1
|
Hari E, Kurt E, Ulasoglu-Yildiz C, Bayram A, Bilgic B, Demiralp T, Gurvit H. Morphometric analysis of medial temporal lobe subregions in Alzheimer's disease using high-resolution MRI. Brain Struct Funct 2023; 228:1885-1899. [PMID: 37486408 DOI: 10.1007/s00429-023-02683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
The spread pattern of progressive degeneration seen in Alzheimer's disease (AD) to small-scale medial temporal lobe subregions is critical for early diagnosis. In this context, it was aimed to examine the morphometric changes of the hippocampal subfields, amygdala nuclei, entorhinal cortex (ERC), and parahippocampal cortex (PHC) using MRI. MRI data of patients diagnosed with 20 Alzheimer's disease dementia (ADD), 30 amnestic mild cognitive impairment (aMCI), and 30 subjective cognitive impairment (SCI) without demographic differences were used. Segmentation and parcellation were performed using FreeSurfer. The segmentation process obtained volume values of 12 hippocampal subfields and 9 amygdala nuclei. Thickness values of ERC and PHC were calculated with the parcellation process. ANCOVA was performed using age, education and gender as covariates to evaluate the intergroup differences. Linear discriminant analysis was used to investigate whether atrophy predicted groups at an early stage. ERC and PHC thickness decreased significantly throughout the disease continuum, while only ERC was affected in the early stage. When the hippocampal and amygdala subfields were compared volumetrically, significant differences were found in the amygdala between the SCI and aMCI groups. In the early period, only volume reduction in the anterior amygdaloid area of the amygdala nuclei exceeded the significance threshold. Research on AD primarily focuses on original hippocampocentric structures and their main function which is episodic memory. Our results emphasized the significance of so far relatively neglected olfactocentric structures and their functions, such as smell and social cognition in the pre-dementia stages of the AD process.
Collapse
Affiliation(s)
- Emre Hari
- Graduate School of Health Sciences, Istanbul University, Bozdogan Kemeri Caddesi No:8 Vezneciler Hamami Sokagi, Vezneciler, 34216, Fatih, Istanbul, Turkey.
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey.
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093, Istanbul, Turkey.
| | - Elif Kurt
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093, Istanbul, Turkey
| | - Cigdem Ulasoglu-Yildiz
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093, Istanbul, Turkey
| | - Ali Bayram
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093, Istanbul, Turkey
| | - Başar Bilgic
- Department of Neurology, Behavioral Neurology and Movement Disorders Unit, Istanbul Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
| | - Tamer Demiralp
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Istanbul, Turkey
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
| | - Hakan Gurvit
- Department of Neurology, Behavioral Neurology and Movement Disorders Unit, Istanbul Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
| |
Collapse
|
2
|
Gonzalez‐Rodriguez M, Villar‐Conde S, Astillero‐Lopez V, Villanueva‐Anguita P, Ubeda‐Banon I, Flores‐Cuadrado A, Martinez‐Marcos A, Saiz‐Sanchez D. Human amygdala involvement in Alzheimer's disease revealed by stereological and dia-PASEF analysis. Brain Pathol 2023; 33:e13180. [PMID: 37331354 PMCID: PMC10467039 DOI: 10.1111/bpa.13180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of pathological amyloid-β (Aβ) and Tau proteins. According to the prion-like hypothesis, both proteins can seed and disseminate through brain regions through neural connections and glial cells. The amygdaloid complex (AC) is involved early in the disease, and its widespread connections with other brain regions indicate that it is a hub for propagating pathology. To characterize changes in the AC as well as the involvement of neuronal and glial cells in AD, a combined stereological and proteomic analysis was performed in non-Alzheimer's disease and AD human samples. The synaptic alterations identified by proteomic data analysis could be related to the volume reduction observed in AD by the Cavalieri probe without neuronal loss. The pathological markers appeared in a gradient pattern with the medial region (cortical nucleus, Co) being more affected than lateral regions, suggesting the relevance of connections in the distribution of the pathology among different brain regions. Generalized astrogliosis was observed in every AC nucleus, likely related to deposits of pathological proteins. Astrocytes might mediate phagocytic microglial activation, whereas microglia might play a dual role since protective and toxic phenotypes have been described. These results highlight the potential participation of the amygdala in the disease spreading from/to olfactory areas, the temporal lobe and beyond. Proteomic data are available via ProteomeXchange with identifier PXD038322.
Collapse
Affiliation(s)
- Melania Gonzalez‐Rodriguez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Sandra Villar‐Conde
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Veronica Astillero‐Lopez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Patricia Villanueva‐Anguita
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Isabel Ubeda‐Banon
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Alicia Flores‐Cuadrado
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Alino Martinez‐Marcos
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Daniel Saiz‐Sanchez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| |
Collapse
|
3
|
Qu H, Ge H, Wang L, Wang W, Hu C. Volume changes of hippocampal and amygdala subfields in patients with mild cognitive impairment and Alzheimer's disease. Acta Neurol Belg 2023:10.1007/s13760-023-02235-9. [PMID: 37043115 DOI: 10.1007/s13760-023-02235-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/06/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND Automated segmentation of hippocampal and amygdala subfields could improve classification accuracy of Mild Cognitive Impairments (MCI) and Alzheimer's Disease (AD) individuals. METHODS We applied T1-weighted magnetic resonance imaging (MRI) for 21 AD, 39 MCI and 32 normal control (NC) participants at 3-Tesla MRI. Twelve hippocampal subfields and 9 amygdala subfields in each hemisphere were analyzed using FreeSurfer 6.0. RESULTS Smaller volumes were observed in right/left whole hippocampus, right/left hippocampal tail, right/left subiculum, right Cornu ammonis 1(CA1), right/left molecular layer, right granule cell-molecular layer-dentate gyrus (GC-ML-DG), right CA4, right fimbria, right whole amygdala, right/left accessory basal, right anterior amygdala area, left central, left medial and right/left cortical nucleus of AD group compared to both MCI and NC groups (p < 0.001). The volumes of right presubiculum, right CA3, right hippocampus-amygdala-transition-area (HATA), right lateral, right basal, right central, right medial, right cortico-amygdaloid transition (CAT) and right paralaminar nucleus were significantly larger in NC than AD group (p ≤ 0.001), while the volumes of right subiculum, right CA1, right molecular layer, right whole hippocampus, right whole amygdala, right basal and right accessory basal were significantly larger in NC than MCI group (p ≤ 0.002). Trend analysis showed that most hippocampus and amygdala subfields have a trend of atrophy with the decline of cognitive function. Six core components were identified by the hierarchical clustering. The combined Receiver operating characteristic (ROC) analysis achieved the diagnostic performances (AUC: 0.81) in differentiating AD from MCI; (AUC: 0.79) in differentiating MCI from NC and (AUC: 0.97) in differentiating AD from NC. CONCLUSIONS Volumetric differences of hippocampus and amygdala were at a finer subfields scale, and the volumes of right basal nucleus, left parasubiculum, left medial nucleus, left GC-ML-DG, left hippocampal fissure, and right fimbria can be employed as neuroimaging biomarkers to assist the clinical diagnosis of MCI and AD.
Collapse
Affiliation(s)
- Hang Qu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou Jiangsu, China
- Department of Radiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Haitao Ge
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Liping Wang
- Department of Biobank, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wei Wang
- Department of Radiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou Jiangsu, China.
| |
Collapse
|
4
|
Wang S, Liu S, Ke S, Zhou W, Pan T. APOEɛ4 Status and Plasma p-tau181 Levels May Influence Memory and Executive Function Decline in Older Adults Without Dementia. J Alzheimers Dis 2023; 95:1509-1518. [PMID: 37718807 DOI: 10.3233/jad-230437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Elevated tau phosphorylation has been linked to the Apolipoprotein E (APOE) ɛ4 allele, which is considered one of the most significant genes related to Alzheimer's disease (AD). However, it is uncertain whether the impact of increased plasma tau phosphorylated at threonine 181 (p-tau181) on memory and executive function decline would be greater among APOEɛ4 carriers. OBJECTIVE To investigate the effects of plasma p-tau181 and APOEɛ4 on memory and executive function. METHODS The longitudinal analysis included 608 older adults without dementia (aged 72±7 years; 47% female; follow-up period of 1.59±1.47 years) from the ADNI dataset, including 180 individuals with normal cognition and 429 individuals with mild cognitive impairment. Linear mixed-effects models were utilized to assess the contributions of APOEɛ4 status and plasma p-tau181 to longitudinal changes in memory composite score and executive function composite score. RESULTS At baseline, the APOEɛ4+/Tau+ group exhibited poorer performance in memory composite score and executive function composite score, and an elevated load of cerebrospinal fluid Aβ and tau pathologies. To further understand longitudinal changes, we compared groups directly based on plasma p-tau181 and APOEɛ4 status (four groups: APOEɛ4-/Tau-, APOEɛ4-/Tau+, APOEɛ4+/Tau-, APOEɛ4+/Tau+). Both the memory composite score and executive function composite score showed a significantly greater decline in the APOEɛ4+/Tau+ group than in all other groups. CONCLUSIONS Our findings indicate that there is an interaction between plasma p-tau181 levels and APOEɛ4 status, which contributes to the longitudinal changes of memory and executive function in older adults without dementia.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Suzhi Liu
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Shaofa Ke
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Wenjun Zhou
- Research and Development, Hangzhou Shansier Medical Technologies Co., Ltd., Hangzhou, China
| | - Tengwei Pan
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| |
Collapse
|
5
|
Mattsson P, Cselényi Z, Andrée B, Borg J, Nag S, Halldin C, Farde L. Decreased 5-HT 1A binding in mild Alzheimer's disease - a PET study. Synapse 2022; 76:e22235. [PMID: 35587913 PMCID: PMC9285435 DOI: 10.1002/syn.22235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Decreased 5-HT1A receptor binding has been associated with Alzheimer's disease (AD) and interpreted as a consequence of neuron loss. The purpose of the present study was to compare [11 C]WAY100635 binding to the 5-HT1A receptor in hippocampus, entorhinal cortex, amygdala and pericalcarine cortex in mild AD patients and elderly controls. METHODS AD patients (n = 7) and elderly control subjects (n = 8) were examined with positron emission tomography (PET) and [11 C]WAY100635. PET data acquisition was performed with an ECAT EXACT HR system. Wavelet-aided parametric images of non-displaceable binding potential (BPND ) were generated using Logan's graphical analysis with cerebellum as reference region. Correction for partial volume effects (PVE) was performed with the Müller-Gärtner method (MG). Regions of interest (ROIs) were applied to the individual parametric images and the regional BPND was calculated as the average parametric voxel value within each ROI. Besides comparison between subject groups, correlations between BPND values and scores on Mini Mental State Examination (MMSE), Disability Assessment for Dementia (DAD), and Neuropsychiatric Inventory (NPI) were expressed by Pearson correlation coefficients. RESULTS Mean regional BPND was lower in AD patients compared to control subjects and the difference was statistically significant for hippocampus, entorhinal cortex and amygdala. A statistically significant correlation was obtained between hippocampal BPND values and DAD scores. CONCLUSION The results of the present study corroborate and extend previous findings of decreased 5-HT1A binding in AD and strengthen the support for 5-HT1A receptor PET as a tool for assessment of neurodegenerative changes in mild AD. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Patrik Mattsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County, Stockholm, Sweden
| | - Zsolt Cselényi
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County, Stockholm, Sweden.,PET Science Centre, Personalized Medicine, R&D, AstraZeneca, Stockholm, Sweden
| | - Bengt Andrée
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County, Stockholm, Sweden
| | - Jacqueline Borg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County, Stockholm, Sweden
| | - Sangram Nag
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County, Stockholm, Sweden
| | - Christer Halldin
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County, Stockholm, Sweden
| | - Lars Farde
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County, Stockholm, Sweden
| |
Collapse
|
6
|
Gal J, Katsumata Y, Zhu H, Srinivasan S, Chen J, Johnson LA, Wang WX, Golden LR, Wilcock DM, Jicha GA, Cykowski MD, Nelson PT. Apolipoprotein E Proteinopathy Is a Major Dementia-Associated Pathologic Biomarker in Individuals with or without the APOE Epsilon 4 Allele. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:564-578. [PMID: 34954207 PMCID: PMC8895423 DOI: 10.1016/j.ajpath.2021.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/27/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
The amygdala is vulnerable to multiple or "mixed" mis-aggregated proteins associated with neurodegenerative conditions that can manifest clinically with amnestic dementia; the amygdala region is often affected even at earliest disease stages. With the original intent of identifying novel dementia-associated proteins, the detergent-insoluble proteome was characterized from the amygdalae of 40 participants from the University of Kentucky Alzheimer's Disease Center autopsy cohort. These individuals encompassed a spectrum of clinical conditions (cognitively normal to severe amnestic dementia). Polypeptides from the detergent-insoluble fraction were interrogated using liquid chromatography-electrospray ionization-tandem mass spectrometry. As anticipated, portions of peptides previously associated with neurologic diseases were enriched from subjects with dementia. Among all detected peptides, Apolipoprotein E (ApoE) stood out: even more than the expected Tau, APP/Aβ, and α-Synuclein peptides, ApoE peptides were strongly enriched in dementia cases, including from individuals lacking the APOE ε4 genotype. The amount of ApoE protein detected in detergent-insoluble fractions was robustly associated with levels of complement proteins C3 and C4. Immunohistochemical staining of APOE ε3/ε3 subjects' amygdalae confirmed ApoE co-localization with C4 in amyloid plaques. Thus, analyses of human amygdala proteomics indicate that rather than being only an "upstream" genetic risk factor, ApoE is an aberrantly aggregated protein in its own right, and show that the ApoE protein may play active disease-driving mechanistic roles in persons lacking the APOE ε4 allele.
