10.3390/ejihpe13110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) and epilepsy are increasingly prevalent comorbidities in our society. These two disorders are often accompanied by other comorbidities, such as sleep disorders, significantly impacting the quality of life of individuals with ASD and epilepsy. To date, clinical approaches have primarily been descriptive in nature. Therefore, this study aimed to analyze the relationship between ASD, epilepsy, and sleep disorders, exploring neurobiological dysfunctions and cognitive alterations. A total of 22 scientific articles were selected using a systematic literature review following the criteria established using the PRISMA model. The selected articles were gathered from major databases: Medline, PubMed, PsycINFO, Google Scholar, and Web of Science. Inclusion criteria specified that study participants had an official diagnosis of ASD, the article precisely described the evaluation parameters used in the study participants, and individual characteristics of the sleep disorders of the study participants were specified. The results indicate, firstly, that the primary cause of sleep disorders in this population is directly linked to abnormal serotonin behaviors. Secondly, significant alterations in memory, attention, and hyperactivity were observed. In conclusion, sleep disorders negatively impact the quality of life and neurocognitive development of the pediatric population with ASD and epilepsy.
Collapse
Affiliation(s)
- Miguel López-Zamora
- Department of Developmental and Educational Psychology, University of Malaga, 29010 Malaga, Spain;
| | - Alejandro Cano-Villagrasa
- Faculty of Health Sciences, Universidad Internacional de Valencia, 46002 Valencia, Spain;
- Health Sciences PhD Program, Universidad Católica de Murcia UCAM, Campus de los Jerónimos n°135, Guadalupe, 30107 Murcia, Spain
| | - Antonio Cortés-Ramos
- Department of Developmental and Educational Psychology, Faculty of Educational and Sports Sciences of Melilla, University of Granada, 18071 Granada, Spain;
| | - Nadia Porcar-Gozalbo
- Faculty of Health Sciences, Universidad Internacional de Valencia, 46002 Valencia, Spain;
| |
Collapse
|
21
|
Varghese N, Moscoso B, Chavez A, Springer K, Ortiz E, Soh H, Santaniello S, Maheshwari A, Tzingounis AV. KCNQ2/3 Gain-of-Function Variants and Cell Excitability: Differential Effects in CA1 versus L2/3 Pyramidal Neurons. J Neurosci 2023; 43:6479-6494. [PMID: 37607817 PMCID: PMC10513074 DOI: 10.1523/jneurosci.0980-23.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Gain-of-function (GOF) pathogenic variants in the potassium channels KCNQ2 and KCNQ3 lead to hyperexcitability disorders such as epilepsy and autism spectrum disorders. However, the underlying cellular mechanisms of how these variants impair forebrain function are unclear. Here, we show that the R201C variant in KCNQ2 has opposite effects on the excitability of two types of mouse pyramidal neurons of either sex, causing hyperexcitability in layer 2/3 (L2/3) pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. Similarly, the homologous R231C variant in KCNQ3 leads to hyperexcitability in L2/3 pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. However, the effects of KCNQ3 gain-of-function on excitability are specific to superficial CA1 pyramidal neurons. These findings reveal a new level of complexity in the function of KCNQ2 and KCNQ3 channels in the forebrain and provide a framework for understanding the effects of gain-of-function variants and potassium channels in the brain.SIGNIFICANCE STATEMENT KCNQ2/3 gain-of-function (GOF) variants lead to severe forms of neurodevelopmental disorders, but the mechanisms by which these channels affect neuronal activity are poorly understood. In this study, using a series of transgenic mice we demonstrate that the same KCNQ2/3 GOF variants can lead to either hyperexcitability or hypoexcitability in different types of pyramidal neurons [CA1 vs layer (L)2/3]. Additionally, we show that expression of the recurrent KCNQ2 GOF variant R201C in forebrain pyramidal neurons could lead to seizures and SUDEP. Our data suggest that the effects of KCNQ2/3 GOF variants depend on specific cell types and brain regions, possibly accounting for the diverse range of phenotypes observed in individuals with KCNQ2/3 GOF variants.
Collapse
Affiliation(s)
- Nissi Varghese
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Bruno Moscoso
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | - Ana Chavez
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | - Kristen Springer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Erika Ortiz
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | - Heun Soh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Sabato Santaniello
- Department of Biomedical Engineering and Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Atul Maheshwari
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | - Anastasios V Tzingounis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
22
|
Hebbar M, Al-Taweel N, Gill I, Boelman C, Dean RA, Goodchild SJ, Mezeyova J, Shuart NG, Johnson JP, Lee J, Michoulas A, Huh LL, Armstrong L, Connolly MB, Demos MK. Expanding the genotype-phenotype spectrum in SCN8A-related disorders. RESEARCH SQUARE 2023:rs.3.rs-3221902. [PMID: 37609289 PMCID: PMC10441468 DOI: 10.21203/rs.3.rs-3221902/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background SCN8A-related disorders are a group of variable conditions caused by pathogenic variations in SCN8A. Online Mendelian Inheritance in Man (OMIM) terms them as developmental and epileptic encephalopathy 13, benign familial infantile seizures 5 or cognitive impairment with or without cerebellar ataxia. Methods In this study, we describe clinical and genetic results on eight individuals from six families with SCN8A pathogenic variants identified via exome sequencing. Results Clinical findings ranged from normal development with well-controlled epilepsy to significant developmental delay with treatment-resistant epilepsy. Three novel and three reported variants were observed in SCN8A. Electrophysiological analysis in transfected cells revealed a loss-of-function variant in Patient 4. Conclusions This work expands the clinical and genotypic spectrum of SCN8A-related disorders and provides electrophysiological results on a novel loss-of-function SCN8A variant.
Collapse
Affiliation(s)
- Malavika Hebbar
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver BC
| | - Nawaf Al-Taweel
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver BC
| | - Inderpal Gill
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver BC
| | - Cyrus Boelman
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver BC
| | - Richard A Dean
- Xenon Pharmaceuticals, 200-3650 Gilmore Way, Burnaby, BC V5G 4W8
| | | | - Janette Mezeyova
- Xenon Pharmaceuticals, 200-3650 Gilmore Way, Burnaby, BC V5G 4W8
| | | | - J P Johnson
- Xenon Pharmaceuticals, 200-3650 Gilmore Way, Burnaby, BC V5G 4W8
| | - James Lee
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver BC
| | - Aspasia Michoulas
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver BC
| | - Linda L Huh
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver BC
| | - Linlea Armstrong
- Department of Medical Genetics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver BC
| | - Mary B Connolly
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver BC
| | - Michelle K Demos
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver BC
| |
Collapse
|
23
|
Millevert C, Weckhuysen S. ILAE Genetic Literacy Series: Self-limited familial epilepsy syndromes with onset in neonatal age and infancy. Epileptic Disord 2023; 25:445-453. [PMID: 36939707 DOI: 10.1002/epd2.20026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 03/21/2023]
Abstract
The self-limited (familial) epilepsies with onset in neonates or infants, formerly called benign familial neonatal and/or infantile epilepsies, are autosomal dominant disorders characterized by neonatal- or infantile-onset focal motor seizures and the absence of neurodevelopmental complications. Seizures tend to remit during infancy or early childhood and are therefore called "self-limited". A positive family history for epilepsy usually suggests the genetic etiology, but incomplete penetrance and de novo inheritance occur. Here, we review the phenotypic spectrum and the genetic architecture of self-limited (familial) epilepsies with onset in neonates or infants. Using an illustrative case study, we describe important clues in recognition of these syndromes, diagnostic steps including genetic testing, management, and genetic counseling.
