1
|
Zhu S, Liu X, Lu X, Liao Q, Luo H, Tian Y, Cheng X, Jiang Y, Liu G, Chen J. Biomaterials and tissue engineering in traumatic brain injury: novel perspectives on promoting neural regeneration. Neural Regen Res 2024; 19:2157-2174. [PMID: 38488550 PMCID: PMC11034597 DOI: 10.4103/1673-5374.391179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 04/24/2024] Open
Abstract
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.
Collapse
Affiliation(s)
- Shihong Zhu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiyue Lu
- Department of Anesthesiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiang Liao
- Department of Pharmacy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Huiyang Luo
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
- Department of Anesthesiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Tian
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Xu Cheng
- Department of Anesthesiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yaxin Jiang
- Out-patient Department, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Guangdi Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Jing Chen
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Wehn AC, Krestel E, Harapan BN, Klymchenko A, Plesnila N, Khalin I. To see or not to see: In vivo nanocarrier detection methods in the brain and their challenges. J Control Release 2024; 371:216-236. [PMID: 38810705 DOI: 10.1016/j.jconrel.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Nanoparticles have a great potential to significantly improve the delivery of therapeutics to the brain and may also be equipped with properties to investigate brain function. The brain, being a highly complex organ shielded by selective barriers, requires its own specialized detection system. However, a significant hurdle to achieve these goals is still the identification of individual nanoparticles within the brain with sufficient cellular, subcellular, and temporal resolution. This review aims to provide a comprehensive summary of the current knowledge on detection systems for tracking nanoparticles across the blood-brain barrier and within the brain. We discuss commonly employed in vivo and ex vivo nanoparticle identification and quantification methods, as well as various imaging modalities able to detect nanoparticles in the brain. Advantages and weaknesses of these modalities as well as the biological factors that must be considered when interpreting results obtained through nanotechnologies are summarized. Finally, we critically evaluate the prevailing limitations of existing technologies and explore potential solutions.
Collapse
Affiliation(s)
- Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Eva Krestel
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany.
| | - Biyan Nathanael Harapan
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Andrey Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Université de Strasbourg, 74 route du Rhin - CS 60024, 67401 Illkirch Cedex, France.
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| | - Igor Khalin
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14 074 Bd Henri Becquerel, 14000 Caen, France.
| |
Collapse
|
3
|
Ye J, Fan Y, She Y, Shi J, Yang Y, Yuan X, Li R, Han J, Liu L, Kang Y, Ji X. Biomimetic Self-Propelled Asymmetric Nanomotors for Cascade-Targeted Treatment of Neurological Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310211. [PMID: 38460166 PMCID: PMC11165487 DOI: 10.1002/advs.202310211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Indexed: 03/11/2024]
Abstract
The precise targeted delivery of therapeutic agents to deep regions of the brain is crucial for the effective treatment of various neurological diseases. However, achieving this goal is challenging due to the presence of the blood‒brain barrier (BBB) and the complex anatomy of the brain. Here, a biomimetic self-propelled nanomotor with cascade targeting capacity is developed for the treatment of neurological inflammatory diseases. The self-propelled nanomotors are designed with biomimetic asymmetric structures with a mesoporous SiO2 head and multiple MnO2 tentacles. Macrophage membrane biomimetic modification endows nanomotors with inflammatory targeting and BBB penetration abilities The MnO2 agents catalyze the degradation of H2O2 into O2, not only by reducing brain inflammation but also by providing the driving force for deep brain penetration. Additionally, the mesoporous SiO2 head is loaded with curcumin, which actively regulates macrophage polarization from the M1 to the M2 phenotype. All in vitro cell, organoid model, and in vivo animal experiments confirmed the effectiveness of the biomimetic self-propelled nanomotors in precise targeting, deep brain penetration, anti-inflammatory, and nervous system function maintenance. Therefore, this study introduces a platform of biomimetic self-propelled nanomotors with inflammation targeting ability and active deep penetration for the treatment of neurological inflammation diseases.
Collapse
Affiliation(s)
- Jiamin Ye
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yueyue Fan
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yaoguang She
- Department of General Surgerythe First Medical CenterChinese People's Liberation Army General HospitalBeijing100853China
| | - Jiacheng Shi
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yiwen Yang
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Xue Yuan
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Ruiyan Li
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Jingwen Han
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Luntao Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin100730China
| | - Yong Kang
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
- Medical CollegeLinyi UniversityLinyi276000China
| |
Collapse
|
4
|
Syzdykbayev M, Kazymov M, Aubakirov M, Kurmangazina A, Kairkhanov E, Kazangapov R, Bryzhakhina Z, Imangazinova S, Sheinin A. A Modern Approach to the Treatment of Traumatic Brain Injury. MEDICINES (BASEL, SWITZERLAND) 2024; 11:10. [PMID: 38786549 PMCID: PMC11123131 DOI: 10.3390/medicines11050010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
Background: Traumatic brain injury manifests itself in various forms, ranging from mild impairment of consciousness to severe coma and death. Traumatic brain injury remains one of the leading causes of morbidity and mortality. Currently, there is no therapy to reverse the effects associated with traumatic brain injury. New neuroprotective treatments for severe traumatic brain injury have not achieved significant clinical success. Methods: A literature review was performed to summarize the recent interdisciplinary findings on management of traumatic brain injury from both clinical and experimental perspective. Results: In the present review, we discuss the concepts of traditional and new approaches to treatment of traumatic brain injury. The recent development of different drug delivery approaches to the central nervous system is also discussed. Conclusions: The management of traumatic brain injury could be aimed either at the pathological mechanisms initiating the secondary brain injury or alleviating the symptoms accompanying the injury. In many cases, however, the treatment should be complex and include a variety of medical interventions and combination therapy.