Collapse
Affiliation(s)
- Jozsef Gal
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky,Department of Neuroscience, University of Kentucky, Lexington, Kentucky
| | - Yuriko Katsumata
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky,Research & Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Sukanya Srinivasan
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky
| | - Lance Allen Johnson
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Wang-Xia Wang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky,Department of Pathology, University of Kentucky, Lexington, Kentucky
| | | | - Donna M. Wilcock
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky,Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Gregory A. Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky,Department of Neurology, University of Kentucky, Lexington, Kentucky
| | | | - Peter Tobias Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky; Department of Pathology, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
7
|
McDonald AJ, Duque A. Specific neuronal subpopulations in the amygdala of macaque monkeys express high levels of nonphosphorylated neurofilaments. Brain Res 2022; 1777:147767. [PMID: 34958755 PMCID: PMC8792357 DOI: 10.1016/j.brainres.2021.147767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/14/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022]
Abstract
Pyramidal neurons in the neocortex that express nonphosphorylated neurofilaments (NPNFs) are especially vulnerable to degeneration in Alzheimer's disease. Since the basolateral nuclear complex of the amygdala (BNC) and cortical nuclear complex of the amygdala (CNC) are cortex-like structures, containing both pyramidal (PNs) and nonpyramidal neurons (NPNs), it is of interest to determine which cell types in the primate BNC and CNC are NPNF+. We also studied NPNF expression in the non-cortex-like nuclei of the amygdala (central and medial nuclei). Digitized images of sections through fetal, newborn, infant, and adult macaque brains stained for NPNFs, obtained from the Macaque Brain Resource (MacBrainResource, MBR), were analyzed. The pattern of NPNF immunoreactivity (NPNF-ir) in the BNC, CNC, and medial nucleus was essentially identical in all four age groups, but there were some age-dependent differences in the central nucleus. All BNC and CNC nuclei contained a moderate density of NPNF+ NPNs. Both the somata and the entire dendritic arborizations of these NPNs were stained. PNs with robust NPNF-ir in their somata and proximal dendrites were only seen in the basal magnocellular nucleus, where it appeared that virtually every PN was NPNF+. This pattern of NPNF expression is distinct from that seen in the mammalian neocortex, where NPNF+ neurons are almost entirely PNs, but is very similar to that seen in a recent study of the rat BNC. These findings, in conjunction with the cortical data, suggest the possibility that NPNF+ neuronal subpopulations in the BNC and CNC might be especially vulnerable in Alzheimer's disease.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | - Alvaro Duque
- Department of Neuroscience, Yale University School of Medicine, SHM C317B, New Haven, CT, 06520, USA
| |
Collapse
|
8
|
Wang DW, Ding SL, Bian XL, Zhou SY, Yang H, Wang P. Diagnostic value of amygdala volume on structural magnetic resonance imaging in Alzheimer’s disease. World J Clin Cases 2021; 9:4627-4636. [PMID: 34222429 PMCID: PMC8223829 DOI: 10.12998/wjcc.v9.i18.4627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The main clinical manifestation of Alzheimer’s disease (AD) is memory loss, which can be accompanied by neuropsychiatric symptoms at different stages of the disease. Amygdala is closely related to emotion and memory.
AIM To evaluate the diagnostic value of amygdala on structural magnetic resonance imaging (sMRI) for AD.
METHODS In this study, 22 patients with AD and 26 controls were enrolled. Their amygdala volumes were measured by sMRI and analyzed using an automatic analysis software.
RESULTS The bilateral amygdala volumes of AD patients were significantly lower than those of the controls and were positively correlated with the hippocampal volumes. Receiver operating characteristic curve analyses showed that the sensitivity of the left and right amygdala volumes in diagnosing AD was 80.8% and 88.5%, respectively. Subgroup analyses showed that amygdala atrophy was more serious in AD patients with neuropsychiatric symptoms, which mainly included irritability (22.73%), sleep difficulties (22.73%), apathy (18.18%), and hallucination (13.64%).
CONCLUSION Amygdala volumes measured by sMRI can be used to diagnose AD, and amygdala atrophy is more serious in patients with neuropsychiatric symptoms.
Collapse
Affiliation(s)
- De-Wei Wang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Shou-Luan Ding
- Center for Evidence-Based Medicine, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Xian-Li Bian
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Shi-Yue Zhou
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Hui Yang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Ping Wang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| |
Collapse
|
9
|
McDonald AJ, Mascagni F. Specific neuronal subpopulations in the rat basolateral amygdala express high levels of nonphosphorylated neurofilaments. J Comp Neurol 2021; 529:3292-3312. [PMID: 33960421 DOI: 10.1002/cne.25169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/25/2022]
Abstract
Cortical pyramidal neurons (PNs) containing nonphosphorylated neurofilaments (NNFs) localized with the SMI-32 monoclonal antibody have been shown to be especially vulnerable to degeneration in Alzheimer's disease (AD). The present investigation is the first to study the expression of SMI-32+ NNFs in neurons of the basolateral nuclear complex of the amygdala (BNC), which contains cortex-like PNs and nonpyramidal neurons (NPNs). We observed that PNs in the rat basolateral nucleus (BL), but not in the lateral (LAT) or basomedial (BM) nuclei, have significant levels of SMI-32-ir in their somata with antibody diluents that did not contain Triton X-100, but staining in these cells was greatly attenuated when the antibody diluent contained 0.3% Triton. Using Triton-containing diluents, we found that all SMI-32+ neurons in all three of the BNC nuclei were NPNs. Using a dual-labeling immunoperoxidase technique, we demonstrated that most of these SMI-32+ NPNs were parvalbumin-positive (PV+) or somatostatin-positive NPNs but not vasoactive intestinal peptide-positive or neuropeptide Y-positive NPNs. Using a technique that combines retrograde tracing with SMI-32 immunohistochemistry using intermediate levels of Triton in the diluent, we found that all BNC neurons projecting to the mediodorsal thalamic nucleus (MD) were large NPNs, and most were SMI-32+. In contrast, BNC neurons projecting to the ventral striatum or cerebral cortex were PNs that expressed low levels of SMI-32 immunoreactivity (SMI-32-ir) in the BL, and no SMI-32-ir in the LAT or BM. These data suggest that the main neuronal subpopulations in the BNC that degenerate in AD may be PV+ and MD-projecting NPNs.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Franco Mascagni
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
10
|
Montero-Crespo M, Domínguez-Álvaro M, Alonso-Nanclares L, DeFelipe J, Blazquez-Llorca L. Three-dimensional analysis of synaptic organization in the hippocampal CA1 field in Alzheimer's disease. Brain 2021; 144:553-573. [PMID: 33324984 PMCID: PMC8240746 DOI: 10.1093/brain/awaa406] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease is the most common form of dementia, characterized by a persistent and progressive impairment of cognitive functions. Alzheimer's disease is typically associated with extracellular deposits of amyloid-β peptide and accumulation of abnormally phosphorylated tau protein inside neurons (amyloid-β and neurofibrillary pathologies). It has been proposed that these pathologies cause neuronal degeneration and synaptic alterations, which are thought to constitute the major neurobiological basis of cognitive dysfunction in Alzheimer's disease. The hippocampal formation is especially vulnerable in the early stages of Alzheimer's disease. However, the vast majority of electron microscopy studies have been performed in animal models. In the present study, we performed an extensive 3D study of the neuropil to investigate the synaptic organization in the stratum pyramidale and radiatum in the CA1 field of Alzheimer's disease cases with different stages of the disease, using focused ion beam/scanning electron microscopy (FIB/SEM). In cases with early stages of Alzheimer's disease, the synapse morphology looks normal and we observed no significant differences between control and Alzheimer's disease cases regarding the synaptic density, the ratio of excitatory and inhibitory synapses, or the spatial distribution of synapses. However, differences in the distribution of postsynaptic targets and synaptic shapes were found. Furthermore, a lower proportion of larger excitatory synapses in both strata were found in Alzheimer's disease cases. Individuals in late stages of the disease suffered the most severe synaptic alterations, including a decrease in synaptic density and morphological alterations of the remaining synapses. Since Alzheimer's disease cases show cortical atrophy, our data indicate a reduction in the total number (but not the density) of synapses at early stages of the disease, with this reduction being much more accentuated in subjects with late stages of Alzheimer's disease. The observed synaptic alterations may represent a structural basis for the progressive learning and memory dysfunctions seen in Alzheimer's disease cases.
Collapse
Affiliation(s)
- Marta Montero-Crespo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Av. Doctor Arce, 37, 28002 Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Marta Domínguez-Álvaro
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Lidia Alonso-Nanclares
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Av. Doctor Arce, 37, 28002 Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, c/Valderrebollo, 5, 28031 Madrid, Spain
| | - Javier DeFelipe
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Av. Doctor Arce, 37, 28002 Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, c/Valderrebollo, 5, 28031 Madrid, Spain
| | - Lidia Blazquez-Llorca
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, c/Valderrebollo, 5, 28031 Madrid, Spain
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), c/Juan del Rosal, 10, 28040 Madrid, Spain
- Sección Departamental de Anatomía y Embriología (Veterinaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| |
Collapse
|
11
|
Balin BJ, Hudson AP. Perspectives on the Intracellular Bacterium Chlamydia pneumoniae in Late-Onset Dementia. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00146-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
Purpose of Review
Chronic diseases remain a daunting challenge for clinicians and researchers alike. While difficult to completely understand, most chronic diseases, including late-onset dementias, are thought to arise as an interplay between host genetic factors and environmental insults. One of the most diverse and ubiquitous environmental insults centers on infectious agents. Associations of infectious agents with late-onset dementia have taken on heightened importance, including our investigations of infection by the intracellular respiratory bacterium, Chlamydia pneumoniae (Cpn), in late-onset dementia of the Alzheimer’s type.
Recent Findings
Over the last two decades, the relationship of this infection to pathogenesis in late-onset dementia has become much clearer. This clarity has resulted from applying contemporary molecular genetic, biochemical, immunochemical, and cell culture techniques to analysis of human brains, animal models, and relevant in vitro cell culture systems. Data from these studies, taken in aggregate form, now can be applied to evaluation of proof of concept for causation of this infection with late-onset disease. In this evaluation, modifications to the original Koch postulates can be useful for elucidating causation.
Summary
All such relevant studies are outlined and summarized in this review, and they demonstrate the utility of applying modified Koch postulates to the etiology of late-onset dementia of the Alzheimer’s type. Regardless, it is clear that even with strong observational evidence, in combination with application of modifications of Koch’s postulates, we will not be able to conclusively state that Cpn infection is causative for disease pathogenesis in late-onset dementia. Moreover, this conclusion obtains as well for the putative causation of this condition by other pathogens, including herpes simplex virus type 1, Borrelia burgdorferi, and Porphyromonas gingivalis.
