1
|
Wu Y, Yan Y, Qi J, Liu Y, Wang T, Chen H, Guan X, Zheng C, Zeng P. Mendelian randomization and genetic pleiotropy analysis for the connection between inflammatory bowel disease and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111203. [PMID: 39579960 DOI: 10.1016/j.pnpbp.2024.111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND The gut-microbiome-brain axis (GMBA) implies the connection between inflammatory bowel disease (IBD) and Alzheimer's disease (AD). We aimed to comprehensively explore the relation between IBD (and its subtypes) and AD, early-onset AD (EOAD) and late-onset AD (LOAD) from a genetic pleiotropy perspective. METHODS Relying on summary statistics (N = 472,868 for AD, 185,204 for EOAD, 191,061 for LOAD, 59,957 for IBD, 45,975 for CD, and 40,266 for UC), we first performed Mendelian Randomization to examine the causal association between IBD and AD by leveraging vertical pleiotropy. Then, we estimated global and local genetic correlations, followed by cross-trait association analysis to identify SNPs and genes with horizontal pleiotropy. Particularly, we utilized multi-trait colocalization analysis to assess the role of microbes in the common genetic etiology underlying the two types of diseases. Finally, we conducted functional enrichment analysis for pleiotropic genes. RESULTS We discovered suggestively causal relations between IBD (and its subtypes) and EOAD (ORIBD = 1.06 [1.01-1.11], ORCD = 1.05 [1.01-1.10], ORUC = 1.08 [1.01-1.15]) as well as between UC and LOAD (OR = 1.04 [1.01-1.08]), and discovered 44 local regions showing suggestively significant genetic correlations between IBD (and its subtypes) and AD (and EODA and LOAD). We further detected substantial genetic overlap, as characterized by 182 AD-associated, 3 EOAD-associated and 51 LOAD-associated pleiotropic SNPs as well as 291 pleiotropic genes. Pleiotropic genes more likely enriched in the GMBA-relevant tissues such as brain, intestine and esophagus. Moreover, we identified three microorganisms related to these disease pairs, including the Catenibacterium, Clostridia, and Prevotella species. CONCLUSION The suggestively causal associations and shared genetic basis between IBD and its subtypes with AD, EOAD and LOAD may commonly drive their co-occurrence, and gut microbes might partly explain the shared genetic etiology. Further studies are warranted to elaborate the possibly biological mechanisms underlying the two types of diseases.
Collapse
Affiliation(s)
- Yuxuan Wu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yu Yan
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jike Qi
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuxin Liu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hao Chen
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Xinying Guan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222002, China
| | - Chu Zheng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
2
|
Bouajila N, Domenighetti C, Aubin HJ, Naassila M. Alcohol consumption and its association with cancer, cardiovascular, liver and brain diseases: a systematic review of Mendelian randomization studies. FRONTIERS IN EPIDEMIOLOGY 2024; 4:1385064. [PMID: 39574800 PMCID: PMC11578756 DOI: 10.3389/fepid.2024.1385064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024]
Abstract
Background The health effects of alcohol consumption, particularly regarding potential protective benefits of light to moderate intake compared to abstinence, remain a subject of ongoing debate. However, epidemiological studies face limitations due to imprecise exposure measurements and the potential for bias through residual confounding and reverse causation. To address these limitations, we conducted a systematic review of Mendelian Randomization (MR) studies examining the causal relationship between alcohol consumption and cancers, cardiovascular, liver, and neurological diseases. Methodology We searched PubMed, ScienceDirect and Embase and Europe PMC up to 05/2024 for MR studies investigating the association of genetically predicted alcohol consumption with cancers, cardiovascular, liver and neurological diseases. We assessed methodological quality based on key elements of the MR design a genetic association studies tool. Results We included 70 MR studies that matched our inclusion criteria. Our review showed a significant association of alcohol consumption with multiple cancers such as oral and oropharyngeal, esophageal, colorectal cancers, hepatocellular carcinoma and cutaneous melanoma. While the available studies did not consistently confirm the adverse or protective effects of alcohol on other cancers, such as lung cancer, as suggested by observational studies. Additionally, MR studies confirmed a likely causal effect of alcohol on the risk of hypertension, atrial fibrillation, myocardial infraction and vessels disease. However, there was no evidence to support the protective effects of light to moderate alcohol consumption on cognitive function, Alzheimer's disease, and amyotrophic lateral sclerosis, as reported in observational studies while our review revealed an increased risk of epilepsy and multiple sclerosis. The available studies provided limited results on the link between alcohol consumption and liver disease. Conclusions Despite the valuable insights into the causal relationship between alcohol consumption and various health outcomes that MR studies provided, it is worth noting that the inconsistent ability of genetic instrumental variables to distinguish between abstainers, light and moderate drinkers makes it difficult to differentiate between U or J-shaped vs. linear relationships between exposure and outcome. Additional research is necessary to establish formal quality assessment tools for MR studies and to conduct more studies in diverse populations, including non-European ancestries. Systematic Review Registration www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021246154, Identifier: PROSPERO (CRD42021246154).