Collapse
Affiliation(s)
- Marat Syzdykbayev
- Department of Hospital Surgery, Anesthesiology and Reanimatology, Semey Medical University, Semey 071400, Kazakhstan
| | - Maksut Kazymov
- Department of General Practitioners, Semey Medical University, Semey 071400, Kazakhstan
| | - Marat Aubakirov
- Department of Pediatric Surgery, Semey Medical University, Semey 071400, Kazakhstan
| | - Aigul Kurmangazina
- Committee for Medical and Pharmaceutical Control of the Ministry of Health of the Republic of Kazakhstan for East Kazakhstan Region, Ust-Kamenogorsk 070004, Kazakhstan
| | - Ernar Kairkhanov
- Pavlodar Branch of Semey Medical University, Pavlodar S03Y3M1, Kazakhstan
| | - Rustem Kazangapov
- Pavlodar Branch of Semey Medical University, Pavlodar S03Y3M1, Kazakhstan
| | - Zhanna Bryzhakhina
- Department Psychiatry and Narcology, Semey Medical University, Semey 071400, Kazakhstan
| | - Saule Imangazinova
- Department of Therapy, Astana Medical University, Astana 010000, Kazakhstan
| | - Anton Sheinin
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
5
|
Tentu PM, Bazaz MR, Pasam T, Shaikh AS, Rahman Z, Mourya A, Kaki VR, Madan J, Dandekar MP. Oxyberberine an oxoderivative of berberine confers neuroprotective effects in controlled-cortical impact mouse model of traumatic brain injury. Int J Neurosci 2023:1-16. [PMID: 37982448 DOI: 10.1080/00207454.2023.2286209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is known as a silent epidemic that causes many deaths and disabilities worldwide. We examined the response of oxyberberine (OBB) in lipopolysaccharide-stimulated BV2 microglial cells and a controlled-cortical impact (CCI) mouse model of TBI. METHODS We synthesized OBB from berberine, and also prepared OBB-nanocrystals (OBB-NC). Male C57BL/6 mice were used for CCI surgery, and post-CCI neurobehavioral deficits were assessed from 1 h after injury through 21 days post-injury (dpi). RESULTS OBB treatment reduced the lipopolysaccharide-triggered elevated levels of reactive oxygen species, nitric oxide, and nuclear factor kappa B (NF-κB) in BV2 microglial cells, indicating a neuroprotective potential. CCI-operated mice exhibited significant neurological deficits on 1, 3, and 5 dpi in neurological severity scoring and rotarod assay. OBB (25 and 50 mg/kg/day) and OBB-NC (3 mg/kg/day) ameliorated these neurological aberrations. Mice subjected to CCI surgery also displayed anxiogenic- and depression-like behaviours, and cognitive impairments in forced-swimming test and elevated-zero maze, and novel object recognition task, respectively. Administration of OBB reduced these long-term neuropsychiatric complications, and also levels of toll-like receptor 4 (TLR4), high-motility group protein 1 (HMGB1), NF-κB, tumour necrosis factor-alpha and interleukin 6 cytokines in the ipsilateral cortex of mice. CONCLUSION We suggest that the administration of OBB offers neuroprotective effects via inhibition of HMGB1-mediated TLR4/NFκB pathway.
Collapse
Affiliation(s)
- Priya Mounika Tentu
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohd Rabi Bazaz
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Tulasi Pasam
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Arbaz Sujat Shaikh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Ziaur Rahman
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Venkata Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
6
|
Hennigan K, Lavik E. Nature vs. Manmade: Comparing Exosomes and Liposomes for Traumatic Brain Injury. AAPS J 2023; 25:83. [PMID: 37610471 DOI: 10.1208/s12248-023-00849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Traumatic brain injury (TBI) of all severities is a significant public health burden, causing a range of effects that can lead to death or a diminished quality of life. Liposomes and mesenchymal stem cell-derived exosomes are two drug delivery agents with potential to be leveraged in the treatment of TBI by increasing the efficacy of drug therapies as well as having additional therapeutic effects. They exhibit several physical similarities, but key differences affect their performances as nanocarriers. Liposomes can be produced commercially at scale, and liposomes achieve higher encapsulation efficiency. Meanwhile, the intrinsic cargo and targeting moieties of exosomes, which liposomes lack, give exosomes a greater ability to facilitate neural regeneration, and exosomes do not trigger the infusion reactions that liposomes can. However, there are concerns about both exosomes and liposomes regarding interactions with tumors. The same routes of administration can be used for both exosomes and liposomes, resulting in somewhat different distribution throughout the body. While the effect of the nanocarrier type on accumulation in the brain is not concrete, targeting leads to increased accumulation of both exosomes and liposomes in the brain, upon which on-demand release can be used for both drug deliverers. Although neither have been applied to TBI in humans, preclinical trials have shown their immense potential, as have clinical trials pertaining to other brain injuries and conditions. While questions remain, research thus far shows that the various differences make exosomes a better choice of nanocarrier for TBI.
Collapse
Affiliation(s)
- Kate Hennigan
- Marriotts Ridge High School, Ellicott City, Maryland, 21042, USA
| | - Erin Lavik
- University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland, 21250, USA.
| |
Collapse
|
7
|
Hu H, Chen X, Zhao K, Zheng W, Gao C. Recent Advances in Biomaterials-Based Therapies for Alleviation and Regeneration of Traumatic Brain Injury. Macromol Biosci 2023; 23:e2200577. [PMID: 36758541 DOI: 10.1002/mabi.202200577] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Traumatic brain injury (TBI), a major public health problem accompanied with numerous complications, usually leads to serve disability and huge financial burden. The adverse and unfavorable pathological environment triggers a series of secondary injuries, resulting in serious loss of nerve function and huge obstacle of endogenous nerve regeneration. With the advances in adaptive tissue regeneration biomaterials, regulation of detrimental microenvironment to reduce the secondary injury and to promote the neurogenesis becomes possible. The adaptive biomaterials could respond and regulate biochemical, cellular, and physiological events in the secondary injury, including excitotoxicity, oxidative stress, and neuroinflammation, to rebuild circumstances suitable for regeneration. In this review, the development of pathology after TBI is discussed, followed by the introduction of adaptive biomaterials based on various pathological characteristics. The adaptive biomaterials carried with neurotrophic factors and stem cells for TBI treatment are then summarized. Finally, the current drawbacks and future perspective of biomaterials for TBI treatment are suggested.