Collapse
|
12
|
Bathini P, Brai E, Auber LA. Olfactory dysfunction in the pathophysiological continuum of dementia. Ageing Res Rev 2019; 55:100956. [PMID: 31479764 DOI: 10.1016/j.arr.2019.100956] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/29/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022]
Abstract
Sensory capacities like smell, taste, hearing, vision decline with aging, but increasing evidence show that sensory dysfunctions are one of the early signs diagnosing the conversion from physiological to pathological brain state. Smell loss represents the best characterized sense in clinical practice and is considered as one of the first preclinical signs of Alzheimer's and Parkinson's disease, occurring a decade or more before the onset of cognitive and motor symptoms. Despite the numerous scientific reports and the adoption in clinical practice, the etiology of sensory damage as prodromal of dementia remains largely unexplored and more studies are needed to resolve the mechanisms underlying sensory network dysfunction. Although both cognitive and sensory domains are progressively affected, loss of sensory experience in early stages plays a major role in reducing the autonomy of demented people in their daily tasks or even possibly contributing to their cognitive decline. Interestingly, the chemosensory circuitry is devoid of a blood brain barrier, representing a vulnerable port of entry for neurotoxic species that can spread to the brain. Furthermore, the exposure of the olfactory system to the external environment make it more susceptible to mechanical injury and trauma, which can cause degenerative neuroinflammation. In this review, we will summarize several findings about chemosensory impairment signing the conversion from healthy to pathological brain aging and we will try to connect those observations to the promising research linking environmental influences to sporadic dementia. The scientific body of knowledge will support the use of chemosensory diagnostics in the presymptomatic stages of AD and other biomarkers with the scope of finding treatment strategies before the onset of the disease.
Collapse
Affiliation(s)
- Praveen Bathini
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Emanuele Brai
- VIB-KU Leuven Center for Brain & Disease Research, Laboratory for the Research of Neurodegenerative Diseases, Leuven, Belgium
| | - Lavinia Alberi Auber
- Department of Medicine, University of Fribourg, Fribourg, Switzerland; Swiss Integrative Center of Human Health, Fribourg, Switzerland.
| |
Collapse
|
13
|
Herman FJ, Simkovic S, Pasinetti GM. Neuroimmune nexus of depression and dementia: Shared mechanisms and therapeutic targets. Br J Pharmacol 2019; 176:3558-3584. [PMID: 30632147 DOI: 10.1111/bph.14569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
Dysfunctional immune activity is a physiological component of both Alzheimer's disease (AD) and major depressive disorder (MDD). The extent to which altered immune activity influences the development of their respective cognitive symptoms and neuropathologies remains under investigation. It is evident, however, that immune activity affects neuronal function and circuit integrity. In both disorders, alterations are present in similar immune networks and neuroendocrine signalling pathways, immune responses persist in overlapping neuroanatomical locations, and morphological and structural irregularities are noted in similar domains. Epidemiological studies have also linked the two disorders, and their genetic and environmental risk factors intersect along immune-activating pathways and can be synonymous with one another. While each of these disorders individually contains a large degree of heterogeneity, their shared immunological components may link distinct phenotypes within each disorder. This review will therefore highlight the shared immune pathways of AD and MDD, their overlapping neuroanatomical features, and previously applied, as well as novel, approaches to pharmacologically manipulate immune pathways, in each neurological condition. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Francis J Herman
- Department of Neurology, Mount Sinai School of Medicine, New York City, New York, USA
| | - Sherry Simkovic
- Department of Neurology, Mount Sinai School of Medicine, New York City, New York, USA
| | - Giulio M Pasinetti
- Department of Neurology, Mount Sinai School of Medicine, New York City, New York, USA.,Geriatrics Research. Education, and Clinical Center, JJ Peters VA Medical Center, Bronx, New York, USA
| |
Collapse
|
14
|
Aghamohammadi-Sereshki A, Hrybouski S, Travis S, Huang Y, Olsen F, Carter R, Camicioli R, Malykhin NV. Amygdala subnuclei and healthy cognitive aging. Hum Brain Mapp 2018; 40:34-52. [PMID: 30291764 DOI: 10.1002/hbm.24353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/13/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022] Open
Abstract
Amygdala is a group of nuclei involved in the neural circuits of fear, reward learning, and stress. The main goal of this magnetic resonance imaging (MRI) study was to investigate the relationship between age and the amygdala subnuclei volumes in a large cohort of healthy individuals. Our second goal was to determine effects of the apolipoprotein E (APOE) and brain-derived neurotrophic factor (BDNF) polymorphisms on the amygdala structure. One hundred and twenty-six healthy participants (18-85 years old) were recruited for this study. MRI datasets were acquired on a 4.7 T system. Amygdala was manually segmented into five major subdivisions (lateral, basal, accessory basal nuclei, and cortical, and centromedial groups). The BDNF (methionine and homozygous valine) and APOE genotypes (ε2, homozygous ε3, and ε4) were obtained using single nucleotide polymorphisms. We found significant nonlinear negative associations between age and the total amygdala and its lateral, basal, and accessory basal nuclei volumes, while the cortical amygdala showed a trend. These age-related associations were found only in males but not in females. Centromedial amygdala did not show any relationship with age. We did not observe any statistically significant effects of APOE and BDNF polymorphisms on the amygdala subnuclei volumes. In contrast to APOE ε2 allele carriers, both older APOE ε4 and ε3 allele carriers had smaller lateral, basal, accessory basal nuclei volumes compared to their younger counterparts. This study indicates that amygdala subnuclei might be nonuniformly affected by aging and that age-related association might be gender specific.
Collapse
Affiliation(s)
| | - Stanislau Hrybouski
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Scott Travis
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Yushan Huang
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Fraser Olsen
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Rawle Carter
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Camicioli
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Nikolai V Malykhin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Kozanian OO, Rohac DJ, Bavadian N, Corches A, Korzus E, Huffman KJ. Long-Lasting Effects of Prenatal Ethanol Exposure on Fear Learning and Development of the Amygdala. Front Behav Neurosci 2018; 12:200. [PMID: 30233337 PMCID: PMC6131196 DOI: 10.3389/fnbeh.2018.00200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
Prenatal ethanol exposure (PrEE) produces developmental abnormalities in brain and behavior that often persist into adulthood. We have previously reported abnormal cortical gene expression, disorganized neural circuitry along with deficits in sensorimotor function and anxiety in our CD-1 murine model of fetal alcohol spectrum disorders, or FASD (El Shawa et al., 2013; Abbott et al., 2016). We have proposed that these phenotypes may underlie learning, memory, and behavioral deficits in humans with FASD. Here, we evaluate the impact of PrEE on fear memory learning, recall and amygdala development at two adult timepoints. PrEE alters learning and memory of aversive stimuli; specifically, PrEE mice, fear conditioned at postnatal day (P) 50, showed deficits in fear acquisition and memory retrieval when tested at P52 and later at P70–P72. Interestingly, this deficit in fear acquisition observed during young adulthood was not present when PrEE mice were conditioned later, at P80. These mice displayed similar levels of fear expression as controls when tested on fear memory recall. To test whether PrEE alters development of brain circuitry associated with fear conditioning and fear memory recall, we histologically examined subdivisions of the amygdala in PrEE and control mice and found long-term effects of PrEE on fear memory circuitry. Thus, results from this study will provide insight on the neurobiological and behavioral effects of PrEE and provide new information on developmental trajectories of brain dysfunction in people prenatally exposed to ethanol.
Collapse
Affiliation(s)
- Olga O Kozanian
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - David J Rohac
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Niusha Bavadian
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Alex Corches
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Edward Korzus
- Department of Psychology, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Kelly J Huffman
- Department of Psychology, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States.,Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
16
|
Nelson PT, Abner EL, Patel E, Anderson S, Wilcock DM, Kryscio RJ, Van Eldik LJ, Jicha GA, Gal Z, Nelson RS, Nelson BG, Gal J, Azam MT, Fardo DW, Cykowski MD. The Amygdala as a Locus of Pathologic Misfolding in Neurodegenerative Diseases. J Neuropathol Exp Neurol 2018; 77:2-20. [PMID: 29186501 DOI: 10.1093/jnen/nlx099] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
Over the course of most common neurodegenerative diseases the amygdala accumulates pathologically misfolded proteins. Misfolding of 1 protein in aged brains often is accompanied by the misfolding of other proteins, suggesting synergistic mechanisms. The multiplicity of pathogenic processes in human amygdalae has potentially important implications for the pathogenesis of Alzheimer disease, Lewy body diseases, chronic traumatic encephalopathy, primary age-related tauopathy, and hippocampal sclerosis, and for the biomarkers used to diagnose those diseases. Converging data indicate that the amygdala may represent a preferential locus for a pivotal transition from a relatively benign clinical condition to a more aggressive disease wherein multiple protein species are misfolded. Thus, understanding of amygdalar pathobiology may yield insights relevant to diagnoses and therapies; it is, however, a complex and imperfectly defined brain region. Here, we review aspects of amygdalar anatomy, connectivity, vasculature, and pathologic involvement in neurodegenerative diseases with supporting data from the University of Kentucky Alzheimer's Disease Center autopsy cohort. Immunohistochemical staining of amygdalae for Aβ, Tau, α-synuclein, and TDP-43 highlight the often-coexisting pathologies. We suggest that the amygdala may represent an "incubator" for misfolded proteins and that it is possible that misfolded amygdalar protein species are yet to be discovered.
Collapse
Affiliation(s)
- Peter T Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Erin L Abner
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Ela Patel
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Sonya Anderson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Donna M Wilcock
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Richard J Kryscio
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Linda J Van Eldik
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Gregory A Jicha
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Zsombor Gal
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Ruth S Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Bela G Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Jozsef Gal
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Md Tofial Azam
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - David W Fardo
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Matthew D Cykowski
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
17
|
Gal J, Chen J, Katsumata Y, Fardo DW, Wang WX, Artiushin S, Price D, Anderson S, Patel E, Zhu H, Nelson PT. Detergent Insoluble Proteins and Inclusion Body-Like Structures Immunoreactive for PRKDC/DNA-PK/DNA-PKcs, FTL, NNT, and AIFM1 in the Amygdala of Cognitively Impaired Elderly Persons. J Neuropathol Exp Neurol 2018; 77:21-39. [PMID: 29186589 DOI: 10.1093/jnen/nlx097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/15/2017] [Indexed: 12/21/2022] Open
Abstract
Misfolded protein in the amygdala is a neuropathologic feature of Alzheimer disease and many other neurodegenerative disorders. We examined extracts from human amygdala (snap-frozen at autopsy) to investigate whether novel and as yet uncharacterized misfolded proteins would be detectable. Polypeptides from the detergent-insoluble, urea-soluble protein fractions of amygdala were interrogated using liquid chromatography-electrospray ionization-tandem mass spectrometry. Among the detergent-insoluble proteins identified in amygdala of demented subjects but not controls were Tau, TDP-43, Aβ, α-synuclein, and ApoE. Additional detergent-insoluble proteins from demented subjects in the high-molecular weight portion of SDS gels included NNT, TNIK, PRKDC (DNA-PK, or DNA-PKcs), ferritin light chain (FTL), AIFM1, SYT11, STX1B, EAA1, COL25A1, M4K4, CLH1, SQSTM, SYNJ1, C3, and C4. In follow-up immunohistochemical experiments, NNT, TNIK, PRKDC, AIFM1, and FTL were observed in inclusion body-like structures in cognitively impaired subjects' amygdalae. Double-label immunofluorescence revealed that FTL and phospho-PRKDC immunoreactivity colocalized partially with TDP-43 and/or Tau inclusion bodies. Western blots showed high-molecular weight "smears", particularly for NNT and PRKDC. A preliminary genetic association study indicated that rare NNT, TNIK, and PRKDC gene variants had nominally significant association with Alzheimer-type dementia risk. In summary, novel detergent-insoluble proteins, with evidence of proteinaceous deposits, were found in amygdalae of elderly, cognitively impaired subjects.
Collapse
Affiliation(s)
- Jozsef Gal
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Yuriko Katsumata
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - David W Fardo
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Wang-Xia Wang
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Sergey Artiushin
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Douglas Price
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Sonya Anderson
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Ela Patel
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Peter T Nelson
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| |
Collapse
|
18
|
Tang X, Miller MI, Younes L. BIOMARKER CHANGE-POINT ESTIMATION WITH RIGHT CENSORING IN LONGITUDINAL STUDIES. Ann Appl Stat 2017; 11:1738-1762. [PMID: 30271520 DOI: 10.1214/17-aoas1056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We consider in this paper a statistical two-phase regression model in which the change point of a disease biomarker is measured relative to another point in time, such as the manifestation of the disease, which is subject to right-censoring (i.e., possibly unobserved over the entire course of the study). We develop point estimation methods for this model, based on maximum likelihood, and bootstrap validation methods. The effectiveness of our approach is illustrated by numerical simulations, and by the estimation of a change point for amygdalar atrophy in the context of Alzheimer's disease, wherein it is related to the cognitive manifestation of the disease.