Collapse
Affiliation(s)
- Charissa Millevert
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Neurology, University Hospital, Antwerp, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Neurology, University Hospital, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
24
|
Ye J, Tang S, Miao P, Gong Z, Shu Q, Feng J, Li Y. Clinical analysis and functional characterization of KCNQ2-related developmental and epileptic encephalopathy. Front Mol Neurosci 2023; 16:1205265. [PMID: 37497102 PMCID: PMC10366601 DOI: 10.3389/fnmol.2023.1205265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Background Developmental and epileptic encephalopathy (DEE) is a condition characterized by severe seizures and a range of developmental impairments. Pathogenic variants in KCNQ2, encoding for potassium channel subunit, cause KCNQ2-related DEE. This study aimed to examine the relationships between genotype and phenotype in KCNQ2-related DEE. Methods In total, 12 patients were enrolled in this study for genetic testing, clinical analysis, and developmental evaluation. Pathogenic variants of KCNQ2 were characterized through a whole-cell electrophysiological recording expressed in Chinese hamster ovary (CHO) cells. The expression levels of the KCNQ2 subunit and its localization at the plasma membrane were determined using Western blot analysis. Results Seizures were detected in all patients. All DEE patients showed evidence of developmental delay. In total, 11 de novo KCNQ2 variants were identified, including 10 missense variants from DEE patients and one truncating variant from a patient with self-limited neonatal epilepsy (SeLNE). All variants were found to be loss of function through analysis of M-currents using patch-clamp recordings. The functional impact of variants on M-current in heteromericKCNQ2/3 channels may be associated with the severity of developmental disorders in DEE. The variants with dominant-negative effects in heteromeric channels may be responsible for the profound developmental phenotype. Conclusion The mechanism underlying KCNQ2-related DEE involves a reduction of the M-current through dominant-negative effects, and the severity of developmental disorders in DEE may be predicted by the impact of variants on the M-current of heteromericKCNQ2/3 channels.
Collapse
Affiliation(s)
- Jia Ye
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyang Tang
- Pediatric Department, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pu Miao
- Pediatric Department, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhefeng Gong
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Pediatric Department, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Feng
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuezhou Li
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Oh H, Lee S, Oh Y, Kim S, Kim YS, Yang Y, Choi W, Yoo YE, Cho H, Lee S, Yang E, Koh W, Won W, Kim R, Lee CJ, Kim H, Kang H, Kim JY, Ku T, Paik SB, Kim E. Kv7/KCNQ potassium channels in cortical hyperexcitability and juvenile seizure-related death in Ank2-mutant mice. Nat Commun 2023; 14:3547. [PMID: 37321992 PMCID: PMC10272139 DOI: 10.1038/s41467-023-39203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Autism spectrum disorders (ASD) represent neurodevelopmental disorders characterized by social deficits, repetitive behaviors, and various comorbidities, including epilepsy. ANK2, which encodes a neuronal scaffolding protein, is frequently mutated in ASD, but its in vivo functions and disease-related mechanisms are largely unknown. Here, we report that mice with Ank2 knockout restricted to cortical and hippocampal excitatory neurons (Ank2-cKO mice) show ASD-related behavioral abnormalities and juvenile seizure-related death. Ank2-cKO cortical neurons show abnormally increased excitability and firing rate. These changes accompanied decreases in the total level and function of the Kv7.2/KCNQ2 and Kv7.3/KCNQ3 potassium channels and the density of these channels in the enlengthened axon initial segment. Importantly, the Kv7 agonist, retigabine, rescued neuronal excitability, juvenile seizure-related death, and hyperactivity in Ank2-cKO mice. These results suggest that Ank2 regulates neuronal excitability by regulating the length of and Kv7 density in the AIS and that Kv7 channelopathy is involved in Ank2-related brain dysfunctions.
Collapse
Affiliation(s)
- Hyoseon Oh
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yusang Oh
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Korea
| | - Seongbin Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Young Seo Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
| | - Yeji Yang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - Woochul Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Korea
| | - Ye-Eun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Heejin Cho
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Seungjoon Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Esther Yang
- Department of Anatomy and Brain Korea 21 Graduate Program, Biomedical Science, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, IBS, Daejeon, 34126, Korea
| | - Woojin Won
- Center for Cognition and Sociality, IBS, Daejeon, 34126, Korea
| | - Ryunhee Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - C Justin Lee
- Center for Cognition and Sociality, IBS, Daejeon, 34126, Korea
| | - Hyun Kim
- Department of Anatomy and Brain Korea 21 Graduate Program, Biomedical Science, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - Taeyun Ku
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
26
|
Paulhus K, Glasscock E. Novel Genetic Variants Expand the Functional, Molecular, and Pathological Diversity of KCNA1 Channelopathy. Int J Mol Sci 2023; 24:8826. [PMID: 37240170 PMCID: PMC10219020 DOI: 10.3390/ijms24108826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
The KCNA1 gene encodes Kv1.1 voltage-gated potassium channel α subunits, which are crucial for maintaining healthy neuronal firing and preventing hyperexcitability. Mutations in the KCNA1 gene can cause several neurological diseases and symptoms, such as episodic ataxia type 1 (EA1) and epilepsy, which may occur alone or in combination, making it challenging to establish simple genotype-phenotype correlations. Previous analyses of human KCNA1 variants have shown that epilepsy-linked mutations tend to cluster in regions critical for the channel's pore, whereas EA1-associated mutations are evenly distributed across the length of the protein. In this review, we examine 17 recently discovered pathogenic or likely pathogenic KCNA1 variants to gain new insights into the molecular genetic basis of KCNA1 channelopathy. We provide the first systematic breakdown of disease rates for KCNA1 variants in different protein domains, uncovering potential location biases that influence genotype-phenotype correlations. Our examination of the new mutations strengthens the proposed link between the pore region and epilepsy and reveals new connections between epilepsy-related variants, genetic modifiers, and respiratory dysfunction. Additionally, the new variants include the first two gain-of-function mutations ever discovered for KCNA1, the first frameshift mutation, and the first mutations located in the cytoplasmic N-terminal domain, broadening the functional and molecular scope of KCNA1 channelopathy. Moreover, the recently identified variants highlight emerging links between KCNA1 and musculoskeletal abnormalities and nystagmus, conditions not typically associated with KCNA1. These findings improve our understanding of KCNA1 channelopathy and promise to enhance personalized diagnosis and treatment for individuals with KCNA1-linked disorders.
Collapse
Affiliation(s)
| | - Edward Glasscock
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA;
| |
Collapse
|
27
|
Lv Y, Qin Y, Wang J, Tian G, Wang W, Cao C, Zhang Y. Identifying altered developmental pathways in human globoid cell leukodystrophy iPSCs-derived NSCs using transcriptome profiling. BMC Genomics 2023; 24:210. [PMID: 37076788 PMCID: PMC10116706 DOI: 10.1186/s12864-023-09285-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Globoid cell leukodystrophy (GLD) is a devastating neurodegenerative disease characterized by widespread demyelination caused by galactocerebrosidase defects. Changes in GLD pathogenesis occurring at the molecular level have been poorly studied in human-derived neural cells. Patient-derived induced pluripotent stem cells (iPSCs) are a novel disease model for studying disease mechanisms and allow the generation of patient-derived neuronal cells in a dish. RESULTS In this study, we identified gene-expression changes in iPSCs and iPSC-derived neural stem cells (NSCs) from a patient with GLD (K-iPSCs/NSCs) and normal control (AF-iPSCs/NSCs), in order to investigate the potential mechanism underlying GLD pathogenesis. We identified 194 (K-iPSCs vs. AF-iPSCs) and 702 (K-NSCs vs. AF-NSCs) significantly dysregulated mRNAs when comparing the indicated groups. We also identified dozens of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway terms that were enriched for the differentially expressed genes. Among them, 25 differentially expressed genes identified by RNA-sequencing analysis were validated using real-time quantitative polymerase chain reaction analysis. Dozens of pathways involved in neuroactive ligand-receptor interactions, synaptic vesicle cycle signaling, serotonergic synapse signaling, phosphatidylinositol-protein kinase B signaling, and cyclic AMP signaling were identified as potential contributors to GLD pathogenesis. CONCLUSIONS Our results correspond to the fact that mutations in the galactosylceramidase gene may disrupt the identified signaling pathways during neural development, suggesting that alterations in signaling pathways contribute to GLD pathogenesis. At the same time, our results demonstrates that the model based on K-iPSCs is a novel tool that can be used to study the underlying molecular basis of GLD.
