1
|
Israel S, Lowe C, Alkhadem Z, Roth E, Ruffini L, Tsuchida T, Anwar T. Barriers to Recruitment in an Acute Neonatal Seizure Drug Trial: Lessons From a Randomized, Double-Blind, Controlled Study of Intravenous Phenobarbital. Pediatr Neurol 2025; 165:74-77. [PMID: 39965360 DOI: 10.1016/j.pediatrneurol.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Despite the prevalence of seizures among neonates, neonatal seizure drug trials are rarely conducted due to ethical considerations, difficulties in trial design, and limited hospital resources and personnel. The purpose of this prospective consecutive case series is to highlight the experiences and challenges encountered by a single study site in participant recruitment for an acute neonatal seizure treatment trial that was active between January 24, 2022, and February 1, 2023. METHODS Outcomes include information about each screened patient's trial recruitment process, namely, the patient's time of admission, eligibility status, reasons why potentially eligible patients were not approached, reasons consent was declined, and seizure outcomes. RESULTS The study team screened 164 of 191 (86%) patients transferred to the Children's National Hospital neonatal intensive care unit for continuous electroencephalography. Of the 164 patients screened, 71 (43%) were ineligible for the study, and consent was not attempted on an additional 69 (42%) patients. A total of 24 patients were approached for consent, and 12 (50%) declined. Only two (17%) patients were treated with the study drug, as the remaining 10 (83%) enrolled patients failed the screening. Sixteen of the unscreened or nonconsenting patients went on to have seizures within the study period and would have been eligible to receive the study drug if enrolled. CONCLUSIONS Poor recruitment in acute neonatal seizure treatment trials may be improved by addressing issues in the consent process, personnel and resource allocation, and parent suspicion about clinical trials.
Collapse
Affiliation(s)
- Shani Israel
- Department of Neurology, Children's National Hospital, Washington, District of Columbia
| | - Courtney Lowe
- Department of Neurology, Children's National Hospital, Washington, District of Columbia
| | - Zahr Alkhadem
- Department of Neurology, Children's National Hospital, Washington, District of Columbia
| | - Emmeline Roth
- Janssen Research and Development, Raritan, New Jersey
| | - Lindsay Ruffini
- Department of Neurology, Children's National Hospital, Washington, District of Columbia
| | - Tammy Tsuchida
- Department of Neurology, Children's National Hospital, Washington, District of Columbia; Departments of Neurology and Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Tayyba Anwar
- Department of Neurology, Children's National Hospital, Washington, District of Columbia; Departments of Neurology and Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.
| |
Collapse
|
2
|
Casillas-Espinosa PM, Wong JC, Grabon W, Gonzalez-Ramos A, Mantegazza M, Yilmaz NC, Patel M, Staley K, Sankar R, O'Brien TJ, Akman Ö, Balagura G, Numis AL, Noebels JL, Baulac S, Auvin S, Henshall DC, Galanopoulou AS. WONOEP appraisal: Targeted therapy development for early onset epilepsies. Epilepsia 2025; 66:328-340. [PMID: 39560633 PMCID: PMC11922076 DOI: 10.1111/epi.18187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
The early onset epilepsies encompass a heterogeneous group of disorders, some of which result in drug-resistant seizures, developmental delay, psychiatric comorbidities, and sudden death. Advancement in the widespread use of targeted gene panels as well as genome and exome sequencing has facilitated the identification of different causative genes in a subset of these patients. The ability to recognize the genetic basis of early onset epilepsies continues to improve, with de novo coding variants accounting for most of the genetic etiologies identified. Although current disease-specific and disease-modifying therapies remain limited, novel precision medicine approaches, such as small molecules, cell therapy, and other forms of genetic therapies for early onset epilepsies, have created excitement among researchers, clinicians, and caregivers. Here, we summarize the main findings of presentations and discussions on novel therapeutic strategies for targeted treatment of early onset epilepsies that occurred during the Workshop on Neurobiology of Epilepsy (WONOEP XVI, Talloires, France, July 2022). The presentations discussed the use of chloride transporter inhibitors for neonatal seizures, targeting orexinergic signaling for childhood absence epilepsy, targeting energy metabolism in Dravet syndrome, and the role of cannabinoid receptor type 2, reversible acetylcholinesterase inhibitors, cell therapies, and RNA-based therapies in early life epilepsies.
Collapse
Affiliation(s)
- Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - Wanda Grabon
- Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team, Université Claude Bernard Lyon 1, The National Center for Scientific Research (CNRS) and The National Institute of Health and Medical Research (INSERM), Bron, France
- Epilepsy Institute IDEE, Bron, France
| | - Ana Gonzalez-Ramos
- Experimental Epilepsy Group, Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Massimo Mantegazza
- University Cote d'Azur, Valbonne-Sophia Antipolis, Valbonne, France
- LabEx ICST, Valbonne-Sophia Antipolis, CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne, France
- INSERM, Valbonne-Sophia Antipolis, Valbonne, France
| | - Nihan Carcak Yilmaz
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kevin Staley
- Neurology Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raman Sankar
- Department of Neurology and Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Özlem Akman
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Ganna Balagura
- Department of Neuroscience, Ophthalmology, and Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Adam L Numis
- Department of Neurology and Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Jeffrey L Noebels
- Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Paris, France
| | - Stéphane Auvin
- INSERM NeuroDiderot, Université Paris Cité, Paris, France
- Pediatric Neurology Department, APHP, Robert Debré University Hospital, CRMR Epilepsies Rares, EpiCare member, Paris, France
- Institut Universitaire de France, Paris, France
| | - David C Henshall
- FutureNeuro Research Ireland Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
3
|
Hochstetler A, Courtney Y, Oloko P, Baskin B, Ding-Su A, Stinson T, McGuone D, Haynes R, Lehtinen MK, Costine-Bartell B. Acute temporal, regional, and cell-type specific NKCC1 disruption following severe TBI in the developing gyrencephalic brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633889. [PMID: 39896526 PMCID: PMC11785025 DOI: 10.1101/2025.01.20.633889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Traumatic brain injury (TBI) in children is a leading cause of morbidity and mortality, with no effective treatment and limited clinical management. We developed a multifactorial traumatic brain injury model in piglets which mirrors the evolving pathophysiology of severe pediatric TBI, showing age-dependent hypoxic-ischemic cerebral cortical injury and matrix metalloproteinase-driven vasogenic edema, with infant piglets experiencing less tissue damage than toddler piglets. Extracellular matrix breakdown can precipitate neuronal dysfunction, disrupting chloride homeostasis and the reversal potential for GABA. We hypothesized that ongoing tissue damage might be related to markers of "immature GABA", evaluated by changes to the expression and phosphorylation of sodium-potassium-2-chloride cotransporter 1 (NKCC1), potassium-chloride cotransporter 2 (KCC2), and a regulatory kinase, (STE20/SPS1-related proline-alanine-rich protein kinase) SPAK. We mapped these markers in developing swine and infant human brain, identifying a postnatal pNKCC1 decrease in human infant hippocampus, and a perinatal cortical and hippocampal GABA switch in pigs, with no change in the thalamus. In infant piglets with severe TBI, upregulation of neuronal pNKCC1 correlated with hypoxic-ischemic injury and seizure duration. We also observed dysregulation of NKCC1, KCC2, and SPAK in cortex and hippocampus in infant and toddler piglets with severe TBI, with thalamus unchanged. We noted ectopic, non-apical localization of pNKCC1 signal in choroid plexus epithelium across ages in piglets and humans with severe TBI, indicating acute dysregulation of the CSF chloride milieu. These findings position swine as a useful model for pediatric TBI research and suggest that SPAK or NKCC1 inhibition in infants may be therapeutic. Significance statement Severe TBI in early childhood, the majority of which is due to abuse, remains an understudied area of neurotrauma. Our piglet model effectively replicates the pathophysiology of severe pediatric TBI, capturing age-dependent injury patterns and mechanisms of spreading hypoxic-ischemic injury throughout the cortical ribbon. We identified upregulation of neuronal-pNKCC1 in infant piglets, but not toddler piglets with severe TBI, and found this correlates with injury severity, seizure duration, and subarachnoid hemorrhage. Our findings indicate that treatments targeted to inhibit neuronal NKCC1 might alleviate evolving brain injury in infants with severe TBI. This model provides a valuable platform for studying mechanisms of TBI and testing new interventions, potentially advancing therapeutic strategies for pediatric brain injury where stopping traumatic seizures is difficult.
Collapse
|
4
|
Zhang J, Argueta D, Tong X, Vinters HV, Mathern GW, Cepeda C. Iconography of abnormal non-neuronal cells in pediatric focal cortical dysplasia type IIb and tuberous sclerosis complex. Front Cell Neurosci 2025; 18:1486315. [PMID: 39835291 PMCID: PMC11743721 DOI: 10.3389/fncel.2024.1486315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Once believed to be the culprits of epileptogenic activity, the functional properties of balloon/giant cells (BC/GC), commonly found in some malformations of cortical development including focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC), are beginning to be unraveled. These abnormal cells emerge during early brain development as a result of a hyperactive mTOR pathway and may express both neuronal and glial markers. A paradigm shift occurred when our group demonstrated that BC/GC in pediatric cases of FCDIIb and TSC are unable to generate action potentials and lack synaptic inputs. Hence, their role in epileptogenesis remained obscure. In this review, we provide a detailed characterization of abnormal non-neuronal cells including BC/GC, intermediate cells, and dysmorphic/reactive astrocytes found in FCDIIb and TSC cases, with special emphasis on electrophysiological and morphological assessments. Regardless of pathology, the electrophysiological properties of abnormal cells appear more glial-like, while others appear more neuronal-like. Their morphology also differs in terms of somatic size, shape, and dendritic elaboration. A common feature of these types of non-neuronal cells is their inability to generate action potentials. Thus, despite their distinct properties and etiologies, they share a common functional feature. We hypothesize that, although the exact role of abnormal non-neuronal cells in FCDIIb and TSC remains mysterious, it can be suggested that cells displaying more glial-like properties function in a similar way as astrocytes do, i.e., to buffer K+ ions and neurotransmitters, while those with more neuronal properties, may represent a metabolic burden due to high energy demands but inability to receive or transmit electric signals. In addition, due to the heterogeneity of these cells, a new classification scheme based on morphological, electrophysiological, and gene/protein expression in FCDIIb and TSC cases seems warranted.
Collapse
Affiliation(s)
- Joyce Zhang
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| | - Deneen Argueta
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| | - Xiaoping Tong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Harry V. Vinters
- Department of Pathology and Laboratory Medicine, University of California - Los Angeles, Los Angeles, CA, United States
| | - Gary W. Mathern
- Department of Neurosurgery, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA, United States
| | - Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Abend NS, Wusthoff CJ, Jensen FE, Inder TE, Volpe JJ. Neonatal Seizures. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:381-448.e17. [DOI: 10.1016/b978-0-443-10513-5.00015-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Rameshsankar S, Seethapathy J, Balakrishnan U. Ototoxic Drug Exposure and Hearing Loss in Neonates: A Scoping Review. Am J Audiol 2024; 33:1356-1377. [PMID: 39312737 DOI: 10.1044/2024_aja-24-00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
PURPOSE This scoping review aims to map the effects of dosage levels, dosage intervals, duration of exposure, and serum concentration levels of gentamicin, amikacin, vancomycin, furosemide, and bumetanide on newborn hearing. METHOD Using PubMed, Scopus, and Ovid databases (January 2010-2022), a scoping review was conducted to identify studies on ototoxic drug exposure in neonates. The review included articles that described details on ototoxic drug exposure and hearing status, dosage levels, duration of exposure, and serum concentration levels. The search results were summarized using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews. RESULTS Out of 4,395 entries, 28 were selected for inclusion in the scoping review. The studies were separated according to the exposed drugs: gentamicin, amikacin, vancomycin, furosemide, bumetanide, and a combination of drugs. Four out of five studies on amikacin exposure revealed an increased association with ototoxicity and abnormal trough levels. Six of seven studies on gentamicin exposure reported elevated trough concentration levels in a small number of infants, but no studies reported hearing loss. Two out of four studies on vancomycin exposure reported a dose-dependent risk for infants to develop hearing loss. CONCLUSIONS Gentamicin exposure in neonates has been extensively studied and considered relatively safe, except in cases of elevated peak or trough concentration levels. Amikacin exposure was reported to be more ototoxic, as the elevation of trough concentration levels was associated with refer results in hearing. Loop-diuretic exposure demonstrated a significant ototoxic effect. When used with other ototoxic medications, vancomycin is said to have a greater effect on ototoxicity. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.26814700.