Collapse
Affiliation(s)
- Xiaoying Tang
- SYSU-CMU Joint Institute of Engineering, Sun Yat-Sen University, No. 132, East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Michael I Miller
- Center for Imaging Science, Johns Hopkins University, 3400 N. Charles St. Baltimore, Maryland 21218 USA
| | - Laurent Younes
- Center for Imaging Science, Johns Hopkins University, 3400 N. Charles St. Baltimore, Maryland 21218 USA
| |
Collapse
|
19
|
In vivo estimation of normal amygdala volume from structural MRI scans with anatomical-based segmentation. Surg Radiol Anat 2017; 40:145-157. [DOI: 10.1007/s00276-017-1915-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/23/2017] [Indexed: 01/23/2023]
|
20
|
Cantero JL, Zaborszky L, Atienza M. Volume Loss of the Nucleus Basalis of Meynert is Associated with Atrophy of Innervated Regions in Mild Cognitive Impairment. Cereb Cortex 2017; 27:3881-3889. [PMID: 27371762 PMCID: PMC6059249 DOI: 10.1093/cercor/bhw195] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Extensive research suggests that basal forebrain (BF) cholinergic neurons are selectively vulnerable to Alzheimer's disease (AD). However, it remains unknown whether volume loss of BF cholinergic compartments parallels structural changes of their innervated regions in prodromal AD. To this aim, we have correlated volume of each BF compartment with cortical thickness and hippocampus/amygdala volume in 106 healthy older (HO) adults and 106 amnestic mild cognitive impairment (aMCI) patients. Correlations were limited to regions affected by atrophy in aMCI. The volume of the nucleus basalis of Meynert (NBM/Ch4) was positively correlated with thickness of the temporal cortex in aMCI, and with volume of amygdala in HO and aMCI, separately. Volume of the medial septum/diagonal band of Broca (Ch1-Ch3) was also positively correlated with volume of the hippocampus within the 2 groups. Only correlations between the NBM and their innervated regions showed diagnostic value. Unlike men, aMCI women showed a stronger association between volume of the NBM and thickness of the temporal lobe when compared with HO women. Altogether, these results reveal, for the first time in humans, that atrophy of NBM is associated with structural changes of their innervated regions in prodromal AD, being this relationship more evident in women.
Collapse
Affiliation(s)
- Jose L. Cantero
- Laboratory of Functional Neuroscience, CIBERNED (Network Center for Biomedical Research in Neurodegenerative Diseases), Pablo de Olavide University, Seville, Spain
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, CIBERNED (Network Center for Biomedical Research in Neurodegenerative Diseases), Pablo de Olavide University, Seville, Spain
| |
Collapse
|
21
|
Yang EJ, Mahmood U, Kim H, Choi M, Choi Y, Lee JP, Chang MJ, Kim HS. Alterations in protein phosphorylation in the amygdala of the 5XFamilial Alzheimer's disease animal model. J Pharmacol Sci 2017; 133:261-267. [PMID: 28408165 DOI: 10.1016/j.jphs.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease is the most common disease underlying dementia in humans. Two major neuropathological hallmarks of AD are neuritic plaques primarily composed of amyloid beta peptide and neurofibrillary tangles primarily composed of hyperphosphorylated tau. In addition to impaired memory function, AD patients often display neuropsychiatric symptoms and abnormal emotional states such as confusion, delusion, manic/depressive episodes and altered fear status. Brains from AD patients show atrophy of the amygdala which is involved in fear expression and emotional processing as well as hippocampal atrophy. However, which molecular changes are responsible for the altered emotional states observed in AD remains to be elucidated. Here, we observed that the fear response as assessed by evaluating fear memory via a cued fear conditioning test was impaired in 5XFamilial AD (5XFAD) mice, an animal model of AD. Compared to wild-type mice, 5XFAD mice showed changes in the phosphorylation of twelve proteins in the amygdala. Thus, our study provides twelve potential protein targets in the amygdala that may be responsible for the impairment in fear memory in AD.
Collapse
Affiliation(s)
- Eun-Jeong Yang
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.
| | - Usman Mahmood
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.
| | - Hyunju Kim
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.
| | - Moonseok Choi
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.
| | - Yunjung Choi
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.
| | - Jean-Pyo Lee
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, 1430 Tulane Ave, SL99, New Orleans, LA 70112, USA.
| | - Moon-Jeong Chang
- Department of Foods and Nutrition, College of Natural Science, Kookmin University, Seoul, Republic of Korea.
| | - Hye-Sun Kim
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea; Seoul National University College of Medicine, Bundang Hospital, Bundang-Gu, Sungnam, Republic of Korea; Neuroscience Research Institute, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Eustache P, Nemmi F, Saint-Aubert L, Pariente J, Péran P. Multimodal Magnetic Resonance Imaging in Alzheimer's Disease Patients at Prodromal Stage. J Alzheimers Dis 2016; 50:1035-50. [PMID: 26836151 PMCID: PMC4927932 DOI: 10.3233/jad-150353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
One objective of modern neuroimaging is to identify markers that can aid in diagnosis, monitor disease progression, and impact long-term drug analysis. In this study, physiopathological modifications in seven subcortical structures of patients with mild cognitive impairment (MCI) due to Alzheimer’s disease (AD) were characterized by simultaneously measuring quantitative magnetic resonance parameters that are sensitive to complementary tissue characteristics (e.g., volume atrophy, shape changes, microstructural damage, and iron deposition). Fourteen MCI patients and fourteen matched, healthy subjects underwent 3T-magnetic resonance imaging with whole-brain, T1-weighted, T2*-weighted, and diffusion-tensor imaging scans. Volume, shape, mean R2*, mean diffusivity (MD), and mean fractional anisotropy (FA) in the thalamus, hippocampus, putamen, amygdala, caudate nucleus, pallidum, and accumbens were compared between MCI patients and healthy subjects. Comparisons were then performed using voxel-based analyses of R2*, MD, FA maps, and voxel-based morphometry to determine which subregions showed the greatest difference for each parameter. With respect to the micro- and macro-structural patterns of damage, our results suggest that different and distinct physiopathological processes are present in the prodromal phase of AD. MCI patients had significant atrophy and microstructural changes within their hippocampi and amygdalae, which are known to be affected in the prodromal stage of AD. This suggests that the amygdala is affected in the same, direct physiopathological process as the hippocampus. Conversely, atrophy alone was observed within the thalamus and putamen, which are not directly involved in AD pathogenesis. This latter result may reflect another mechanism, whereby atrophy is linked to indirect physiopathological processes.
Collapse
Affiliation(s)
- Pierre Eustache
- Inserm, imagerie cérébrale et handicaps neurologiques, UMR 825; CHU Purpan - Pavillon Baudot, Place du Dr Baylac, Toulouse, France.,Université de Toulouse, UPS, imagerie cérébrale et handicaps neurologiques, UMR 825; CHU Purpan - Pavillon Baudot, Toulouse, France
| | - Federico Nemmi
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Laure Saint-Aubert
- Translational Alzheimer Neurobiology, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Jeremie Pariente
- Inserm, imagerie cérébrale et handicaps neurologiques, UMR 825; CHU Purpan - Pavillon Baudot, Place du Dr Baylac, Toulouse, France.,Université de Toulouse, UPS, imagerie cérébrale et handicaps neurologiques, UMR 825; CHU Purpan - Pavillon Baudot, Toulouse, France.,Service de neurologie, pôle neurosciences, Centre Hospitalier Universitaire de Toulouse, CHU Purpan, Place du Dr Baylac, Toulouse, France
| | - Patrice Péran
- Inserm, imagerie cérébrale et handicaps neurologiques, UMR 825; CHU Purpan - Pavillon Baudot, Place du Dr Baylac, Toulouse, France.,Université de Toulouse, UPS, imagerie cérébrale et handicaps neurologiques, UMR 825; CHU Purpan - Pavillon Baudot, Toulouse, France
| |
Collapse
|
23
|
Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P, Cavedo E, Galluzzi S, Marizzoni M, Frisoni GB. Brain atrophy in Alzheimer's Disease and aging. Ageing Res Rev 2016; 30:25-48. [PMID: 26827786 DOI: 10.1016/j.arr.2016.01.002] [Citation(s) in RCA: 497] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 01/22/2023]
Abstract
Thanks to its safety and accessibility, magnetic resonance imaging (MRI) is extensively used in clinical routine and research field, largely contributing to our understanding of the pathophysiology of neurodegenerative disorders such as Alzheimer's disease (AD). This review aims to provide a comprehensive overview of the main findings in AD and normal aging over the past twenty years, focusing on the patterns of gray and white matter changes assessed in vivo using MRI. Major progresses in the field concern the segmentation of the hippocampus with novel manual and automatic segmentation approaches, which might soon enable to assess also hippocampal subfields. Advancements in quantification of hippocampal volumetry might pave the way to its broader use as outcome marker in AD clinical trials. Patterns of cortical atrophy have been shown to accurately track disease progression and seem promising in distinguishing among AD subtypes. Disease progression has also been associated with changes in white matter tracts. Recent studies have investigated two areas often overlooked in AD, such as the striatum and basal forebrain, reporting significant atrophy, although the impact of these changes on cognition is still unclear. Future integration of different MRI modalities may further advance the field by providing more powerful biomarkers of disease onset and progression.
Collapse
Affiliation(s)
- Lorenzo Pini
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Pievani
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy
| | - Martina Bocchetta
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy; Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Daniele Altomare
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Bosco
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy
| | - Enrica Cavedo
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy; Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) Hôpital de la Pitié-Salpétrière & Institut du Cerveau et de la Moelle épinière (ICM), UMR S 1127, Hôpital de la Pitié-Salpétrière Paris & CATI Multicenter Neuroimaging Platform, France
| | - Samantha Galluzzi
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy
| | - Moira Marizzoni
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy
| | - Giovanni B Frisoni
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
24
|
Abstract
It is clear that male and female animals have distinct cognitive capacities and emotional responses. For instance, exposure to a fearful and stressful event of restraint and intermittent tail-shocks impairs instru mental learning in male rats, but has minimal consequence in female rats. Conversely, exposure to a similar stressor facilitates classical conditioning in male rats and dramatically impairs conditioning in female rats. Many such sex differences in learning and responses to stress are attributable to the effects of sex hormones on brain morphology and physiology. Indeed, the stress-induced facilitation of classical conditioning in male rats is dependent on activation of the NMDA type of glutamate receptor in the amygdala, whereas the impaired conditioning in female rats is dependent on activational influences of the ovarian hormone estrogen. The role of estrogen and progesterone in the diametrically opposed effects of stress on learning are dis cussed, as are neuronal mechanisms that underlie sex differences in memory formation. NEUROSCIENTIST 4:353-364, 1998
Collapse
Affiliation(s)
- Tracey J. Shors
- Department of Psychology and Center for Neuroscience
Rutgers University Piscataway, New Jersey
| |
Collapse
|
25
|
Somogyi A, Katonai Z, Alpár A, Wolf E. A Novel Form of Compensation in the Tg2576 Amyloid Mouse Model of Alzheimer's Disease. Front Cell Neurosci 2016; 10:152. [PMID: 27378850 PMCID: PMC4909742 DOI: 10.3389/fncel.2016.00152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/27/2016] [Indexed: 12/02/2022] Open
Abstract
One century after its first description, pathology of Alzheimer’s disease (AD) is still poorly understood. Amyloid-related dendritic atrophy and membrane alterations of susceptible brain neurons in AD, and in animal models of AD are widely recognized. However, little effort has been made to study the potential effects of combined morphological and membrane alterations on signal transfer and synaptic integration in neurons that build up affected neural networks in AD. In this study spatial reconstructions and electrophysiological measurements of layer II/III pyramidal neurons of the somatosensory cortex from wild-type (WT) and transgenic (TG) human amyloid precursor protein (hAPP) overexpressing Tg2576 mice were used to build faithful segmental cable models of these neurons. Local synaptic activities were simulated in various points of the dendritic arbors and properties of subthreshold dendritic impulse propagation and predictors of synaptic input pattern recognition ability were quantified and compared in modeled WT and TG neurons. Despite the widespread dendritic degeneration and membrane alterations in mutant mouse neurons, surprisingly little, or no change was detected in steady-state and 50 Hz sinusoidal voltage transfers, current transfers, and local and propagation delays of PSPs traveling along dendrites of TG neurons. Synaptic input pattern recognition ability was also predicted to be unaltered in TG neurons in two different soma-dendritic membrane models investigated. Our simulations predict the way how subthreshold dendritic signaling and pattern recognition are preserved in TG neurons: amyloid-related membrane alterations compensate for the pathological effects that dendritic atrophy has on subthreshold dendritic signal transfer and integration in layer II/III somatosensory neurons of this hAPP mouse model for AD. Since neither propagation of single PSPs nor integration of multiple PSPs (pattern recognition) changes in TG neurons, we conclude that AD-related neuronal hyperexcitability cannot be accounted for by altered subthreshold dendritic signaling in these neurons but hyperexcitability is related to changes in active membrane properties and network connectivity.