Collapse
Affiliation(s)
- Yafeng Lv
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, 443000, Hubei, China
| | - Yu Qin
- The People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, 443000, Hubei, China
| | - Jing Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, 443000, Hubei, China
| | - Guoshuai Tian
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Wei Wang
- China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Chunyu Cao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, 443000, Hubei, China.
| | - Ye Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
28
|
Han Q, Zhang C, Guo T, Tian Y, Song W, Lei J, Li Q, Wang A, Zhang M, Bai S, Yan X. Hydrogel Nanoarchitectonics of a Flexible and Self-Adhesive Electrode for Long-Term Wireless Electroencephalogram Recording and High-Accuracy Sustained Attention Evaluation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209606. [PMID: 36620938 DOI: 10.1002/adma.202209606] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrogels are ideal building blocks to fabricate the next generation of electrodes for acquiring high-quality physiological electrical signals, for example, electroencephalography (EEG). However, collection of EEG signals still suffers from electrode deformation, sweating, extensive body motion and vibration, and environmental interference. Herein, polyvinyl alcohol and polyvinylpyrrolidone are selected to prepare a hydrogel network with tissue-like modulus and excellent flexibility. Additionally, polydopamine nanoparticles, obtained by polydopamine peroxidation, are integrated into the hydrogel to endow them with higher transparency, higher self-adhesion, and lower impedance. Consequently, a multichannel and wirelessly operated hydrogel electrode can establish a conformal and stable interface with tissue and illustrate high channel uniformity, low interfacial contact impedance, low power noise, long-term stability, and a tolerance to sweat and motion. Furthermore, the hydrogel electrode shows the unprecedented ability to classify the recorded high-quality prefrontal EEG signals into seven-category sustained attention with high accuracy (91.5%), having great potential applications in the assessment of human consciousness and in multifunctional diagnoses.
Collapse
Affiliation(s)
- Qingquan Han
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chao Zhang
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Taoming Guo
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Yajie Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Wei Song
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Jiaxin Lei
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Milin Zhang
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
29
|
Müller P, Takacs DS, Hedrich UBS, Coorg R, Masters L, Glinton KE, Dai H, Cokley JA, Riviello JJ, Lerche H, Cooper EC. KCNA1 gain-of-function epileptic encephalopathy treated with 4-aminopyridine. Ann Clin Transl Neurol 2023; 10:656-663. [PMID: 36793218 PMCID: PMC10109319 DOI: 10.1002/acn3.51742] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Precision medicine for Mendelian epilepsy is rapidly developing. We describe an early infant with severely pharmacoresistant multifocal epilepsy. Exome sequencing revealed the de novo variant p.(Leu296Phe) in the gene KCNA1, encoding the voltage-gated K+ channel subunit KV 1.1. So far, loss-of-function variants in KCNA1 have been associated with episodic ataxia type 1 or epilepsy. Functional studies of the mutated subunit in oocytes revealed a gain-of-function caused by a hyperpolarizing shift of voltage dependence. Leu296Phe channels are sensitive to block by 4-aminopyridine. Clinical use of 4-aminopyridine was associated with reduced seizure burden, enabled simplification of co-medication and prevented rehospitalization.
Collapse
Affiliation(s)
- Peter Müller
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, 72076, Germany
| | - Danielle S Takacs
- Division of Neurology and Developmental Neuroscience, Epilepsy and Neurophysiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.,Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Ulrike B S Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, 72076, Germany
| | - Rohini Coorg
- Division of Neurology and Developmental Neuroscience, Epilepsy and Neurophysiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.,Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Laura Masters
- Division of Neurology and Developmental Neuroscience, Epilepsy and Neurophysiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.,Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Kevin E Glinton
- Division of Genetics, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - Jon A Cokley
- Division of Neurology and Developmental Neuroscience, Epilepsy and Neurophysiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - James J Riviello
- Division of Neurology and Developmental Neuroscience, Epilepsy and Neurophysiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.,Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, 72076, Germany
| | - Edward C Cooper
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
30
|
Salpietro V, Galassi Deforie V, Efthymiou S, O'Connor E, Marcé‐Grau A, Maroofian R, Striano P, Zara F, Morrow MM, Reich A, Blevins A, Sala‐Coromina J, Accogli A, Fortuna S, Alesandrini M, Au PYB, Singhal NS, Cogne B, Isidor B, Hanna MG, Macaya A, Kullmann DM, Houlden H, Männikkö R. De novo KCNA6 variants with attenuated K V 1.6 channel deactivation in patients with epilepsy. Epilepsia 2023; 64:443-455. [PMID: 36318112 PMCID: PMC10108282 DOI: 10.1111/epi.17455] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Mutations in the genes encoding neuronal ion channels are a common cause of Mendelian neurological diseases. We sought to identify novel de novo sequence variants in cases with early infantile epileptic phenotypes and neurodevelopmental anomalies. METHODS Following clinical diagnosis, we performed whole exome sequencing of the index cases and their parents. Identified channel variants were expressed in Xenopus oocytes and their functional properties assessed using two-electrode voltage clamp. RESULTS We identified novel de novo variants in KCNA6 in four unrelated individuals variably affected with neurodevelopmental disorders and seizures with onset in the first year of life. Three of the four identified mutations affect the pore-lining S6 α-helix of KV 1.6. A prominent finding of functional characterization in Xenopus oocytes was that the channel variants showed only minor effects on channel activation but slowed channel closure and shifted the voltage dependence of deactivation in a hyperpolarizing direction. Channels with a mutation affecting the S6 helix display dominant effects on channel deactivation when co-expressed with wild-type KV 1.6 or KV 1.1 subunits. SIGNIFICANCE This is the first report of de novo nonsynonymous variants in KCNA6 associated with neurological or any clinical features. Channel variants showed a consistent effect on channel deactivation, slowing the rate of channel closure following normal activation. This specific gain-of-function feature is likely to underlie the neurological phenotype in our patients. Our data highlight KCNA6 as a novel channelopathy gene associated with early infantile epileptic phenotypes and neurodevelopmental anomalies.
Collapse
Affiliation(s)
- Vincenzo Salpietro
- Department of Neuromuscular DiseaseUCL Institute of Neurology, University College LondonLondonUK
- Department of Biotechnological and Applied Clinical Sciences (DISCAB)University of L'AquilaL'AquilaItaly
| | | | - Stephanie Efthymiou
- Department of Neuromuscular DiseaseUCL Institute of Neurology, University College LondonLondonUK
| | - Emer O'Connor
- Department of Neuromuscular DiseaseUCL Institute of Neurology, University College LondonLondonUK
| | - Anna Marcé‐Grau
- Department of Paediatric Neurology, University Hospital Vall d'HebronUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Reza Maroofian
- Department of Neuromuscular DiseaseUCL Institute of Neurology, University College LondonLondonUK
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI)University of Genoa16124 GenoaItaly
- Unit of Pediatric NeurologyIRCCS, Istituto “Giannina Gaslini”Genoa 16123Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI)University of Genoa16124 GenoaItaly
- Medical Genetics UnitIRCCS, Istituto “Giannina Gaslini”Genoa 16123Italy
| | | | | | | | | | - Júlia Sala‐Coromina
- Department of Paediatric Neurology, University Hospital Vall d'HebronUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Andrea Accogli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI)University of Genoa16124 GenoaItaly
- Medical Genetics UnitIRCCS, Istituto “Giannina Gaslini”Genoa 16123Italy
| | | | - Marie Alesandrini
- Neuropediatrics UnitCentre Hospitalier Universitaire NantesNantesFrance
| | - P. Y. Billie Au
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of MedicineUniversity of CalgaryAlbertaCalgaryCanada
| | - Nilika Shah Singhal
- Departments of Neurology and Pediatrics, UCSF Benioff Children's HospitalUniversity of CaliforniaCaliforniaSan FranciscoUSA
| | - Benjamin Cogne
- Centre Hospitalier Universitaire NantesService de Génétique MédicaleNantesFrance
- Université de Nantes, CNRS, INSERML'Institut du ThoraxNantesFrance
| | - Bertrand Isidor
- Centre Hospitalier Universitaire NantesService de Génétique MédicaleNantesFrance
- Université de Nantes, CNRS, INSERML'Institut du ThoraxNantesFrance
| | - Michael G. Hanna
- Department of Neuromuscular DiseaseUCL Institute of Neurology, University College LondonLondonUK
- Queen Square Centre for Neuromuscular DiseasesNational Hospital for Neurology and NeurosurgeryLondonUK
| | - Alfons Macaya
- Department of Paediatric Neurology, University Hospital Vall d'HebronUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Dimitri M. Kullmann
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, University College LondonLondonUK
| | - Henry Houlden
- Department of Neuromuscular DiseaseUCL Institute of Neurology, University College LondonLondonUK
| | - Roope Männikkö
- Department of Neuromuscular DiseaseUCL Institute of Neurology, University College LondonLondonUK
| |
Collapse
|
31
|
Potassium channelopathies associated with epilepsy-related syndromes and directions for therapeutic intervention. Biochem Pharmacol 2023; 208:115413. [PMID: 36646291 DOI: 10.1016/j.bcp.2023.115413] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
A number of mutations to members of several CNS potassium (K) channel families have been identified which result in rare forms of neonatal onset epilepsy, or syndromes of which one prominent characteristic is a form of epilepsy. Benign Familial Neonatal Convulsions or Seizures (BFNC or BFNS), also referred to as Self-Limited Familial Neonatal Epilepsy (SeLNE), results from mutations in 2 members of the KV7 family (KCNQ) of K channels; while generally self-resolving by about 15 weeks of age, these mutations significantly increase the probability of generalized seizure disorders in the adult, in some cases they result in more severe developmental syndromes. Epilepsy of Infancy with Migrating Focal Seizures (EIMSF), or Migrating Partial Seizures of Infancy (MMPSI), is a rare severe form of epilepsy linked primarily to gain of function mutations in a member of the sodium-dependent K channel family, KCNT1 or SLACK. Finally, KCNMA1 channelopathies, including Liang-Wang syndrome (LIWAS), are rare combinations of neurological symptoms including seizure, movement abnormalities, delayed development and intellectual disabilities, with Liang-Wang syndrome an extremely serious polymalformative syndrome with a number of neurological sequelae including epilepsy. These are caused by mutations in the pore-forming subunit of the large-conductance calcium-activated K channel (BK channel) KCNMA1. The identification of these rare but significant channelopathies has resulted in a resurgence of interest in their treatment by direct pharmacological or genetic modulation. We will briefly review the genetics, biophysics and pharmacology of these K channels, their linkage with the 3 syndromes described above, and efforts to more effectively target these syndromes.