Collapse
Affiliation(s)
- Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiping Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kefei Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
| |
Collapse
|
8
|
Bechinger P, Serrano Sponton L, Grützner V, Musyanovych A, Jussen D, Krenzlin H, Eldahaby D, Riede N, Kempski O, Ringel F, Alessandri B. In-vivo time course of organ uptake and blood-brain-barrier permeation of poly(L-lactide) and poly(perfluorodecyl acrylate) nanoparticles with different surface properties in unharmed and brain-traumatized rats. Front Neurol 2023; 14:994877. [PMID: 36814997 PMCID: PMC9939480 DOI: 10.3389/fneur.2023.994877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Background Traumatic brain injury (TBI) has a dramatic impact on mortality and quality of life and the development of effective treatment strategies is of great socio-economic relevance. A growing interest exists in using polymeric nanoparticles (NPs) as carriers across the blood-brain barrier (BBB) for potentially effective drugs in TBI. However, the effect of NP material and type of surfactant on their distribution within organs, the amount of the administrated dose that reaches the brain parenchyma in areas with intact and opened BBB after trauma, and a possible elicited inflammatory response are still to be clarified. Methods The organ distribution, BBB permeation and eventual inflammatory activation of polysorbate-80 (Tw80) and sodiumdodecylsulfate (SDS) stabilized poly(L-lactide) (PLLA) and poly(perfluorodecyl acrylate) (PFDL) nanoparticles were evaluated in rats after intravenous administration. The NP uptake into the brain was assessed under intact conditions and after controlled cortical impact (CCI). Results A significantly higher NP uptake at 4 and 24 h after injection was observed in the liver and spleen, followed by the brain and kidney, with minimal concentrations in the lungs and heart for all NPs. A significant increase of NP uptake at 4 and 24 h after CCI was observed within the traumatized hemisphere, especially in the perilesional area, but NPs were still found in areas away from the injury site and the contralateral hemisphere. NPs were internalized in brain capillary endothelial cells, neurons, astrocytes, and microglia. Immunohistochemical staining against GFAP, Iba1, TNFα, and IL1β demonstrated no glial activation or neuroinflammatory changes. Conclusions Tw80 and SDS coated biodegradable PLLA and non-biodegradable PFDL NPs reach the brain parenchyma with and without compromised BBB by TBI, even though a high amount of NPs are retained in the liver and spleen. No inflammatory reaction is elicited by these NPs within 24 h after injection. Thus, these NPs could be considered as potentially effective carriers or markers of newly developed drugs with low or even no BBB permeation.
Collapse
Affiliation(s)
- Patrick Bechinger
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,Department of Anesthesiology, Helios Dr. Horst Schmidt Clinic, Wiesbaden, Germany
| | - Lucas Serrano Sponton
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,Department of Neurosurgery, Sana Clinic Offenbach, Offenbach, Germany,*Correspondence: Lucas Serrano Sponton ✉
| | - Verena Grützner
- Fraunhofer Institute for Microengineering and Microsystems, Mainz, Germany
| | - Anna Musyanovych
- Fraunhofer Institute for Microengineering and Microsystems, Mainz, Germany
| | - Daniel Jussen
- Department of Neurosurgery, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Harald Krenzlin
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Daniela Eldahaby
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nicole Riede
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Oliver Kempski
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Beat Alessandri
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| |
Collapse
|
9
|
Mohammed FS, Omay SB, Sheth KN, Zhou J. Nanoparticle-based drug delivery for the treatment of traumatic brain injury. Expert Opin Drug Deliv 2023; 20:55-73. [PMID: 36420918 PMCID: PMC9983310 DOI: 10.1080/17425247.2023.2152001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Traumatic brain injuries (TBIs) impact the breadth of society and remain without any approved pharmacological treatments. Despite successful Phase II clinical trials, the failure of many Phase III clinical trials may be explained by insufficient drug targeting and retention, preventing the proper attainment of an observable dosage threshold. To address this challenge, nanoparticles can be functionalized to protect pharmacological payloads, improve targeted drug delivery to sites of injury, and can be combined with supportive scaffolding to improve secondary outcomes. AREAS COVERED This review briefly covers the pathophysiology of TBIs and their subtypes, the current pre-clinical and clinical management strategies, explores the common models of focal, diffuse, and mixed traumatic brain injury employed in experimental animals, and surveys the existing literature on nanoparticles developed to treat TBIs. EXPERT OPINION Nanoparticles are well suited to improve secondary outcomes as their multifunctionality and customizability enhance their potential for efficient targeted delivery, payload protection, increased brain penetration, low off-target toxicity, and biocompatibility in both acute and chronic timescales.
Collapse
Affiliation(s)
- Farrah S. Mohammed
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Sacit Bulent Omay
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
| | - Kevin N. Sheth
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
- Department of Neurology, Yale University, New Haven, Connecticut, USA
| | - Jiangbing Zhou
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Nadkarni NA, Arias E, Fang R, Haynes ME, Zhang HF, Muller WA, Batra A, Sullivan DP. Platelet Endothelial Cell Adhesion Molecule (PECAM/CD31) Blockade Modulates Neutrophil Recruitment Patterns and Reduces Infarct Size in Experimental Ischemic Stroke. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1619-1632. [PMID: 35952762 PMCID: PMC9667712 DOI: 10.1016/j.ajpath.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022]
Abstract
The infiltration of polymorphonuclear leukocytes (PMNs) in ischemia-reperfusion injury (I/RI) has been implicated as a critical component of inflammatory damage following ischemic stroke. However, successful blockade of PMN transendothelial migration (TEM) in preclinical studies has not translated to meaningful clinical outcomes. To investigate this further, leukocyte infiltration patterns were quantified, and these patterns were modulated by blocking platelet endothelial cell adhesion molecule-1 (PECAM), a key regulator of TEM. LysM-eGFP mice and microscopy were used to visualize all myeloid leukocyte recruitment following ischemia/reperfusion. Visual examination showed heterogeneous leukocyte distribution across the infarct at both 24 and 72 hours after I/RI. A semiautomated process was designed to precisely map PMN position across brain sections. Treatment with PECAM function-blocking antibodies did not significantly affect total leukocyte recruitment but did alter their distribution, with more observed at the cortex at both early and later time points (24 hours: 89% PECAM blocked vs. 72% control; 72 hours: 69% PECAM blocked vs. 51% control). This correlated with a decrease in infarct volume. These findings suggest that TEM, in the setting of I/RI in the cerebrovasculature, occurs primarily at the cortical surface. The reduction of stroke size with PECAM blockade suggests that infiltrating PMNs may exacerbate I/RI and indicate the potential therapeutic benefit of regulating the timing and pattern of leukocyte infiltration after stroke.