Collapse
Affiliation(s)
- Attila Somogyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecen, Hungary; Kenézy Gyula Hospital Ltd., Department of Emergency MedicineDebrecen, Hungary
| | - Zoltán Katonai
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Alán Alpár
- MTA-SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of SciencesBudapest, Hungary; Department of Anatomy, Semmelweis UniversityBudapest, Hungary
| | - Ervin Wolf
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| |
Collapse
|
26
|
Fortin JP, Sweeney EM, Muschelli J, Crainiceanu CM, Shinohara RT. Removing inter-subject technical variability in magnetic resonance imaging studies. Neuroimage 2016; 132:198-212. [PMID: 26923370 PMCID: PMC5540379 DOI: 10.1016/j.neuroimage.2016.02.036] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/30/2016] [Accepted: 02/12/2016] [Indexed: 11/30/2022] Open
Abstract
Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units, making scans non-comparable across sites and between subjects. Intensity normalization is a first step for the improvement of comparability of the images across subjects. However, we show that unwanted inter-scan variability associated with imaging site, scanner effect, and other technical artifacts is still present after standard intensity normalization in large multi-site neuroimaging studies. We propose RAVEL (Removal of Artificial Voxel Effect by Linear regression), a tool to remove residual technical variability after intensity normalization. As proposed by SVA and RUV [Leek and Storey, 2007, 2008, Gagnon-Bartsch and Speed, 2012], two batch effect correction tools largely used in genomics, we decompose the voxel intensities of images registered to a template into a biological component and an unwanted variation component. The unwanted variation component is estimated from a control region obtained from the cerebrospinal fluid (CSF), where intensities are known to be unassociated with disease status and other clinical covariates. We perform a singular value decomposition (SVD) of the control voxels to estimate factors of unwanted variation. We then estimate the unwanted factors using linear regression for every voxel of the brain and take the residuals as the RAVEL-corrected intensities. We assess the performance of RAVEL using T1-weighted (T1-w) images from more than 900 subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as healthy controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compare RAVEL to two intensity-normalization-only methods: histogram matching and White Stripe. We show that RAVEL performs best at improving the replicability of the brain regions that are empirically found to be most associated with AD, and that these regions are significantly more present in structures impacted by AD (hippocampus, amygdala, parahippocampal gyrus, enthorinal area, and fornix stria terminals). In addition, we show that the RAVEL-corrected intensities have the best performance in distinguishing between MCI subjects and healthy subjects using the mean hippocampal intensity (AUC=67%), a marked improvement compared to results from intensity normalization alone (AUC=63% and 59% for histogram matching and White Stripe, respectively). RAVEL is promising for many other imaging modalities.
Collapse
Affiliation(s)
- Jean-Philippe Fortin
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elizabeth M Sweeney
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John Muschelli
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ciprian M Crainiceanu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Russell T Shinohara
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Miller MI, Ratnanather JT, Tward DJ, Brown T, Lee DS, Ketcha M, Mori K, Wang MC, Mori S, Albert MS, Younes L. Network Neurodegeneration in Alzheimer's Disease via MRI Based Shape Diffeomorphometry and High-Field Atlasing. Front Bioeng Biotechnol 2015; 3:54. [PMID: 26284236 PMCID: PMC4515983 DOI: 10.3389/fbioe.2015.00054] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/03/2015] [Indexed: 01/28/2023] Open
Abstract
This paper examines MRI analysis of neurodegeneration in Alzheimer’s Disease (AD) in a network of structures within the medial temporal lobe using diffeomorphometry methods coupled with high-field atlasing in which the entorhinal cortex is partitioned into eight subareas. The morphometry markers for three groups of subjects (controls, preclinical AD, and symptomatic AD) are indexed to template coordinates measured with respect to these eight subareas. The location and timing of changes are examined within the subareas as it pertains to the classic Braak and Braak staging by comparing the three groups. We demonstrate that the earliest preclinical changes in the population occur in the lateral most sulcal extent in the entorhinal cortex (alluded to as transentorhinal cortex by Braak and Braak), and then proceeds medially which is consistent with the Braak and Braak staging. We use high-field 11T atlasing to demonstrate that the network changes are occurring at the junctures of the substructures in this medial temporal lobe network. Temporal progression of the disease through the network is also examined via changepoint analysis, demonstrating earliest changes in entorhinal cortex. The differential expression of rate of atrophy with progression signaling the changepoint time across the network is demonstrated to be signaling in the intermediate caudal subarea of the entorhinal cortex, which has been noted to be proximal to the hippocampus. This coupled to the findings of the nearby basolateral involvement in amygdala demonstrates the selectivity of neurodegeneration in early AD.
Collapse
Affiliation(s)
- Michael I Miller
- Center for Imaging Science, Johns Hopkins University , Baltimore, MD , USA ; Institute for Computational Medicine, Johns Hopkins University , Baltimore, MD , USA ; Department of Biomedical Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - J Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University , Baltimore, MD , USA ; Institute for Computational Medicine, Johns Hopkins University , Baltimore, MD , USA ; Department of Biomedical Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - Daniel J Tward
- Center for Imaging Science, Johns Hopkins University , Baltimore, MD , USA ; Institute for Computational Medicine, Johns Hopkins University , Baltimore, MD , USA ; Department of Biomedical Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - Timothy Brown
- Center for Imaging Science, Johns Hopkins University , Baltimore, MD , USA
| | - David S Lee
- Center for Imaging Science, Johns Hopkins University , Baltimore, MD , USA ; Department of Biomedical Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - Michael Ketcha
- Center for Imaging Science, Johns Hopkins University , Baltimore, MD , USA ; Department of Biomedical Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - Kanami Mori
- Center for Imaging Science, Johns Hopkins University , Baltimore, MD , USA
| | - Mei-Cheng Wang
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University , Baltimore, MD , USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Laurent Younes
- Center for Imaging Science, Johns Hopkins University , Baltimore, MD , USA ; Institute for Computational Medicine, Johns Hopkins University , Baltimore, MD , USA ; Department of Applied Mathematics and Statistics, Johns Hopkins University , Baltimore, MD , USA
| | | |
Collapse
|
28
|
Dyrba M, Grothe M, Kirste T, Teipel SJ. Multimodal analysis of functional and structural disconnection in Alzheimer's disease using multiple kernel SVM. Hum Brain Mapp 2015; 36:2118-31. [PMID: 25664619 DOI: 10.1002/hbm.22759] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/30/2015] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) patients exhibit alterations in the functional connectivity between spatially segregated brain regions which may be related to both local gray matter (GM) atrophy as well as a decline in the fiber integrity of the underlying white matter tracts. Machine learning algorithms are able to automatically detect the patterns of the disease in image data, and therefore, constitute a suitable basis for automated image diagnostic systems. The question of which magnetic resonance imaging (MRI) modalities are most useful in a clinical context is as yet unresolved. We examined multimodal MRI data acquired from 28 subjects with clinically probable AD and 25 healthy controls. Specifically, we used fiber tract integrity as measured by diffusion tensor imaging (DTI), GM volume derived from structural MRI, and the graph-theoretical measures 'local clustering coefficient' and 'shortest path length' derived from resting-state functional MRI (rs-fMRI) to evaluate the utility of the three imaging methods in automated multimodal image diagnostics, to assess their individual performance, and the level of concordance between them. We ran the support vector machine (SVM) algorithm and validated the results using leave-one-out cross-validation. For the single imaging modalities, we obtained an area under the curve (AUC) of 80% for rs-fMRI, 87% for DTI, and 86% for GM volume. When it came to the multimodal SVM, we obtained an AUC of 82% using all three modalities, and 89% using only DTI measures and GM volume. Combined multimodal imaging data did not significantly improve classification accuracy compared to the best single measures alone.
Collapse
Affiliation(s)
- Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Rostock, Germany
| | | | | | | |
Collapse
|
29
|
Miller MI, Younes L, Ratnanather JT, Brown T, Trinh H, Lee DS, Tward D, Mahon PB, Mori S, Albert M. Amygdalar atrophy in symptomatic Alzheimer's disease based on diffeomorphometry: the BIOCARD cohort. Neurobiol Aging 2014; 36 Suppl 1:S3-S10. [PMID: 25444602 DOI: 10.1016/j.neurobiolaging.2014.06.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 05/29/2014] [Accepted: 06/08/2014] [Indexed: 01/18/2023]
Abstract
This article examines the diffeomorphometry of magnetic resonance imaging-derived structural markers for the amygdala, in subjects with symptomatic Alzheimer's disease (AD). Using linear mixed-effects models we show differences between those with symptomatic AD and controls. Based on template centered population analysis, the distribution of statistically significant change is seen in both the volume and shape of the amygdala in subjects with symptomatic AD compared with controls. We find that high-dimensional vertex based markers are statistically more significantly discriminating (p < 0.00001) than lower-dimensional markers and volumes, consistent with comparable findings in presymptomatic AD. Using a high-field 7T atlas, significant atrophy was found to be centered in the basomedial and basolateral subregions, with no evidence of centromedial involvement.
Collapse
Affiliation(s)
- Michael I Miller
- Center for Imaging Science, Johns Hopkins University; Institute for Computational Medicine, Johns Hopkins University; Department of Biomedical Engineering, Johns Hopkins University.
| | - Laurent Younes
- Center for Imaging Science, Johns Hopkins University; Institute for Computational Medicine, Johns Hopkins University; Department of Applied Mathematics and Statistics, Johns Hopkins University
| | - J Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University; Institute for Computational Medicine, Johns Hopkins University; Department of Biomedical Engineering, Johns Hopkins University
| | - Timothy Brown
- Center for Imaging Science, Johns Hopkins University
| | - Huong Trinh
- Center for Imaging Science, Johns Hopkins University
| | - David S Lee
- Center for Imaging Science, Johns Hopkins University; Department of Biomedical Engineering, Johns Hopkins University
| | - Daniel Tward
- Center for Imaging Science, Johns Hopkins University; Department of Biomedical Engineering, Johns Hopkins University
| | - Pamela B Mahon
- Department of Psychiatry, Johns Hopkins University School of Medicine
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine
| |
Collapse
|
30
|
Nava-Mesa MO, Jiménez-Díaz L, Yajeya J, Navarro-Lopez JD. GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer's disease. Front Cell Neurosci 2014; 8:167. [PMID: 24987334 PMCID: PMC4070063 DOI: 10.3389/fncel.2014.00167] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/02/2014] [Indexed: 01/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline, brain atrophy due to neuronal and synapse loss, and formation of two pathological lesions: extracellular amyloid plaques, composed largely of amyloid-beta peptide (Aβ), and neurofibrillary tangles formed by intracellular aggregates of hyperphosphorylated tau protein. Lesions mainly accumulate in brain regions that modulate cognitive functions such as the hippocampus, septum or amygdala. These brain structures have dense reciprocal glutamatergic, cholinergic, and GABAergic connections and their relationships directly affect learning and memory processes, so they have been proposed as highly susceptible regions to suffer damage by Aβ during AD course. Last findings support the emerging concept that soluble Aβ peptides, inducing an initial stage of synaptic dysfunction which probably starts 20–30 years before the clinical onset of AD, can perturb the excitatory–inhibitory balance of neural circuitries. In turn, neurotransmission imbalance will result in altered network activity that might be responsible of cognitive deficits in AD. Therefore, Aβ interactions on neurotransmission systems in memory-related brain regions such as amygdaloid complex, medial septum or hippocampus are critical in cognitive functions and appear as a pivotal target for drug design to improve learning and dysfunctions that manifest with age. Since treatments based on glutamatergic and cholinergic pharmacology in AD have shown limited success, therapies combining modulators of different neurotransmission systems including recent findings regarding the GABAergic system, emerge as a more useful tool for the treatment, and overall prevention, of this dementia. In this review, focused on inhibitory systems, we will analyze pharmacological strategies to compensate neurotransmission imbalance that might be considered as potential therapeutic interventions in AD.