Collapse
|
32
|
Touhami R, Foddha H, Alix E, Jalloul A, Mougou-Zerelli S, Saad A, Sanlaville D, Haj Khelil A. Case report: 7p22.3 deletion and 8q24.3 duplication in a patient with epilepsy and psychomotor delay-Does both possibly act to modulate a candidate gene region for the patient's phenotype? Front Genet 2023; 13:1061539. [PMID: 36778913 PMCID: PMC9909830 DOI: 10.3389/fgene.2022.1061539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Psychomotor delay, epilepsy and dysmorphic features are clinical signs which are described in multiple syndromes due to chromosomal imbalances or mutations involving key genes implicated in the stages of Early Embryonic Development. In this context, we report a 10 years old Tunisian patient with these three signs. Our objective is to determine the cause of developmental, behavioral and facial abnormalities in this patient. Methods: We used banding cytogenetics (karyotype) and Array Comparative Genomic Hybridization (Array CGH) to this purpose. Results: The karyotype was in favor of a derivative of chromosome 7 in the patient and Array CGH analysis revealed a loss of genetic material in 7p22.3-p22.1 (4,56 Mb) with a gain at 8q24.23-q24 (9.20 Mb) resulting from maternal 7/8 reciprocal translocation. An in silico analysis of the unbalanced region was carried out and showed that the 7p22.3-p22.1 deletion contains eight genes. Among them, BRAT1 gene, previously described in several neurodevelopmental diseases, may be a candidate gene which absence could be correlated to the patient's phenotype. However, the 8q24.23-q24 duplication could be involved in the phenotype of this patient. Conclusion: In this study, we report for the first time a 7p deletion/8q duplication in a patient with psychomoteur delay, epilepsy and facial dysmorphism. Our study showed that Array CGH still useful for delivering a conclusive genetic diagnosis for patients having neurodevelopmental abnormalities in the era of next-generation sequencing.
Collapse
Affiliation(s)
- Rahma Touhami
- Laboratory of human genome and multifactorial diseases, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia,Department of Cellular and Molecular Biology, Superior Institute of Biotechnology, University of Monastir, Monastir, Tunisia,Laboratory of Cytogenetics, Hôpital Mère-enfant, CHU Lyon, Lyon, France
| | - Hajer Foddha
- Laboratory of human genome and multifactorial diseases, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Eudeline Alix
- Laboratory of Cytogenetics, Hôpital Mère-enfant, CHU Lyon, Lyon, France
| | - Afef Jalloul
- Laboratory of Cytogenetics, Hôpital Mère-enfant, CHU Lyon, Lyon, France
| | - Soumaya Mougou-Zerelli
- Laboratory of Cytogenetics, molecular genetics, and human reproduction biology, CHU Farhat Hached, Sousse, Tunisia
| | - Ali Saad
- Laboratory of Cytogenetics, molecular genetics, and human reproduction biology, CHU Farhat Hached, Sousse, Tunisia
| | - Damien Sanlaville
- Laboratory of Cytogenetics, Hôpital Mère-enfant, CHU Lyon, Lyon, France
| | - Amel Haj Khelil
- Laboratory of human genome and multifactorial diseases, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia,Department of Cellular and Molecular Biology, Superior Institute of Biotechnology, University of Monastir, Monastir, Tunisia,*Correspondence: Amel Haj Khelil,
| |
Collapse
|
33
|
Jia Y, Cheng S, Liu L, Cheng B, Liang C, Ye J, Chu X, Yao Y, Wen Y, Kafle OP, Zhang F. Evaluating the Genetic Effects of Gut Microbiota on the Development of Neuroticism and General Happiness: A Polygenic Score Analysis and Interaction Study Using UK Biobank Data. Genes (Basel) 2023; 14:156. [PMID: 36672898 PMCID: PMC9858947 DOI: 10.3390/genes14010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Limited efforts have been invested in exploring the interaction effects between genetic factors and gut microbiota on neuroticism and general happiness. The polygenic risk scores (PRS) of gut microbiota were calculated from individual-level genotype data of the UK Biobank cohort. Linear regression models were then used to assess the associations between individual PRS of gut microbiota and mental traits and interaction analysis was performed by PLINK2.0. KOBAS-i was used to conduct gene ontology (GO) enrichment analysis of the identified genes. We observed suggestive significant associations between neuroticism and PRS for the genus Bifidobacterium (rank-normal transformation, RNT) (beta = -1.10, P = 4.16 × 10-3) and the genus Desulfovibrio (RNT) (beta = 0.54, P = 7.46 × 10-3). PRS for the genus Bifidobacterium (hurdle binary, HB) (beta = 1.99, P = 5.24 × 10-3) and the genus Clostridium (RNT) (beta = 1.26, P = 9.27 × 10-3) were found to be suggestive positively associated with general happiness. Interaction analysis identified several significant genes that interacted with gut microbiota, such as RORA (rs575949009, beta = -45.00, P = 1.82 × 10-9) for neuroticism and ASTN2 (rs36005728, beta = 19.15, P = 3.37 × 10-8) for general happiness. Our study results support the genetic effects of gut microbiota on the development of neuroticism and general happiness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
34
|
Wiel L, Hampstead JE, Venselaar H, Vissers LE, Brunner HG, Pfundt R, Vriend G, Veltman JA, Gilissen C. De novo mutation hotspots in homologous protein domains identify function-altering mutations in neurodevelopmental disorders. Am J Hum Genet 2023; 110:92-104. [PMID: 36563679 PMCID: PMC9892778 DOI: 10.1016/j.ajhg.2022.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Variant interpretation remains a major challenge in medical genetics. We developed Meta-Domain HotSpot (MDHS) to identify mutational hotspots across homologous protein domains. We applied MDHS to a dataset of 45,221 de novo mutations (DNMs) from 31,058 individuals with neurodevelopmental disorders (NDDs) and identified three significantly enriched missense DNM hotspots in the ion transport protein domain family (PF00520). The 37 unique missense DNMs that drive enrichment affect 25 genes, 19 of which were previously associated with NDDs. 3D protein structure modeling supports the hypothesis of function-altering effects of these mutations. Hotspot genes have a unique expression pattern in tissue, and we used this pattern alongside in silico predictors and population constraint information to identify candidate NDD-associated genes. We also propose a lenient version of our method, which identifies 32 hotspot positions across 16 different protein domains. These positions are enriched for likely pathogenic variation in clinical databases and DNMs in other genetic disorders.