Collapse
Affiliation(s)
- Naouras Bouajila
- Inserm Unit UMRS 1247, University of Picardie Jules Verne, Amiens, France
| | - Cloé Domenighetti
- UVSQ, Univ. Paris-Sud, Inserm, Team “Exposome, Heredity, Cancer, and Health”, CESP, University of Paris-Saclay, Villejuif, France
| | - Henri-Jean Aubin
- Department of Psychiatry and Addictology, Paul-Brousse Hospital, AP-HP, Center for Epidemiology and Population Health Research (CESP), Inserm 1018, University of Paris-Saclay, Villejuif, France
| | - Mickael Naassila
- Inserm Unit UMRS 1247, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
3
|
Jing Z, Qi X, Teng J. Dietary factors and risk for amyotrophic lateral sclerosis: A two sample mendelian randomization study. Medicine (Baltimore) 2024; 103:e38473. [PMID: 38905382 PMCID: PMC11191971 DOI: 10.1097/md.0000000000038473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/15/2024] [Indexed: 06/23/2024] Open
Abstract
Correlations between dietary factors and amyotrophic lateral sclerosis (ALS) have been found in previous observational studies. However, no further studies have used Mendelian randomization to further explore the causal relationship between dietary factors and ALS. Clarifying these relationships is a crucial part of developing nutritional recommendations for ALS prevention. The exposure and outcome datasets employed in this study were extracted from the IEU Open GWAS project (https://gwas.mrcieu.ac.uk/). The exposure datasets involved in our Mendelian analyses consisted of meat intake (processed meat intake, poultry intake, beef intake, pork intake, non-oily fish intake, and oily fish intake), staple foods intake (bread intake and cereal intake), vegetable intake (cooked vegetable intake, salad/raw vegetable intake), fruit intake (fresh fruit intake and dried fruit intake), and beverage intake (coffee intake and tea intake). The weighted median, MR-Egger, Inverse Variance Weighted, Simple mode and Weighted mode methods were all utilized. And we applied Inverse Variance Weighted method as the main judgement criterion for Mendelian randomization analysis. Heterogeneity and pleiotropy analyses were conducted to confirm the validity of the outcomes. Genetically predicted that oily fish intake (OR: 0.7648; 95% CI: 0.5905-0.9904; P = .0420), coffee intake (OR: 0.7385; 95% CI: 0.5660-0.9637; P = .0256), and fresh fruit intake (OR: 0.6165; 95% CI: 0.4007-0.9487; P = .0278) were causally associated with a decreased risk of ALS. Negative results (P > .05) were received for all other dietary factors. This study found that oily fish intake, coffee intake and fresh fruit intake reduced the risk of developing ALS. Additionally, other factors were not associated with ALS.
Collapse
Affiliation(s)
- Zhaoyi Jing
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianghua Qi
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Jing Teng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Guo C, Chen L, Wang Y. Substance abuse and neurodegenerative diseases: focus on ferroptosis. Arch Toxicol 2023; 97:1519-1528. [PMID: 37100932 DOI: 10.1007/s00204-023-03505-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
Psychostimulants and alcohol are widely abused substances with the adverse effects on global public health. Substance abuse seriously harms people's health and causes various diseases, especially neurodegenerative diseases. Neurodegenerative diseases include Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). The pathogenesis of neurodegenerative diseases is complex and diverse, usually involving oxidative stress, mitochondrial dysfunction, metal homeostasis disorder, and neuro-inflammation. The precise molecular mechanisms underlying neurodegeneration remain unclear, which is a major obstacle to therapeutic approaches. Therefore, it is urgent to improve the understanding of the molecular mechanisms of neurodegenerative processes and to identify the therapeutic targets for treatment and prevention. Ferroptosis is a regulatory cell necrosis caused by iron ion catalysis and lipid peroxidation induced by reactive oxygen species (ROS), which is thought to be associated with nervous system diseases, particularly neurodegenerative diseases. This review overviewed the ferroptosis process and explored the relationship of ferroptosis with substance abuse and neurodegenerative diseases, which provides a new way to study the molecular mechanisms of neurodegenerative diseases induced by alcohol, cocaine, and methamphetamine (MA), and also provides the potential therapeutic targets for substance abuse-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Cheng Guo
- School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Lei Chen
- International Education School, China Medical University, Shenyang, Liaoning, China
| | - Yun Wang
- School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
5
|
Genetic correlation and gene-based pleiotropy analysis for four major neurodegenerative diseases with summary statistics. Neurobiol Aging 2023; 124:117-128. [PMID: 36740554 DOI: 10.1016/j.neurobiolaging.2022.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/25/2022] [Accepted: 12/27/2022] [Indexed: 01/02/2023]
Abstract
Recent genome-wide association studies suggested shared genetic components between neurodegenerative diseases. However, pleiotropic association patterns among them remain poorly understood. We here analyzed 4 major neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), and found suggestively positive genetic correlation. We next implemented a gene-centric pleiotropy analysis with a powerful method called PLACO and detected 280 pleiotropic associations (226 unique genes) with these diseases. Functional analyses demonstrated that these genes were enriched in the pancreas, liver, heart, blood, brain, and muscle tissues; and that 42 pleiotropic genes exhibited drug-gene interactions with 341 drugs. Using Mendelian randomization, we discovered that AD and PD can increase the risk of developing ALS, and that AD and ALS can also increase the risk of developing FTD, respectively. Overall, this study provides in-depth insights into shared genetic components and causal relationship among the 4 major neurodegenerative diseases, indicating genetic overlap and causality commonly drive their co-occurrence. It also has important implications on the etiology understanding, drug development and therapeutic targets for neurodegenerative diseases.
Collapse
|
6
|
Liu X, Vigorito M, Huang W, Khan MAS, Chang SL. The Impact of Alcohol-Induced Dysbiosis on Diseases and Disorders of the Central Nervous System. J Neuroimmune Pharmacol 2022; 17:131-151. [PMID: 34843074 DOI: 10.1007/s11481-021-10033-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022]
Abstract
The human digestive tract contains a diverse and abundant microbiota that is important for health. Excessive alcohol use can disrupt the balance of these microbes (known as dysbiosis), leading to elevated blood endotoxin levels and systemic inflammation. Using QIAGEN Ingenuity Pathway Analysis (IPA) bioinformatics tool, we have confirmed that peripheral endotoxin (lipopolysaccharide) mediates various cytokines to enhance the neuroinflammation signaling pathway. The literature has identified alcohol-mediated neuroinflammation as a possible risk factor for the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), and psychiatric disorders such as addiction to alcohol and other drugs. In this review, we discuss alcohol-use-induced dysbiosis in the gut and other body parts as a causal factor in the progression of Central Nervous System (CNS) diseases including neurodegenerative disease and possibly alcohol use disorder.