Collapse
Affiliation(s)
- Neil A Nadkarni
- Department of Neurology, Northwestern University, Chicago, Illinois
| | - Erika Arias
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Raymond Fang
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - Maureen E Haynes
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - William A Muller
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Ayush Batra
- Department of Neurology, Northwestern University, Chicago, Illinois; Department of Pathology, Northwestern University, Chicago, Illinois
| | - David P Sullivan
- Department of Pathology, Northwestern University, Chicago, Illinois.
| |
Collapse
|
11
|
Podojil JR, Cogswell AC, Chiang MY, Eaton V, Ifergan I, Neef T, Xu D, Meghani KA, Yu Y, Orbach SM, Murthy T, Boyne MT, Elhofy A, Shea LD, Meeks JJ, Miller SD. Biodegradable nanoparticles induce cGAS/STING-dependent reprogramming of myeloid cells to promote tumor immunotherapy. Front Immunol 2022; 13:887649. [PMID: 36059473 PMCID: PMC9433741 DOI: 10.3389/fimmu.2022.887649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/29/2022] [Indexed: 11/27/2022] Open
Abstract
Cancer treatment utilizing infusion therapies to enhance the patient's own immune response against the tumor have shown significant functionality in a small subpopulation of patients. Additionally, advances have been made in the utilization of nanotechnology for the treatment of disease. We have previously reported the potent effects of 3-4 daily intravenous infusions of immune modifying poly(lactic-co-glycolic acid) (PLGA) nanoparticles (IMPs; named ONP-302) for the amelioration of acute inflammatory diseases by targeting myeloid cells. The present studies describe a novel use for ONP-302, employing an altered dosing scheme to reprogram myeloid cells resulting in significant enhancement of tumor immunity. ONP-302 infusion decreased tumor growth via the activation of the cGAS/STING pathway within myeloid cells, and subsequently increased NK cell activation via an IL-15-dependent mechanism. Additionally, ONP-302 treatment increased PD-1/PD-L1 expression in the tumor microenvironment, thereby allowing for functionality of anti-PD-1 for treatment in the B16.F10 melanoma tumor model which is normally unresponsive to monotherapy with anti-PD-1. These findings indicate that ONP-302 allows for tumor control via reprogramming myeloid cells via activation of the STING/IL-15/NK cell mechanism, as well as increasing anti-PD-1 response rates.
Collapse
Affiliation(s)
- Joseph R. Podojil
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,Cour Pharmaceutical Development Company, Northbrook, IL, United States
| | - Andrew C. Cogswell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ming-Yi Chiang
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Valerie Eaton
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Igal Ifergan
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tobias Neef
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dan Xu
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Khyati A. Meghani
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yanni Yu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sophia M. Orbach
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Tushar Murthy
- Cour Pharmaceutical Development Company, Northbrook, IL, United States
| | - Michael T. Boyne
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,Cour Pharmaceutical Development Company, Northbrook, IL, United States
| | - Adam Elhofy
- Cour Pharmaceutical Development Company, Northbrook, IL, United States
| | - Lonnie D. Shea
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Joshua J. Meeks
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,*Correspondence: Stephen D. Miller,
| |
Collapse
|
12
|
Sun D, Liu K, Li Y, Xie T, Zhang M, Liu Y, Tong H, Guo Y, Zhang Q, Liu H, Fang J, Chen X. Intrinsically Bioactive Manganese-Eumelanin Nanocomposites Mediated Antioxidation and Anti-Neuroinflammation for Targeted Theranostics of Traumatic Brain Injury. Adv Healthc Mater 2022; 11:e2200517. [PMID: 35695187 DOI: 10.1002/adhm.202200517] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Indexed: 01/24/2023]
Abstract
Overproduced reactive oxygen species and the induced oxidative stress and neuroinflammation often result in secondary injury, which is associated with unfavorable prognosis in traumatic brain injury (TBI). Unfortunately, current medications cannot effectively ameliorate the secondary injury at traumatic sites. Here, it is reported that intrinsically bioactive multifunctional nanocomposites (ANG-MnEMNPs-Cur, AMEC) mediate antioxidation and anti-neuroinflammation for targeted TBI theranostics, which are engineered by loading the neuroprotective agent curcumin on angiopep-2 functionalized and manganese doped eumelanin-like nanoparticles. After intravenous delivery, efficient AMEC accumulation is observed in lesions of TBI mice models established by controlled cortical impact method, evidenced by T1 -T2 magnetic resonance and photoacoustic dual-modal imaging. Therapeutically, AMEC effectively alleviates neuroinflammation, protects blood-brain barrier integrity, relieves brain edema, reduces brain tissue loss, and improves the cognition of TBI mice. Mechanistically, following the penetration into the traumatic tissues via angiopep-2 mediated targeting effect, the efficacy of AMEC is synergistically improved by combined functional moieties of curcumin and eumelanin. This is achieved by the alleviation of oxidative stress, inhibition of neuroinflammation via M1-to-M2 macrophage reprogramming, and promotion of neuronal regeneration. The as-developed AMEC with well-defined mechanisms of action may represent a promising targeted theranostics strategy for TBI and other neuroinflammation-associated intracranial diseases.
Collapse
Affiliation(s)
- Duo Sun
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Kaijun Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yang Li
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China.,Department of Medical Imaging, Air Force Hospital of Western Theater Command, Chengdu, 610044, China
| | - Tian Xie
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Mi Zhang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu Liu
- Beijing Advanced Innovation Center for Big Data Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
| | - Haipeng Tong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qianhui Zhang
- Department of Foreign Languages, Army Medical University, Chongqing, 400039, China
| | - Heng Liu
- Department of Radiology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Jingqin Fang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, 400042, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, 400042, China
| |
Collapse
|
13
|
Hac NEF, Gold DR. Neuro-Visual and Vestibular Manifestations of Concussion and Mild TBI. Curr Neurol Neurosci Rep 2022; 22:219-228. [PMID: 35235169 DOI: 10.1007/s11910-022-01184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Mild traumatic brain injury, or concussion, is a major cause of disability. Vestibular and visual dysfunction following concussion is common and can negatively affect patients' well-being and prolong recovery. Etiologies of visual and vestibular symptoms are numerous, including ocular, neuro-ophthalmic, otologic, and neuro-vestibular conditions. Some etiologies are benign and may be treatable, while others are potentially vision or life-threatening, making a focused history and examination essential. This review offers an approach to the evaluation and treatment of the most common neuro-visual and vestibular impairments that may result from concussion. RECENT FINDINGS Treatment of concussion including exercise, computerized programs, transcranial magnetic stimulation, gene therapy, stem cell therapy, and nanoparticles has shown promise. Many novel therapies are in the pipework for visual and vestibular recovery after concussion; however, the treatment mainstay remains therapy and evaluation for co-existing diseases.