Collapse
Affiliation(s)
- Laurens Wiel
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands,Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Juliet E. Hampstead
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Lisenka E.L.M. Vissers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Han G. Brunner
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Gerrit Vriend
- Baco Institute of Protein Science, Baco, 5201 Mindoro, Philippines
| | - Joris A. Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Christian Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands,Corresponding author
| |
Collapse
|
35
|
Ji Q, Li SJ, Zhao JB, Xiong Y, Du XH, Wang CX, Lu LM, Tan JY, Zhu ZR. Genetic and neural mechanisms of sleep disorders in children with autism spectrum disorder: a review. Front Psychiatry 2023; 14:1079683. [PMID: 37200906 PMCID: PMC10185750 DOI: 10.3389/fpsyt.2023.1079683] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
Background The incidence of sleep disorders in children with autism spectrum disorder (ASD) is very high. Sleep disorders can exacerbate the development of ASD and impose a heavy burden on families and society. The pathological mechanism of sleep disorders in autism is complex, but gene mutations and neural abnormalities may be involved. Methods In this review, we examined literature addressing the genetic and neural mechanisms of sleep disorders in children with ASD. The databases PubMed and Scopus were searched for eligible studies published between 2013 and 2023. Results Prolonged awakenings of children with ASD may be caused by the following processes. Mutations in the MECP2, VGAT and SLC6A1 genes can decrease GABA inhibition on neurons in the locus coeruleus, leading to hyperactivity of noradrenergic neurons and prolonged awakenings in children with ASD. Mutations in the HRH1, HRH2, and HRH3 genes heighten the expression of histamine receptors in the posterior hypothalamus, potentially intensifying histamine's ability to promote arousal. Mutations in the KCNQ3 and PCDH10 genes cause atypical modulation of amygdala impact on orexinergic neurons, potentially causing hyperexcitability of the hypothalamic orexin system. Mutations in the AHI1, ARHGEF10, UBE3A, and SLC6A3 genes affect dopamine synthesis, catabolism, and reuptake processes, which can elevate dopamine concentrations in the midbrain. Secondly, non-rapid eye movement sleep disorder is closely related to the lack of butyric acid, iron deficiency and dysfunction of the thalamic reticular nucleus induced by PTCHD1 gene alterations. Thirdly, mutations in the HTR2A, SLC6A4, MAOA, MAOB, TPH2, VMATs, SHANK3, and CADPS2 genes induce structural and functional abnormalities of the dorsal raphe nucleus (DRN) and amygdala, which may disturb REM sleep. In addition, the decrease in melatonin levels caused by ASMT, MTNR1A, and MTNR1B gene mutations, along with functional abnormalities of basal forebrain cholinergic neurons, may lead to abnormal sleep-wake rhythm transitions. Conclusion Our review revealed that the functional and structural abnormalities of sleep-wake related neural circuits induced by gene mutations are strongly correlated with sleep disorders in children with ASD. Exploring the neural mechanisms of sleep disorders and the underlying genetic pathology in children with ASD is significant for further studies of therapy.
Collapse
Affiliation(s)
- Qi Ji
- Department of Psychology, Army Medical University, Chongqing, China
- College of Basic Medicine, Army Medical University, Chongqing, China
| | - Si-Jia Li
- Department of Psychology, Army Medical University, Chongqing, China
- College of Basic Medicine, Army Medical University, Chongqing, China
| | - Jun-Bo Zhao
- Department of Psychology, Army Medical University, Chongqing, China
- College of Basic Medicine, Army Medical University, Chongqing, China
| | - Yun Xiong
- Department of Psychology, Army Medical University, Chongqing, China
- College of Basic Medicine, Army Medical University, Chongqing, China
| | - Xiao-Hui Du
- Department of Psychology, Army Medical University, Chongqing, China
| | - Chun-Xiang Wang
- Department of Psychology, Army Medical University, Chongqing, China
| | - Li-Ming Lu
- College of Educational Sciences, Chongqing Normal University, Chongqing, China
| | - Jing-Yao Tan
- College of Educational Sciences, Chongqing Normal University, Chongqing, China
| | - Zhi-Ru Zhu
- Department of Psychology, Army Medical University, Chongqing, China
- *Correspondence: Zhi-Ru Zhu,
| |
Collapse
|
36
|
Li Q, Shi Y, Li X, Yang Y, Zhang X, Xu L, Ma Z, Wang J, Fan L, Wu L. Proteomic-Based Approach Reveals the Involvement of Apolipoprotein A-I in Related Phenotypes of Autism Spectrum Disorder in the BTBR Mouse Model. Int J Mol Sci 2022; 23:ijms232315290. [PMID: 36499620 PMCID: PMC9737945 DOI: 10.3390/ijms232315290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. Abnormal lipid metabolism has been suggested to contribute to its pathogenesis. Further exploration of its underlying biochemical mechanisms is needed. In a search for reliable biomarkers for the pathophysiology of ASD, hippocampal tissues from the ASD model BTBR T+ Itpr3tf/J (BTBR) mice and C57BL/6J mice were analyzed, using four-dimensional (4D) label-free proteomic analysis and bioinformatics analysis. Differentially expressed proteins were significantly enriched in lipid metabolic pathways. Among them, apolipoprotein A-I (ApoA-I) is a hub protein and its expression was significantly higher in the BTBR mice. The investigation of protein levels (using Western blotting) also confirmed this observation. Furthermore, expressions of SphK2 and S1P in the ApoA-I pathway both increased. Using the SphK inhibitor (SKI-II), ASD core phenotype and phenotype-related protein levels of P-CREB, P-CaMKII, and GAD1 were improved, as shown via behavioral and molecular biology experiments. Moreover, by using SKI-II, we found proteins related to the development and function of neuron synapses, including ERK, caspase-3, Bax, Bcl-2, CDK5 and KCNQ2 in BTBR mice, whose levels were restored to protein levels comparable to those in the controls. Elucidating the possible mechanism of ApoA-I in ASD-associated phenotypes will provide new ideas for studies on the etiology of ASD.
Collapse
|
37
|
Pitfalls of whole exome sequencing in undefined clinical conditions with a suspected genetic etiology. Genes Genomics 2022; 45:637-655. [PMID: 36454368 DOI: 10.1007/s13258-022-01341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/26/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Whole-Exome Sequencing (WES) is a valuable tool for the molecular diagnosis of patients with a suspected genetic condition. In complex and heterogeneous diseases, the interpretation of WES variants is more challenging given the absence of diagnostic handles and other reported cases with overlapping clinical presentations. OBJECTIVE To describe candidate variants emerging from trio-WES and possibly associated with the clinical phenotype in clinically heterogeneous conditions. METHODS We performed WES in ten patients from eight families, selected because of the lack of a clear clinical diagnosis or suspicion, the presence of multiple clinical signs, and the negative results of traditional genetic tests. RESULTS Although we identified ten candidate variants, reaching the diagnosis of these cases is challenging, given the complexity and the rarity of these syndromes and because affected genes are already associated with known genetic diseases only partially recapitulating patients' phenotypes. However, the identification of these variants could shed light into the definition of new genotype-phenotype correlations. Here, we describe the clinical and molecular data of these cases with the aim of favoring the match with other similar cases and, hopefully, confirm our diagnostic hypotheses. CONCLUSION This study emphasizes the major limitations associated with WES data interpretation, but also highlights its clinical utility in unraveling novel genotype-phenotype correlations in complex and heterogeneous undefined clinical conditions with a suspected genetic etiology.