Collapse
Affiliation(s)
| | - Lydia Jiménez-Díaz
- Neurophysiology and Behavior Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha Ciudad Real, Spain
| | - Javier Yajeya
- Department of Physiology and Pharmacology, University of Salamanca Salamanca, Spain
| | - Juan D Navarro-Lopez
- Neurophysiology and Behavior Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha Ciudad Real, Spain
| |
Collapse
|
31
|
Inferring changepoint times of medial temporal lobe morphometric change in preclinical Alzheimer's disease. NEUROIMAGE-CLINICAL 2014; 5:178-87. [PMID: 25101236 PMCID: PMC4110355 DOI: 10.1016/j.nicl.2014.04.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/17/2014] [Accepted: 04/17/2014] [Indexed: 11/21/2022]
Abstract
This paper uses diffeomorphometry methods to quantify the order in which statistically significant morphometric change occurs in three medial temporal lobe regions, the amygdala, entorhinal cortex (ERC), and hippocampus among subjects with symptomatic and preclinical Alzheimer's disease (AD). Magnetic resonance imaging scans were examined in subjects who were cognitively normal at baseline, some of whom subsequently developed clinical symptoms of AD. The images were mapped to a common template, using shape-based diffeomorphometry. The multidimensional shape markers indexed through the temporal lobe structures were modeled using a changepoint model with explicit parameters, specifying the number of years preceding clinical symptom onset. Our model assumes that the atrophy rate of a considered brain structure increases years before detectable symptoms. The results demonstrate that the atrophy changepoint in the ERC occurs first, indicating significant change 8–10 years prior to onset, followed by the hippocampus, 2–4 years prior to onset, followed by the amygdala, 3 years prior to onset. The ERC is significant bilaterally, in both our local and global measures, with estimates of ERC surface area loss of 2.4% (left side) and 1.6% (right side) annually. The same changepoint model for ERC volume gives 3.0% and 2.7% on the left and right sides, respectively. Understanding the order in which changes in the brain occur during preclinical AD may assist in the design of intervention trials aimed at slowing the evolution of the disease. We use diffeomorphometry to quantify the order in which statistically significant morphometric change occurs in three medial temporal lobe regions, the amygdala, entorhinal cortex (ERC), and hippocampus among subjects with symptomatic and preclinical Alzheimer's disease (AD). We introduce a model on anatomical shape change in which changepoint is inferred, taking place some period of time before cognitive onset of AD. The analysis uses a dataset arising from the BIOCARD study, in which all subjects were cognitively normal at baseline, some of whom subsequently developed clinical symptoms of AD. The results demonstrate that the atrophy changepoint in the ERC occurs first, indicating significant change 8-10 years prior to onset, followed by hippocampus, 2-4 years prior to onset, followed by amygdala, 3 years prior to onset. The ERC is significant bilaterally, in both our local and global measures, with estimates of ERC surface area loss of 2.4% (left side) and 1.6% (right side) annually. Understanding the order in which changes in the brain occur during preclinical AD may assist in the design of intervention trials aimed at slowing the evolution of the disease.
Collapse
Key Words
- AD, Alzheimer's disease
- CDR, clinical dementia rating
- ERC, entorhinal cortex
- FWER, family-wise error rate
- GPB, Geriatric Psychiatry Branch
- MCI, mild cognitive impairment
- MMSE, mini-mental state exam
- NIA, National Institute on Aging
- NIH, Clinical Center of the National Institutes of Health
- NIMH, National Institute for Mental Health
- ROI-LDDMM, region-of-interest large deformation diffeomorphic metric mapping
- RSS, residual sum of squares
- SPGR, spoiled gradient echo
- diffeomorphometry, study of shape using a metric on the diffeomorphic connections between structures
Collapse
|
32
|
Tang X, Holland D, Dale AM, Younes L, Miller MI. Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and Alzheimer's disease: detecting, quantifying, and predicting. Hum Brain Mapp 2014; 35:3701-25. [PMID: 24443091 DOI: 10.1002/hbm.22431] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/04/2013] [Accepted: 11/06/2013] [Indexed: 01/18/2023] Open
Abstract
This article assesses the feasibility of using shape information to detect and quantify the subcortical and ventricular structural changes in mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients. We first demonstrate structural shape abnormalities in MCI and AD as compared with healthy controls (HC). Exploring the development to AD, we then divide the MCI participants into two subgroups based on longitudinal clinical information: (1) MCI patients who remained stable; (2) MCI patients who converted to AD over time. We focus on seven structures (amygdala, hippocampus, thalamus, caudate, putamen, globus pallidus, and lateral ventricles) in 754 MR scans (210 HC, 369 MCI of which 151 converted to AD over time, and 175 AD). The hippocampus and amygdala were further subsegmented based on high field 0.8 mm isotropic 7.0T scans for finer exploration. For MCI and AD, prominent ventricular expansions were detected and we found that these patients had strongest hippocampal atrophy occurring at CA1 and strongest amygdala atrophy at the basolateral complex. Mild atrophy in basal ganglia structures was also detected in MCI and AD. Stronger atrophy in the amygdala and hippocampus, and greater expansion in ventricles was observed in MCI converters, relative to those MCI who remained stable. Furthermore, we performed principal component analysis on a linear shape space of each structure. A subsequent linear discriminant analysis on the principal component values of hippocampus, amygdala, and ventricle leads to correct classification of 88% HC subjects and 86% AD subjects.
Collapse
Affiliation(s)
- Xiaoying Tang
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
33
|
Miller MI, Younes L, Ratnanather JT, Brown T, Trinh H, Postell E, Lee DS, Wang MC, Mori S, O'Brien R, Albert M. The diffeomorphometry of temporal lobe structures in preclinical Alzheimer's disease. NEUROIMAGE-CLINICAL 2013; 3:352-60. [PMID: 24363990 PMCID: PMC3863771 DOI: 10.1016/j.nicl.2013.09.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/20/2013] [Accepted: 09/01/2013] [Indexed: 01/14/2023]
Abstract
This paper examines morphometry of MRI biomarkers derived from the network of temporal lobe structures including the amygdala, entorhinal cortex and hippocampus in subjects with preclinical Alzheimer's disease (AD). Based on template-centered population analysis, it is demonstrated that the structural markers of the amygdala, hippocampus and entorhinal cortex are statistically significantly different between controls and those with preclinical AD. Entorhinal cortex is the most strongly significant based on the linear effects model (p < .0001) for the high-dimensional vertex- and Laplacian-based markers corresponding to localized atrophy. The hippocampus also shows significant localized high-dimensional change (p < .0025) and the amygdala demonstrates more global change signaled by the strength of the low-dimensional volume markers. The analysis of the three structures also demonstrates that the volume measures are only weakly discriminating between preclinical and control groups, with the average atrophy rates of the volume of the entorhinal cortex higher than amygdala and hippocampus. The entorhinal cortex thickness also exhibits an atrophy rate nearly a factor of two higher in the ApoE4 positive group relative to the ApoE4 negative group providing weak discrimination between the two groups. We examine MRI measures in controls vs. subjects with ‘preclinical AD’. Morphometry shape markers of the entorhinal cortex were most discriminating. The mean atrophy rate of the entorhinal cortex exceeded the hippocampus or amygdala.
Collapse
Affiliation(s)
- Michael I Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA ; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA ; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Laurent Younes
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA ; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA ; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - J Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA ; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA ; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Timothy Brown
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Huong Trinh
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elizabeth Postell
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David S Lee
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA ; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mei-Cheng Wang
- Department of Biostatistics, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard O'Brien
- Department of Neurology, Johns Hopkins Bayview Medical Center, Baltimore, MD 21205, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
34
|
Klein-Koerkamp Y, Baciu M, Hot P. Preserved and impaired emotional memory in Alzheimer's disease. Front Psychol 2012; 3:331. [PMID: 23049516 PMCID: PMC3442282 DOI: 10.3389/fpsyg.2012.00331] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/18/2012] [Indexed: 11/13/2022] Open
Abstract
Patients with early atrophy of both limbic structures involved in memory and emotion processing in Alzheimer's disease (AD) provide a unique clinical population for investigating how emotion is able to modulate retention processes. This review focuses on the emotional enhancement effect (EEE), defined as the improvement of memory for emotional events compared with neutral ones. The assessment of the EEE for different memory systems in AD suggests that the EEE could be preserved under specific retrieval instructions. The first part of this review examines these data in light of compelling evidence that the amygdala can modulate processes of hippocampus-dependent memory. We argue that the EEE could be a useful paradigm to reduce impairment in episodic memory tasks. In the second part, we discuss theoretical consequences of the findings in favor of an EEE, according to which a compensatory mechanism in patients with AD solicits greater amygdala functioning or additional networks, even when amygdala atrophy is present. These considerations emphasize the relevance of investigating patients with AD to understand the relationship between emotion and memory processes.
Collapse
Affiliation(s)
- Yanica Klein-Koerkamp
- Laboratoire de Psychologie et Neurocognition, CNRS UMR-5105 Grenoble, France ; Université de Savoie Chambéry Cedex, France
| | | | | |
Collapse
|
35
|
Wood PL, Smith T, Lane N, Khan MA, Ehrmantraut G, Goodenowe DB. Oral bioavailability of the ether lipid plasmalogen precursor, PPI-1011, in the rabbit: a new therapeutic strategy for Alzheimer's disease. Lipids Health Dis 2011; 10:227. [PMID: 22142382 PMCID: PMC3260122 DOI: 10.1186/1476-511x-10-227] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/05/2011] [Indexed: 12/03/2022] Open
Abstract
Introduction Docosahexaenoic acid (DHA) and DHA-containing ethanolamine plasmalogens (PlsEtn) are decreased in the brain, liver and the circulation in Alzheimer's disease. Decreased supply of plasmalogen precursors to the brain by the liver, as a result of peroxisomal deficits is a process that probably starts early in the AD disease process. To overcome this metabolic compromise, we have designed an orally bioavailable DHA-containing ether lipid precursor of plasmalogens. PPI-1011 is an alkyl-diacyl plasmalogen precursor with palmitic acid at sn-1, DHA at sn-2 and lipoic acid at sn-3. This study outlines the oral pharmacokinetics of this precursor and its conversion to PlsEtn and phosphatidylethanolamines (PtdEtn). Methods Rabbits were dosed orally with PPI-1011 in hard gelatin capsules for time-course and dose response studies. Incorporation into PlsEtn and PtdEtn was monitored by LC-MS/MS. Metabolism of released lipoic acid was monitored by GC-MS. To monitor the metabolic fate of different components of PPI-1011, we labeled the sn-1 palmitic acid, sn-2 DHA and glycerol backbone with13C and monitored their metabolic fates by LC-MS/MS. Results PPI-1011 was not detected in plasma suggesting rapid release of sn-3 lipoic acid via gut lipases. This conclusion was supported by peak levels of lipoic acid metabolites in the plasma 3 hours after dosing. While PPI-1011 did not gain access to the plasma, it increased circulating levels of DHA-containing PlsEtn and PtdEtn. Labeling experiments demonstrated that the PtdEtn increases resulted from increased availability of DHA released via remodeling at sn-2 of phospholipids derived from PPI-1011. This release of DHA peaked at 6 hrs while increases in phospholipids peaked at 12 hr. Increases in circulating PlsEtn were more complex. Labeling experiments demonstrated that increases in the target PlsEtn, 16:0/22:6, consisted of 2 pools. In one pool, the intact precursor received a sn-3 phosphoethanolamine group and desaturation at sn-1 to generate the target plasmalogen. The second pool, like the PtdEtn, resulted from increased availability of DHA released during remodeling of sn-2. In the case of sn-1 18:0 and 18:1 plasmalogens with [13C3]DHA at sn-2, labeling was the result of increased availability of [13C3]DHA from lipid remodeling. Isotope and repeated dosing (2 weeks) experiments also demonstrated that plasmalogens and/or plasmalogen precursors derived from PPI-1011 are able to cross both the blood-retinal and blood-brain barriers. Conclusions Our data demonstrate that PPI-1011, an ether lipid precursor of plasmalogens is orally bioavailable in the rabbit, augmenting the circulating levels of unesterified DHA and DHA-containing PlsEtn and PtdEtn. Other ethanolamine plasmalogens were generated from the precursor via lipid remodeling (de-acylation/re-acylation reactions at sn-2) and phosphatidylethanolamines were generated via de-alkylation/re-acylation reactions at sn-1. Repeated oral dosing for 2 weeks with PPI-1011 resulted in dose-dependent increases in circulating DHA and DHA-containing plasmalogens. These products and/or precursors were also able to cross the blood-retinal and blood-brain barriers.