Collapse
Affiliation(s)
- Nicholas E F Hac
- Department of Neurology, The Johns Hopkins School of Medicine, 600 N Wolfe St, Path 2-210, Baltimore, MD, 21287, USA.
| | - Daniel R Gold
- Department of Neurology, The Johns Hopkins School of Medicine, 600 N Wolfe St, Path 2-210, Baltimore, MD, 21287, USA
| |
Collapse
|
14
|
Xu D, Bhattacharyya S, Wang W, Ifergan I, Chiang Wong MYA, Procissi D, Yeldandi A, Bale S, Marangoni RG, Horbinski C, Miller SD, Varga J. PLG nanoparticles target fibroblasts and MARCO+ monocytes to reverse multi-organ fibrosis. JCI Insight 2022; 7:151037. [PMID: 35104243 PMCID: PMC8983146 DOI: 10.1172/jci.insight.151037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic, multisystem orphan disease with a highly variable clinical course, high mortality rate, and a poorly understood complex pathogenesis. We have identified an important role for a subpopulation of monocytes and macrophages characterized by surface expression of the scavenger receptor macrophage receptor with collagenous structure (MARCO) in chronic inflammation and fibrosis in SSc and in preclinical disease models. We show that MARCO+ monocytes and macrophages accumulate in lesional skin and lung in topographic proximity to activated myofibroblasts in patients with SSc and in the bleomycin-induced mouse model of SSc. Short-term treatment of mice with a potentially novel nanoparticle, poly(lactic-co-glycolic) acid (PLG), which is composed of a carboxylated, FDA-approved, biodegradable polymer and modulates activation and trafficking of MARCO+ inflammatory monocytes, markedly attenuated bleomycin-induced skin and lung inflammation and fibrosis. Mechanistically, in isolated cells in culture, PLG nanoparticles inhibited TGF-dependent fibrotic responses in vitro. Thus, MARCO+ monocytes are potent effector cells of skin and lung fibrosis and can be therapeutically targeted in SSc using PLG nanoparticles.
Collapse
Affiliation(s)
- Dan Xu
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Swati Bhattacharyya
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Wenxia Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Igal Ifergan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Ming-Yi Alice Chiang Wong
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Daniele Procissi
- Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Anjana Yeldandi
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Swarna Bale
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Roberta G Marangoni
- Northwestern Scleroderma Program, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - John Varga
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| |
Collapse
|
15
|
The consequences of particle uptake on immune cells. Trends Pharmacol Sci 2022; 43:305-320. [DOI: 10.1016/j.tips.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
|
16
|
Zinger A, Cvetkovic C, Sushnitha M, Naoi T, Baudo G, Anderson M, Shetty A, Basu N, Covello J, Tasciotti E, Amit M, Xie T, Taraballi F, Krencik R. Humanized Biomimetic Nanovesicles for Neuron Targeting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101437. [PMID: 34382379 PMCID: PMC8498895 DOI: 10.1002/advs.202101437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/09/2021] [Indexed: 05/03/2023]
Abstract
Nanovesicles (NVs) are emerging as innovative, theranostic tools for cargo delivery. Recently, surface engineering of NVs with membrane proteins from specific cell types has been shown to improve the biocompatibility of NVs and enable the integration of functional attributes. However, this type of biomimetic approach has not yet been explored using human neural cells for applications within the nervous system. Here, this paper optimizes and validates the scalable and reproducible production of two types of neuron-targeting NVs, each with a distinct lipid formulation backbone suited to potential therapeutic cargo, by integrating membrane proteins that are unbiasedly sourced from human pluripotent stem-cell-derived neurons. The results establish that both endogenous and genetically engineered cell-derived proteins effectively transfer to NVs without disruption of their physicochemical properties. NVs with neuron-derived membrane proteins exhibit enhanced neuronal association and uptake compared to bare NVs. Viability of 3D neural sphere cultures is not disrupted by treatment, which verifies the utility of organoid-based approaches as NV testing platforms. Finally, these results confirm cellular association and uptake of the biomimetic humanized NVs to neurons within rodent cranial nerves. In summary, the customizable NVs reported here enable next-generation functionalized theranostics aimed to promote neuroregeneration.