Collapse
|
38
|
Ehtesham N, Mosallaei M, Beheshtian M, Khoshbakht S, Fadaee M, Vazehan R, Faraji Zonooz M, Karimzadeh P, Kahrizi K, Najmabadi H. Characterizing Genotypes and Phenotypes Associated with Dysfunction of Channel-Encoding Genes in a Cohort of Patients with Intellectual Disability. ARCHIVES OF IRANIAN MEDICINE 2022; 25:788-797. [PMID: 37543906 PMCID: PMC10685845 DOI: 10.34172/aim.2022.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/20/2021] [Indexed: 08/08/2023]
Abstract
BACKGROUND Ion channel dysfunction in the brain can lead to impairment of neuronal membranes and generate several neurological diseases, especially neurodevelopmental disorders. METHODS In this study, we set out to delineate the genotype and phenotype spectrums of 14 Iranian patients from 7 families with intellectual disability (ID) and/or developmental delay (DD) in whom genetic mutations were identified by next-generation sequencing (NGS) in 7 channel-encoding genes: KCNJ10, KCNQ3, KCNK6, CACNA1C, CACNA1G, SCN8A, and GRIN2B. Moreover, the data of 340 previously fully reported ID and/or DD cases with a mutation in any of these seven genes were combined with our patients to clarify the genotype and phenotype spectrum in this group. RESULTS In total, the most common phenotypes in 354 cases with ID/DD in whom mutation in any of these 7 channel-encoding genes was identified were as follows: ID (77.4%), seizure (69.8%), DD (59.8%), behavioral abnormality (29.9%), hypotonia (21.7%), speech disorder (21.5%), gait disturbance (20.9%), and ataxia (20.3%). Electroencephalography abnormality (33.9%) was the major brain imaging abnormality. CONCLUSION The results of this study broaden the molecular spectrum of channel pathogenic variants associated with different clinical presentations in individuals with ID and/or DD.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Meysam Mosallaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahrouz Khoshbakht
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahsa Fadaee
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Raheleh Vazehan
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Parvaneh Karimzadeh
- Department of Pediatric Neurology, School of Medicine, Pediatric Neurology Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| |
Collapse
|
39
|
McGuirt A, Pigulevskiy I, Sulzer D. Developmental regulation of thalamus-driven pauses in striatal cholinergic interneurons. iScience 2022; 25:105332. [PMID: 36325074 PMCID: PMC9619292 DOI: 10.1016/j.isci.2022.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
In response to salient sensory cues, the tonically active striatal cholinergic interneuron (ChI) exhibits a characteristic synchronized "pause" thought to facilitate learning and the execution of motivated behavior. We report that thalamostriatal-driven ChI pauses are enhanced in ex vivo brain slices from infantile (P10) mice, with decreasing expression in preadolescent (P28) and adult (P100) mice concurrent with waning excitatory input to ChIs. Our data are consistent with previous reports that the adult ChI pause is dependent on dopamine signaling, but we find that the robust pausing at P10 is dopamine independent. Instead, elevated expression of the noninactivating delayed rectifier Kv7.2/3 current promotes pausing in infantile ChIs. Because this current decreases over development, a parallel increase in Ih further attenuates pause expression. These findings demonstrate that cell intrinsic and circuit mechanisms of ChI pause expression are developmentally determined and may underlie changes in learning properties as the nervous system matures.
Collapse
Affiliation(s)
- Avery McGuirt
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Irving Medical Center, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Irena Pigulevskiy
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Irving Medical Center, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - David Sulzer
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Irving Medical Center, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|
40
|
Prognostic Modeling of Lung Adenocarcinoma Based on Hypoxia and Ferroptosis-Related Genes. JOURNAL OF ONCOLOGY 2022; 2022:1022580. [PMID: 36245988 PMCID: PMC9553523 DOI: 10.1155/2022/1022580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
Background. It is well known that hypoxia and ferroptosis are intimately connected with tumor development. The purpose of this investigation was to identify whether they have a prognostic signature. To this end, genes related to hypoxia and ferroptosis scores were investigated using bioinformatics analysis to stratify the risk of lung adenocarcinoma. Methods. Hypoxia and ferroptosis scores were estimated using The Cancer Genome Atlas (TCGA) database-derived cohort transcriptome profiles via the single sample gene set enrichment analysis (ssGSEA) algorithm. The candidate genes associated with hypoxia and ferroptosis scores were identified using weighted correlation network analysis (WGCNA) and differential expression analysis. The prognostic genes in this study were discovered using the Cox regression (CR) model in conjunction with the LASSO method, which was then utilized to create a prognostic signature. The efficacy, accuracy, and clinical value of the prognostic model were evaluated using an independent validation cohort, Receiver Operator Characteristic (ROC) curve, and nomogram. The analysis of function and immune cell infiltration was also carried out. Results. Here, we appraised 152 candidate genes expressed not the same, which were related to hypoxia and ferroptosis for prognostic modeling in The Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) cohort, and these genes were further validated in the GSE31210 cohort. We found that the 14-gene-based prognostic model, utilizing MAPK4, TNS4, WFDC2, FSTL3, ITGA2, KLK11, PHLDB2, VGLL3, SNX30, KCNQ3, SMAD9, ANGPTL4, LAMA3, and STK32A, performed well in predicting the prognosis in lung adenocarcinoma. ROC and nomogram analyses showed that risk scores based on prognostic signatures provided desirable predictive accuracy and clinical utility. Moreover, gene set variance analysis showed differential enrichment of 33 hallmark gene sets between different risk groups. Additionally, our results indicated that a higher risk score will lead to more fibroblasts and activated CD4 T cells but fewer myeloid dendritic cells, endothelial cells, eosinophils, immature dendritic cells, and neutrophils. Conclusion. Our research found a 14-gene signature and established a nomogram that accurately predicted the prognosis in patients with lung adenocarcinoma. Clinical decision-making and therapeutic customization may benefit from these results, which may serve as a valuable reference in the future.
Collapse
|
41
|
Saeliw T, Permpoon T, Iadsee N, Tencomnao T, Hu VW, Sarachana T, Green D, Sae-Lee C. LINE-1 and Alu methylation signatures in autism spectrum disorder and their associations with the expression of autism-related genes. Sci Rep 2022; 12:13970. [PMID: 35978033 PMCID: PMC9385849 DOI: 10.1038/s41598-022-18232-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Long interspersed nucleotide element-1 (LINE-1) and Alu elements are retrotransposons whose abilities cause abnormal gene expression and genomic instability. Several studies have focused on DNA methylation profiling of gene regions, but the locus-specific methylation of LINE-1 and Alu elements has not been identified in autism spectrum disorder (ASD). Here we interrogated locus- and family-specific methylation profiles of LINE-1 and Alu elements in ASD whole blood using publicly-available Illumina Infinium 450 K methylation datasets from heterogeneous ASD and ASD variants (Chromodomain Helicase DNA-binding 8 (CHD8) and 16p11.2del). Total DNA methylation of repetitive elements were notably hypomethylated exclusively in ASD with CHD8 variants. Methylation alteration in a family-specific manner including L1P, L1H, HAL, AluJ, and AluS families were observed in the heterogeneous ASD and ASD with CHD8 variants. Moreover, LINE-1 and Alu methylation within target genes is inversely related to the expression level in each ASD variant. The DNA methylation signatures of the LINE-1 and Alu elements in ASD whole blood, as well as their associations with the expression of ASD-related genes, have been identified. If confirmed in future larger studies, these findings may contribute to the identification of epigenomic biomarkers of ASD.
Collapse
Affiliation(s)
- Thanit Saeliw
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tiravut Permpoon
- Research Division, SiMR, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nutta Iadsee
- Research Division, SiMR, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.,Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Tewarit Sarachana
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Daniel Green
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chanachai Sae-Lee
- Research Division, SiMR, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
42
|
Lesca G, Baumgartner T, Monin P, De Dominicis A, Kunz WS, Specchio N. Genetic causes of rare and common epilepsies: What should the epileptologist know? Eur J Med Genet 2022; 65:104570. [PMID: 35850153 DOI: 10.1016/j.ejmg.2022.104570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 11/03/2022]
Abstract
In past decades, the identification of genes involved in epileptic disorders has grown exponentially. The pace of gene identification in epileptic disorders began to accelerate in the late 2000s, driven by new technologies such as molecular cytogenetics and next-generation sequencing (NGS). These technologies have also been applied to genetic diagnostics, with different configurations, such as gene panels, whole-exome sequencing and whole-genome sequencing. The clinician must be aware that any technology has its limitations and complementary techniques must still be used to establish a diagnosis for specific diseases. In addition, increasing the amount of genetic information available in a larger patient sample also increases the need for rigorous interpretation steps, when taking into account the clinical, electroclinical, and when available, functional data. Local, multidisciplinary discussions have proven valuable in difficult diagnostic situations, especially in cases where precision medicine is being considered. They also serve to improve genetic counseling in complex situations. In this article, we will briefly review the genetic basis of rare and common epilepsies, the current strategies used for molecular diagnosis, including their limitations, and some pitfalls for data interpretation, in the context of etiological diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Gaetan Lesca
- Department of Medical Genetics and Department of Paedaitric Clinical Epileptology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France; University Claude Bernard Lyon 1, Lyon, France.