Collapse
Affiliation(s)
- Xiangqian Liu
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China
| | - Michael Vigorito
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Psychology, Seton Hall University, South Orange, NJ, 07079, USA
| | - Wenfei Huang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA
| | - Mohammed A S Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, MA, 02114, USA.
| | - Sulie L Chang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA.
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA.
| |
Collapse
|
7
|
Zhang M, Qiao J, Zhang S, Zeng P. Exploring the association between birthweight and breast cancer using summary statistics from a perspective of genetic correlation, mediation, and causality. J Transl Med 2022; 20:227. [PMID: 35568861 PMCID: PMC9107660 DOI: 10.1186/s12967-022-03435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous studies demonstrated a positive relationship between birthweight and breast cancer; however, inconsistent, sometimes even controversial, observations also emerged, and the nature of such relationship remains unknown. METHODS Using summary statistics of birthweight and breast cancer, we assessed the fetal/maternal-specific genetic correlation between them via LDSC and prioritized fetal/maternal-specific pleiotropic genes through MAIUP. Relying on summary statistics we conducted Mendelian randomization (MR) to evaluate the fetal/maternal-specific origin of causal relationship between birthweight, age of menarche, age at menopause and breast cancer. RESULTS With summary statistics we identified a positive genetic correlation between fetal-specific birthweight and breast cancer (rg = 0.123 and P = 0.013) as well as a negative but insignificant correlation between maternal-specific birthweight and breast cancer (rg = - 0.068, P = 0.206); and detected 84 pleiotropic genes shared by fetal-specific birthweight and breast cancer, 49 shared by maternal-specific birthweight and breast cancer. We also revealed fetal-specific birthweight indirectly influenced breast cancer risk in adulthood via the path of age of menarche or age at menopause in terms of MR-based mediation analysis. CONCLUSION This study reveals that shared genetic foundation and causal mediation commonly drive the connection between the two traits, and that fetal/maternal-specific birthweight plays substantially distinct roles in such relationship. However, our work offers little supportive evidence for the fetal origins hypothesis of breast cancer originating in utero.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jiahao Qiao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shuo Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China. .,Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China. .,Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China. .,Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
8
|
Julian TH, Boddy S, Islam M, Kurz J, Whittaker KJ, Moll T, Harvey C, Zhang S, Snyder MP, McDermott C, Cooper-Knock J, Shaw PJ. A review of Mendelian randomization in amyotrophic lateral sclerosis. Brain 2022; 145:832-842. [PMID: 34791088 PMCID: PMC9050546 DOI: 10.1093/brain/awab420] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/02/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis is a relatively common and rapidly progressive neurodegenerative disease that, in the majority of cases, is thought to be determined by a complex gene-environment interaction. Exponential growth in the number of performed genome-wide association studies combined with the advent of Mendelian randomization is opening significant new opportunities to identify environmental exposures that increase or decrease the risk of amyotrophic lateral sclerosis. Each of these discoveries has the potential to shape new therapeutic interventions. However, to do so, rigorous methodological standards must be applied in the performance of Mendelian randomization. We have reviewed Mendelian randomization studies performed in amyotrophic lateral sclerosis to date. We identified 20 Mendelian randomization studies, including evaluation of physical exercise, adiposity, cognitive performance, immune function, blood lipids, sleep behaviours, educational attainment, alcohol consumption, smoking and type 2 diabetes mellitus. We have evaluated each study using gold standard methodology supported by the Mendelian randomization literature and the STROBE-Mendelian randomization checklist. Where discrepancies exist between Mendelian randomization studies, we suggest the underlying reasons. A number of studies conclude that there is a causal link between blood lipids and risk of amyotrophic lateral sclerosis; replication across different datasets and even different populations adds confidence. For other putative risk factors, such as smoking and immune function, Mendelian randomization studies have provided cause for doubt. We highlight the use of positive control analyses in choosing exposure single nucleotide polymorphisms (SNPs) to make up the Mendelian randomization instrument, use of SNP clumping to avoid false positive results due to SNPs in linkage and the importance of multiple testing correction. We discuss the implications of survival bias for study of late age of onset diseases such as amyotrophic lateral sclerosis and make recommendations to mitigate this potentially important confounder. For Mendelian randomization to be useful to the amyotrophic lateral sclerosis field, high methodological standards must be applied to ensure reproducibility. Mendelian randomization is already an impactful tool, but poor-quality studies will lead to incorrect interpretations by a field that includes non-statisticians, wasted resources and missed opportunities.
Collapse
Affiliation(s)
- Thomas H Julian
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sarah Boddy
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Mahjabin Islam
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Julian Kurz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Katherine J Whittaker
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Tobias Moll
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Calum Harvey
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sai Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher McDermott
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Johnathan Cooper-Knock
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
Edgar JA, Molyneux RJ, Colegate SM. 1,2-Dehydropyrrolizidine Alkaloids: Their Potential as a Dietary Cause of Sporadic Motor Neuron Diseases. Chem Res Toxicol 2022; 35:340-354. [PMID: 35238548 DOI: 10.1021/acs.chemrestox.1c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sporadic motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS), can be caused by spontaneous genetic mutations. However, many sporadic cases of ALS and other debilitating neurodegenerative diseases (NDDs) are believed to be caused by environmental factors, subject to considerable debate and requiring intensive research. A common pathology associated with MND development involves progressive mitochondrial dysfunction and oxidative stress in motor neurons and glial cells of the central nervous system (CNS), leading to apoptosis. Consequent degeneration of skeletal and respiratory muscle cells can lead to death from respiratory failure. A significant number of MND cases present with cancers and liver and lung pathology. This Perspective explores the possibility that MNDs could be caused by intermittent, low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids (1,2-dehydroPAs) that are increasingly recognized as contaminants of many foods consumed throughout the world. Nontoxic, per se, 1,2-dehydroPAs are metabolized, by particular cytochrome P450 (CYP450) isoforms, to 6,7-dihydropyrrolizines that react with nucleophilic groups (-NH, -SH, -OH) on DNA, proteins, and other vital biochemicals, such as glutathione. Many factors, including aging, gender, smoking, and alcohol consumption, influence CYP450 isoform activity in a range of tissues, including glial cells and neurons of the CNS. Activation of 1,2-dehydroPAs in CNS cells can be expected to cause gene mutations and oxidative stress, potentially leading to the development of MNDs and other NDDs. While relatively high dietary exposure to 1,2-dehydroPAs causes hepatic sinusoidal obstruction syndrome, pulmonary venoocclusive disease, neurotoxicity, and diverse cancers, this Perspective suggests that, at current intermittent, low levels of dietary exposure, neurotoxicity could become the primary pathology that develops over time in susceptible individuals, along with a tendency for some of them to also display liver and lung pathology and diverse cancers co-occurring with some MND/NDD cases. Targeted research is recommended to investigate this proposal.