Collapse
Affiliation(s)
- Assaf Zinger
- Center for Musculoskeletal RegenerationHouston Methodist Research InstituteOrthopedics and Sports MedicineHouston Methodist HospitalHoustonTX77030USA
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical EngineeringTechnion−Israel Institute of TechnologyHaifa3200003Israel
| | - Caroline Cvetkovic
- Center for NeuroregenerationHouston Methodist Research InstituteDepartment of NeurosurgeryHouston Methodist HospitalHoustonTX77030USA
| | - Manuela Sushnitha
- Center for Musculoskeletal RegenerationHouston Methodist Research InstituteOrthopedics and Sports MedicineHouston Methodist HospitalHoustonTX77030USA
- Department of BioengineeringRice UniversityHoustonTX77030USA
| | - Tomoyuki Naoi
- Center for Musculoskeletal RegenerationHouston Methodist Research InstituteOrthopedics and Sports MedicineHouston Methodist HospitalHoustonTX77030USA
| | - Gherardo Baudo
- Center for Musculoskeletal RegenerationHouston Methodist Research InstituteOrthopedics and Sports MedicineHouston Methodist HospitalHoustonTX77030USA
| | - Morgan Anderson
- Center for NeuroregenerationHouston Methodist Research InstituteDepartment of NeurosurgeryHouston Methodist HospitalHoustonTX77030USA
| | - Arya Shetty
- Department of BioSciencesRice UniversityHoustonTX77030USA
| | - Nupur Basu
- Center for NeuroregenerationHouston Methodist Research InstituteDepartment of NeurosurgeryHouston Methodist HospitalHoustonTX77030USA
| | - Jennifer Covello
- Department of Head and Neck SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | | | - Moran Amit
- Department of Head and Neck SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Tongxin Xie
- Department of Head and Neck SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Francesca Taraballi
- Center for Musculoskeletal RegenerationHouston Methodist Research InstituteOrthopedics and Sports MedicineHouston Methodist HospitalHoustonTX77030USA
| | - Robert Krencik
- Center for NeuroregenerationHouston Methodist Research InstituteDepartment of NeurosurgeryHouston Methodist HospitalHoustonTX77030USA
| |
Collapse
|
17
|
Zinger A, Soriano S, Baudo G, De Rosa E, Taraballi F, Villapol S. Biomimetic Nanoparticles as a Theranostic Tool for Traumatic Brain Injury. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2100722. [PMID: 34413716 PMCID: PMC8356641 DOI: 10.1002/adfm.202100722] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/08/2021] [Indexed: 05/04/2023]
Abstract
Traumatic brain injury (TBI) triggers both central and peripheral inflammatory responses. Existing pharmacological drugs are unable to effectively and quickly target the brain inflamed regions, setting up a major roadblock towards effective brain trauma treatments. Nanoparticles (NPs) have been used in multiple diseases as drug delivery tools with remarkable success due to their rapid diffusion and specificity in the target organ. Here, leukocyte-based biomimetic NPs are fabricated as a theranostic tool to directly access inflamed regions in a TBI mouse model. This NP systemic delivery is visualized using advanced in vivo imaging techniques, including intravital microscopy and in vivo imaging system. The results demonstrate selective targeting of NPs to the injured brain and increased NPs accumulation among the peripheral organs 24 h after TBI. Interestingly, increased microglial proliferation, decreased macrophage infiltration, and reduced brain lesion following the NPs treatments compared to sham vehicle-treated mice are also found. In summary, the results suggest that NPs represent a promising future theranostic tool for TBI treatment.
Collapse
Affiliation(s)
- Assaf Zinger
- Center for Musculoskeletal RegenerationHouston Methodist Academic InstituteDepartment of Orthopedics and Sports MedicineHouston Methodist HospitalHoustonTX77030USA
| | - Sirena Soriano
- Center for Neuroregeneration and Department of NeurosurgeryHouston Methodist Research InstituteHoustonTX77030USA
| | - Gherardo Baudo
- Center for Musculoskeletal RegenerationHouston Methodist Academic InstituteDepartment of Orthopedics and Sports MedicineHouston Methodist HospitalHoustonTX77030USA
| | - Enrica De Rosa
- Center for Musculoskeletal RegenerationHouston Methodist Academic InstituteDepartment of Orthopedics and Sports MedicineHouston Methodist HospitalHoustonTX77030USA
| | - Francesca Taraballi
- Center for Musculoskeletal RegenerationHouston Methodist Academic InstituteDepartment of Orthopedics and Sports MedicineHouston Methodist HospitalHoustonTX77030USA
| | - Sonia Villapol
- Center for Neuroregeneration and Department of NeurosurgeryHouston Methodist Research InstituteHoustonTX77030USA
- Weill Cornell Medical CollegeNew YorkNY10065USA
| |
Collapse
|
18
|
Mete M, Alpay S, Aydemir I, Unsal UU, Collu F, Özel HF, Duransoy YK, Kutlu N, Tuglu Mİ. Therapeutic effects of Lacosamide in a rat model of traumatic brain injury: A histological, biochemical and electroencephalography monitoring study. Injury 2021; 52:713-723. [PMID: 33714548 DOI: 10.1016/j.injury.2021.02.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/17/2021] [Accepted: 02/15/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Traumatic Brain Injury (TBI) is a major cause of death and disability worldwide, especially in children and young adults. TBI can be classified based on severity, mechanism or other features. Inflammation, apoptosis, oxidative stress, and ischemia are some of the important pathophys-iological mechanisms underlying neuronal loss after TBI. Lacosamide (LCM) is an anticonvulsant compound approved for the adjunctive treatment of partial-onset seizures and neuropathic pain. This study aimed to investigate possible neuroprotective effects of LCM in a rat model of TBI. MATERIAL AND METHODS Twenty-eight adult male, Wistar albino rats were used. The rats were divided into 4 groups. Group 1 was the control group (n=7). Group 2 was the trauma group (n=7) where rats were treated with 100 mg/kg saline intraperitoneally (IP) twice a day. Groups 3 and 4, rats were treated with 6 (group 3, n=7) or 20 (group 4, n=7) mg/kg Lacosamide IP twice a day. For each group, brain samples were collected 72 hours after injury. Brain samples and blood were evaluated with histopathological and biochemical methods. In addition, electroencephalograpy monitoring results were compared. RESULTS The immunoreactivity of both iNOS and eNOS (oxidative stress markers) were decreased with LCM treatment compared to trauma group. The results were statistically significant (***P<0.001). The treatments of low (56,17±9,69) and high-dose LCM (43,91±9,09) were decreased the distribution of HIF-1α compared to trauma group (P<0.01). The number of apoptotic cells were decreased with LCM treatment the difference between the trauma group and 20mg/kg LCM treated group (9,55±1,02) was statistically significant (***P<0.001). Malondialdehyde level was reduced with LCM treatment. MDA level was significantly higher in trauma group compared to LCM treated groups (***P<0.001). The level of Superoxide dismutase in the trauma group was 1,86 U/ml, whereas it was 36,85 U/ml in 20mg/kg LCM treated group (***P<0.001). Delta strength of EEG in 20mg/kg LCM treated group were similar to control group values after LCM treatment. CONCLUSION No existing study has produced results suggesting that different doses of LCM has therapeutic effect against TBI, using EEG recording in addition to histological and biochemical evaluations in rats.