Collapse
Affiliation(s)
| | - Jayashree Seethapathy
- Department of Audiology, Sri Ramachandra Faculty of Audiology and Speech Language Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | |
Collapse
|
7
|
Dzhala VI, Mail M, Staley KJ. Timing of interventions to control neuronal chloride elevation in a model of neonatal seizures after hippocampal injury. Epilepsia 2024; 65:3391-3405. [PMID: 39212418 PMCID: PMC11573644 DOI: 10.1111/epi.18108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Following hypoxic-ischemic (HI) brain injury, neuronal cytoplasmic chloride concentration ([Cl-]i) increases, potentially contributing to depolarizing γ-aminobutyric acid (GABA) responses, onset of seizures, and the failure of antiepileptic drugs that target inhibitory chloride-permeable GABAA receptors. Post-HI seizures characteristically begin hours after injury, by which time substantial accumulation of [Cl-]i may have already occurred. In immature neurons, a major pathway for Cl- influx is the reversible Na+-K+-2Cl- cotransporter NKCC1. METHODS Spontaneous neuronal network, neuronal [Cl-]i, and GABA activity were determined in hippocampal preparations from neonatal Clomeleon and SuperClomeleon/DLX-cre mice to test whether blocking NKCC1 earlier after oxygen-glucose deprivation (OGD) injury would more effectively ameliorate the increase in [Cl-]i, ictallike epileptiform discharges (ILDs), and the failure of the GABAergic anticonvulsant phenobarbital. RESULTS In vitro, murine intact hippocampi were free of ILDs for 12 h after preparation. Transient OGD resulted in a gradual increase in [Cl-]i, depolarizing action of GABA, and facilitation of neuronal network activity. Spontaneous ILDs began 3-5 h after injury. Blocking NKCC1 with 2-10 μmol·L-1 bumetanide reduced [Cl-]i equally well when applied up to 10 h after injury. Whereas phenobarbital or bumetanide applied separately were less effective when applied later after injury, ILDs were successfully suppressed by the combination of phenobarbital and bumetanide regardless of the number of prior ILDs or delay in application. SIGNIFICANCE The present age-specific group studies demonstrate that after OGD, NKCC1 transport activity significantly contributes to progressive [Cl-]i accumulation, depolarizing action of GABA, and delayed onset of ILDs. In this neonatal model of neuronal injury and ILDs, earlier treatment with bumetanide alone more efficiently recovered control baseline [Cl-]i and depressed epileptiform discharges. However, there was no time dependency to the anti-ictal efficacy of the combination of phenobarbital and bumetanide. These in vitro results suggest that after perinatal injury, early pre-emptive treatment with phenobarbital plus bumetanide would be as efficacious as late treatment after seizures are manifest.
Collapse
Affiliation(s)
- Volodymyr I Dzhala
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michelle Mail
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin J Staley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Askarova AE, Zhurkabayeva BD. Hemorrhagic stroke in children. J Cent Nerv Syst Dis 2024; 16:11795735241289913. [PMID: 39493255 PMCID: PMC11531028 DOI: 10.1177/11795735241289913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/20/2024] [Indexed: 11/05/2024] Open
Abstract
Hemorrhagic stroke (HS) in childhood accounts for almost 50% of childhood strokes, is among the top ten causes of deaths, or determines lifelong disability. These facts form significant socio-economic and demographic problems. The purpose of this review is to analyze current knowledge about HS in children. The data on HS terminology are presented, taking into account the International Classification of Diseases 11 edition. Attention is paid to the epidemiology of HS in children, including the results of individual local studies. The risk factors of HS in children were studied with an analysis of the causal, pathophysiological mechanisms of HS of various etiologies. The ideas about the clinical manifestations of HS in children are described. The analysis of HS treatment in children was carried out with an emphasis on achievements in neurointensive therapy of the acute period of HS. This review also includes information on the outcomes of HS in children.
Collapse
Affiliation(s)
- Azhar E. Askarova
- Department of General Medicine, Kazakh National Medical University, Almaty, Kazakhstan
| | - Bayan D. Zhurkabayeva
- Department of General Medicine, Kazakh National Medical University, Almaty, Kazakhstan
| |
Collapse
|
9
|
Shaikh H, Lyle ANJ, Oslin E, Gray MM, Weiss EM. Eligible Infants Included in Neonatal Clinical Trials and Reasons for Noninclusion: A Systematic Review. JAMA Netw Open 2024; 7:e2441372. [PMID: 39453652 PMCID: PMC11581680 DOI: 10.1001/jamanetworkopen.2024.41372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/31/2024] [Indexed: 10/26/2024] Open
Abstract
Importance Results of clinical trials can only represent included participants, and many neonatal trials fail due to insufficient participation. Infants not included in research may differ from those included in meaningful ways, biasing the sample and limiting the generalizability of findings. Objective To describe the proportion of eligible infants included in neonatal clinical trials and the reasons for noninclusion. Evidence Review A systematic search of Cochrane CENTRAL was performed by retrieving articles meeting the following inclusion criteria: full-length, peer-reviewed articles describing clinical trial results in at least 20 human infants from US neonatal intensive care units, published in English, and added to Cochrane CENTRAL between 2017 and 2022. Retrieved articles were screened for inclusion by 2 independent researchers. Findings In total 120 articles met inclusion criteria and 91 of these (75.8%) reported the number of infants eligible for participation, which totaled 26 854 in aggregate. Drawing from these, an aggregate of 11 924 eligible infants (44.4%) were included in reported results. Among all eligible infants, most reasons for noninclusion in results were classified as modifiable or potentially modifiable by the research team. Parents declining to participate (8004 infants [29.8%]) or never being approached (2507 infants [9.3%]) were the 2 predominant reasons for noninclusion. Other modifiable reasons included factors related to study logistics, such as failure to appropriately collect data on enrolled infants (859 of 26 854 infants [3.2%]) and other reasons (1907 of 26 854 infants [7.1%]), such as loss to follow-up or eligible participants that were unaccounted for. Nonmodifiable reasons, including clinical change or death, accounted for a small proportion of eligible infants who were not included (858 of 26 854 infants [3.2%]). Conclusions and Relevance This systematic review of reporting on eligible infants included and not included in neonatal clinical trials highlights the need for improved documentation on the flow of eligible infants through neonatal clinical trials and may also inform recruitment expectations for trialists designing future protocols. Improved adherence to standardized reporting may clarify which potential participants are being missed, improving understanding of the generalizability of research findings. Furthermore, these findings suggest that future work to understand why parents decline to participate in neonatal research trials and why some are never approached about research may help increase overall participation.
Collapse
Affiliation(s)
- Henna Shaikh
- Department of Pediatrics, University of Washington School of Medicine, Seattle
| | - Allison N J Lyle
- Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Medical Group-Neonatology, Louisville, Kentucky
| | - Ellie Oslin
- Department of Pediatrics, University of Washington School of Medicine, Seattle
- Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Medical Group-Neonatology, Louisville, Kentucky
| | - Megan M Gray
- Department of Pediatrics, University of Washington School of Medicine, Seattle
| | - Elliott Mark Weiss
- Department of Pediatrics, University of Washington School of Medicine, Seattle
- Treuman Katz Center for Pediatric Bioethics & Palliative Care, Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
10
|
Dalton HM, Young NJ, Berman AR, Evans HD, Peterson SJ, Patterson KA, Chow CY. A drug repurposing screen reveals dopamine signaling as a critical pathway underlying potential therapeutics for the rare disease DPAGT1-CDG. PLoS Genet 2024; 20:e1011458. [PMID: 39466823 PMCID: PMC11542785 DOI: 10.1371/journal.pgen.1011458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/07/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
DPAGT1-CDG is a Congenital Disorder of Glycosylation (CDG) that lacks effective therapies. It is caused by mutations in the gene DPAGT1 which encodes the first enzyme in N-linked glycosylation. We used a Drosophila rough eye model of DPAGT1-CDG with an improperly developed, small eye phenotype. We performed a drug repurposing screen on this model using 1,520 small molecules that are 98% FDA/EMA-approved to find drugs that improved its eye. We identified 42 candidate drugs that improved the DPAGT1-CDG model. Notably from this screen, we found that pharmacological and genetic inhibition of the dopamine D2 receptor partially rescued the DPAGT1-CDG model. Loss of both dopamine synthesis and recycling partially rescued the model, suggesting that dopaminergic flux and subsequent binding to D2 receptors is detrimental under DPAGT1 deficiency. This links dopamine signaling to N-glycosylation and represents a new potential therapeutic target for treating DPAGT1-CDG. We also genetically validate other top drug categories including acetylcholine-related drugs, COX inhibitors, and an inhibitor of NKCC1. These drugs and subsequent analyses reveal novel biology in DPAGT1 mechanisms, and they may represent new therapeutic options for DPAGT1-CDG.
Collapse
Affiliation(s)
- Hans M. Dalton
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Naomi J. Young
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Alexys R. Berman
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Heather D. Evans
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sydney J. Peterson
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kaylee A. Patterson
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Clement Y. Chow
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
11
|
Li Q, Sandoval A, Moth J, Shang J, Liew JY, Dunn T, Yang Z, Su J, Henwood M, Williams P, Chen B. Reduction of prolonged excitatory neuron swelling after spinal cord injury improves locomotor recovery in mice. Sci Transl Med 2024; 16:eadn7095. [PMID: 39321270 DOI: 10.1126/scitranslmed.adn7095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/09/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
Spinal cord injury (SCI) results in acute damage and triggers secondary injury responses with sustained neuronal loss and dysfunction. However, the underlying mechanisms for these delayed neuronal pathologies are not entirely understood. SCI results in the swelling of spinal neurons, but the contribution of cell swelling to neuronal loss and functional deficits after SCI has not been systematically characterized. In this study, we devised a three-dimensional image analysis pipeline to evaluate spinal neurons, examining their types, quantities, volumes, and spatial distribution in a double-lateral hemisection SCI mouse model. We found that both excitatory and inhibitory neurons swell and are lost, albeit with distinct temporal patterns. Inhibitory neurons demonstrated marked swelling and decline in number on day 2 after SCI, which resolved by day 14. In contrast, excitatory neurons maintained persistent swelling and continued cell loss for at least 35 days after SCI in mice. Excitatory neurons exhibited sustained expression of the Na+-K+-Cl- cotransporter 1 (NKCC1), whereas inhibitory neurons down-regulated the protein by day 14 after SCI. Treatment with a Food and Drug Administration-approved NKCC1 inhibitor, bumetanide, mitigated swelling of excitatory neurons and reduced their loss in the secondary injury phase after SCI. The administration of bumetanide after SCI in mouse improved locomotor recovery, with functional benefits persisting for at least 4 weeks after treatment cessation. This study advances our understanding of SCI-related pathology and introduces bumetanide as a potential treatment to mitigate sustained neuronal swelling and enhance recovery after SCI.
Collapse
Affiliation(s)
- Qiang Li
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo Sandoval
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - John Moth
- Department of Anesthesiology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Junkui Shang
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jia Yi Liew
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tiffany Dunn
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zhiyun Yang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Junfeng Su
- F. M. Kirby Neurobiology Center, Boston Children's Hospital and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa Henwood
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Philip Williams
- Department of Ophthalmology and Visual Sciences and Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Bo Chen
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
12
|
Anwar T, Triplett RL, Ahmed A, Glass HC, Shellhaas RA. Treating Seizures and Improving Newborn Outcomes for Infants with Hypoxic-Ischemic Encephalopathy. Clin Perinatol 2024; 51:573-586. [PMID: 39095097 PMCID: PMC11915494 DOI: 10.1016/j.clp.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Hypoxic-ischemic encephalopathy is the most common cause of neonatal seizures. Continuous electroencephalographic monitoring is recommended given high rates of subclinical seizures. Prompt diagnosis and treatment of seizures may improve neurodevelopmental outcomes. International League Against Epilepsy guidelines indicate that (1) phenobarbital remains the first-line treatment of neonatal seizures and (2) early discontinuation of antiseizure medications following resolution of acute provoked seizures, and prior to discharge home, is recommended. Long-term follow-up of these infants is necessary to screen for postneonatal epilepsy and support neurodevelopment.