Collapse
Affiliation(s)
- John A Edgar
- CSIRO Agriculture and Food, 11 Julius Avenue, North Ryde, New South Wales 2113, Australia
| | - Russell J Molyneux
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, United States
| | - Steven M Colegate
- Poisonous Plant Research Laboratory, ARS/USDA, 1150 East 1400 North, Logan, Utah 84341, United States
| |
Collapse
|
10
|
de Lima NS, da Costa CCP, Assunção LDP, Santos KDF, Bento DDCP, da Silva Reis AA, Santos RDS. One-carbon metabolism pathway genes and their non-association with the development of amyotrophic lateral sclerosis. J Cell Biochem 2022; 123:620-627. [PMID: 34994003 DOI: 10.1002/jcb.30208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/29/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022]
Abstract
Although of unknown etiology, some mechanisms associated with the metabolic cycle of folate are speculated to be related to the genesis of amyotrophic lateral sclerosis (ALS). Thus, the aim of the study was to analyze the role of genetic polymorphisms rs1051266 in SLC19A1 gene and rs1805087 in MTR gene and their associations with ALS development. A case-control study was conducted with 101 individuals with ALS and 119 individuals without diagnosis of neurodegenerative diseases, from the Brazilian central population. The polymorphisms were determined using the polymerase chain reaction-restriction fragment length polymorphism technique. The results showed no statistically significant differences, even when genotypes were analyzed by the dominant, recessive, codominant, and overdominant inheritance models. It was observed a statistical significance relating alcohol consumption with individuals in the case group (p = 0.01). Therefore, the need for more studies to evaluate the influence of genetic variants is highlighted, seeking to provide information on the etiopathogenesis of ALS.
Collapse
Affiliation(s)
- Nayane S de Lima
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| | - Caroline C P da Costa
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| | - Leandro do P Assunção
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| | - Kamilla de F Santos
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| | - Dhiogo da C P Bento
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil.,Neuromuscular Disease Clinic, Rehabilitation and Readaptation Medical Center Dr. Henrique Santillo (CRER), Goiânia-GO, Brazil
| | - Angela A da Silva Reis
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil.,Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| | - Rodrigo da S Santos
- Molecular Pathology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil.,Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia-GO, Brazil
| |
Collapse
|
11
|
Chen H, Qiao J, Wang T, Shao Z, Huang S, Zeng P. Assessing Causal Relationship Between Human Blood Metabolites and Five Neurodegenerative Diseases With GWAS Summary Statistics. Front Neurosci 2021; 15:680104. [PMID: 34955704 PMCID: PMC8695771 DOI: 10.3389/fnins.2021.680104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Neurodegenerative diseases (NDDs) are the leading cause of disability worldwide while their metabolic pathogenesis is unclear. Genome-wide association studies (GWASs) offer an unprecedented opportunity to untangle the relationship between metabolites and NDDs. Methods: By leveraging two-sample Mendelian randomization (MR) approaches and relying on GWASs summary statistics, we here explore the causal association between 486 metabolites and five NDDs including Alzheimer’s Disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Parkinson’s disease (PD), and multiple sclerosis (MS). We validated our MR results with extensive sensitive analyses including MR-PRESSO and MR-Egger regression. We also performed linkage disequilibrium score regression (LDSC) and colocalization analyses to distinguish causal metabolite-NDD associations from genetic correlation and LD confounding of shared causal genetic variants. Finally, a metabolic pathway analysis was further conducted to identify potential metabolite pathways. Results: We detected 164 metabolites which were suggestively associated with the risk of NDDs. Particularly, 2-methoxyacetaminophen sulfate substantially affected ALS (OR = 0.971, 95%CIs: 0.961 ∼ 0.982, FDR = 1.04E-4) and FTD (OR = 0.924, 95%CIs: 0.885 ∼ 0.964, FDR = 0.048), and X-11529 (OR = 1.604, 95%CIs: 1.250 ∼ 2.059, FDR = 0.048) and X-13429 (OR = 2.284, 95%CIs: 1.457 ∼ 3.581, FDR = 0.048) significantly impacted FTD. These associations were further confirmed by the weighted median and maximum likelihood methods, with MR-PRESSO and the MR-Egger regression removing the possibility of pleiotropy. We also observed that ALS or FTD can alter the metabolite levels, including ALS and FTD on 2-methoxyacetaminophen sulfate. The LDSC and colocalization analyses showed that none of the identified associations could be driven by genetic correlation or confounding by LD with common causal loci. Multiple metabolic pathways were found to be involved in NDDs, such as “urea cycle” (P = 0.036), “arginine biosynthesis” (P = 0.004) on AD and “phenylalanine, tyrosine and tryptophan biosynthesis” (P = 0.046) on ALS. Conclusion: our study reveals robust bidirectional causal associations between servaral metabolites and neurodegenerative diseases, and provides a novel insight into metabolic mechanism for pathogenesis and therapeutic strategies of these diseases.
