1
|
Lee WL, Westergaard X, Hwu C, Hwu J, Fiala T, Lacefield C, Boltaev U, Mendieta AM, Lin L, Sonders MS, Brown KR, He K, Asher WB, Javitch JA, Sulzer D, Sames D. Molecular Design of SERTlight: A Fluorescent Serotonin Probe for Neuronal Labeling in the Brain. J Am Chem Soc 2024; 146:9564-9574. [PMID: 38557024 DOI: 10.1021/jacs.3c11617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The serotonergic transmitter system plays fundamental roles in the nervous system in neurotransmission, synaptic plasticity, pathological processes, and therapeutic effects of antidepressants and psychedelics, as well as in the gastrointestinal and circulatory systems. We introduce a novel small molecule fluorescent agent, termed SERTlight, that specifically labels serotonergic neuronal cell bodies, dendrites, and axonal projections as a serotonin transporter (SERT) fluorescent substrate. SERTlight was developed by an iterative molecular design process, based on an aminoethyl-quinolone system, to integrate structural elements that impart SERT substrate activity, sufficient fluorescent brightness, and a broad absence of pharmacological activity, including at serotonin (5-hydroxytryptamine, 5HT) receptors, other G protein-coupled receptors (GPCRs), ion channels, and monoamine transporters. The high labeling selectivity is not achieved by high affinity binding to SERT itself but rather by a sufficient rate of SERT-mediated transport of SERTlight, resulting in accumulation of these molecules in 5HT neurons and yielding a robust and selective optical signal in the mammalian brain. SERTlight provides a stable signal, as it is not released via exocytosis nor by reverse SERT transport induced by 5HT releasers such as MDMA. SERTlight is optically, pharmacologically, and operationally orthogonal to a wide range of genetically encoded sensors, enabling multiplexed imaging. SERTlight enables labeling of distal 5HT axonal projections and simultaneous imaging of the release of endogenous 5HT using the GRAB5HT sensor, providing a new versatile molecular tool for the study of the serotonergic system.
Collapse
Affiliation(s)
- Wei-Li Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xavier Westergaard
- Department of Biological Sciences, Columbia University, New York, New York 10027, United States
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Christopher Hwu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jennifer Hwu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomas Fiala
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Laboratory of Organic Chemistry, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Clay Lacefield
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Umed Boltaev
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Adriana M Mendieta
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Lisa Lin
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Mark S Sonders
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Keaon R Brown
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Keer He
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Wesley B Asher
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York 10032, United States
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York 10032, United States
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10027, United States
| |
Collapse
|
2
|
Cadoni MPL, Coradduzza D, Congiargiu A, Sedda S, Zinellu A, Medici S, Nivoli AM, Carru C. Platelet Dynamics in Neurodegenerative Disorders: Investigating the Role of Platelets in Neurological Pathology. J Clin Med 2024; 13:2102. [PMID: 38610867 PMCID: PMC11012481 DOI: 10.3390/jcm13072102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Neurological disorders, particularly those associated with aging, pose significant challenges in early diagnosis and treatment. The identification of specific biomarkers, such as platelets (PLTs), has emerged as a promising strategy for early detection and intervention in neurological health. This systematic review aims to explore the intricate relationship between PLT dynamics and neurological health, focusing on their potential role in cognitive functions and the pathogenesis of cognitive disorders. Methods: Adhering to PRISMA guidelines, a comprehensive search strategy was employed in the PubMed and Scholar databases to identify studies on the role of PLTs in neurological disorders published from 2013 to 2023. The search criteria included studies focusing on PLTs as biomarkers in neurological disorders, their dynamics, and their potential in monitoring disease progression and therapy effectiveness. Results: The systematic review included 104 studies, revealing PLTs as crucial biomarkers in neurocognitive disorders, acting as inflammatory mediators. The findings suggest that PLTs share common features with altered neurons, which could be utilised for monitoring disease progression and evaluating the effectiveness of treatments. PLTs are identified as significant biomarkers for detecting neurological disorders in their early stages and understanding the pathological events leading to neuronal death. Conclusions: The systematic review underscores the critical role of PLTs in neurological disorders, highlighting their potential as biomarkers for the early detection and monitoring of disease progression. However, it also emphasises the need for further research to solidify the use of PLTs in neurological disorders, aiming to enhance early diagnosis and intervention strategies.
Collapse
Affiliation(s)
| | | | | | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Alessandra Matilde Nivoli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
- Psychiatric Unit Clinic of the University Hospital, 07100 Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
3
|
González Brito R, Montenegro P, Méndez A, Shabgahi RE, Pasquarelli A, Borges R. Analytical Determination of Serotonin Exocytosis in Human Platelets with BDD-on-Quartz MEA Devices. BIOSENSORS 2024; 14:75. [PMID: 38391994 PMCID: PMC10886747 DOI: 10.3390/bios14020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Amperometry is arguably the most widely used technique for studying the exocytosis of biological amines. However, the scarcity of human tissues, particularly in the context of neurological diseases, poses a challenge for exocytosis research. Human platelets, which accumulate 90% of blood serotonin, release it through exocytosis. Nevertheless, single-cell amperometry with encapsulated carbon fibers is impractical due to the small size of platelets and the limited number of secretory granules on each platelet. The recent technological improvements in amperometric multi-electrode array (MEA) devices allow simultaneous recordings from several high-performance electrodes. In this paper, we present a comparison of three MEA boron-doped diamond (BDD) devices for studying serotonin exocytosis in human platelets: (i) the BDD-on-glass MEA, (ii) the BDD-on-silicon MEA, and (iii) the BDD on amorphous quartz MEA (BDD-on-quartz MEA). Transparent electrodes offer several advantages for observing living cells, and in the case of platelets, they control activation/aggregation. BDD-on-quartz offers the advantage over previous materials of combining excellent electrochemical properties with transparency for microscopic observation. These devices are opening exciting perspectives for clinical applications.