Collapse
Affiliation(s)
- Mesut Mete
- Celal Bayar University School of Medicine Neurosurgery Department/Turkey.
| | - Suheda Alpay
- Manisa Celal Bayar University School of Medicine Physiology Department/Turkey.
| | - Isıl Aydemir
- Niğde Ömer Halisdemir University School of Medicine Histology and Embryology Department/Turkey.
| | | | - Fatih Collu
- Manisa Celal Bayar University Department of Biology, Faculty of Science and Letters Zoology Section, Manisa/Turkey.
| | - Hasan Fehmi Özel
- Manisa Celal Bayar University Health Services Vocational School, Manisa/Turkey.
| | | | - Necip Kutlu
- Manisa Celal Bayar University School of Medicine Physiology Department/Turkey.
| | - Mehmet İbrahim Tuglu
- Manisa Celal Bayar University School of Medicine Histology and Embryology Department/Turkey.
| |
Collapse
|
19
|
Ivan DC, Walthert S, Berve K, Steudler J, Locatelli G. Dwellers and Trespassers: Mononuclear Phagocytes at the Borders of the Central Nervous System. Front Immunol 2021; 11:609921. [PMID: 33746939 PMCID: PMC7973121 DOI: 10.3389/fimmu.2020.609921] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/29/2020] [Indexed: 01/02/2023] Open
Abstract
The central nervous system (CNS) parenchyma is enclosed and protected by a multilayered system of cellular and acellular barriers, functionally separating glia and neurons from peripheral circulation and blood-borne immune cells. Populating these borders as dynamic observers, CNS-resident macrophages contribute to organ homeostasis. Upon autoimmune, traumatic or neurodegenerative inflammation, these phagocytes start playing additional roles as immune regulators contributing to disease evolution. At the same time, pathological CNS conditions drive the migration and recruitment of blood-borne monocyte-derived cells across distinct local gateways. This invasion process drastically increases border complexity and can lead to parenchymal infiltration of blood-borne phagocytes playing a direct role both in damage and in tissue repair. While recent studies and technical advancements have highlighted the extreme heterogeneity of these resident and CNS-invading cells, both the compartment-specific mechanism of invasion and the functional specification of intruding and resident cells remain unclear. This review illustrates the complexity of mononuclear phagocytes at CNS interfaces, indicating how further studies of CNS border dynamics are crucially needed to shed light on local and systemic regulation of CNS functions and dysfunctions.
Collapse
|
20
|
Ngowi EE, Wang YZ, Qian L, Helmy YASH, Anyomi B, Li T, Zheng M, Jiang ES, Duan SF, Wei JS, Wu DD, Ji XY. The Application of Nanotechnology for the Diagnosis and Treatment of Brain Diseases and Disorders. Front Bioeng Biotechnol 2021; 9:629832. [PMID: 33738278 PMCID: PMC7960921 DOI: 10.3389/fbioe.2021.629832] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Brain is by far the most complex organ in the body. It is involved in the regulation of cognitive, behavioral, and emotional activities. The organ is also a target for many diseases and disorders ranging from injuries to cancers and neurodegenerative diseases. Brain diseases are the main causes of disability and one of the leading causes of deaths. Several drugs that have shown potential in improving brain structure and functioning in animal models face many challenges including the delivery, specificity, and toxicity. For many years, researchers have been facing challenge of developing drugs that can cross the physical (blood–brain barrier), electrical, and chemical barriers of the brain and target the desired region with few adverse events. In recent years, nanotechnology emerged as an important technique for modifying and manipulating different objects at the molecular level to obtain desired features. The technique has proven to be useful in diagnosis as well as treatments of brain diseases and disorders by facilitating the delivery of drugs and improving their efficacy. As the subject is still hot, and new research findings are emerging, it is clear that nanotechnology could upgrade health care systems by providing easy and highly efficient diagnostic and treatment methods. In this review, we will focus on the application of nanotechnology in the diagnosis and treatment of brain diseases and disorders by illuminating the potential of nanoparticles.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China.,Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yasmeen Ahmed Saleheldin Hassan Helmy
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
| | - Bright Anyomi
- Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Meng Zheng
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
| | - En-She Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Nursing and Health, Institutes of Nursing and Health, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Jian-She Wei
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Stomatology, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
21
|
Abstract
Acute brain injuries such as traumatic brain injury and stroke affect 85 million people a year worldwide, and many survivors suffer from long-term physical, cognitive, or psychosocial impairments. There are few FDA-approved therapies that are effective at preventing, halting, or ameliorating the state of disease in the brain after acute brain injury. To address this unmet need, one potential strategy is to leverage the unique physical and biological properties of nanomaterials. Decades of cancer nanomedicine research can serve as a blueprint for innovation in brain injury nanomedicines, both to emulate the successes and also to avoid potential pitfalls. In this review, we discuss how shared disease physiology between cancer and acute brain injuries can inform the design of novel nanomedicines for acute brain injuries. These disease hallmarks include dysregulated vasculature, an altered microenvironment, and changes in the immune system. We discuss several nanomaterial strategies that can be engineered to exploit these disease hallmarks, for example, passive accumulation, active targeting of disease-associated signals, bioresponsive designs that are "smart", and immune interactions.
Collapse
|
22
|
Advances in traumatic brain injury research in 2020. Lancet Neurol 2021; 20:5-7. [PMID: 33340484 DOI: 10.1016/s1474-4422(20)30455-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022]
|
23
|
Zhang Y, Hughes KR, Raghani RM, Ma J, Orbach S, Jeruss JS, Shea LD. Cargo-free immunomodulatory nanoparticles combined with anti-PD-1 antibody for treating metastatic breast cancer. Biomaterials 2021; 269:120666. [PMID: 33461057 DOI: 10.1016/j.biomaterials.2021.120666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
The presence of immunosuppressive innate immune cells such as myeloid derived suppressor cells (MDSCs), Ly6C-high monocytes, and tumor-associated macrophages (TAMs) at a tumor can inhibit effector T cell and NK cell function. Immune checkpoint blockade using anti-PD-1 antibody aims to overcome the immune suppressive environment, yet only a fraction of patients responds. Herein, we test the hypothesis that cargo-free PLG nanoparticles administered intravenously can divert circulating immune cells from the tumor microenvironment to enhance the efficacy of anti-PD-1 immunotherapy in the 4T1 mouse model of metastatic triple-negative breast cancer. In vitro studies demonstrate that these nanoparticles decrease the expression of MCP-1 by 5-fold and increase the expression of TNF-α by more than 2-fold upon uptake by innate immune cells. Intravenous administration of particles results in internalization by MDSCs and monocytes, with particles detected in the liver, lung, spleen, and primary tumor. Nanoparticle delivery decreased the abundance of MDSCs in circulation and in the lung, the latter being the primary metastatic site. Combined with anti-PD-1 antibody, nanoparticles significantly slowed tumor growth and resulted in a survival benefit. Gene expression analysis by GSEA indicated inflammatory myeloid cell pathways were downregulated in the lung and upregulated in the spleen and tumor. Upregulation of extrinsic apoptotic pathways was also observed in the primary tumor. Collectively, these results demonstrate that cargo-free PLG nanoparticles can reprogram immune cell responses and alter the tumor microenvironment in vivo to overcome the local immune suppression attributed to myeloid cells and enhance the efficacy of anti-PD-1 therapy.