Collapse
Affiliation(s)
- Haimiao Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jiahao Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ting Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Zhonghe Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Shuiping Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
12
|
Lu H, Qiao J, Shao Z, Wang T, Huang S, Zeng P. A comprehensive gene-centric pleiotropic association analysis for 14 psychiatric disorders with GWAS summary statistics. BMC Med 2021; 19:314. [PMID: 34895209 PMCID: PMC8667366 DOI: 10.1186/s12916-021-02186-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recent genome-wide association studies (GWASs) have revealed the polygenic nature of psychiatric disorders and discovered a few of single-nucleotide polymorphisms (SNPs) associated with multiple psychiatric disorders. However, the extent and pattern of pleiotropy among distinct psychiatric disorders remain not completely clear. METHODS We analyzed 14 psychiatric disorders using summary statistics available from the largest GWASs by far. We first applied the cross-trait linkage disequilibrium score regression (LDSC) to estimate genetic correlation between disorders. Then, we performed a gene-based pleiotropy analysis by first aggregating a set of SNP-level associations into a single gene-level association signal using MAGMA. From a methodological perspective, we viewed the identification of pleiotropic associations across the entire genome as a high-dimensional problem of composite null hypothesis testing and utilized a novel method called PLACO for pleiotropy mapping. We ultimately implemented functional analysis for identified pleiotropic genes and used Mendelian randomization for detecting causal association between these disorders. RESULTS We confirmed extensive genetic correlation among psychiatric disorders, based on which these disorders can be grouped into three diverse categories. We detected a large number of pleiotropic genes including 5884 associations and 2424 unique genes and found that differentially expressed pleiotropic genes were significantly enriched in pancreas, liver, heart, and brain, and that the biological process of these genes was remarkably enriched in regulating neurodevelopment, neurogenesis, and neuron differentiation, offering substantial evidence supporting the validity of identified pleiotropic loci. We further demonstrated that among all the identified pleiotropic genes there were 342 unique ones linked with 6353 drugs with drug-gene interaction which can be classified into distinct types including inhibitor, agonist, blocker, antagonist, and modulator. We also revealed causal associations among psychiatric disorders, indicating that genetic overlap and causality commonly drove the observed co-existence of these disorders. CONCLUSIONS Our study is among the first large-scale effort to characterize gene-level pleiotropy among a greatly expanded set of psychiatric disorders and provides important insight into shared genetic etiology underlying these disorders. The findings would inform psychiatric nosology, identify potential neurobiological mechanisms predisposing to specific clinical presentations, and pave the way to effective drug targets for clinical treatment.
Collapse
Affiliation(s)
- Haojie Lu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jiahao Qiao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Zhonghe Shao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shuiping Huang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
13
|
Qiao J, Zhang M, Wang T, Huang S, Zeng P. Evaluating Causal Relationship Between Metabolites and Six Cardiovascular Diseases Based on GWAS Summary Statistics. Front Genet 2021; 12:746677. [PMID: 34721534 PMCID: PMC8554206 DOI: 10.3389/fgene.2021.746677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/29/2021] [Indexed: 01/23/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain the main cause of morbidity and mortality worldwide. The pathological mechanism and underlying biological processes of these diseases with metabolites remain unclear. In this study, we conducted a two-sample Mendelian randomization (MR) analysis to evaluate the causal effect of metabolites on these diseases by making full use of the latest GWAS summary statistics for 486 metabolites and six major CVDs. Extensive sensitivity analyses were implemented to validate our MR results. We also conducted linkage disequilibrium score regression (LDSC) and colocalization analysis to investigate whether MR findings were driven by genetic similarity or hybridization between LD and disease-associated gene loci. We identified a total of 310 suggestive associations across all metabolites and CVDs, and finally obtained four significant associations, including bradykinin, des-arg(9) (odds ratio [OR] = 1.160, 95% confidence intervals [CIs]: 1.080-1.246, false discovery rate [FDR] = 0.022) on ischemic stroke, N-acetylglycine (OR = 0.946, 95%CIs: 0.920-0.973, FDR = 0.023), X-09026 (OR = 0.845, 95%CIs: 0.779-0.916, FDR = 0.021) and X-14473 (OR = 0.938, 95%CIs = 0.907-0.971, FDR = 0.040) on hypertension. Sensitivity analyses showed that these causal associations were robust, the LDSC and colocalization analyses demonstrated that the identified associations were unlikely confused by LD. Moreover, we identified 15 important metabolic pathways might be involved in the pathogenesis of CVDs. Overall, our work identifies several metabolites that have a causal relationship with CVDs, and improves our understanding of the pathogenesis and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Jiahao Qiao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Meng Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Shuiping Huang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
14
|
Xu X, Shen D, Gao Y, Zhou Q, Ni Y, Meng H, Shi H, Le W, Chen S, Chen S. A perspective on therapies for amyotrophic lateral sclerosis: can disease progression be curbed? Transl Neurodegener 2021; 10:29. [PMID: 34372914 PMCID: PMC8353789 DOI: 10.1186/s40035-021-00250-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/09/2021] [Indexed: 01/17/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease involving both upper and lower motor neurons, leading to paralysis and eventually death. Symptomatic treatments such as inhibition of salivation, alleviation of muscle cramps, and relief of spasticity and pain still play an important role in enhancing the quality of life. To date, riluzole and edaravone are the only two drugs approved by the Food and Drug Administration for the treatment of ALS in a few countries. While there is adequate consensus on the modest efficacy of riluzole, there are still open questions concerning the efficacy of edaravone in slowing the disease progression. Therefore, identification of novel therapeutic strategies is urgently needed. Impaired autophagic process plays a critical role in ALS pathogenesis. In this review, we focus on therapies modulating autophagy in the context of ALS. Furthermore, stem cell therapies, gene therapies, and newly-developed biomaterials have great potentials in alleviating neurodegeneration, which might halt the disease progression. In this review, we will summarize the current and prospective therapies for ALS.