| | - Tobias Baumgartner
- Department of Epileptology, University Hospital Bonn, Member of the ERN EpiCARE, Bonn, Germany
| | - Pauline Monin
- Department of Medical Genetics and Department of Paedaitric Clinical Epileptology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France; University Claude Bernard Lyon 1, Lyon, France
| | - Angela De Dominicis
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Wolfram S Kunz
- Department of Epileptology, University Hospital Bonn, Member of the ERN EpiCARE, Bonn, Germany
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| |
Collapse
|
43
|
Miceli F, Millevert C, Soldovieri MV, Mosca I, Ambrosino P, Carotenuto L, Schrader D, Lee HK, Riviello J, Hong W, Risen S, Emrick L, Amin H, Ville D, Edery P, de Bellescize J, Michaud V, Van-Gils J, Goizet C, Willemsen MH, Kleefstra T, Møller RS, Bayat A, Devinsky O, Sands T, Korenke GC, Kluger G, Mefford HC, Brilstra E, Lesca G, Milh M, Cooper EC, Taglialatela M, Weckhuysen S. KCNQ2 R144 variants cause neurodevelopmental disability with language impairment and autistic features without neonatal seizures through a gain-of-function mechanism. EBioMedicine 2022; 81:104130. [PMID: 35780567 PMCID: PMC9254340 DOI: 10.1016/j.ebiom.2022.104130] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/10/2023] Open
Abstract
Background Prior studies have revealed remarkable phenotypic heterogeneity in KCNQ2-related disorders, correlated with effects on biophysical features of heterologously expressed channels. Here, we assessed phenotypes and functional properties associated with KCNQ2 missense variants R144W, R144Q, and R144G. We also explored in vitro blockade of channels carrying R144Q mutant subunits by amitriptyline. Methods Patients were identified using the RIKEE database and through clinical collaborators. Phenotypes were collected by a standardized questionnaire. Functional and pharmacological properties of variant subunits were analyzed by whole-cell patch-clamp recordings. Findings Detailed clinical information on fifteen patients (14 novel and 1 previously published) was analyzed. All patients had developmental delay with prominent language impairment. R144Q patients were more severely affected than R144W patients. Infantile to childhood onset epilepsy occurred in 40%, while 67% of sleep-EEGs showed sleep-activated epileptiform activity. Ten patients (67%) showed autistic features. Activation gating of homomeric Kv7.2 R144W/Q/G channels was left-shifted, suggesting gain-of-function effects. Amitriptyline blocked channels containing Kv7.2 and Kv7.2 R144Q subunits. Interpretation Patients carrying KCNQ2 R144 gain-of-function variants have developmental delay with prominent language impairment, autistic features, often accompanied by infantile- to childhood-onset epilepsy and EEG sleep-activated epileptiform activity. The absence of neonatal seizures is a robust and important clinical differentiator between KCNQ2 gain-of-function and loss-of-function variants. The Kv7.2/7.3 channel blocker amitriptyline might represent a targeted treatment. Funding Supported by FWO, GSKE, KCNQ2-Cure, Jack Pribaz Foundation, European Joint Programme on Rare Disease 2020, the Italian Ministry for University and Research, the Italian Ministry of Health, the European Commission, the University of Antwerp, NINDS, and Chalk Family Foundation.
Collapse
|
44
|
Soldovieri MV, Taglialatela M. The long and winding road to personalized medicine in KCNMA1-linked channelopathies revealed by novel variants associated with the Liang-Wang syndrome. Acta Physiol (Oxf) 2022; 235:e13854. [PMID: 35730691 DOI: 10.1111/apha.13854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Virginia Soldovieri
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | | |
Collapse
|
45
|
Arredondo K, Myers C, Hansen-Kiss E, Mathew MT, Jayaraman V, Siemon A, Bartholomew D, Herman GE, Mori M. Phenotypic Spectrum in a Family Sharing a Heterozygous KCNQ3 Variant. J Child Neurol 2022; 37:517-523. [PMID: 35384780 DOI: 10.1177/08830738221089741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND PURPOSE Mutations in KCNQ3 have classically been associated with benign familial neonatal and infantile seizures and more recently identified in patients with neurodevelopmental disorders and abnormal electroencephalogram (EEG) findings. We present 4 affected patients from a family with a pathogenic mutation in KCNQ3 with a unique constellation of clinical findings. METHODS A family of 3 affected siblings and mother sharing a KCNQ3 pathogenic variant are described, including clinical history, genetic results, and EEG and magnetic resonance imaging (MRI) findings. RESULTS This family shows a variety of clinical manifestations, including neonatal seizures, developmental delays, autism spectrum disorder, and anxiety. One child developed absence epilepsy, 2 children have infrequent convulsive seizures that have persisted into childhood, and their parent developed adult-onset epilepsy. An underlying c.1091G>A (R364H) variant in KCNQ3 was found in all affected individuals. CONCLUSIONS The phenotypic variability of KCNQ3 channelopathies continues to expand as more individuals and families are described, and the variant identified in this family adds to the understanding of the manifestations of KCNQ3-related disorders.
Collapse
Affiliation(s)
- Kristen Arredondo
- Department of Pediatrics, 12306The Ohio State University, Columbus, OH, USA
- Division of Pediatric Neurology, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Cortlandt Myers
- Division of Genetic & Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Emily Hansen-Kiss
- Department of Diagnostic & Biomedical Sciences, 12340University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - Mariam T Mathew
- Department of Pediatrics, 12306The Ohio State University, Columbus, OH, USA
- Institute for Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Vijayakumar Jayaraman
- Institute for Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy Siemon
- Division of Genetic & Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Dennis Bartholomew
- Department of Pediatrics, 12306The Ohio State University, Columbus, OH, USA
- Division of Genetic & Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Gail E Herman
- Department of Pediatrics, 12306The Ohio State University, Columbus, OH, USA
- Division of Genetic & Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Mari Mori
- Department of Pediatrics, 12306The Ohio State University, Columbus, OH, USA
- Division of Genetic & Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
46
|
Gain of function due to increased opening probability by two KCNQ5 pore variants causing developmental and epileptic encephalopathy. Proc Natl Acad Sci U S A 2022; 119:e2116887119. [PMID: 35377796 PMCID: PMC9169635 DOI: 10.1073/pnas.2116887119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Variants in genes encoding neuronally expressed potassium channel subunits are frequent causes of developmental and epileptic encephalopathies (DEEs). Characterization of their functional consequences is critical to confirm diagnosis, assess prognosis, and implement personalized treatments. In the present work, we describe two patients carrying variants in KCNQ5, a gene very recently and rarely found involved in DEEs, and reveal that they both cause remarkable gain-of-function consequences on channel activity. A PIP2-independent increase in open probability, without effects on membrane abundance or single-channel conductance, was responsible for the observed mutation-induced functional changes, thus revealing a pathomolecular disease mechanism for DEEs. Developmental and epileptic encephalopathies (DEEs) are neurodevelopmental diseases characterized by refractory epilepsy, distinct electroencephalographic and neuroradiological features, and various degrees of developmental delay. Mutations in KCNQ2, KCNQ3, and, more rarely, KCNQ5 genes encoding voltage-gated potassium channel subunits variably contributing to excitability control of specific neuronal populations at distinct developmental stages have been associated to DEEs. In the present work, the clinical features of two DEE patients carrying de novo KCNQ5 variants affecting the same residue in the pore region of the Kv7.5 subunit (G347S/A) are described. The in vitro functional properties of channels incorporating these variants were investigated with electrophysiological and biochemical techniques to highlight pathophysiological disease mechanisms. Currents carried by Kv7.5 G347 S/A channels displayed: 1) large (>10 times) increases in maximal current density, 2) the occurrence of a voltage-independent component, 3) slower deactivation kinetics, and 4) hyperpolarization shift in activation. All these functional features are consistent with a gain-of-function (GoF) pathogenetic mechanism. Similar functional changes were also observed when the same variants were introduced at the corresponding position in Kv7.2 subunits. Nonstationary noise analysis revealed that GoF effects observed for both Kv7.2 and Kv7.5 variants were mainly attributable to an increase in single-channel open probability, without changes in membrane abundance or single-channel conductance. The mutation-induced increase in channel opening probability was insensitive to manipulation of membrane levels of the critical Kv7 channel regulator PIP2. These results reveal a pathophysiological mechanism for KCNQ5-related DEEs, which might be exploited to implement personalized treatments.