Collapse
Affiliation(s)
- Rosalía González Brito
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain; (R.G.B.); (P.M.); (A.M.)
| | - Pablo Montenegro
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain; (R.G.B.); (P.M.); (A.M.)
| | - Alicia Méndez
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain; (R.G.B.); (P.M.); (A.M.)
| | - Ramtin E. Shabgahi
- Institute of Electron Devices and Circuits, Ulm University, 89069 Ulm, Germany; (R.E.S.); (A.P.)
| | - Alberto Pasquarelli
- Institute of Electron Devices and Circuits, Ulm University, 89069 Ulm, Germany; (R.E.S.); (A.P.)
| | - Ricardo Borges
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain; (R.G.B.); (P.M.); (A.M.)
| |
Collapse
|
4
|
Maneu V, Borges R, Gandía L, García AG. Forty years of the adrenal chromaffin cell through ISCCB meetings around the world. Pflugers Arch 2023; 475:667-690. [PMID: 36884064 PMCID: PMC10185644 DOI: 10.1007/s00424-023-02793-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 03/09/2023]
Abstract
This historical review focuses on the evolution of the knowledge accumulated during the last two centuries on the biology of the adrenal medulla gland and its chromaffin cells (CCs). The review emerged in the context of a series of meetings that started on the Spanish island of Ibiza in 1982 with the name of the International Symposium on Chromaffin Cell Biology (ISCCB). Hence, the review is divided into two periods namely, before 1982 and from this year to 2022, when the 21st ISCCB meeting was just held in Hamburg, Germany. The first historical period extends back to 1852 when Albert Kölliker first described the fine structure and function of the adrenal medulla. Subsequently, the adrenal staining with chromate salts identified the CCs; this was followed by the establishment of the embryological origin of the adrenal medulla, and the identification of adrenaline-storing vesicles. By the end of the nineteenth century, the basic morphology, histochemistry, and embryology of the adrenal gland were known. The twentieth century began with breakthrough findings namely, the experiment of Elliott suggesting that adrenaline was the sympathetic neurotransmitter, the isolation of pure adrenaline, and the deciphering of its molecular structure and chemical synthesis in the laboratory. In the 1950s, Blaschko isolated the catecholamine-storing vesicles from adrenal medullary extracts. This switched the interest in CCs as models of sympathetic neurons with an explosion of studies concerning their functions, i.e., uptake of catecholamines by chromaffin vesicles through a specific coupled transport system; the identification of several vesicle components in addition to catecholamines including chromogranins, ATP, opioids, and other neuropeptides; the calcium-dependence of the release of catecholamines; the underlying mechanism of exocytosis of this release, as indicated by the co-release of proteins; the cross-talk between the adrenal cortex and the medulla; and the emission of neurite-like processes by CCs in culture, among other numerous findings. The 1980s began with the introduction of new high-resolution techniques such as patch-clamp, calcium probes, marine toxins-targeting ion channels and receptors, confocal microscopy, or amperometry. In this frame of technological advances at the Ibiza ISCCB meeting in 1982, 11 senior researchers in the field predicted a notable increase in our knowledge in the field of CCs and the adrenal medulla; this cumulative knowledge that occurred in the last 40 years of history of the CC is succinctly described in the second part of this historical review. It deals with cell excitability, ion channel currents, the exocytotic fusion pore, the handling of calcium ions by CCs, the kinetics of exocytosis and endocytosis, the exocytotic machinery, and the life cycle of secretory vesicles. These concepts together with studies on the dynamics of membrane fusion with super-resolution imaging techniques at the single-protein level were extensively reviewed by top scientists in the field at the 21st ISCCB meeting in Hamburg in the summer of 2022; this frontier topic is also briefly reviewed here. Many of the concepts arising from those studies contributed to our present understanding of synaptic transmission. This has been studied in physiological or pathophysiological conditions, in CCs from animal disease models. In conclusion, the lessons we have learned from CC biology as a peripheral model for brain and brain disease pertain more than ever to cutting-edge research in neurobiology. In the 22nd ISCCB meeting in Israel in 2024 that Uri Asheri is organizing, we will have the opportunity of seeing the progress of the questions posed in Ibiza, and on other questions that undoubtedly will arise.
Collapse
Affiliation(s)
- Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain
| | - Ricardo Borges
- Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Luis Gandía
- Instituto Fundación Teófilo Hernando, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio G. García
- Instituto Fundación Teófilo Hernando, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
- Facultad de Medicina, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|