Collapse
Affiliation(s)
- Xiaojiao Xu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, 610031, China
| | - Dingding Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Yining Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - You Ni
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Huanyu Meng
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Hongqin Shi
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China.,Department of Neurology, Xinrui Hospital, Wuxi, 214028, China
| | - Weidong Le
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China. .,Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, 610031, China. .,Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China.
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China.
| |
Collapse
|
15
|
Kläppe U, Longinetti E, Larsson H, Ingre C, Fang F. Mortality among family members of patients with amyotrophic lateral sclerosis - a Swedish register-based study. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:226-235. [PMID: 34296642 DOI: 10.1080/21678421.2021.1953075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objective: To test two hypotheses: (1) partners of ALS patients have higher mortality due to outcomes related to psychological distress, and (2) parents and siblings of ALS patients have higher mortality due to diseases that co-occur with ALS.Methods: We performed a nationwide, register-based cohort study in Sweden. We included ALS-free partners, biological parents and full siblings (N = 11,704) of ALS patients, as well as ALS-free partners, biological parents and full siblings (N = 14,460,150) of ALS-free individuals, and followed them during 1961-2013. Hazard ratios (HRs) and 95% confidence intervals (CIs) of overall and cause-specific mortality were derived from Cox regression.Results: Partners of ALS patients, compared to partners of ALS-free individuals, displayed higher mortality due to external causes (HR 2.14; 95% CI 1.35-3.41), including suicide (HR 2.44; 95% CI 1.09-5.44) and accidents (HR 2.09; 95% CI 1.12-3.90), after diagnosis of the ALS patients. Parents of ALS patients had a slightly higher overall mortality (HR 1.03; 95% CI 1.00-1.07), compared with parents of ALS-free individuals. This was driven by mortality due to dementias and cardiovascular, respiratory, and skin diseases. Parents of ALS patients had, however, lower mortality than parents of ALS-free individuals due to neoplasms. Siblings of ALS patients had higher mortality due to dementias, and digestive and skin diseases.Conclusions: Increased mortality due to suicide and accidents among partners of ALS patients is likely attributable to severe psychological distress following the ALS diagnosis. Increased mortality due to dementias among parents and full siblings of ALS patients suggests shared mechanisms between neurodegenerative diseases.
Collapse
Affiliation(s)
- Ulf Kläppe
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Elisa Longinetti
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- School of Medical Sciences, Örebro University, Orebro, Sweden.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden, and
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Wu PF, Lu H, Zhou X, Liang X, Li R, Zhang W, Li D, Xia K. Assessment of causal effects of physical activity on neurodegenerative diseases: A Mendelian randomization study. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:454-461. [PMID: 33515719 PMCID: PMC8343066 DOI: 10.1016/j.jshs.2021.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/13/2020] [Accepted: 12/17/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Physical activity has been hypothesized to play a protective role in neurodegenerative diseases. However, effect estimates previously derived from observational studies were prone to confounding or reverse causation. METHODS We performed a two-sample Mendelian randomization (MR) analysis to explore the causal association of accelerometer-measured physical activity with 3 common neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). We selected genetic instrumental variants reaching genome-wide significance (p < 5 × 10-8) from 2 largest meta-analyses of about 91,100 UK Biobank participants. Summary statistics for AD, PD, and ALS were retrieved from the up-to-date studies in European ancestry led by the international consortia. The random-effect, inverse-variance weighted MR was employed as the primary method, while MR pleiotropy residual sum and outlier (MR-PRESSO), weighted median, and MR-Egger were implemented as sensitivity tests. All statistical analyses were performed using the R programming language (Version 3.6.1; R Foundation for Statistical Computing, Vienna, Austria). RESULTS Primary MR analysis and replication analysis utilized 5 and 8 instrumental variables, which explained 0.2% and 0.4% variance in physical activity, respectively. In each set, one variant at 17q21 was significantly associated with PD, and MR sensitivity analyses indicated them it as an outlier and source of heterogeneity and pleiotropy. Primary results with the removal of outlier variants suggested odds ratios (ORs) of neurodegenerative diseases per unit increase in objectively measured physical activity were 1.52 for AD (95% confidence interval (95%CI): 0.88-2.63, p = 0.13) and 3.35 for PD (95%CI: 1.32-8.48, p = 0.01), while inconsistent results were shown in the replication set for AD (OR = 1.06, 95%CI: 1.01-1.12, p = 0.02) and PD (OR = 0.99, 95%CI: 0.88-0.12, p = 0.97). Similarly, the beneficial effect of physical activity on ALS (OR = 0.51, 95%CI: 0.29-0.91, p = 0.02) was not confirmed in the replication analysis (OR = 0.96, 95%CI: 0.91-1.02, p = 0.22). CONCLUSION Genetically predicted physical activity was not robustly associated with risk of neurodegenerative disorders. Triangulating evidence across other studies is necessary in order to elucidate whether enhancing physical activity is an effective approach in preventing the onset of AD, PD, or ALS.
