1
|
Li Y, Wu J, Jin C, Zhang Y, Wang J, Wang X, Li H, Zhang X, Liu T, Zhou D, Kuang Y, Wu W, Wang Y, Ke Z, Bu X, Yue X. Caged Luciferase Inhibitor-Based Bioluminescence Switching Strategy Enables Efficient Detection of Serum APN Activity and the Identification of Its Roles in Metastasis of Non-Small Cell Lung Cancer. Chemistry 2023; 29:e202300655. [PMID: 37227809 DOI: 10.1002/chem.202300655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 05/27/2023]
Abstract
Bioluminogenic probes emerged as powerful tools for imaging and analysis of various bioanalyses, but traditional approaches would be limited to the low sensitivity during determine the low activity of protease in clinical specimens. Herein, we proposed a caged luciferase inhibitor-based bioluminescence-switching strategy (CLIBS) by using a cleavable luciferase inhibitor to modulate the activity of luciferase reporter to amplify the detective signals, which led to the enhancement of detection sensitivity, and enabled the determination of circulating Aminopeptidase N (APN) activity in thousands of times diluted serum. By applying the CLIBS to serum samples in non-small cell lung cancer (NSCLC) patients from two clinical cohorts, we revealed that, for the first time, higher circulating APN activities but not its concentration, were associated with more NSCLC metastasis or higher metastasis stages by subsequent clinical analysis, and can serve as an independent factor for forecasting NSCLC patients' risk of metastasis.
Collapse
Affiliation(s)
- Yunzhi Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiaxin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chaoying Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yiqiu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiyu Wang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xuecen Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huixia Li
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoyue Zhang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tingyu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Deyuan Zhou
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yukun Kuang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, 510080, China
| | - Weijian Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Youqiao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zunfu Ke
- Molecular Diagnosis and Gene Test Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xianzhang Bu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xin Yue
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| |
Collapse
|
2
|
Yue Q, Li Y, Wang Y, Zhao Y. Vibrational and Electronic Absorption Spectroscopic and Density Functional Theoretical Studies on the 2(3H)-Benzothiazolone and Its Anion. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Ji F, Guo Y, Wang M, Wu Z, Shi Y, Zhao X, Wang H, Feng X, Zhao G. Excited state electronic structures and photochemistry of different oxidation states of 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119503. [PMID: 33610101 DOI: 10.1016/j.saa.2021.119503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/21/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The molecular structures of 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), were calculated by using time-dependent density functional theory (TDDFT) model with M062X method with 6-311G (d, p) basis set. In this work, the ABTS were theoretically investigated from the geometric structure, the energy levels of the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), the energy level gap ΔEHOMO-LUMO of the molecular ground state, excited stated properties and the electronic absorption spectra of different oxidation states. We studied the energy levels of LUMO and HOMO of ABTS in different oxidation states. Frontier molecular orbital analysis can provide insight into the nature of excited states. ABTS was synthesized from N-ethylamine by total synthesis. Then, we measured the UV-Vis spectra of ABTS before and after being oxidized by K2S2O8. The calculated electronic structures and photochemical properties of different oxidation state of ABTS were in accordance with the experimental result. This work demonstrates the relationship between the electronic structures and photochemistry of different oxidation states ABTS hence paves the way for the rationally synthesis and deepen understanding of the photophysical properties of ABTS materials.