Collapse
Affiliation(s)
- Tayyba Anwar
- Department of Neurology, Children's National Hospital, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| | - Regina L Triplett
- Department of Neurology, Washington University in St Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Afaf Ahmed
- Division of Pediatric and Developmental Neurology, Department of Neurology, Washington University in St Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Hannah C Glass
- Department of Neurology, University of California San Francisco, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Renée A Shellhaas
- Department of Neurology, Washington University in St Louis, MSC 8091-29-12400, 660 South Euclid Avenue, Saint Louis, MO 63110, USA.
| |
Collapse
|
13
|
Klein P, Kaminski RM, Koepp M, Löscher W. New epilepsy therapies in development. Nat Rev Drug Discov 2024; 23:682-708. [PMID: 39039153 DOI: 10.1038/s41573-024-00981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Epilepsy is a common brain disorder, characterized by spontaneous recurrent seizures, with associated neuropsychiatric and cognitive comorbidities and increased mortality. Although people at risk can often be identified, interventions to prevent the development of the disorder are not available. Moreover, in at least 30% of patients, epilepsy cannot be controlled by current antiseizure medications (ASMs). As a result of considerable progress in epilepsy genetics and the development of novel disease models, drug screening technologies and innovative therapeutic modalities over the past 10 years, more than 200 novel epilepsy therapies are currently in the preclinical or clinical pipeline, including many treatments that act by new mechanisms. Assisted by diagnostic and predictive biomarkers, the treatment of epilepsy is undergoing paradigm shifts from symptom-only ASMs to disease prevention, and from broad trial-and-error treatments for seizures in general to mechanism-based treatments for specific epilepsy syndromes. In this Review, we assess recent progress in ASM development and outline future directions for the development of new therapies for the treatment and prevention of epilepsy.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA.
| | | | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab., NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
14
|
Sandoval Karamian AG, DiGiovine MP, Massey SL. Neonatal Seizures. Pediatr Rev 2024; 45:381-393. [PMID: 38945992 DOI: 10.1542/pir.2023-006016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 07/02/2024]
Affiliation(s)
- Amanda G Sandoval Karamian
- Division of Neurology, Department of Pediatrics, University of Utah School of Medicine and Primary Children's Hospital, Salt Lake City, UT
| | - Marissa P DiGiovine
- Division of Neurology, Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Shavonne L Massey
- Division of Neurology, Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
15
|
Stieren ES, Rottkamp CA, Brooks-Kayal AR. Neonatal Seizures. Neoreviews 2024; 25:e338-e349. [PMID: 38821905 DOI: 10.1542/neo.25-6-e338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 06/02/2024]
Abstract
Neonatal seizures are common among patients with acute brain injury or critical illness and can be difficult to diagnose and treat. The most common etiology of neonatal seizures is hypoxic-ischemic encephalopathy, with other common causes including ischemic stroke and intracranial hemorrhage. Neonatal clinicians can use a standardized approach to patients with suspected or confirmed neonatal seizures that entails laboratory testing, neuromonitoring, and brain imaging. The primary goals of management of neonatal seizures are to identify the underlying cause, correct it if possible, and prevent further brain injury. This article reviews recent evidence-based guidelines for the treatment of neonatal seizures and discusses the long-term outcomes of patients with neonatal seizures.
Collapse
Affiliation(s)
- Emily S Stieren
- Division of Neonatology, Department of Pediatrics, University of California, Davis, Sacramento, CA
| | - Catherine A Rottkamp
- Division of Neonatology, Department of Pediatrics, University of California, Davis, Sacramento, CA
| | - Amy R Brooks-Kayal
- Department of Neurology, University of California, Davis, Sacramento, CA
| |
Collapse
|
16
|
Pawale D, Fursule A, Tan J, Wagh D, Patole S, Rao S. Prevalence of hearing impairment in neonatal encephalopathy due to hypoxia-ischemia: a systematic review and meta-analysis. Pediatr Res 2024:10.1038/s41390-024-03261-w. [PMID: 38769399 DOI: 10.1038/s41390-024-03261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND This systematic review was undertaken to estimate the overall prevalence of hearing impairment in survivors of neonatal HIE. METHODS PubMed, EMBASE, CINAHL, EMCARE and Cochrane databases, mednar (gray literature) were searched till January 2023. Randomized controlled trials and observational studies were included. The main outcome was estimation of overall prevalence of hearing impairment in survivors of HIE. RESULTS A total of 71studies (5821 infants assessed for hearing impairment) were included of which 56 were from high income countries (HIC) and 15 from low- or middle-income countries (LMIC). Overall prevalence rate of hearing impairment in cooled infants was 5% (95% CI: 3-6%, n = 4868) and 3% (95% CI: 1-6%, n = 953) in non-cooled HIE infants. The prevalence rate in cooled HIE infants in LMICs was 7% (95% CI: 2-15%) and in HICs was 4% (95% CI: 3-5%). The prevalence rate in non-cooled HIE infants in LMICs was 8% (95% CI: 2-17%) and HICs was 2% (95% CI: 0-4%). CONCLUSIONS These results would be useful for counseling parents, and in acting as benchmark when comparing institutional data, and while monitoring future RCTs testing new interventions in HIE. There is a need for more data from LMICs and standardization of reporting hearing impairment. IMPACT The overall prevalence rate of hearing impairment in cooled infants with HIE was 5% (95% CI: 3-6%) and 3% (95% CI: 1-6%) in the non-cooled infants. The prevalence rate in cooled HIE infants in LMICs was 7% (95% CI: 2-15%) and in HICs was 4% (95% CI: 3-5%). The prevalence rate in non-cooled HIE infants in LMICs was 8% (95% CI: 2-17%) and HICs was 2% (95% CI: 0-4%). These results would be useful for counseling parents, and in acting as benchmark when comparing institutional data, and while monitoring future RCTs testing new interventions in HIE.
Collapse
Affiliation(s)
- Dinesh Pawale
- Department of Neonatology, Perth Children's Hospital, Perth, WA, Australia
| | - Anurag Fursule
- Department of Neonatology, Perth Children's Hospital, Perth, WA, Australia
| | - Jason Tan
- Department of Neonatology, Perth Children's Hospital, Perth, WA, Australia
- School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Deepika Wagh
- Department of Neonatology, Perth Children's Hospital, Perth, WA, Australia
- School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Sanjay Patole
- School of Medicine, University of Western Australia, Crawley, WA, Australia
- Department of Neonatology, King Edwards Memorial Hospital, Perth, WA, Australia
| | - Shripada Rao
- Department of Neonatology, Perth Children's Hospital, Perth, WA, Australia.
- School of Medicine, University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
17
|
Yuliati A, Zayek M, Maertens P. The Impact of Phenobarbital on the Ability of Electroencephalogram to Predict Adverse Outcome in Asphyxiated Neonates during Therapeutic Hypothermia. Am J Perinatol 2024; 41:e1681-e1688. [PMID: 37186086 DOI: 10.1055/s-0043-1768487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Classification of electroencephalogram (EEG) background has been established to predict outcome in neonates with hypoxic ischemic encephalopathy (HIE). However, the impact of phenobarbital therapy on the predictability of EEG background has not been studied. Our objective is to determine if EEG background after treatment with phenobarbital during therapeutic hypothermia (TH) remains a good predictor for brain injury in neonates with HIE. STUDY DESIGN This is a single-center, retrospective study of consecutive neonates with HIE who underwent TH and EEG monitoring from October 2017 to March 2021. Per institutional protocol, all infants received a dose of prophylactic phenobarbital and bumetanide therapy at the onset of TH for sedative and neuroprotective measures. The initial 3 hours of EEG background activity was classified based on national guidelines. Infants were separated into two groups based on EEG background scores: group 1 (normal-mild, n = 30) and group 2 (moderate-severe, n = 36). Brain magnetic resonance imaging (MRI) results were scored based on the National Institute of Child Health and Human Development (NICHD) criteria. Adverse outcomes were defined as death before MRI or NICHD brain injury score > 1A. RESULTS Infants in group 2 had lower Apgar scores at 5 minutes of age, severe acidemia, moderate to severe encephalopathy score, and earlier initiation of EEG monitoring than infants in group 1. Moderate to severe EEG background score was associated with presence of brain injury on MRI or death (p = 0.003), and this association remained significant even after adjustment for independent risk factors (odds ratio = 56.24 [95% confidence interval = 1.841-1718], p = 0.021). CONCLUSION Phenobarbital therapy does not affect the ability of EEG to predict adverse outcome in infants with perinatal asphyxia during TH. KEY POINTS · EEG has a clinical utility for predicting outcome in neonates with hypoxia-ischemia.. · Phenobarbital therapy is commonly used in neonates, and may impact EEG background findings.. · In spite phenobarbital therapy, moderate to severe EEG background abnormalities in infants with perinatal asphyxia during TH remain an excellent predictor for poor outcome..
Collapse
Affiliation(s)
- Asri Yuliati
- Division of Pediatric Neurology, Department of Pediatrics, University of South Alabama, Mobile, Alabama
| | - Michael Zayek
- Department of Pediatrics, Division of Neonatology, University of South Alabama, Mobile, Alabama
| | - Paul Maertens
- Division of Pediatric Neurology, Department of Pediatrics, University of South Alabama, Mobile, Alabama
| |
Collapse
|
18
|
Jamali Z, Molaei-Farsangi MH, Ahmadipour H, Bahmanbijari B, Sabzevari F, Parizi ZD. Comparison of the effect of phenobarbital & levetiracetam in the treatment of neonatal abstinence syndrome (NAS) as adjuvant treatment in neonates admitted to the neonatal intensive care unit: a randomized clinical trial. BMC Pregnancy Childbirth 2024; 24:242. [PMID: 38580935 PMCID: PMC10996075 DOI: 10.1186/s12884-024-06433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Infants who are born from mothers with substance use disorder might suffer from neonatal abstinence syndrome (NAS) and need treatment with medicines. One of these medicines is phenobarbital, which may cause side effects in long-term consumption. Alternative drugs can be used to reduce these side effects. This study seeks the comparison of the effects of phenobarbital & levetiracetam as adjuvant therapy in neonatal abstinence syndrome. METHODS This randomized clinical trial was performed in one year from May 2021 until May 2022. The neonates who were born from mothers with substance use disorder and had neonatal abstinence syndrome in Afzalipoor Hospital of Kerman were studied. The treatment started with morphine initially and every four hours the infants were checked. The infants who were diagnosed with uncontrolled symptoms After obtaining informed consent from the parents were randomly divided into two groups and treated with secondary drugs, either phenobarbital or levetiracetam. RESULTS Based on the obtained results, it was clear that there was no significant difference between the hospitalization time of the two infant groups under therapy (phenobarbital: 18.59 days versus Levetiracetam 18.24 days) (P-value = 0.512). Also, there was no significant difference between both groups in terms of the frequency of re-hospitalization during the first week after discharge, the occurrence of complications, and third treatment line prescription (P-value = 0.644). CONCLUSIONS Based on the obtained results, like hospitalization duration time (P-value = 0.512) it seems that levetiracetam can be used to substitute phenobarbital in treating neonatal abstinence syndrome. TRIAL REGISTRATION The current study has been registered in the Iran registry of clinical trials website (fa.irct.ir) on the date 25/2/2022 with registration no. IRCT20211218053444N2.
Collapse
Affiliation(s)
- Zahra Jamali
- Department of Pediatrics, School of Medicine, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hosein Molaei-Farsangi
- Department of Pediatrics, School of Medicine; Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran.
| | - Habibeh Ahmadipour
- Department of Social Medicine, School of Medicine, Social Determinants of Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Bahareh Bahmanbijari
- Department of Pediatrics, School of Medicine, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sabzevari
- Department of Pediatrics, School of Medicine, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Daei Parizi
- Department of Pediatrics, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
19
|
Numis AL, Glass HC, Comstock BA, Gonzalez F, Maitre NL, Massey SL, Mayock DE, Mietzsch U, Natarajan N, Sokol GM, Bonifacio S, Van Meurs K, Thomas C, Ahmad K, Heagerty P, Juul SE, Wu YW, Wusthoff CJ. Relationship of Neonatal Seizure Burden Before Treatment and Response to Initial Antiseizure Medication. J Pediatr 2024; 268:113957. [PMID: 38360261 DOI: 10.1016/j.jpeds.2024.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVE To assess among a cohort of neonates with hypoxic-ischemic encephalopathy (HIE) the association of pretreatment maximal hourly seizure burden and total seizure duration with successful response to initial antiseizure medication (ASM). STUDY DESIGN This was a retrospective review of data collected from infants enrolled in the HEAL Trial (NCT02811263) between January 25, 2017, and October 9, 2019. We evaluated a cohort of neonates born at ≥36 weeks of gestation with moderate-to-severe HIE who underwent continuous electroencephalogram monitoring and had acute symptomatic seizures. Poisson regression analyzed associations between (1) pretreatment maximal hourly seizure burden, (2) pretreatment total seizure duration, (3) time from first seizure to initial ASM, and (4) successful response to initial ASM. RESULTS Among 39 neonates meeting inclusion criteria, greater pretreatment maximal hourly seizure burden was associated with lower chance of successful response to initial ASM (adjusted relative risk for each 5-minute increase in seizure burden 0.83, 95% CI 0.69-0.99). There was no association between pretreatment total seizure duration and chance of successful response. Shorter time-to-treatment was paradoxically associated with lower chance of successful response to treatment, although this difference was small in magnitude (relative risk 1.007, 95% CI 1.003-1.010). CONCLUSIONS Maximal seizure burden may be more important than other, more commonly used measures in predicting response to acute seizure treatments.