Collapse
Affiliation(s)
- Paul L Wood
- Dept, of Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752 USA.
| | | | | | | | | | | |
Collapse
|
36
|
Poulin SP, Dautoff R, Morris JC, Barrett LF, Dickerson BC. Amygdala atrophy is prominent in early Alzheimer's disease and relates to symptom severity. Psychiatry Res 2011; 194:7-13. [PMID: 21920712 PMCID: PMC3185127 DOI: 10.1016/j.pscychresns.2011.06.014] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 10/17/2022]
Abstract
Despite numerous studies on the role of medial temporal lobe structures in Alzheimer's disease (AD), the magnitude and clinical significance of amygdala atrophy have been relatively sparsely investigated. In this study, we used magnetic resonance imaging (MRI) to compare the level of amygdala atrophy to that of the hippocampus in very mild and mild AD subjects in two large samples (Sample 1 n=90; Sample 2 n=174). Using a series of linear regression analyses, we investigated whether amygdala atrophy is related to global cognitive functioning (Clinical Dementia Rating Sum of Boxes: CDR-SB; Mini Mental State Examination: MMSE) and neuropsychiatric status. Results indicated that amygdala atrophy was comparable to hippocampal atrophy in both samples. MMSE and CDR-SB were strongly related to amygdala atrophy, with amygdala atrophy predicting MMSE scores as well as hippocampal atrophy, but predicting CDR-SB scores less robustly. Amygdala atrophy was related to aberrant motor behavior, with potential relationships to anxiety and irritability. These results suggest that the magnitude of amygdala atrophy is comparable to that of the hippocampus in the earliest clinical stages of AD, and is related to global illness severity. There also appear to be specific relationships between the level of amygdala atrophy and neuropsychiatric symptoms that deserve further investigation.
Collapse
Affiliation(s)
- Stéphane P. Poulin
- Department Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Department Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rebecca Dautoff
- Department Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John C. Morris
- Department of Neurology and Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Lisa Feldman Barrett
- Department Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Department Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Department of Psychology, Northeastern University, Boston, MA, USA
| | - Bradford C. Dickerson
- Department Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Department Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Department Frontotemporal Dementia Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Department Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Department Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Corresponding author: Bradford C. Dickerson, M.D., Frontotemporal Dementia Unit, Massachusetts General Hospital, 149 13th St., Suite 2691, Charlestown, MA 02129, Tel: (617) 726-5571, Fax: (617) 726-5760,
| | | |
Collapse
|
37
|
Li L, Cheung T, Chen J, Herrup K. A comparative study of five mouse models of Alzheimer's disease: cell cycle events reveal new insights into neurons at risk for death. Int J Alzheimers Dis 2011; 2011:171464. [PMID: 21912750 PMCID: PMC3170790 DOI: 10.4061/2011/171464] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/06/2011] [Accepted: 07/11/2011] [Indexed: 11/23/2022] Open
Abstract
Ectopic cell cycle events (CCEs) in postmitotic neurons link the neurodegenerative process in human Alzheimer's disease (AD) with the brain phenotype of transgenic mouse models with known familial AD genes. Most reports on the mouse models use the appearance of brain amyloid pathology as a key outcome measure. In the current paper, we focus on the induction of neurodegeneration using CCEs as markers for impending neuronal loss. We compare 5 mouse models of familial AD for the appearance of CCEs in subcortical regions—deep cerebellar nuclei, amygdala, locus coeruleus, hippocampus, and dorsal raphe. We find that the models differ in their CCE involvement as well as in the appearance of phosphorylated tau and amyloid deposition, suggesting that each model represents a different disease phenotype. Comparison with the pattern of neuron death in human AD suggests that each may represent a distinctly different disease model when used in preclinical trials.
Collapse
Affiliation(s)
- Luming Li
- Department of Cell Biology and Neuroscience, Rutgers University, B211 Nelson Labs, 604 Allison Road, Piscataway, NJ 08854-6999, USA
| | | | | | | |
Collapse
|
38
|
Sun X, Bhadelia R, Liebson E, Bergethon P, Folstein M, Zhu JJ, Mwamburi DM, Patz S, Qiu WQ. The relationship between plasma amyloid-β peptides and the medial temporal lobe in the homebound elderly. Int J Geriatr Psychiatry 2011; 26:593-601. [PMID: 21480376 PMCID: PMC5357567 DOI: 10.1002/gps.2568] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 05/13/2010] [Indexed: 11/06/2022]
Abstract
BACKGROUND The ratio of high amyloid-β peptide40 (Aβ40) and low Aβ42 in plasma predicts the risk of Alzheimer's disease (AD) and is associated with episodic recall in depression. We thus examined the relationship between plasma Aβ levels and brain volumes. METHODS Homebound elders (N = 352) who had undergone brain MRI were used. Plasma Aβ1-40 and Aβ1-42 were measured by ELISA. Volumes of medial temporal regions, including the amygdala and hippocampus, were manually measured. RESULTS Amygdala volume was associated with log(10) of plasma Aβ1-42 (β = +0.19, SE = 0.07, p = 0.005) after adjusting for AD, infarcts, white matter hyperintensities and demographics. In the absence of dementia, decreasing quartiles of plasma Aβ1-42 (Mean + SD ml: Q4 = 4.1 ± 0.8; Q3 = 3.9 ± 0.7; Q2 = 3.6 ± 0.8 and Q1 = 3.7 ± 0.8, p = 0.01) and increasing quartiles of plasma Aβ1-40/1-42 ratio were associated with smaller amygdala volume. Those depressed subjects with a high plasma Aβ1-40/1-42 ratio had smaller amygdala (Mean + SD ml: 3.3 ± 0.8 vs. 3.6 ± 0.8, p = 0.04) and total brain volume (Mean + SD liter: 0.95 ± 0.07 vs. 1.04 ± 0.12, p = 0.005), and had a higher rate of MCI (67 vs. 36%, p = 0.02) than those with a low plasma Aβ1-40/1-42 ratio. CONCLUSIONS The combination of low plasma Aβ1-42 concentration and atrophy of the medial temporal lobe structures, which regulates mood and cognition, may represent a biomarker for a prodromal stage of AD.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Department of Psychiatry, Tufts Medical Center, Tufts University School of Medicine, MA, USA,Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy at Tufts University, MA, USA
| | - Rafeeque Bhadelia
- Department of Radiology, Beth Israel Deaconess Medical Center, MA, USA
| | | | | | - Marshal Folstein
- Department of Psychiatry, Tufts Medical Center, Tufts University School of Medicine, MA, USA,Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy at Tufts University, MA, USA
| | - Jay-Jiguang Zhu
- Department of Neurology, Tufts Medical Center, Tufts University School of Medicine, MA, USA
| | - D. Mkaya Mwamburi
- Department of Public Health and Family Medicine, Tufts University, MA, USA
| | - Samuel Patz
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, MA, USA
| | - Wei Qiao Qiu
- Department of Psychiatry, Tufts Medical Center, Tufts University School of Medicine, MA, USA,Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy at Tufts University, MA, USA,Boston University School of Medicine, MA, USA
| |
Collapse
|
39
|
Troy CM, Akpan N, Jean YY. Regulation of Caspases in the Nervous System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:265-305. [DOI: 10.1016/b978-0-12-385504-6.00007-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Abstract
The amygdala has received considerable attention because of its established role in specific behaviors and disorders such as anxiety, depression, and autism. Studies have revealed that the amygdala is a complex and dynamic brain region that is highly connected with other areas of the brain. Previous works have focused on neurons, demonstrating that the amygdala in rodents is highly plastic and sexually dimorphic. However, our more recent work explores sex differences in nonneuronal cells, joining a rich literature concerning glia in the amygdala. Prior investigation of glia in the amygdala can generally be divided into disease-related and hormone-related categories, with both areas of research producing interesting findings concerning glia in this important brain region. Despite a wide range of research topics, the collected findings make it clear that glia in the amygdala are sensitive and plastic cells that respond and develop in a highly region specific manner.
Collapse
|
41
|
Kile SJ, Ellis WG, Olichney JM, Farias S, DeCarli C. Alzheimer abnormalities of the amygdala with Klüver-Bucy syndrome symptoms: an amygdaloid variant of Alzheimer disease. ARCHIVES OF NEUROLOGY 2009; 66:125-9. [PMID: 19139311 PMCID: PMC2868923 DOI: 10.1001/archneurol.2008.517] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Neurofibrillary tangles and beta-amyloid plaques have been observed in the amygdala in Alzheimer disease. A disproportionate abundance of this abnormality in the amygdala may cause behavioral symptoms similar to Klüver-Bucy syndrome. OBJECTIVES To describe an atypical behavioral presentation of Alzheimer disease and to review the literature on the subject. DESIGN Case study. SETTING Outpatient specialty clinic. PATIENT A 70-year-old man with progressive behavioral symptoms of hyperorality, hypersexuality, hypermetamorphosis, visual agnosia, hyperphagia, and apathy who died at age 77 of asphyxiation on a foreign object. MAIN OUTCOME MEASURES Clinical symptomatology, brain imaging, and neuropathology. RESULTS The pathologic diagnosis was Alzheimer disease with abundant tangles and plaques in the lateral amygdala. CONCLUSIONS This case represents a variant of Alzheimer disease with prominent amygdala abnormalities and a Klüver-Bucy phenotype that was misdiagnosed as frontotemporal dementia. Clinical and imaging findings that may aid in accurate diagnosis are reviewed.
Collapse
Affiliation(s)
- Shawn J Kile
- Department of Neurology, University of California at Davis, 4860 Y St, Ste 3700, Sacramento, CA 95817, USA
| | | | | | | | | |
Collapse
|
42
|
RIBE EM, SERRANO-SAIZ E, AKPAN N, TROY CM. Mechanisms of neuronal death in disease: defining the models and the players. Biochem J 2008; 415:165-82. [PMID: 18800967 PMCID: PMC9334905 DOI: 10.1042/bj20081118] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Dysregulation of life and death at the cellular level leads to a variety of diseases. In the nervous system, aberrant neuronal death is an outstanding feature of neurodegenerative diseases. Since the discovery of the caspase family of proteases, much effort has been made to determine how caspases function in disease, including neurodegenerative diseases. Although many papers have been published examining caspases in neuronal death and disease, the pathways have not been fully clarified. In the present review, we examine the potential players in the death pathways, the current tools for examining these players and the models for studying neurological disease. Alzheimer's disease, the most common neurodegenerative disorder, and cerebral ischaemia, the most common cause of neurological death, are used to illustrate our current understanding of death signalling in neurodegenerative diseases. A better understanding of the neuronal death pathways would provide targets for the development of therapeutic interventions for these diseases.
Collapse
Affiliation(s)
- Elena M. RIBE
- Departments of Pathology and Neurology, Taub Center for the Study of Alzheimer’s Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, 630 W. 168th Street, New York, NY 10032, U.S.A
| | - Esther SERRANO-SAIZ
- Departments of Pathology and Neurology, Taub Center for the Study of Alzheimer’s Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, 630 W. 168th Street, New York, NY 10032, U.S.A
| | - Nsikan AKPAN
- Departments of Pathology and Neurology, Taub Center for the Study of Alzheimer’s Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, 630 W. 168th Street, New York, NY 10032, U.S.A
| | - Carol M. TROY
- Departments of Pathology and Neurology, Taub Center for the Study of Alzheimer’s Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, 630 W. 168th Street, New York, NY 10032, U.S.A
| |
Collapse
|
43
|
Motor alterations are reduced in mice lacking the PARK2 gene in the presence of a human FTDP-17 mutant form of four-repeat tau. J Neurol Sci 2008; 275:139-44. [PMID: 18817929 DOI: 10.1016/j.jns.2008.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 08/08/2008] [Accepted: 08/12/2008] [Indexed: 01/30/2023]
Abstract
Independent deletion of the PARK2 gene and hTauVLW over-expression in mice produce mild alterations in the brain. However, the presence of both mutations in a parkin-deficient and hTauVLW double mutant mouse causes a tau neuropathology, reactive astrocytosis, and neuronal loss in the cortex and hippocampus, as well as lesions in nigrostriatal and motor neurons. Moreover, these mutants display some memory and exploratory defects that reflect a functional link between parkin and tau proteins. We have tested the motor activity and coordination of these double mutant mice to determine the effects of parkin deletion in mice over-expressing the hTauVLW transgene. While the loss of parkin alone produces increased exploration and alterations in gait and motor coordination, in hTauVLW transgenic mice the absence of parkin causes less prominent motor impairments. These effects suggest the existence of some compensatory mechanisms that are activated when the hTauVLW transgene is over-expressed in the absence of parkin. This mouse model will hopefully help to study the causes of the motor deficits associated with certain neuropathologies related to the tau and parkin proteins, and to find appropriate treatments.