Collapse
|
47
|
Abstract
KCNQ2 and KCNQ3 channels are associated with multiple neurodevelopmental disorders and are also therapeutic targets for neurological and neuropsychiatric diseases. For more than two decades, it has been thought that most KCNQ channels in the brain are either KCNQ2/3 or KCNQ3/5 heteromers. Here, we investigated the potential heteromeric compositions of KCNQ2-containing channels. We applied split-intein protein trans-splicing to form KCNQ2/5 tandems and coexpressed these with and without KCNQ3. Unexpectedly, we found that KCNQ2/5 tandems form functional channels independent of KCNQ3 in heterologous cells. Using mass spectrometry, we went on to demonstrate that KCNQ2 associates with KCNQ5 in native channels in the brain, even in the absence of KCNQ3. Additionally, our functional heterologous expression data are consistent with the formation of KCNQ2/3/5 heteromers. Thus, the composition of KCNQ channels is more diverse than has been previously recognized, necessitating a re-examination of the genotype/phenotype relationship of KCNQ2 pathogenic variants.
Collapse
|
48
|
KCNQ2 Selectivity Filter Mutations Cause Kv7.2 M-Current Dysfunction and Configuration Changes Manifesting as Epileptic Encephalopathies and Autistic Spectrum Disorders. Cells 2022; 11:cells11050894. [PMID: 35269516 PMCID: PMC8909571 DOI: 10.3390/cells11050894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
KCNQ2 mutations can cause benign familial neonatal convulsions (BFNCs), epileptic encephalopathy (EE), and mild-to-profound neurodevelopmental disabilities. Mutations in the KCNQ2 selectivity filter (SF) are critical to neurodevelopmental outcomes. Three patients with neonatal EE carry de novo heterozygous KCNQ2 p.Thr287Ile, p.Gly281Glu and p.Pro285Thr, and all are followed-up in our clinics. Whole-cell patch-clamp analysis with transfected mutations was performed. The Kv7.2 in three mutations demonstrated significant current changes in the homomeric-transfected cells. The conduction curves for V1/2, the K slope, and currents in 3 mutations were lower than those for the wild type (WT). The p.Gly281Glu had a worse conductance than the p.Thr287Ile and p.Pro285Thr, the patient compatible with p.Gly281Glu had a worse clinical outcome than patients with p.Thr287Ile and p.Pro285Thr. The p.Gly281Glu had more amino acid weight changes than the p.Gly281Glu and p.Pro285Thr. Among 5 BFNCs and 23 EE from mutations in the SF, the greater weight of the mutated protein compared with that of the WT was presumed to cause an obstacle to pore size, which is one of the most important factors in the phenotype and outcome. For the 35 mutations in the SF domain, using changes in amino acid weight between the WT and the KCNQ2 mutations to predict EE resulted in 80.0% sensitivity and 80% specificity, a positive prediction rate of 96.0%, and a negative prediction rate of 40.0% (p = 0.006, χ2 (1, n = 35) = 7.56; odds ratio 16.0, 95% confidence interval, 1.50 to 170.63). The findings suggest that p.Thr287Ile, p.Gly281Glu and p.Pro285Thr are pathogenic to KCNQ2 EE. In mutations in SF, a mutated protein heavier than the WT is a factor in the Kv7.2 current and outcome.
Collapse
|
49
|
Aguilera C, Gabau E, Ramirez-Mallafré A, Brun-Gasca C, Dominguez-Carral J, Delgadillo V, Laurie S, Derdak S, Padilla N, de la Cruz X, Capdevila N, Spataro N, Baena N, Guitart M, Ruiz A. New genes involved in Angelman syndrome-like: Expanding the genetic spectrum. PLoS One 2021; 16:e0258766. [PMID: 34653234 PMCID: PMC8519432 DOI: 10.1371/journal.pone.0258766] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Angelman syndrome (AS) is a neurogenetic disorder characterized by severe developmental delay with absence of speech, happy disposition, frequent laughter, hyperactivity, stereotypies, ataxia and seizures with specific EEG abnormalities. There is a 10–15% of patients with an AS phenotype whose genetic cause remains unknown (Angelman-like syndrome, AS-like). Whole-exome sequencing (WES) was performed on a cohort of 14 patients with clinical features of AS and no molecular diagnosis. As a result, we identified 10 de novo and 1 X-linked pathogenic/likely pathogenic variants in 10 neurodevelopmental genes (SYNGAP1, VAMP2, TBL1XR1, ASXL3, SATB2, SMARCE1, SPTAN1, KCNQ3, SLC6A1 and LAS1L) and one deleterious de novo variant in a candidate gene (HSF2). Our results highlight the wide genetic heterogeneity in AS-like patients and expands the differential diagnosis.
Collapse
Affiliation(s)
- Cinthia Aguilera
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Elisabeth Gabau
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Ariadna Ramirez-Mallafré
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Carme Brun-Gasca
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
- Department of Clinical Psychology and Health Psychology, Universitat Autònoma de Barcelona, Bellatera, Barcelona, Spain
| | - Jana Dominguez-Carral
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Veronica Delgadillo
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Steve Laurie
- CNAG‐CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sophia Derdak
- CNAG‐CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Natàlia Padilla
- Neurosciences Area, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier de la Cruz
- Neurosciences Area, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Núria Capdevila
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Nino Spataro
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Neus Baena
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Miriam Guitart
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
- * E-mail: (AR); (MG)
| | - Anna Ruiz
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
- * E-mail: (AR); (MG)
| |
Collapse
|
50
|
Yuan JH, Estacion M, Mis MA, Tanaka BS, Schulman BR, Chen L, Liu S, Dib-Hajj FB, Dib-Hajj SD, Waxman SG. KCNQ variants and pain modulation: a missense variant in Kv7.3 contributes to pain resilience. Brain Commun 2021; 3:fcab212. [PMID: 34557669 PMCID: PMC8454204 DOI: 10.1093/braincomms/fcab212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022] Open
Abstract
There is a pressing need for understanding of factors that confer resilience to pain. Gain-of-function mutations in sodium channel Nav1.7 produce hyperexcitability of dorsal root ganglion neurons underlying inherited erythromelalgia, a human genetic model of neuropathic pain. While most individuals with erythromelalgia experience excruciating pain, occasional outliers report more moderate pain. These differences in pain profiles in blood-related erythromelalgia subjects carrying the same pain-causative Nav1.7 mutation and markedly different pain experience provide a unique opportunity to investigate potential genetic factors that contribute to inter-individual variability in pain. We studied a patient with inherited erythromelalgia and a Nav1.7 mutation (c.4345T>G, p. F1449V) with severe pain as is characteristic of most inherited erythromelalgia patients, and her mother who carries the same Nav1.7 mutation with a milder pain phenotype. Detailed six-week daily pain diaries of pain episodes confirmed their distinct pain profiles. Electrophysiological studies on subject-specific induced pluripotent stem cell-derived sensory neurons from each of these patients showed that the excitability of these cells paralleled their pain phenotype. Whole-exome sequencing identified a missense variant (c.2263C>T, p. D755N) in KCNQ3 (Kv7.3) in the pain resilient mother. Voltage-clamp recordings showed that co-expression of Kv7.2-wild type (WT)/Kv7.3-D755N channels produced larger M-currents than that of Kv7.2-WT/Kv7.3-WT. The difference in excitability of the patient-specific induced pluripotent stem cell-derived sensory neurons was mimicked by modulating M-current levels using the dynamic clamp and a model of the mutant Kv7.2-WT/Kv7.3-D755N channels. These results show that a 'pain-in-a-dish' model can be used to explicate genetic contributors to pain, and confirm that KCNQ variants can confer pain resilience via an effect on peripheral sensory neurons.
Collapse
Affiliation(s)
- Jun-Hui Yuan
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Mark Estacion
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Malgorzata A Mis
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Brian S Tanaka
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Betsy R Schulman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Lubin Chen
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Shujun Liu
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Fadia B Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06520, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|