Collapse
Affiliation(s)
- Adam L Numis
- Department of Neurology and Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA; Department of Pediatrics UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA.
| | - Hannah C Glass
- Department of Neurology and Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA; Department of Pediatrics UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA; Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA
| | - Bryan A Comstock
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Fernando Gonzalez
- Department of Pediatrics UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA
| | - Nathalie L Maitre
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA
| | - Shavonne L Massey
- Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dennis E Mayock
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Ulrike Mietzsch
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Niranjana Natarajan
- Division of Pediatric Neurology, Department of Neurology, University of Washington School of Medicine, Seattle, WA
| | - Gregory M Sokol
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Sonia Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Krisa Van Meurs
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Cameron Thomas
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kaashif Ahmad
- Pediatrix Medical Group of San Antonio, Children's Hospital of San Antonio, San Antonio, TX
| | - Patrick Heagerty
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Sandra E Juul
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Yvonne W Wu
- Department of Neurology and Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA; Department of Pediatrics UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA
| | | |
Collapse
|
20
|
Zhang S, Meor Azlan NF, Josiah SS, Zhou J, Zhou X, Jie L, Zhang Y, Dai C, Liang D, Li P, Li Z, Wang Z, Wang Y, Ding K, Wang Y, Zhang J. The role of SLC12A family of cation-chloride cotransporters and drug discovery methodologies. J Pharm Anal 2023; 13:1471-1495. [PMID: 38223443 PMCID: PMC10785268 DOI: 10.1016/j.jpha.2023.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The solute carrier family 12 (SLC12) of cation-chloride cotransporters (CCCs) comprises potassium chloride cotransporters (KCCs, e.g. KCC1, KCC2, KCC3, and KCC4)-mediated Cl- extrusion, and sodium potassium chloride cotransporters (N[K]CCs, NKCC1, NKCC2, and NCC)-mediated Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. Gain-of-function or loss-of-function of these ion transporters can cause diseases in many tissues. In recent years, there have been considerable advances in our understanding of CCCs' control mechanisms in cell volume regulations, with many techniques developed in studying the functions and activities of CCCs. Classic approaches to directly measure CCC activity involve assays that measure the transport of potassium substitutes through the CCCs. These techniques include the ammonium pulse technique, radioactive or nonradioactive rubidium ion uptake-assay, and thallium ion-uptake assay. CCCs' activity can also be indirectly observed by measuring γ-aminobutyric acid (GABA) activity with patch-clamp electrophysiology and intracellular chloride concentration with sensitive microelectrodes, radiotracer 36Cl-, and fluorescent dyes. Other techniques include directly looking at kinase regulatory sites phosphorylation, flame photometry, 22Na+ uptake assay, structural biology, molecular modeling, and high-throughput drug screening. This review summarizes the role of CCCs in genetic disorders and cell volume regulation, current methods applied in studying CCCs biology, and compounds developed that directly or indirectly target the CCCs for disease treatments.
Collapse
Affiliation(s)
- Shiyao Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Sunday Solomon Josiah
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Jing Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoxia Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Lingjun Jie
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Yanhui Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Dong Liang
- Aurora Discovery Inc., Foshan, Guangdong, 528300, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, Shandong, 266021, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Jinwei Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
21
|
Turner MJ, Dietz RM. Potential Adjuncts to Therapeutic Hypothermia to Mitigate Multiorgan Injury in Perinatal Hypoxia-Ischemia. Neoreviews 2023; 24:e771-e782. [PMID: 38036441 DOI: 10.1542/neo.24-12-e771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Over the last 2 decades, therapeutic hypothermia has become the standard of care to reduce morbidity and mortality in neonates affected by moderate-to-severe hypoxic-ischemic encephalopathy (HIE). There is a significant interest in improving the neurologic outcomes of neonatal HIE, ranging from adjunctive therapy to therapeutic hypothermia. Importantly, the pathophysiologic mechanisms underlying HIE also affect multiple other organs, contributing to high morbidity and mortality in this patient population. This review focuses on the adjunct therapies currently under investigation to mitigate the impact of hypoxic-ischemic injury on the brain, kidneys, liver, heart, and gastrointestinal system.
Collapse
Affiliation(s)
- Megan J Turner
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Pediatrics, Denver Health Medical Center, Denver, CO
| | - Robert M Dietz
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
22
|
Nguyen TD, Ishibashi M, Sinha AS, Watanabe M, Kato D, Horiuchi H, Wake H, Fukuda A. Astrocytic NKCC1 inhibits seizures by buffering Cl - and antagonizing neuronal NKCC1 at GABAergic synapses. Epilepsia 2023; 64:3389-3403. [PMID: 37779224 DOI: 10.1111/epi.17784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE A pathological excitatory action of the major inhibitory neurotransmitter γ-aminobutyric acid (GABA) has been observed in epilepsy. Blocking the Cl- importer NKCC1 with bumetanide is expected to reduce the neuronal intracellular Cl- concentration ([Cl- ]i ) and thereby attenuate the excitatory GABA response. Accordingly, several clinical trials of bumetanide for epilepsy were conducted. Although NKCC1 is expressed in both neurons and glial cells, an involvement of glial NKCC1 in seizures has not yet been reported. Astrocytes maintain high [Cl- ]i with NKCC1, and this gradient promotes Cl- efflux via the astrocytic GABAA receptor (GABAA R). This Cl- efflux buffers the synaptic cleft Cl- concentration to maintain the postsynaptic Cl- gradient during intense firing of GABAergic neurons, thereby sustaining its inhibitory action during seizure. In this study, we investigated the function of astrocytic NKCC1 in modulating the postsynaptic action of GABA in acute seizure models. METHODS We used the astrocyte-specific conditional NKCC1 knockout (AstroNKCC1KO) mice. The seizurelike events (SLEs) in CA1 pyramidal neurons were triggered by tetanic stimulation of stratum radiatum in acute hippocampus slices. The SLE underlying GABAA R-mediated depolarization was evaluated by applying the GABAA R antagonist bicuculline. The pilocarpine-induced seizure in vivo was monitored in adult mice by the Racine scale. The SLE duration and tetanus stimulation intensity threshold and seizure behavior in AstroNKCC1KO mice and wild-type (WT) mice were compared. RESULTS The AstroNKCC1KO mice were prone to seizures with lower threshold and longer duration of SLEs and larger GABAA R-mediated depolarization underlying the SLEs, accompanied by higher Racine-scored seizures. Bumetanide reduced these indicators of seizure in AstroNKCC1KO mice (which still express neuronal NKCC1), but not in the WT, both in vitro and in vivo. SIGNIFICANCE Astrocytic NKCC1 inhibits GABA-mediated excitatory action during seizures, whereas neuronal NKCC1 has the converse effect, suggesting opposing actions of bumetanide on these cells.
Collapse
Affiliation(s)
- Trong Dao Nguyen
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masaru Ishibashi
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Adya Saran Sinha
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daisuke Kato
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Horiuchi
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
23
|
Abiramalatha T, Thanigainathan S, Ramaswamy VV, Pressler R, Brigo F, Hartmann H. Anti-seizure medications for neonates with seizures. Cochrane Database Syst Rev 2023; 10:CD014967. [PMID: 37873971 PMCID: PMC10594593 DOI: 10.1002/14651858.cd014967.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
BACKGROUND Newborn infants are more prone to seizures than older children and adults. The neuronal injury caused by seizures in neonates often results in long-term neurodevelopmental sequelae. There are several options for anti-seizure medications (ASMs) in neonates. However, the ideal choice of first-, second- and third-line ASM is still unclear. Further, many other aspects of seizure management such as whether ASMs should be initiated for only-electrographic seizures and how long to continue the ASM once seizure control is achieved are elusive. OBJECTIVES 1. To assess whether any ASM is more or less effective than an alternative ASM (both ASMs used as first-, second- or third-line treatment) in achieving seizure control and improving neurodevelopmental outcomes in neonates with seizures. We analysed EEG-confirmed seizures and clinically-diagnosed seizures separately. 2. To assess maintenance therapy with ASM versus no maintenance therapy after achieving seizure control. We analysed EEG-confirmed seizures and clinically-diagnosed seizures separately. 3. To assess treatment of both clinical and electrographic seizures versus treatment of clinical seizures alone in neonates. SEARCH METHODS We searched MEDLINE, Embase, CENTRAL, Epistemonikos and three databases in May 2022 and June 2023. These searches were not limited other than by study design to trials. SELECTION CRITERIA We included randomised controlled trials (RCTs) that included neonates with EEG-confirmed or clinically diagnosed seizures and compared (1) any ASM versus an alternative ASM, (2) maintenance therapy with ASM versus no maintenance therapy, and (3) treatment of clinical or EEG seizures versus treatment of clinical seizures alone. DATA COLLECTION AND ANALYSIS Two review authors assessed trial eligibility, risk of bias and independently extracted data. We analysed treatment effects in individual trials and reported risk ratio (RR) for dichotomous data, and mean difference (MD) for continuous data, with respective 95% confidence interval (CI). We used GRADE to assess the certainty of evidence. MAIN RESULTS We included 18 trials (1342 infants) in this review. Phenobarbital versus levetiracetam as first-line ASM in EEG-confirmed neonatal seizures (one trial) Phenobarbital is probably more effective than levetiracetam in achieving seizure control after first loading dose (RR 2.32, 95% CI 1.63 to 3.30; 106 participants; moderate-certainty evidence), and after maximal loading dose (RR 2.83, 95% CI 1.78 to 4.50; 106 participants; moderate-certainty evidence). However, we are uncertain about the effect of phenobarbital when compared to levetiracetam on mortality before discharge (RR 0.30, 95% CI 0.04 to 2.52; 106 participants; very low-certainty evidence), requirement of mechanical ventilation (RR 1.21, 95% CI 0.76 to 1.91; 106 participants; very low-certainty evidence), sedation/drowsiness (RR 1.74, 95% CI 0.68 to 4.44; 106 participants; very low-certainty evidence) and epilepsy post-discharge (RR 0.92, 95% CI 0.48 to 1.76; 106 participants; very low-certainty evidence). The trial did not report on mortality or neurodevelopmental disability at 18 to 24 months. Phenobarbital versus phenytoin as first-line ASM in EEG-confirmed neonatal seizures (one trial) We are uncertain about the effect of phenobarbital versus phenytoin on achieving seizure control after maximal loading dose of ASM (RR 0.97, 95% CI 0.54 to 1.72; 59 participants; very low-certainty evidence). The trial did not report on mortality or neurodevelopmental disability at 18 to 24 months. Maintenance therapy with ASM versus no maintenance therapy in clinically diagnosed neonatal seizures (two trials) We are uncertain about the effect of short-term maintenance therapy with ASM versus no maintenance therapy during the hospital stay (but discontinued before discharge) on the risk of repeat seizures before hospital discharge (RR 0.76, 95% CI 0.56 to 1.01; 373 participants; very low-certainty evidence). Maintenance therapy with ASM compared to no maintenance therapy may have little or no effect on mortality before discharge (RR 0.69, 95% CI 0.39 to 1.22; 373 participants; low-certainty evidence), mortality at 18 to 24 months (RR 0.94, 95% CI 0.34 to 2.61; 111 participants; low-certainty evidence), neurodevelopmental disability at 18 to 24 months (RR 0.89, 95% CI 0.13 to 6.12; 108 participants; low-certainty evidence) and epilepsy post-discharge (RR 3.18, 95% CI 0.69 to 14.72; 126 participants; low-certainty evidence). Treatment of both clinical and electrographic seizures versus treatment of clinical seizures alone in neonates (two trials) Treatment of both clinical and electrographic seizures when compared to treating clinical seizures alone may have little or no effect on seizure burden during hospitalisation (MD -1871.16, 95% CI -4525.05 to 782.73; 68 participants; low-certainty evidence), mortality before discharge (RR 0.59, 95% CI 0.28 to 1.27; 68 participants; low-certainty evidence) and epilepsy post-discharge (RR 0.75, 95% CI 0.12 to 4.73; 35 participants; low-certainty evidence). The trials did not report on mortality or neurodevelopmental disability at 18 to 24 months. We report data from the most important comparisons here; readers are directed to Results and Summary of Findings tables for all comparisons. AUTHORS' CONCLUSIONS Phenobarbital as a first-line ASM is probably more effective than levetiracetam in achieving seizure control after the first loading dose and after the maximal loading dose of ASM (moderate-certainty evidence). Phenobarbital + bumetanide may have little or no difference in achieving seizure control when compared to phenobarbital alone (low-certainty evidence). Limited data and very low-certainty evidence preclude us from drawing any reasonable conclusion on the effect of using one ASM versus another on other short- and long-term outcomes. In neonates who achieve seizure control after the first loading dose of phenobarbital, maintenance therapy compared to no maintenance ASM may have little or no effect on all-cause mortality before discharge, mortality by 18 to 24 months, neurodevelopmental disability by 18 to 24 months and epilepsy post-discharge (low-certainty evidence). In neonates with hypoxic-ischaemic encephalopathy, treatment of both clinical and electrographic seizures when compared to treating clinical seizures alone may have little or no effect on seizure burden during hospitalisation, all-cause mortality before discharge and epilepsy post-discharge (low-certainty evidence). All findings of this review apply only to term and late preterm neonates. We need well-designed RCTs for each of the three objectives of this review to improve the precision of the results. These RCTs should use EEG to diagnose seizures and should be adequately powered to assess long-term neurodevelopmental outcomes. We need separate RCTs evaluating the choice of ASM in preterm infants.