Collapse
Affiliation(s)
- Yining Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ravi M Raghani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sophia Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lonnie D Shea
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
24
|
Chandra PS, Goda R. Advances in traumatic brain injury research in 2020: A review article. APOLLO MEDICINE 2021. [DOI: 10.4103/am.am_48_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
Titus HE, Chen Y, Podojil JR, Robinson AP, Balabanov R, Popko B, Miller SD. Pre-clinical and Clinical Implications of "Inside-Out" vs. "Outside-In" Paradigms in Multiple Sclerosis Etiopathogenesis. Front Cell Neurosci 2020; 14:599717. [PMID: 33192332 PMCID: PMC7654287 DOI: 10.3389/fncel.2020.599717] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated neurological disorder, characterized by central nervous system (CNS) inflammation, oligodendrocyte loss, demyelination, and axonal degeneration. Although autoimmunity, inflammatory demyelination and neurodegeneration underlie MS, the initiating event has yet to be clarified. Effective disease modifying therapies need to both regulate the immune system and promote restoration of neuronal function, including remyelination. The challenge in developing an effective long-lived therapy for MS requires that three disease-associated targets be addressed: (1) self-tolerance must be re-established to specifically inhibit the underlying myelin-directed autoimmune pathogenic mechanisms; (2) neurons must be protected from inflammatory injury and degeneration; (3) myelin repair must be engendered by stimulating oligodendrocyte progenitors to remyelinate CNS neuronal axons. The combined use of chronic and relapsing remitting experimental autoimmune encephalomyelitis (C-EAE, R-EAE) (“outside-in”) as well as progressive diphtheria toxin A chain (DTA) and cuprizone autoimmune encephalitis (CAE) (“inside-out”) mouse models allow for the investigation and specific targeting of all three of these MS-associated disease parameters. The “outside-in” EAE models initiated by myelin-specific autoreactive CD4+ T cells allow for the evaluation of both myelin-specific tolerance in the absence or presence of neuroprotective and/or remyelinating agents. The “inside-out” mouse models of secondary inflammatory demyelination are triggered by toxin-induced oligodendrocyte loss or subtle myelin damage, which allows evaluation of novel therapeutics that could promote remyelination and neuroprotection in the CNS. Overall, utilizing these complementary pre-clinical MS models will open new avenues for developing therapeutic interventions, tackling MS from the “outside-in” and/or “inside-out”.
Collapse
Affiliation(s)
- Haley E Titus
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yanan Chen
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States
| | - Andrew P Robinson
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Roumen Balabanov
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brian Popko
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
26
|
Ifergan I, Miller SD. Potential for Targeting Myeloid Cells in Controlling CNS Inflammation. Front Immunol 2020; 11:571897. [PMID: 33123148 PMCID: PMC7573146 DOI: 10.3389/fimmu.2020.571897] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Multiple Sclerosis (MS) is characterized by immune cell infiltration to the central nervous system (CNS) as well as loss of myelin. Characterization of the cells in lesions of MS patients revealed an important accumulation of myeloid cells such as macrophages and dendritic cells (DCs). Data from the experimental autoimmune encephalomyelitis (EAE) model of MS supports the importance of peripheral myeloid cells in the disease pathology. However, the majority of MS therapies focus on lymphocytes. As we will discuss in this review, multiple strategies are now in place to target myeloid cells in clinical trials. These strategies have emerged from data in both human and mouse studies. We discuss strategies targeting myeloid cell migration, growth factors and cytokines, biological functions (with a focus on miRNAs), and immunological activities (with a focus on nanoparticles).
Collapse
Affiliation(s)
- Igal Ifergan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
27
|
Sim TM, Tarini D, Dheen ST, Bay BH, Srinivasan DK. Nanoparticle-Based Technology Approaches to the Management of Neurological Disorders. Int J Mol Sci 2020; 21:E6070. [PMID: 32842530 PMCID: PMC7503838 DOI: 10.3390/ijms21176070] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/09/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Neurological disorders are the most devastating and challenging diseases associated with the central nervous system (CNS). The blood-brain barrier (BBB) maintains homeostasis of the brain and contributes towards the maintenance of a very delicate microenvironment, impairing the transport of many therapeutics into the CNS and making the management of common neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebrovascular diseases (CVDs) and traumatic brain injury (TBI), exceptionally complicated. Nanoparticle (NP) technology offers a platform for the design of tissue-specific drug carrying systems owing to its versatile and modifiable nature. The prospect of being able to design NPs capable of successfully crossing the BBB, and maintaining a high drug bioavailability in neural parenchyma, has spurred much interest in the field of nanomedicine. NPs, which also come in an array of forms including polymeric NPs, solid lipid nanoparticles (SLNs), quantum dots and liposomes, have the flexibility of being conjugated with various macromolecules, such as surfactants to confer the physical or chemical property desired. These nanodelivery strategies represent potential novel and minimally invasive approaches to the treatment and diagnosis of these neurological disorders. Most of the strategies revolve around the ability of the NPs to cross the BBB via various influx mechanisms, such as adsorptive-mediated transcytosis (AMT) and receptor-mediated transcytosis (RMT), targeting specific biomarkers or lesions unique to that pathological condition, thereby ensuring high tissue-specific targeting and minimizing off-target side effects. In this article, insights into common neurological disorders and challenges of delivering CNS drugs due to the presence of BBB is provided, before an in-depth review of nanoparticle-based theranostic strategies.
Collapse
Affiliation(s)
- Tao Ming Sim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
| | - Dinesh Tarini
- Government Kilpauk Medical College, The Tamilnadu Dr MGR Medical University, Chennai, Tamilnadu 600032, India;
| | - S. Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (S.T.D.); (B.H.B.)
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (S.T.D.); (B.H.B.)
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (S.T.D.); (B.H.B.)
| |
Collapse
|
28
|
|