Collapse
Affiliation(s)
- Peng-Fei Wu
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; Department of Neurology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA 02115, USA
| | - Hui Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Xiaoting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xuchen Liang
- School of Physical Education, Henan University, Kaifeng 475001, China
| | - Ruizhuo Li
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Wan Zhang
- Department of Neurology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA 02115, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02215, USA
| | - Danyang Li
- Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02215, USA
| | - Kun Xia
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China.
| |
Collapse
|
17
|
Gao Y, Zhang J, Zhao H, Guan F, Zeng P. Instrumental Heterogeneity in Sex-Specific Two-Sample Mendelian Randomization: Empirical Results From the Relationship Between Anthropometric Traits and Breast/Prostate Cancer. Front Genet 2021; 12:651332. [PMID: 34178025 PMCID: PMC8220153 DOI: 10.3389/fgene.2021.651332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background In two-sample Mendelian randomization (MR) studies, sex instrumental heterogeneity is an important problem needed to address carefully, which however is often overlooked and may lead to misleading causal inference. Methods We first employed cross-trait linkage disequilibrium score regression (LDSC), Pearson's correlation analysis, and the Cochran's Q test to examine sex genetic similarity and heterogeneity in instrumental variables (IVs) of exposures. Simulation was further performed to explore the influence of sex instrumental heterogeneity on causal effect estimation in sex-specific two-sample MR analyses. Furthermore, we chose breast/prostate cancer as outcome and four anthropometric traits as exposures as an illustrative example to illustrate the importance of taking sex heterogeneity of instruments into account in MR studies. Results The simulation definitively demonstrated that sex-combined IVs can lead to biased causal effect estimates in sex-specific two-sample MR studies. In our real applications, both LDSC and Pearson's correlation analyses showed high genetic correlation between sex-combined and sex-specific IVs of the four anthropometric traits, while nearly all the correlation coefficients were larger than zero but less than one. The Cochran's Q test also displayed sex heterogeneity for some instruments. When applying sex-specific instruments, significant discrepancies in the magnitude of estimated causal effects were detected for body mass index (BMI) on breast cancer (P = 1.63E-6), for hip circumference (HIP) on breast cancer (P = 1.25E-20), and for waist circumference (WC) on prostate cancer (P = 0.007) compared with those generated with sex-combined instruments. Conclusion Our study reveals that the sex instrumental heterogeneity has non-ignorable impact on sex-specific two-sample MR studies and the causal effects of anthropometric traits on breast/prostate cancer would be biased if sex-combined IVs are incorrectly employed.
Collapse
Affiliation(s)
- Yixin Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jinhui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Huashuo Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Fengjun Guan
- Department of Pediatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
Lu H, Wang T, Zhang J, Zhang S, Huang S, Zeng P. Evaluating marginal genetic correlation of associated loci for complex diseases and traits between European and East Asian populations. Hum Genet 2021; 140:1285-1297. [PMID: 34091770 DOI: 10.1007/s00439-021-02299-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Genome-wide association studies (GWASs) have successfully identified a large amount of single-nucleotide polymorphisms associated with many complex phenotypes in diverse populations. However, a comprehensive understanding of the genetic correlation of associated loci of phenotypes across populations remains lacking and the extent to which associations discovered in one population can be generalized to other populations or can be utilized for trans-ethnic genetic prediction is also unclear. By leveraging summary statistics, we proposed MAGIC to evaluate the trans-ethnic marginal genetic correlation (rm) of per-allele effect sizes for associated SNPs (P < 5E-8) under the framework of measurement error models. We confirmed the methodological advantage of MAGIC over general approaches through simulations and demonstrated its utility by analyzing 34 GWAS summary statistics of phenotypes from the East Asian (Nmax = 254,373) and European (Nmax = 1,220,901) populations. Among these phenotypes, rm was estimated to range from 0.584 (se = 0.140) for breast cancer to 0.949 (se = 0.035) for age of menarche, with an average of 0.835 (se = 0.045). We also uncovered that the trans-ethnic genetic prediction accuracy for phenotypes in the target population would substantially become low when using associated SNPs identified in non-target populations, indicating that associations discovered in the one population cannot be simply generalized to another population and that the accuracy of trans-ethnic phenotype prediction is generally dissatisfactory. Overall, our study provides in-depth insight into trans-ethnic genetic correlation and prediction for complex phenotypes across diverse populations.
Collapse
Affiliation(s)
- Haojie Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ting Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jinhui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shuo Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shuiping Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China. .,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
19
|
Cucovici A, Fontana A, Ivashynka A, Russo S, Renna V, Mazzini L, Gagliardi I, Mandrioli J, Martinelli I, Lisnic V, Muresanu DF, Zarrelli M, Copetti M, Leone MA. The Impact of Lifetime Alcohol and Cigarette Smoking Loads on Amyotrophic Lateral Sclerosis Progression: A Cross-Sectional Study. Life (Basel) 2021; 11:life11040352. [PMID: 33920645 PMCID: PMC8072690 DOI: 10.3390/life11040352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Background—Amyotrophic lateral sclerosis (ALS) is a devastating and untreatable motor neuron disease; smoking and alcohol drinking may impact its progression rate. Objective—To ascertain the influence of smoking and alcohol consumption on ALS progression rates. Methods—Cross-sectional multicenter study, including 241 consecutive patients (145 males); mean age at onset was 59.9 ± 11.8 years. Cigarette smoking and alcohol consumption data were collected at recruitment through a validated questionnaire. Patients were categorized into three groups according to ΔFS (derived from the ALS Functional Rating Scale-Revised and disease duration from onset): slow (n = 81), intermediate (80), and fast progressors (80). Results—Current smokers accounted for 44 (18.3%) of the participants, former smokers accounted for 10 (4.1%), and non-smokers accounted for 187 (77.6%). The age of ALS onset was lower in current smokers than non-smokers, and the ΔFS was slightly, although not significantly, higher for smokers of >14 cigarettes/day. Current alcohol drinkers accounted for 147 (61.0%) of the participants, former drinkers accounted for 5 (2.1%), and non-drinkers accounted for 89 (36.9%). The log(ΔFS) was weakly correlated only with the duration of alcohol consumption (p = 0.028), but not with the mean number of drinks/day or the drink-years. Conclusions: This cross-sectional multicenter study suggested a possible minor role for smoking in worsening disease progression. A possible interaction with alcohol drinking was suggested.