Collapse
Affiliation(s)
- Thangaraj Abiramalatha
- Neonatology, KMCH Institute of Health Sciences and Research (KMCHIHSR), Coimbatore, Tamil Nadu, India
- KMCH Research Foundation, Coimbatore, Tamil Nadu, India
| | | | | | - Ronit Pressler
- Clinical Neurophysiology, Great Ormond Street Hospital for Children, London, UK
- Clinical Neurophysiology and Neonatology, Cambridge University Hospital, Cambridge, UK
- Clinical Neuroscience, UCL- Great Ormond Street Institute of Child Health, London, UK
| | - Francesco Brigo
- Neurology, Hospital of Merano (SABES-ASDAA), Teaching Hospital of Paracelsus Medical University, Merano-Meran, Italy
- Innovation Research and Teaching Service (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Bolzano-Bozen, Italy
| | - Hans Hartmann
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
Rao S, Farhat A, Rakshasbhuvankar A, Athikarisamy S, Ghosh S, Nagarajan L. Effects of bumetanide on neonatal seizures: A systematic review of animal and human studies. Seizure 2023; 111:206-214. [PMID: 37690372 DOI: 10.1016/j.seizure.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Bumetanide, an inhibitor of the sodium-potassium-chloride cotransporter-1, has been suggested as an adjunct to phenobarbital for treating neonatal seizures. METHODS A systematic review of animal and human studies was conducted to evaluate the efficacy and safety of bumetanide for neonatal seizures. PubMed, Embase, CINAHL and Cochrane databases were searched in March 2023. RESULTS 26 animal (rat or mice) studies describing 38 experiments (28 in-vivo and ten in-vitro) and two human studies (one RCT and one open-label dose-finding) were included. The study designs, methods to induce seizures, bumetanide dose, and outcome measures were heterogeneous, with only 4/38 experiments being in animal hypoxia/ischaemia models. Among 38 animal experiments, bumetanide was reported to have antiseizure effects in 21, pro-seizure in six and ineffective in 11. The two human studies (n = 57) did not show the benefits of bumetanide as an add-on agent to phenobarbital in their primary analyses, but one study reported benefit on post-hoc analysis. Overall, hearing impairment was detected in 5/37 surviving infants in the bumetanide group vs. 0/13 in controls. Four of the five infants with hearing impairment had received aminoglycosides concurrently. Other adverse effects reported were diuresis, mild-to-moderate dehydration, hypotension, and electrolyte disturbances. The studies did not report on long-term neurodevelopment. The certainty of the evidence was very low. CONCLUSION Animal data suggest that bumetanide has inconsistent effects as an antiseizure medication in neonates. Data from human studies are scarce and raise some concerns regarding ototoxicity when given with aminoglycosides. Well conducted studies in animal models of hypoxic-ischaemic encephalopathy are urgently needed. Future RCTs, if conducted in human neonates, should have an adequate sample size, assess neurodevelopment, minimize using aminoglycosides, be transparent about the potential ototoxicity in the parent information sheet, conduct early hearing tests and have trial-stopping rules that include hearing impairment as an outcome.
Collapse
Affiliation(s)
- Shripada Rao
- Neonatal Intensive Care Unit, King Edward Memorial and Perth Children's Hospitals, Perth, Australia; Paediatric Division, Medical School, University of Western Australia, Perth, Australia.
| | - Asifa Farhat
- General Paediatrics, Perth Children's Hospital, Perth, Australia
| | - Abhijeet Rakshasbhuvankar
- Neonatal Intensive Care Unit, King Edward Memorial and Perth Children's Hospitals, Perth, Australia; Paediatric Division, Medical School, University of Western Australia, Perth, Australia
| | - Sam Athikarisamy
- Neonatal Intensive Care Unit, King Edward Memorial and Perth Children's Hospitals, Perth, Australia; Paediatric Division, Medical School, University of Western Australia, Perth, Australia
| | - Soumya Ghosh
- Children's Neuroscience Service, Department of Neurology, Perth Children's Hospital, Perth, Australia; Centre for Neuromuscular and Neurological Disorders, Perron Institute, University of Western Australia, Perth, Australia
| | - Lakshmi Nagarajan
- Paediatric Division, Medical School, University of Western Australia, Perth, Australia; Children's Neuroscience Service, Department of Neurology, Perth Children's Hospital, Perth, Australia
| |
Collapse
|
25
|
Perucca E, White HS, Bialer M. New GABA-Targeting Therapies for the Treatment of Seizures and Epilepsy: II. Treatments in Clinical Development. CNS Drugs 2023; 37:781-795. [PMID: 37603261 PMCID: PMC10501930 DOI: 10.1007/s40263-023-01025-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/22/2023]
Abstract
The inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays an important role in the modulation of neuronal excitability, and a disruption of GABAergic transmission contributes to the pathogenesis of some seizure disorders. Although many currently available antiseizure medications do act at least in part by potentiating GABAergic transmission, there is an opportunity for further research aimed at developing more innovative GABA-targeting therapies. The present article summarises available evidence on a number of such treatments in clinical development. These can be broadly divided into three groups. The first group consists of positive allosteric modulators of GABAA receptors and includes Staccato® alprazolam (an already marketed benzodiazepine being repurposed in epilepsy as a potential rescue inhalation treatment for prolonged and repetitive seizures), the α2/3/5 subtype-selective agents darigabat and ENX-101, and the orally active neurosteroids ETX155 and LPCN 2101. A second group comprises two drugs already marketed for non-neurological indications, which could be repurposed as treatments for seizure disorders. These include bumetanide, a diuretic agent that has undergone clinical trials in phenobarbital-resistant neonatal seizures and for which the rationale for further development in this indication is under debate, and ivermectin, an antiparasitic drug currently investigated in a randomised double-blind trial in focal epilepsy. The last group comprises a series of highly innovative therapies, namely GABAergic interneurons (NRTX-001) delivered via stereotactic cerebral implantation as a treatment for mesial temporal lobe epilepsy, an antisense oligonucleotide (STK-001) aimed at upregulating NaV1.1 currents and restoring the function of GABAergic interneurons, currently tested in a trial in patients with Dravet syndrome, and an adenoviral vector-based gene therapy (ETX-101) scheduled for investigation in Dravet syndrome. Another agent, a subcutaneously administered neuroactive peptide (NRP2945) that reportedly upregulates the expression of GABAA receptor α and β subunits is being investigated, with Lennox-Gastaut syndrome and other epilepsies as proposed indications. The diversity of the current pipeline underscores a strong interest in the GABA system as a target for new treatment development in epilepsy. To date, limited clinical data are available for these investigational treatments and further studies are required to assess their potential value in addressing unmet needs in epilepsy management.
Collapse
Affiliation(s)
- Emilio Perucca
- Department of Medicine (Austin Health), Melbourne Brain Centre, The University of Melbourne, 245 Burgundy Street, Melbourne, VIC, 3084, Australia.
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Meir Bialer
- Faculty of Medicine, Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
- David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
26
|
van van Hugte EJH, Schubert D, Nadif Kasri N. Excitatory/inhibitory balance in epilepsies and neurodevelopmental disorders: Depolarizing γ-aminobutyric acid as a common mechanism. Epilepsia 2023; 64:1975-1990. [PMID: 37195166 DOI: 10.1111/epi.17651] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/18/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although many factors contribute to epileptogenesis, seizure generation is mostly linked to hyperexcitability due to alterations in excitatory/inhibitory (E/I) balance. The common hypothesis is that reduced inhibition, increased excitation, or both contribute to the etiology of epilepsy. Increasing evidence shows that this view is oversimplistic, and that increased inhibition through depolarizing γ-aminobutyric acid (GABA) similarly contributes to epileptogenisis. In early development, GABA signaling is depolarizing, inducing outward Cl- currents due to high intracellular Cl- concentrations. During maturation, the mechanisms of GABA action shift from depolarizing to hyperpolarizing, a critical event during brain development. Altered timing of this shift is associated with both neurodevelopmental disorders and epilepsy. Here, we consider the different ways that depolarizing GABA contributes to altered E/I balance and epileptogenesis, and discuss that alterations in depolarizing GABA could be a common denominator underlying seizure generation in neurodevelopmental disorders and epilepsies.
Collapse
Affiliation(s)
- Eline J H van van Hugte
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
- Department of Epileptology, Academic Centre for Epileptology (ACE) Kempenhaeghe, Heeze, the Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
- Department of Epileptology, Academic Centre for Epileptology (ACE) Kempenhaeghe, Heeze, the Netherlands
| |
Collapse
|
27
|
Glass HC, Wusthoff CJ, Comstock BA, Numis AL, Gonzalez FF, Maitre N, Massey SL, Mayock DE, Mietzsch U, Natarajan N, Sokol GM, Bonifacio SL, Van Meurs KP, Thomas C, Ahmad KA, Heagerty PJ, Juul SE, Wu YW. Risk of seizures in neonates with hypoxic-ischemic encephalopathy receiving hypothermia plus erythropoietin or placebo. Pediatr Res 2023; 94:252-259. [PMID: 36470964 PMCID: PMC10239788 DOI: 10.1038/s41390-022-02398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND An ancillary study of the High-Dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) trial for neonates with hypoxic-ischemic encephalopathy (HIE) and treated with therapeutic hypothermia examined the hypothesis that neonates randomized to receive erythropoietin (Epo) would have a lower seizure risk and burden compared with neonates who received placebo. METHODS Electroencephalograms (EEGs) from 7/17 HEAL trial centers were reviewed. Seizure presence was compared across treatment groups using a logistic regression model adjusting for treatment, HIE severity, center, and seizure burden prior to the first dose. Among neonates with seizures, differences across treatment groups in median maximal hourly seizure burden were assessed using adjusted quantile regression models. RESULTS Forty-six of 150 (31%) neonates had EEG seizures (31% in Epo vs 30% in placebo, p = 0.96). Maximal hourly seizure burden after the study drug was not significantly different between groups (median 11.4 for Epo, IQR: 5.6, 18.1 vs median 9.7, IQR: 4.9, 21.0 min/h for placebo). CONCLUSION In neonates with HIE treated with hypothermia who were randomized to Epo or placebo, we found no meaningful between-group difference in seizure risk or burden. These findings are consistent with overall trial results, which do not support Epo use for neonates with HIE undergoing therapeutic hypothermia. IMPACT In the HEAL trial of erythropoietin (Epo) vs placebo for neonates with encephalopathy presumed due to hypoxic-ischemic encephalopathy (HIE) who were also treated with therapeutic hypothermia, electrographic seizures were detected in 31%, which is lower than most prior studies. Epo did not reduce the proportion of neonates with acute provoked seizures (31% in Epo vs 30% in placebo) or maximal hourly seizure burden after the study drug (median 11.4, IQR 5.6, 18.1 for Epo vs median 9.7, IQR 4.9, 21.0 min/h for placebo). There was no anti- or pro-convulsant effect of Epo when combined with therapeutic hypothermia for HIE.