Collapse
|
44
|
Engelhardt E, Laks J. Alzheimer disease neuropathology: understanding autonomic dysfunction. Dement Neuropsychol 2008; 2:183-191. [PMID: 29213568 PMCID: PMC5619463 DOI: 10.1590/s1980-57642009dn20300004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 08/22/2008] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease is a widely studied disorder with research focusing on cognitive and functional impairments, behavioral and psychological symptoms, and on abnormal motor manifestations. Despite the importance of autonomic dysfunctions they have received less attention in systematic studies. The underlying neurodegenerative process of AD, mainly affecting cortical areas, has been studied for more than one century. However, autonomic-related structures have not been studied neuropathologically with the same intensity. The autonomic nervous system governs normal visceral functions, and its activity is expressed in relation to homeostatic needs of the organism's current physical and mental activities. The disease process leads to autonomic dysfunction or dysautonomy possibly linked to increased rates of morbidity and mortality. OBJECTIVE The aim of this review was to analyze the cortical, subcortical, and more caudal autonomic-related regions, and the specific neurodegenerative process in Alzheimer's disease that affects these structures. METHODS A search for papers addressing autonomic related-structures affected by Alzheimer's degeneration, and under normal condition was performed through MedLine, PsycInfo and Lilacs, on the bibliographical references of papers of interest, together with a manual search for classic studies in older journals and books, spanning over a century of publications. RESULTS The main central autonomic-related structures are described, including cortical areas, subcortical structures (amygdala, thalamus, hypothalamus, brainstem, cerebellum) and spinal cord. They constitute autonomic neural networks that underpin vital functions. These same structures, affected by specific Alzheimer's disease neurodegeneration, were also described in detail. The autonomic-related structures present variable neurodegenerative changes that develop progressively according to the degenerative stages described by Braak and Braak. CONCLUSION The neural networks constituted by the central autonomic-related structures, when damaged by progressive neurodegeneration, represent the neuropathological substrate of autonomic dysfunction. The presence of this dysfunction and its possible relationship with higher rates of morbidity, and perhaps of mortality, in affected subjects must be kept in mind when managing Alzheimer's patients.
Collapse
Affiliation(s)
- Eliasz Engelhardt
- MD, PhD, Coordinator of the Cognitive and Behavioral Unit
– INDC-UFRJ
| | - Jerson Laks
- MD, PhD, Coordinator of the Alzheimer’s Disease Unit –
CDA/IPUB-UFRJ
| |
Collapse
|
45
|
Memory and exploratory impairment in mice that lack the Park-2 gene and that over-express the human FTDP-17 mutant Tau. Behav Brain Res 2008; 189:350-6. [DOI: 10.1016/j.bbr.2008.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 01/17/2008] [Accepted: 01/24/2008] [Indexed: 01/28/2023]
|
46
|
Nelson RL, Guo Z, Halagappa VM, Pearson M, Gray AJ, Matsuoka Y, Brown M, Clark RF, Mattson MP. Prophylactic treatment with paroxetine ameliorates behavioral deficits and retards the development of amyloid and tau pathologies in 3xTgAD mice. Exp Neurol 2007; 205:166-76. [PMID: 17368447 PMCID: PMC1979096 DOI: 10.1016/j.expneurol.2007.01.037] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 10/23/2022]
Abstract
A history of depression is a risk factor for Alzheimer's disease (AD), suggesting the possibility that antidepressants administered prophylactically might retard the disease process and preserve cognitive function. Here we report that pre-symptomatic treatment with the antidepressant paroxetine attenuates the disease process and improves cognitive performance in the 3xTgAD mouse model of AD. Five-month-old male and female 3xTgAD and non-transgenic mice were administered either paroxetine or saline daily for 5 months. Open-field activity was tested in 7-month-old mice and performance in passive avoidance and Morris swim tasks were evaluated at 10 months. 3xTgAD mice exhibited reduced exploratory activity, increased transfer latency in the passive avoidance test and impaired performance in the Morris spatial navigation task compared to nontransgenic control mice. Paroxetine treatment ameliorated the spatial navigation deficit in 3xTgAD male and female mice, without affecting swim speed or distance traveled, suggesting a preservation of cognitive function. Levels of amyloid beta-peptide (Abeta) and numbers of Abeta immunoreactive neurons were significantly reduced in the hippocampus of male and female paroxetine-treated 3xTgAD mice compared to saline-treated 3xTgAD mice. Female 3xTgAD mice exhibited significantly less tau pathology in the hippocampus and amygdala compared to male 3xTgAD mice, and paroxetine lessened tau pathology in male 3xTgAD mice. The ability of a safe and effective antidepressant to suppress neuropathological changes and improve cognitive performance in a mouse model suggests that such drugs administered prophylactically might retard the development of AD in humans.
Collapse
Affiliation(s)
- Rhonda L. Nelson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD
- Meharry Medical College, Nashville, TN
| | - Zhihong Guo
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD
| | | | - Michelle Pearson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD
| | | | | | - Martin Brown
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD
| | | | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD
| |
Collapse
|
47
|
Basso M, Gelernter J, Yang J, MacAvoy MG, Varma P, Bronen RA, van Dyck CH. Apolipoprotein E epsilon4 is associated with atrophy of the amygdala in Alzheimer's disease. Neurobiol Aging 2006; 27:1416-24. [PMID: 16182410 DOI: 10.1016/j.neurobiolaging.2005.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 06/30/2005] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
Although the ApoE epsilon4 allele is well-established as the most important genetic risk factor for Alzheimer's disease (AD), the effects of this allele on regional brain atrophy in AD patients remain controversial. We performed MRI-based volumetric measurements of the hippocampus and amygdala (normalized to intracranial volume) in 32 epsilon4+ AD patients, 23 epsilon4- AD patients, and 42 cognitively normal elderly control subjects. Analysis of covariance revealed that amygdaloid volume was significantly smaller (19.2%) in ApoE epsilon4+ than epsilon4- AD patients, controlling for disease severity (F = 10.62; d.f. = 1,52; p = 0.002; ANCOVA). Alternatively, when ApoE epsilon4 dose was considered, this effect appeared to accrue from a difference between the 0epsilon4 and each of the other two AD groups, with no significant difference between the 1epsilon4 and 2epsilon4 AD groups. Hippocampal volumes and asymmetry indices for hippocampus and amygdala did not differ between epsilon4 carriers and noncarriers. These results suggest accelerated atrophy of the amygdala in AD in association with ApoE epsilon4 and provide further evidence for regionally specific effects of this allele.
Collapse
Affiliation(s)
- Michael Basso
- Alzheimer's Disease Research Unit, Department of Psychiatry, Yale University School of Medicine, One Church Street, Suite 600, New Haven, CT 06510, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Schindowski K, Bretteville A, Leroy K, Bégard S, Brion JP, Hamdane M, Buée L. Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:599-616. [PMID: 16877359 PMCID: PMC1698785 DOI: 10.2353/ajpath.2006.060002] [Citation(s) in RCA: 288] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tau transgenic mice are valuable models to investigate the role of tau protein in Alzheimer's disease and other tauopathies. However, motor dysfunction and dystonic posture interfering with behavioral testing are the most common undesirable effects of tau transgenic mice. Therefore, we have generated a novel mouse model (THY-Tau22) that expresses human 4-repeat tau mutated at sites G272V and P301S under a Thy1.2-promotor, displaying tau pathology in the absence of any motor dysfunction. THY-Tau22 shows hyperphosphorylation of tau on several Alzheimer's disease-relevant tau epitopes (AT8, AT100, AT180, AT270, 12E8, tau-pSer396, and AP422), neurofibrillary tangle-like inclusions (Gallyas and MC1-positive) with rare ghost tangles and PHF-like filaments, as well as mild astrogliosis. These mice also display deficits in hippocampal synaptic transmission and impaired behavior characterized by increased anxiety, delayed learning from 3 months, and reduced spatial memory at 10 months. There are no signs of motor deficits or changes in motor activity at any age investigated. This mouse model therefore displays the main features of tau pathology and several of the pathophysiological disturbances observed during neurofibrillary degeneration. This model will serve as an experimental tool in future studies to investigate mechanisms underlying cognitive deficits during pathogenic tau aggregation.
Collapse
|
49
|
Sahin HA, Emre M, Ziabreva I, Perry E, Celasun B, Perry R. The distribution pattern of pathology and cholinergic deficits in amygdaloid complex in Alzheimer's disease and dementia with Lewy bodies. Acta Neuropathol 2006; 111:115-25. [PMID: 16468020 DOI: 10.1007/s00401-005-0003-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 09/23/2005] [Accepted: 09/23/2005] [Indexed: 11/28/2022]
Abstract
We studied the distribution pattern of pathology and cholinergic deficits in the subnuclei of the amygdaloid complex (AC) in five patients with Alzheimer's disease (AD), eight with dementia with Lewy bodies (DLB) and five normal controls. In controls, the basal nucleus contained the highest choline acetyltransferase activity; the activity in the lateral and central nuclei and those in the cortical, medial and accessory basal nuclei were comparable. In AD, there was a significant decrease in choline acetyltransferase activity in the accessory basal and lateral nuclei, in DLB a significant decrease was observed in the accessory basal, lateral and cortical nuclei. Compared to controls the hyperphosphorylated tau-pathology burden was significantly higher in the basal, central and medial nuclei in AD and in the central, cortical, lateral and medial nuclei in DLB. The amyloid plaque burden was significantly higher in the accessory basal, basal, lateral and cortical nuclei in AD and in all nuclei in DLB. The alpha-synuclein burden was significantly higher in all nuclei in both AD and DLB. Compared to AD alpha-synuclein burden was higher in all nuclei in DLB. There were no correlations between the distribution pattern of hyperphosphorylated tau-pathology, amyloid plaques and alpha-synuclein-positive structures, and choline acetyltransferase activity, except the lateral nucleus in DLB. In conclusion we found no relationship between the pattern of cholinergic deficits and the distribution pattern of lesions in the AC of patients with AD or DLB. Cholinergic deficits were more prominent in the nuclei of basolateral (BL) group in AD, whereas the nuclei of both BL and corticomedial groups were involved in DLB, which may be due to the involvement of both basal forebrain and brainstem cholinergic nuclei in the latter.
Collapse
Affiliation(s)
- Huseyin A Sahin
- Department of Neurology, Ondokuz Mayis University, Faculty of Medicine, Kurupelit, 55139, Samsun, Turkey.
| | | | | | | | | | | |
Collapse
|
50
|
Schumann CM, Amaral DG. Stereological estimation of the number of neurons in the human amygdaloid complex. J Comp Neurol 2006; 491:320-9. [PMID: 16175550 PMCID: PMC2572713 DOI: 10.1002/cne.20704] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pathological changes in neuronal density in the amygdaloid complex have been associated with various neurological disorders. However, due to variable shrinkage during tissue processing, the only way to determine changes in neuron number unambiguously is to estimate absolute counts, rather than neuronal density. As the first stage in evaluating potential neuropathology of the amygdala in autism, the total number of neurons was estimated in the control human amygdaloid complex by using stereological sampling. The intact amygdaloid complex from one hemisphere of 10 brains was frozen and sectioned. One 100-microm section was selected every 500 microm and stained by the standard Nissl method. The entire amygdaloid complex was outlined and then further partitioned into five reliably defined subdivisions: 1) the lateral nucleus, 2) the basal nucleus, 3) the accessory basal nucleus, 4) the central nucleus, and 5) the remaining nuclei (including anterior cortical, anterior amygdaloid area, periamygdaloid cortex, medial, posterior cortical, nucleus of the lateral olfactory tract, amygdalohippocampal area, and intercalated nuclei). The number of neurons was measured by using an optical fractionator with Stereoinvestigator software. The mean number of neurons (x 10(6)) for each region was as follows: lateral nucleus 4.00, basal nucleus 3.24, accessory basal nucleus 1.28, central nucleus 0.36, remaining nuclei 3.33, and total amygdaloid complex 12.21. The stereological assessment of neuron number in the human amygdala provides an essential baseline for comparison of patient populations, such as autism, in which the amygdala may develop abnormally. To facilitate these types of analyses, this paper provides a detailed anatomical description of the methods used to define subdivisions of the human amygdaloid complex.
Collapse
Affiliation(s)
- Cynthia Mills Schumann
- Department of Psychiatry and Behavioral Sciences and the M.I.N.D. Institute, University of California, Davis, Sacramento, CA 95817
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences and the M.I.N.D. Institute, University of California, Davis, Sacramento, CA 95817
- Correspondence to: David G. Amaral, Ph.D., Address: The M.I.N.D. Institute, UC Davis Medical Center, 2825 50 Street, Sacramento, Ca 95817, , Phone: (916) 703-0225, Fax: (916) 703-0287
| |
Collapse
|