Collapse
Affiliation(s)
- Aliona Cucovici
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
- Neurology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.I.); (V.R.); (M.Z.)
| | - Andrea Fontana
- Unit of Biostatistics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.F.); (M.C.)
| | - Andrei Ivashynka
- Neurology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.I.); (V.R.); (M.Z.)
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Sergio Russo
- ICT Innovation & Research Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Valentina Renna
- Neurology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.I.); (V.R.); (M.Z.)
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore della Carità Hospital, 28100 Novara, Italy; (L.M.); (I.G.)
| | - Ileana Gagliardi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore della Carità Hospital, 28100 Novara, Italy; (L.M.); (I.G.)
| | - Jessica Mandrioli
- Neurology Unit, Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41125 Modena, Italy; (J.M.); (I.M.)
| | - Ilaria Martinelli
- Neurology Unit, Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41125 Modena, Italy; (J.M.); (I.M.)
| | - Vitalie Lisnic
- Department of Neurology, State University of Medicine and Pharmacy “Nicolae Testemitanu”, 2004 Chisinau, Moldova;
| | - Dafin Fior Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania and “RoNeuro” Institute for Neurological Research and Diagnostic, 400000 Cluj-Napoca, Romania;
| | - Michele Zarrelli
- Neurology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.I.); (V.R.); (M.Z.)
| | - Massimiliano Copetti
- Unit of Biostatistics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.F.); (M.C.)
| | - Maurizio A. Leone
- Neurology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (A.I.); (V.R.); (M.Z.)
- Correspondence:
| |
Collapse
|
20
|
Zeng P, Dai J, Jin S, Zhou X. Aggregating multiple expression prediction models improves the power of transcriptome-wide association studies. Hum Mol Genet 2021; 30:939-951. [PMID: 33615361 DOI: 10.1093/hmg/ddab056] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Transcriptome-wide association study (TWAS) is an important integrative method for identifying genes that are causally associated with phenotypes. A key step of TWAS involves the construction of expression prediction models for every gene in turn using its cis-SNPs as predictors. Different TWAS methods rely on different models for gene expression prediction, and each such model makes a distinct modeling assumption that is often suitable for a particular genetic architecture underlying expression. However, the genetic architectures underlying gene expression vary across genes throughout the transcriptome. Consequently, different TWAS methods may be beneficial in detecting genes with distinct genetic architectures. Here, we develop a new method, HMAT, which aggregates TWAS association evidence obtained across multiple gene expression prediction models by leveraging the harmonic mean P-value combination strategy. Because each expression prediction model is suited to capture a particular genetic architecture, aggregating TWAS associations across prediction models as in HMAT improves accurate expression prediction and enables subsequent powerful TWAS analysis across the transcriptome. A key feature of HMAT is its ability to accommodate the correlations among different TWAS test statistics and produce calibrated P-values after aggregation. Through numerical simulations, we illustrated the advantage of HMAT over commonly used TWAS methods as well as ad hoc P-value combination rules such as Fisher's method. We also applied HMAT to analyze summary statistics of nine common diseases. In the real data applications, HMAT was on average 30.6% more powerful compared to the next best method, detecting many new disease-associated genes that were otherwise not identified by existing TWAS approaches. In conclusion, HMAT represents a flexible and powerful TWAS method that enjoys robust performance across a range of genetic architectures underlying gene expression.
Collapse
Affiliation(s)
- Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Siyi Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.,Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Serum Creatinine Protects Against Amyotrophic Lateral Sclerosis: a Mendelian Randomization Study. Mol Neurobiol 2021; 58:2910-2915. [PMID: 33555548 DOI: 10.1007/s12035-021-02309-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
Association between serum creatinine (sCr) and amyotrophic lateral sclerosis (ALS) has been reported in previous observational studies, but results are at risk of confounding bias and reverse causation. Therefore, whether such association is casual remains unclear. Herein, we performed a two-sample Mendelian randomization study to evaluate the causal relationship between sCr and ALS in both European and East Asian populations. Our analysis was conducted using summary statistics from genome-wide association studies with 358,072 individuals for sCr and 80,610 individuals for ALS in European population, and 142,097 individuals for sCr and 4,084 individuals for ALS in East Asian population. The inverse-variance weighted method was used to estimate the casual-effect of sCr on ALS in both populations, and other MR methods were also performed as sensitivity analyses. We found evidence that genetically predicted sCr was inversely associated with risk of ALS (OR, 0.92; 95% CI, 0.85-0.99; P = 0.028) in European population. However, there was no strong evidence for a causal relationship between sCr and ALS in East Asian population (OR, 0.92; 95% CI, 0.84-1.01; P = 0.084). This study provides evidence that sCr protects against ALS in European population but not in East Asian population.
Collapse
|
22
|
Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis. Sci Rep 2020; 10:12184. [PMID: 32699404 PMCID: PMC7376149 DOI: 10.1038/s41598-020-68848-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
We employed Mendelian randomization (MR) to evaluate the causal relationship between leukocyte telomere length (LTL) and amyotrophic lateral sclerosis (ALS) with summary statistics from genome-wide association studies (n = ~ 38,000 for LTL and ~ 81,000 for ALS in the European population; n = ~ 23,000 for LTL and ~ 4,100 for ALS in the Asian population). We further evaluated mediation roles of lipids in the pathway from LTL to ALS. The odds ratio per standard deviation decrease of LTL on ALS was 1.10 (95% CI 0.93–1.31, p = 0.274) in the European population and 0.75 (95% CI 0.53–1.07, p = 0.116) in the Asian population. This null association was also detected between LTL and frontotemporal dementia in the European population. However, we found that an indirect effect of LTL on ALS might be mediated by low density lipoprotein (LDL) or total cholesterol (TC) in the European population. These results were robust against extensive sensitivity analyses. Overall, our MR study did not support the direct causal association between LTL and the ALS risk in neither population, but provided suggestive evidence for the mediation role of LDL or TC on the influence of LTL and ALS in the European population.
Collapse
|