Collapse
Affiliation(s)
- Hannah C Glass
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA.
| | - Courtney J Wusthoff
- Department of Neurology, Stanford University, Palo Alto, CA, USA
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA, USA
| | - Bryan A Comstock
- Department Biostatistics, University of Washington, Seattle, WA, USA
| | - Adam L Numis
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Fernando F Gonzalez
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Nathalie Maitre
- Department of Pediatrics, and Emory + Children's Pediatric Institute, Emory University, Atlanta, GA, USA
| | - Shavonne L Massey
- Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E Mayock
- Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Ulrike Mietzsch
- Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Niranjana Natarajan
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Gregory M Sokol
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sonia L Bonifacio
- Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Lucile Packard Children's Hospital Stanford, Palo Alto, CA, USA
| | - Krisa P Van Meurs
- Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Lucile Packard Children's Hospital Stanford, Palo Alto, CA, USA
| | - Cameron Thomas
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | - Sandra E Juul
- Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Yvonne W Wu
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
28
|
Roberts NS, Handy MJ, Ito Y, Hashimoto K, Jensen FE, Talos DM. Anti-seizure efficacy of perampanel in two established rodent models of early-life epilepsy. Epilepsy Behav 2023; 143:109194. [PMID: 37119576 DOI: 10.1016/j.yebeh.2023.109194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 05/01/2023]
Abstract
Early-life seizures can be refractory to conventional antiseizure medications (ASMs) and can also result in chronic epilepsy and long-term behavioral and cognitive deficits. Treatments targeting age-specific mechanisms contributing to epilepsy would be of clinical benefit. One such target is the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subtype of excitatory glutamate receptor, which is upregulated in the developing brain. Perampanel is a non-competitive, selective AMPAR antagonist that is FDA-approved for focal onset seizures (FOS) or primary generalized tonic-clonic seizures (PGTC) in children and adults. However, the efficacy of perampanel treatment in epilepsy patients younger than 4 years has been less documented. We thus tested the efficacy of perampanel in two early-life seizure models: (1) a rat model of hypoxia-induced neonatal seizures and (2) a mouse model of Dravet syndrome with hyperthermia-induced seizures. Pretreatment with perampanel conferred dose-dependent protection against early-life seizures in both experimental models. These findings suggest that AMPAR-mediated hyperexcitability could be involved in the pathophysiology of early-life seizures, which may be amenable to treatment with perampanel.
Collapse
Affiliation(s)
- Nicholas S Roberts
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcus J Handy
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yoshimasa Ito
- Formerly: Neurology Business Group, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Keisuke Hashimoto
- Deep Human Biology Learning, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Delia M Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Welzel B, Johne M, Löscher W. Bumetanide potentiates the anti-seizure and disease-modifying effects of midazolam in a noninvasive rat model of term birth asphyxia. Epilepsy Behav 2023; 142:109189. [PMID: 37037061 DOI: 10.1016/j.yebeh.2023.109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Birth asphyxia and the resulting hypoxic-ischemic encephalopathy (HIE) are highly associated with perinatal and neonatal death, neonatal seizures, and an adverse later-life outcome. Currently used drugs, including phenobarbital and midazolam, have limited efficacy to suppress neonatal seizures. There is a medical need to develop new therapies that not only suppress neonatal seizures but also prevent later-life consequences. We have previously shown that the loop diuretic bumetanide does not potentiate the effects of phenobarbital in a rat model of birth asphyxia. Here we compared the effects of bumetanide (0.3 or 10 mg/kg i.p.), midazolam (1 mg/kg i.p.), and a combination of bumetanide and midazolam on neonatal seizures and later-life outcomes in this model. While bumetanide at either dose was ineffective when administered alone, the higher dose of bumetanide markedly potentiated midazolam's effect on neonatal seizures. Median bumetanide brain levels (0.47-0.53 µM) obtained with the higher dose were in the range known to inhibit the Na-K-Cl-cotransporter NKCC1 but it remains to be determined whether brain NKCC1 inhibition was underlying the potentiation of midazolam. When behavioral and cognitive alterations were examined over three months after asphyxia, treatment with the bumetanide/midazolam combination, but not with bumetanide or midazolam alone, prevented impairment of learning and memory. Furthermore, the combination prevented the loss of neurons in the dentate hilus and aberrant mossy fiber sprouting in the CA3a area of the hippocampus. The molecular mechanisms that explain that bumetanide potentiates midazolam but not phenobarbital in the rat model of birth asphyxia remain to be determined.
Collapse
Affiliation(s)
- Björn Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany.
| |
Collapse
|
30
|
Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev 2023; 103:1095-1135. [PMID: 36302178 DOI: 10.1152/physrev.00025.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Synaptic inhibition plays a crucial role in regulating neuronal excitability, which is the foundation of nervous system function. This inhibition is largely mediated by the neurotransmitters GABA and glycine that activate Cl--permeable ion channels, which means that the strength of inhibition depends on the Cl- gradient across the membrane. In neurons, the Cl- gradient is primarily mediated by two secondarily active cation-chloride cotransporters (CCCs), NKCC1 and KCC2. CCC-mediated regulation of the neuronal Cl- gradient is critical for healthy brain function, as dysregulation of CCCs has emerged as a key mechanism underlying neurological disorders including epilepsy, neuropathic pain, and autism spectrum disorder. This review begins with an overview of neuronal chloride transporters before explaining the dependent relationship between these CCCs, Cl- regulation, and inhibitory synaptic transmission. We then discuss the evidence for how CCCs can be regulated, including by activity and their protein interactions, which underlie inhibitory synaptic plasticity. For readers who may be interested in conducting experiments on CCCs and neuronal excitability, we have included a section on techniques for estimating and recording intracellular Cl-, including their advantages and limitations. Although the focus of this review is on neurons, we also examine how Cl- is regulated in glial cells, which in turn regulate neuronal excitability through the tight relationship between this nonneuronal cell type and synapses. Finally, we discuss the relatively extensive and growing literature on how CCC-mediated neuronal excitability contributes to neurological disorders.
Collapse
Affiliation(s)
- Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Miranda de Saint-Rome
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vineeth A Raveendran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Dossi E, Huberfeld G. GABAergic circuits drive focal seizures. Neurobiol Dis 2023; 180:106102. [PMID: 36977455 DOI: 10.1016/j.nbd.2023.106102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 03/28/2023] Open
Abstract
Epilepsy is based on abnormal neuronal activities that have historically been suggested to arise from an excess of excitation and a defect of inhibition, or in other words from an excessive glutamatergic drive not balanced by GABAergic activity. More recent data however indicate that GABAergic signaling is not defective at focal seizure onset and may even be actively involved in seizure generation by providing excitatory inputs. Recordings of interneurons revealed that they are active at seizure initiation and that their selective and time-controlled activation using optogenetics triggers seizures in a more general context of increased excitability. Moreover, GABAergic signaling appears to be mandatory at seizure onset in many models. The main pro-ictogenic effect of GABAergic signaling is the depolarizing action of GABAA conductance which may occur when an excessive GABAergic activity causes Cl- accumulation in neurons. This process may combine with background dysregulation of Cl-, well described in epileptic tissues. Cl- equilibrium is maintained by (Na+)/K+/Cl- co-transporters, which can be defective and therefore favor the depolarizing effects of GABA. In addition, these co-transporters further contribute to this effect as they mediate K+ outflow together with Cl- extrusion, a process that is responsible for K+ accumulation in the extracellular space and subsequent increase of local excitability. The role of GABAergic signaling in focal seizure generation is obvious but its complex dynamics and balance between GABAA flux polarity and local excitability still remain to be established, especially in epileptic tissues where receptors and ion regulators are disrupted and in which GABAergic signaling rather plays a 2 faces Janus role.
Collapse
|
32
|
Trowbridge SK, Condie LO, Landers JR, Bergin AM, Grant PE, Krishnamoorthy K, Rofeberg V, Wypij D, Staley KJ, Soul JS. Effect of neonatal seizure burden and etiology on the long-term outcome: data from a randomized, controlled trial. ANNALS OF THE CHILD NEUROLOGY SOCIETY 2023; 1:53-65. [PMID: 37636014 PMCID: PMC10449023 DOI: 10.1002/cns3.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/11/2022] [Indexed: 08/29/2023]
Abstract
Background Neonatal seizures are common, but the impact of neonatal seizures on long-term neurologic outcome remains unclear. We addressed this question by analyzing data from an early-phase controlled trial of bumetanide to treat neonatal seizures. Methods Neonatal seizure burden was calculated from continuous video-EEG data. Neurologic outcome was determined by standardized developmental tests and post-neonatal seizure recurrence. Results Of 111 enrolled neonates, 43 were randomized to treatment or control groups. There were no differences in neurologic outcome between treatment and control groups. A subgroup analysis was performed for 84 neonates with acute perinatal brain injury (57 HIE, 18 stroke, 9 ICH), most of whom (70%) had neonatal seizures. There was a significant negative correlation between seizure burden and developmental scores (p<0.01). Associations between seizure burden and developmental scores were stronger in HIE and stroke groups compared with ICH (p<0.05). Conclusion Bumetanide showed no long-term beneficial or adverse effects, as expected based on treatment duration versus duration of neonatal seizures. For neonates with perinatal brain injury, higher neonatal seizure burden correlated significantly with worse developmental outcome, particularly for ischemic versus hemorrhagic brain injury. These data highlight the need for further investigation of the long-term effects of both neonatal seizure severity and etiology.
Collapse
Affiliation(s)
- Sara K. Trowbridge
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Lois O. Condie
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Jessica R. Landers
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Ann M. Bergin
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Patricia E. Grant
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | | | - Valerie Rofeberg
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | - David Wypij
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Kevin J. Staley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Janet S. Soul
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
33
|
Soul JS, Glass HC, Mohammad K, Ment LR, Smyser CD, Bonifacio SL, Massaro AN, El-Dib M. Continuous EEG monitoring still recommended for neonatal seizure management: commentary on NEST trial. Pediatr Res 2023; 93:469-470. [PMID: 35681096 DOI: 10.1038/s41390-022-02138-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/05/2022] [Accepted: 05/22/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Janet S Soul
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Hannah C Glass
- Departments of Neurology and Pediatrics and the Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Departments of Epidemiology and Biostatistics, Benioff Children's Hospital, San Francisco, CA, USA
| | - Khorshid Mohammad
- Department of Pediatrics, Section of Neonatology, University of Calgary, Calgary, Alberta, Canada
| | - Laura R Ment
- Departments of Pediatrics and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Christopher D Smyser
- Departments of Neurology, Pediatrics, and Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Sonia L Bonifacio
- Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children's Hospital, Palo Alto, CA, USA
| | - An N Massaro
- Division of Neonatology, Children's National Hospital and The George Washington University School of Medicine, Washington, DC, USA
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
34
|
Bryson A, Reid C, Petrou S. Fundamental Neurochemistry Review: GABA A receptor neurotransmission and epilepsy: Principles, disease mechanisms and pharmacotherapy. J Neurochem 2023; 165:6-28. [PMID: 36681890 DOI: 10.1111/jnc.15769] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/23/2023]
Abstract
Epilepsy is a common neurological disorder associated with alterations of excitation-inhibition balance within brain neuronal networks. GABAA receptor neurotransmission is the most prevalent form of inhibitory neurotransmission and is strongly implicated in both the pathophysiology and treatment of epilepsy, serving as a primary target for antiseizure medications for over a century. It is now established that GABA exerts a multifaceted influence through an array of GABAA receptor subtypes that extends far beyond simply negating excitatory activity. As the role of GABAA neurotransmission within inhibitory circuits is elaborated, this will enable the development of precision therapies that correct the network dysfunction underlying epileptic pathology.
Collapse
Affiliation(s)
- Alexander Bryson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| | - Christopher Reid
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Praxis Precision Medicines, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
35
|
Sciaccaluga M, Ruffolo G, Palma E, Costa C. Traditional and Innovative Anti-seizure Medications Targeting Key Physiopathological Mechanisms: Focus on Neurodevelopment and Neurodegeneration. Curr Neuropharmacol 2023; 21:1736-1754. [PMID: 37143270 PMCID: PMC10514539 DOI: 10.2174/1570159x21666230504160948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Despite the wide range of compounds currently available to treat epilepsy, there is still no drug that directly tackles the physiopathological mechanisms underlying its development. Indeed, antiseizure medications attempt to prevent seizures but are inefficacious in counteracting or rescuing the physiopathological phenomena that underlie their onset and recurrence, and hence do not cure epilepsy. Classically, the altered excitation/inhibition balance is postulated as the mechanism underlying epileptogenesis and seizure generation. This oversimplification, however, does not account for deficits in homeostatic plasticity resulting from either insufficient or excessive compensatory mechanisms in response to a change in network activity. In this respect, both neurodevelopmental epilepsies and those associated with neurodegeneration may share common underlying mechanisms that still need to be fully elucidated. The understanding of these molecular mechanisms shed light on the identification of new classes of drugs able not only to suppress seizures, but also to present potential antiepileptogenic effects or "disease-modifying" properties.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Section of Neurology, S.M. della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, Perugia, 06129, Italy
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome, Sapienza, Rome, 00185, Italy
- IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome, Sapienza, Rome, 00185, Italy
- IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Cinzia Costa
- Section of Neurology, S.M. della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, Perugia, 06129, Italy
| |
Collapse
|
36
|
Akeel NE, Suliman HA, Al-Shokary AH, Ibrahim AO, Kamal NM, Abdelgalil AA, Elmala MK, Elshorbagy HH, Nasef KA, Attia AM, Fathallah MGED. A Comparative Study of Levetiracetam and Phenobarbital for Neonatal Seizures as a First Line Treatment. Glob Pediatr Health 2022; 9:2333794X221143572. [PMID: 36578326 PMCID: PMC9791297 DOI: 10.1177/2333794x221143572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives We aimed to evaluate the use of intravenous levetiracetam as the first-line treatment of neonatal seizures compared with phenobarbital. Methods The study was conducted on 104 neonates (0-28 days) with clinical seizures after inclusion criteria. They were assigned in equal ratio into 2 groups; 1 included neonates who received phenobarbitone, and the other included neonates who received levetiracetam. Neonates were loaded with 20 mg/kg of intravenous drug-A (phenobarbitone) or drug-B (levetiracetam). In persistent seizures, a second loading dose of the same drug was given. Crossover to other drugs occurred if seizures persisted after the second dose of the same drug. The proportion of neonates who achieved cessation of seizures following the first or second loading dose of either drug-A or drug-B (PB or LEV) was the main outcome measure provided that they remained free of seizure for the following 24 hours. Results After 1 or 2 doses of Levetiracatam or Phenobarbitone, clinical seizures stopped (and remained seizure-free for 24 hours) in 41 (78.84%) and 34 (65.38%) patients, respectively (P = .01). Neonates in the LEV group showed better seizure control than neonates in the PB group (RR = 0.57; 95% CI (0.17, 0.80). We did not report any adverse drug reactions in the LEV group. However, 12 (23.07%) neonates developed adverse drug reactions in the PB Group. Conclusion Levetiracetam is considered an effective and safe drug as a first-line AED in neonatal seizures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hatem Hamed Elshorbagy
- Professor of Pediatrics and Pediatric Neurology, Faculty of medicine, Menoufia University, Shebeen Elkom, Egypt,Hatem Hamed Elshorbagy, Department of Pediatric, Menoufia University, Gamal Abdel Naser street, Shebeen Elkom 32511, Egypt.
| | | | | | | |
Collapse
|
37
|
Molloy EJ, El-Dib M, Juul SE, Benders M, Gonzalez F, Bearer C, Wu YW, Robertson NJ, Hurley T, Branagan A, Michael Cotten C, Tan S, Laptook A, Austin T, Mohammad K, Rogers E, Luyt K, Bonifacio S, Soul JS, Gunn AJ. Neuroprotective therapies in the NICU in term infants: present and future. Pediatr Res 2022:10.1038/s41390-022-02295-2. [PMID: 36195634 PMCID: PMC10070589 DOI: 10.1038/s41390-022-02295-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/13/2023]
Abstract
Outcomes of neonatal encephalopathy (NE) have improved since the widespread implementation of therapeutic hypothermia (TH) in high-resource settings. While TH for NE in term and near-term infants has proven beneficial, 30-50% of infants with moderate-to-severe NE treated with TH still suffer death or significant impairments. There is therefore a critical need to find additional pharmacological and non-pharmacological interventions that improve the outcomes for these children. There are many potential candidates; however, it is unclear whether these interventions have additional benefits when used with TH. Although primary and delayed (secondary) brain injury starting in the latent phase after HI are major contributors to neurodisability, the very late evolving effects of tertiary brain injury likely require different interventions targeting neurorestoration. Clinical trials of seizure management and neuroprotection bundles are needed, in addition to current trials combining erythropoietin, stem cells, and melatonin with TH. IMPACT: The widespread use of therapeutic hypothermia (TH) in the treatment of neonatal encephalopathy (NE) has reduced the associated morbidity and mortality. However, 30-50% of infants with moderate-to-severe NE treated with TH still suffer death or significant impairments. This review details the pathophysiology of NE along with the evidence for the use of TH and other beneficial neuroprotective strategies used in term infants. We also discuss treatment strategies undergoing evaluation at present as potential adjuvant treatments to TH in NE.
Collapse
Affiliation(s)
- Eleanor J Molloy
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland. .,Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland. .,Neonatology, CHI at Crumlin, Dublin, Ireland. .,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland.
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Manon Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fernando Gonzalez
- Department of Neurology, Division of Child Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Cynthia Bearer
- Division of Neonatology, Department of Pediatrics, Rainbow Babies & Children's Hospital, Cleveland, OH, USA.,Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yvonne W Wu
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Tim Hurley
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | - Aoife Branagan
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | | | - Sidhartha Tan
- Pediatrics, Division of Neonatology, Children's Hospital of Michigan, Detroit, MI, USA.,Wayne State University School of Medicine, Detroit, MI, 12267, USA.,Pediatrics, Division of Neonatology, Central Michigan University, Mount Pleasant, MI, USA
| | - Abbot Laptook
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, RI, USA
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Khorshid Mohammad
- Section of Neonatology, Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Elizabeth Rogers
- Department of Pediatrics, University of California, San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Karen Luyt
- Translational Health Sciences, University of Bristol, Bristol, UK.,Neonatology, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Sonia Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 750 Welch Road, Suite 315, Palo Alto, CA, 94304, USA
| | - Janet S Soul
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alistair J Gunn
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | |
Collapse
|
38
|
Bialer M, Johannessen SI, Koepp MJ, Levy RH, Perucca E, Perucca P, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI): II. Drugs in more advanced clinical development. Epilepsia 2022; 63:2883-2910. [PMID: 35950617 DOI: 10.1111/epi.17376] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
Abstract
The Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI) was held in Madrid, Spain on May 22-25, 2022 and was attended by 157 delegates from 26 countries representing basic and clinical science, regulatory agencies, and pharmaceutical industries. One day of the conference was dedicated to sessions presenting and discussing investigational compounds under development for the treatment of seizures and epilepsy. The current progress report summarizes recent findings and current knowledge for seven of these compounds in more advanced clinical development for which either novel preclinical or patient data are available. These compounds include bumetanide and its derivatives, darigabat, ganaxolone, lorcaserin, soticlestat, STK-001, and XEN1101. Of these, ganaxolone was approved by the US Food and Drug Administration in March 2022 for the treatment of seizures associated with cyclin-dependent kinase-like 5 deficiency disorder in patients 2 years of age and older.
Collapse
Affiliation(s)
- Meir Bialer
- Institute for Drug Research, Faculty of Medicine, School of Pharmacy, and David R. Bloom Center for Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Svein I Johannessen
- National Center for Epilepsy, Sandvika, Norway.,Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - René H Levy
- Department of Pharmaceutics and Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Emilio Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Torbjörn Tomson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
39
|
Medel-Matus JS, Orozco-Suárez S, Escalante RG. Factors not considered in the study of drug-resistant epilepsy: Psychiatric comorbidities, age, and gender. Epilepsia Open 2022. [PMID: 34967149 DOI: 10.1002/epi4.12576.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
In basic research and clinical practice, the control of seizures has been the most important goal, but it should not be the only one. There are factors that remain poorly understood in the study of refractory epilepsy such as the age and gender of patients and the presence of psychiatric comorbidities. It is known that in patients with drug-resistant epilepsy (DRE), the comorbidities contribute to the deterioration of the quality of life, increase the severity, and worsen the prognosis of epilepsy. Some studies have demonstrated that patients diagnosed with a co-occurrence of epilepsy and psychiatric disorders are more likely to present refractory seizures and the probability of seizure remission after pharmacotherapy is reduced. The evidence of this association suggests the presence of shared pathogenic mechanisms that may include endocrine disorders, neuroinflammatory processes, disturbances of neurotransmitters, and mechanisms triggered by stress. Additionally, significant demographic, clinical, and electrographic differences have been observed between women and men with epilepsy. Epilepsy affects the female gender in a greater proportion, although there are no studies that report whether refractoriness affects more females. The reasons behind these sex differences are unclear; however, it is likely that sex hormones and sex brain differences related to chromosomal genes play an important role. On the other hand, it has been shown in industrialized countries that prevalence of DRE is higher in the elderly when compared to youngsters. Conversely, this phenomenon is not observed in developing regions, where more cases are found in children and young adults. The correct identification and management of these factors is crucial in order to improve the quality of life of the patients.
Collapse
Affiliation(s)
- Jesús Servando Medel-Matus
- Department of Pediatrics, Neurology Division, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Sandra Orozco-Suárez
- Unit of Medical Research in Neurological Diseases, Specialty Hospital "Dr. Bernardo Sepúlveda", National Medical Center S.XXI, Mexico City, Mexico
| | - Ruby G Escalante
- Department of Pediatrics, Neurology Division, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
40
|
Derieux C, Léauté A, Brugoux A, Jaccaz D, Terrier C, Pin JP, Kniazeff J, Le Merrer J, Becker JAJ. Chronic sodium bromide treatment relieves autistic-like behavioral deficits in three mouse models of autism. Neuropsychopharmacology 2022; 47:1680-1692. [PMID: 35418620 PMCID: PMC9283539 DOI: 10.1038/s41386-022-01317-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Autism Spectrum Disorders (ASD) are neurodevelopmental disorders whose diagnosis relies on deficient social interaction and communication together with repetitive behavior. To date, no pharmacological treatment has been approved that ameliorates social behavior in patients with ASD. Based on the excitation/inhibition imbalance theory of autism, we hypothesized that bromide ions, long used as an antiepileptic medication, could relieve core symptoms of ASD. We evaluated the effects of chronic sodium bromide (NaBr) administration on autistic-like symptoms in three genetic mouse models of autism: Oprm1-/-, Fmr1-/- and Shank3Δex13-16-/- mice. We showed that chronic NaBr treatment relieved autistic-like behaviors in these three models. In Oprm1-/- mice, these beneficial effects were superior to those of chronic bumetanide administration. At transcriptional level, chronic NaBr in Oprm1 null mice was associated with increased expression of genes coding for chloride ions transporters, GABAA receptor subunits, oxytocin and mGlu4 receptor. Lastly, we uncovered synergistic alleviating effects of chronic NaBr and a positive allosteric modulator (PAM) of mGlu4 receptor on autistic-like behavior in Oprm1-/- mice. We evidenced in heterologous cells that bromide ions behave as PAMs of mGlu4, providing a molecular mechanism for such synergy. Our data reveal the therapeutic potential of bromide ions, alone or in combination with a PAM of mGlu4 receptor, for the treatment of ASDs.
Collapse
Affiliation(s)
- Cécile Derieux
- grid.464126.30000 0004 0385 4036Physiologie de la Reproduction et des Comportements, INRAE UMR0085, CNRS UMR7247, IFCE, Université de Tours, Inserm, 37380 Nouzilly, France ,grid.12366.300000 0001 2182 6141UMR1253, iBrain, Université de Tours, Inserm, CNRS, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France ,grid.121334.60000 0001 2097 0141Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Audrey Léauté
- grid.464126.30000 0004 0385 4036Physiologie de la Reproduction et des Comportements, INRAE UMR0085, CNRS UMR7247, IFCE, Université de Tours, Inserm, 37380 Nouzilly, France
| | - Agathe Brugoux
- grid.464126.30000 0004 0385 4036Physiologie de la Reproduction et des Comportements, INRAE UMR0085, CNRS UMR7247, IFCE, Université de Tours, Inserm, 37380 Nouzilly, France ,grid.12366.300000 0001 2182 6141UMR1253, iBrain, Université de Tours, Inserm, CNRS, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Déborah Jaccaz
- Unité Expérimentale de Physiologie Animale de l’Orfrasière, INRAE UE0028, 37380 Nouzilly, France
| | - Claire Terrier
- grid.464126.30000 0004 0385 4036Physiologie de la Reproduction et des Comportements, INRAE UMR0085, CNRS UMR7247, IFCE, Université de Tours, Inserm, 37380 Nouzilly, France ,grid.12366.300000 0001 2182 6141UMR1253, iBrain, Université de Tours, Inserm, CNRS, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Jean-Philippe Pin
- grid.121334.60000 0001 2097 0141Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Julie Kniazeff
- grid.121334.60000 0001 2097 0141Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Julie Le Merrer
- Physiologie de la Reproduction et des Comportements, INRAE UMR0085, CNRS UMR7247, IFCE, Université de Tours, Inserm, 37380, Nouzilly, France. .,UMR1253, iBrain, Université de Tours, Inserm, CNRS, Faculté des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France.
| | - Jerome A. J. Becker
- grid.464126.30000 0004 0385 4036Physiologie de la Reproduction et des Comportements, INRAE UMR0085, CNRS UMR7247, IFCE, Université de Tours, Inserm, 37380 Nouzilly, France ,grid.12366.300000 0001 2182 6141UMR1253, iBrain, Université de Tours, Inserm, CNRS, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| |
Collapse
|
41
|
Medel‐Matus JS, Orozco‐Suárez S, Escalante RG. Factors not considered in the study of drug-resistant epilepsy: Psychiatric comorbidities, age, and gender. Epilepsia Open 2022; 7 Suppl 1:S81-S93. [PMID: 34967149 PMCID: PMC9340311 DOI: 10.1002/epi4.12576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
In basic research and clinical practice, the control of seizures has been the most important goal, but it should not be the only one. There are factors that remain poorly understood in the study of refractory epilepsy such as the age and gender of patients and the presence of psychiatric comorbidities. It is known that in patients with drug-resistant epilepsy (DRE), the comorbidities contribute to the deterioration of the quality of life, increase the severity, and worsen the prognosis of epilepsy. Some studies have demonstrated that patients diagnosed with a co-occurrence of epilepsy and psychiatric disorders are more likely to present refractory seizures and the probability of seizure remission after pharmacotherapy is reduced. The evidence of this association suggests the presence of shared pathogenic mechanisms that may include endocrine disorders, neuroinflammatory processes, disturbances of neurotransmitters, and mechanisms triggered by stress. Additionally, significant demographic, clinical, and electrographic differences have been observed between women and men with epilepsy. Epilepsy affects the female gender in a greater proportion, although there are no studies that report whether refractoriness affects more females. The reasons behind these sex differences are unclear; however, it is likely that sex hormones and sex brain differences related to chromosomal genes play an important role. On the other hand, it has been shown in industrialized countries that prevalence of DRE is higher in the elderly when compared to youngsters. Conversely, this phenomenon is not observed in developing regions, where more cases are found in children and young adults. The correct identification and management of these factors is crucial in order to improve the quality of life of the patients.
Collapse
Affiliation(s)
- Jesús Servando Medel‐Matus
- Department of PediatricsNeurology DivisionDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| | - Sandra Orozco‐Suárez
- Unit of Medical Research in Neurological DiseasesSpecialty Hospital “Dr. Bernardo Sepúlveda”National Medical Center S.XXIMexico CityMexico
| | - Ruby G. Escalante
- Department of PediatricsNeurology DivisionDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
42
|
Guidotti I, Lugli L, Ori L, Roversi MF, Casa Muttini ED, Bedetti L, Pugliese M, Cavalleri F, Stefanelli F, Ferrari F, Berardi A. Neonatal seizures treatment based on conventional multichannel EEG monitoring: an overview of therapeutic options. Expert Rev Neurother 2022; 22:623-638. [PMID: 35876114 DOI: 10.1080/14737175.2022.2105698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Seizures are the main neurological emergency during the neonatal period and are mostly acute and focal. The prognosis mainly depends on the underlying etiology. Conventional multichannel video-electroencephalographic (cEEG) monitoring is the gold standard for diagnosis, but treatment remains a challenge. AREAS COVERED : This review, based on PubMed search over the last 4 decades, focuses on the current treatment options for neonatal seizures based on cEEG monitoring. There is still no consensus on seizure therapy, owing to poor scientific evidence. Traditionally, the first-line treatments are phenobarbital and phenytoin, followed by midazolam and lidocaine, but their efficacy is limited. Therefore, current evidence strongly suggests the use of alternative antiseizure medications. Randomized controlled trials of new drugs are ongoing. EXPERT OPINION : Therapy for neonatal seizures should be prompt and tailored, based on semeiology, mirror of the underlying cause, and cEEG features. Further research should focus on antiseizure medications that directly act on the etiopathogenetic mechanism responsible for seizures and are therefore more effective in seizure control.
Collapse
Affiliation(s)
- Isotta Guidotti
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Licia Lugli
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Luca Ori
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Maria Federica Roversi
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Elisa Della Casa Muttini
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Luca Bedetti
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Marisa Pugliese
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Francesca Cavalleri
- Division of Neuroradiology, Department of Neuroscience, Nuovo Ospedale Civile S. Agostino-Estense, Modena, Italy
| | - Francesca Stefanelli
- Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Post Graduate School of Pediatrics, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabrizio Ferrari
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Alberto Berardi
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| |
Collapse
|
43
|
Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022; 15:893111. [PMID: 35875665 PMCID: PMC9305173 DOI: 10.3389/fnmol.2022.893111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Excitatory-inhibitory (E-I) imbalance has been shown to contribute to the pathogenesis of a wide range of neurodevelopmental disorders including autism spectrum disorders, epilepsy, and schizophrenia. GABA neurotransmission, the principal inhibitory signal in the mature brain, is critically coupled to proper regulation of chloride homeostasis. During brain maturation, changes in the transport of chloride ions across neuronal cell membranes act to gradually change the majority of GABA signaling from excitatory to inhibitory for neuronal activation, and dysregulation of this GABA-shift likely contributes to multiple neurodevelopmental abnormalities that are associated with circuit dysfunction. Whilst traditionally viewed as a phenomenon which occurs during brain development, recent evidence suggests that this GABA-shift may also be involved in neuropsychiatric disorders due to the "dematuration" of affected neurons. In this review, we will discuss the cell signaling and regulatory mechanisms underlying the GABA-shift phenomenon in the context of the latest findings in the field, in particular the role of chloride cotransporters NKCC1 and KCC2, and furthermore how these regulatory processes are altered in neurodevelopmental and neuropsychiatric disorders. We will also explore the interactions between GABAergic interneurons and other cell types in the developing brain that may influence the GABA-shift. Finally, with a greater understanding of how the GABA-shift is altered in pathological conditions, we will briefly outline recent progress on targeting NKCC1 and KCC2 as a therapeutic strategy against neurodevelopmental and neuropsychiatric disorders associated with improper chloride homeostasis and GABA-shift abnormalities.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
- Synapse Biology Unit, Okinawa Institute for Science and Technology Graduate University, Onna, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
44
|
Why won't it stop? The dynamics of benzodiazepine resistance in status epilepticus. Nat Rev Neurol 2022; 18:428-441. [PMID: 35538233 DOI: 10.1038/s41582-022-00664-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 11/08/2022]
Abstract
Status epilepticus is a life-threatening neurological emergency that affects both adults and children. Approximately 36% of episodes of status epilepticus do not respond to the current preferred first-line treatment, benzodiazepines. The proportion of episodes that are refractory to benzodiazepines is higher in low-income and middle-income countries (LMICs) than in high-income countries (HICs). Evidence suggests that longer episodes of status epilepticus alter brain physiology, thereby contributing to the emergence of benzodiazepine resistance. Such changes include alterations in GABAA receptor function and in the transmembrane gradient for chloride, both of which erode the ability of benzodiazepines to enhance inhibitory synaptic signalling. Often, current management guidelines for status epilepticus do not account for these duration-related changes in pathophysiology, which might differentially impact individuals in LMICs, where the average time taken to reach medical attention is longer than in HICs. In this Perspective article, we aim to combine clinical insights and the latest evidence from basic science to inspire a new, context-specific approach to efficiently managing status epilepticus.
Collapse
|
45
|
Kaila K, Löscher W. Bumetanide for neonatal seizures: no light in the pharmacokinetic/dynamic tunnel. Epilepsia 2022; 63:1868-1873. [PMID: 35524446 PMCID: PMC9545618 DOI: 10.1111/epi.17279] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
In his editorial, Kevin Staley criticizes our recent work demonstrating the lack of effect of bumetanide in a novel model of neonatal seizures. The main points in our response are that (1) our work is on an asphyxia model, not one on "hypercarbia only"; (2) clinically relevant parenteral doses of bumetanide applied in vivo lead to concentrations in the brain parenchyma that are at least an order of magnitude lower than what would be sufficient to exert any direct effect—even a transient one—on neuronal functions, including neonatal seizures; and (3) moreover, bumetanide's molecular target in the brain is the Na‐K‐2Cl cotransporter NKCC1, which has vital functions in neurons, astrocytes, and oligodendrocytes as well as microglia. This would make it impossible even for highly brain‐permeant NKCC1 blockers to specifically target depolarizing and excitatory actions of γ‐aminobutyric acid in principal neurons of the brain, which is postulated as the rationale of clinical trials on neonatal seizures.
Collapse
Affiliation(s)
- Kai Kaila
- Molecular and Integrative Biosciences (MIBS) and Neuroscience Center (HiLIFE), University of Helsinki, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
46
|
Pressler RM, Boylan GB. Translational neonatal seizure research - a reality check. Epilepsia 2022; 63:1874-1879. [PMID: 35524441 DOI: 10.1111/epi.17276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ronit M Pressler
- Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children, London, UK.,Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Geraldine B Boylan
- INFANT Research Centre, University College Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| |
Collapse
|
47
|
Staley KJ. Clarifications regarding bumetanide for neonatal seizures. Epilepsia 2022; 63:1863-1867. [PMID: 35524444 DOI: 10.1111/epi.17278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Kevin J Staley
- Neurology Department, Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
48
|
Kirmse K, Zhang C. Principles of GABAergic signaling in developing cortical network dynamics. Cell Rep 2022; 38:110568. [PMID: 35354036 DOI: 10.1016/j.celrep.2022.110568] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
GABAergic signaling provides inhibitory stabilization and spatiotemporally coordinates the firing of recurrently connected excitatory neurons in mature cortical circuits. Inhibition thus enables self-generated neuronal activity patterns that underlie various aspects of sensation and cognition. In this review, we aim to provide a conceptual framework describing how and when GABA-releasing interneurons acquire their network functions during development. Focusing on the developing visual neocortex and hippocampus in mice and rats in vivo, we hypothesize that at the onset of patterned activity, glutamatergic neurons are stable by themselves and inhibitory stabilization is not yet functional. We review important milestones in the development of GABAergic signaling and illustrate how the cell-type-specific strengthening of synaptic inhibition toward eye opening shapes cortical network dynamics and allows the developing cortex to progressively disengage from extra-cortical synaptic drive. We translate this framework to human cortical development and discuss clinical implications for the treatment of neonatal seizures.
Collapse
Affiliation(s)
- Knut Kirmse
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany.
| | - Chuanqiang Zhang
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
49
|
Chalia M, Hartmann H, Pressler R. Practical Approaches to the Treatment of Neonatal Seizures. Curr Treat Options Neurol 2022. [DOI: 10.1007/s11940-022-00711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Ben-Ari Y, Cherubini E. The GABA Polarity Shift and Bumetanide Treatment: Making Sense Requires Unbiased and Undogmatic Analysis. Cells 2022; 11:396. [PMID: 35159205 PMCID: PMC8834580 DOI: 10.3390/cells11030396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
GABA depolarizes and often excites immature neurons in all animal species and brain structures investigated due to a developmentally regulated reduction in intracellular chloride concentration ([Cl-]i) levels. The control of [Cl-]i levels is mediated by the chloride cotransporters NKCC1 and KCC2, the former usually importing chloride and the latter exporting it. The GABA polarity shift has been extensively validated in several experimental conditions using often the NKCC1 chloride importer antagonist bumetanide. In spite of an intrinsic heterogeneity, this shift is abolished in many experimental conditions associated with developmental disorders including autism, Rett syndrome, fragile X syndrome, or maternal immune activation. Using bumetanide, an EMA- and FDA-approved agent, many clinical trials have shown promising results with the expected side effects. Kaila et al. have repeatedly challenged these experimental and clinical observations. Here, we reply to the recent reviews by Kaila et al. stressing that the GABA polarity shift is solidly accepted by the scientific community as a major discovery to understand brain development and that bumetanide has shown promising effects in clinical trials.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Neurochlore, Batiment Beret Delaage, Campus Scientifique de Luminy, 13009 Marseille, France
| | - Enrico Cherubini
- European Brain Research Institute (EBRI)-Rita Levi-Montalcini, 00161 Roma, Italy;
| |
Collapse
|