Collapse
Affiliation(s)
- Feixiang Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yurong Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Mengqi Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Zibo Wu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yanan Shi
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Xiaoying Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Haiyuan Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Xia Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical Engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
4
|
Das S, Ihssen J, Wick L, Spitz U, Shabat D. Chemiluminescent Carbapenem‐Based Molecular Probe for Detection of Carbapenemase Activity in Live Bacteria. Chemistry 2020; 26:3647-3652. [DOI: 10.1002/chem.202000217] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Sayantan Das
- School of Chemistry, Faculty of Exact SciencesTel Aviv University Tel Aviv 69978 Israel
| | - Julian Ihssen
- BIOSYNTH CARBOSYNTH Rietlistrasse 4, Postfach 125 9422 Staad Switzerland
| | - Lukas Wick
- BIOSYNTH CARBOSYNTH Rietlistrasse 4, Postfach 125 9422 Staad Switzerland
| | - Urs Spitz
- BIOSYNTH CARBOSYNTH Rietlistrasse 4, Postfach 125 9422 Staad Switzerland
| | - Doron Shabat
- School of Chemistry, Faculty of Exact SciencesTel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
5
|
Sánchez García JJ, Flores-Álamo M, Martínez-Klimova E, Ramírez Apan T, Klimova EI. Diferrocenyl(areno)oxazoles, spiro(arenooxazole)cyclopropenes, quinolines and areno[1,4-]oxazines: Synthesis, characterization and study of their antitumor activity. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Cheng YY, Liu YJ. Theoretical Development of Near-Infrared Bioluminescent Systems. Chemistry 2018; 24:9340-9352. [PMID: 29710377 DOI: 10.1002/chem.201800416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Indexed: 12/16/2022]
Abstract
The luciferin/luciferase system of the firefly has been used in bioluminescent imaging to monitor biological processes. In order to enhance the efficiency and expand the application range, some efforts have been made to tune the light emission, especially the effort to obtain NIR light. However, those case-by-case studies have not together revealed the nature and mechanism of the color tuning. In this paper, we theoretically investigated the fluorescence of all kinds of typical oxyluciferin analogues. The present systematical modifications of both oxyluciferin and luciferase indicate that the essential factor affecting the emission color is the charge distribution (or the electric dipole moment) on the oxyluciferin, which impacts on the charge transfer to form the light emitter and, subsequently, influence the strength and wavelength of the emission light. More negative charge distributed on the "thiazolone moiety" of the oxyluciferin or its analogues leads to a redshift. Based on this conclusion, we theoretically designed optimal pairs of luciferin analogue and luciferase for emitting NIR light, which could inspire new synthetic procedures and practical applications.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
7
|
Hemmi M, Ikeda Y, Shindo Y, Nakajima T, Nishiyama S, Oka K, Sato M, Hiruta Y, Citterio D, Suzuki K. Highly Sensitive Bioluminescent Probe for Thiol Detection in Living Cells. Chem Asian J 2018; 13:648-655. [PMID: 29359483 DOI: 10.1002/asia.201701774] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/20/2018] [Indexed: 12/21/2022]
Abstract
The sensitive detection of thiols including glutathione and cysteine is desirable owing to their roles as indispensable biomolecules in maintaining intracellular biological redox homeostasis. Herein, we report the design and synthesis of SEluc-1 (sulfinate ester luciferin), a chemoselective probe exhibiting a ratiometric and turn-on response towards thiols selectively in fluorescence and bioluminescence, respectively. The probe, which was designed based on the "caged" luciferin strategy, displays excellent selectivity, high signal/noise ratio (>240 in the case of bioluminescence), and a biologically relevant limit of detection (LOD, 80 nm for cysteine), which are all desirable traits for a sensitive bioluminescent sensor. SEluc-1 was further applied to fluorescence imaging of thiol activity in living human cervical cancer HeLa cell cultures, and was successfully able to detect fluctuations in thiol concentrations induced by oxidative stress in a bioluminescent assay utilizing African green monkey fibroblast COS-7 cells and human breast adenocarcinoma MCF-7 cells.
Collapse
Affiliation(s)
- Mayu Hemmi
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Yuma Ikeda
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Yutaka Shindo
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Takahiro Nakajima
- Graduate School of Arts and Sciences, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| | - Shigeru Nishiyama
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Kotaro Oka
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| | - Yuki Hiruta
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Daniel Citterio
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Koji Suzuki
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
8
|
Wang Y, An R, Luo Z, Ye D. Firefly Luciferin-Inspired Biocompatible Chemistry for Protein Labeling and In Vivo Imaging. Chemistry 2017; 24:5707-5722. [PMID: 29068109 DOI: 10.1002/chem.201704349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Indexed: 12/27/2022]
Abstract
Biocompatible reactions have emerged as versatile tools to build various molecular imaging probes that hold great promise for the detection of biological processes in vitro and/or in vivo. In this Minireview, we describe the recent advances in the development of a firefly luciferin-inspired biocompatible reaction between cyanobenzothiazole (CBT) and cysteine (Cys), and highlight its versatility to label proteins and build multimodality molecular imaging probes. The review starts from the general introduction of biocompatible reactions, which is followed by briefly describing the development of the firefly luciferin-inspired biocompatible chemistry. We then discuss its applications for the specific protein labeling and for the development of multimodality imaging probes (fluorescence, bioluminescence, MRI, PET, photoacoustic, etc.) that enable high sensitivity and spatial resolution imaging of redox environment, furin and caspase-3/7 activity in living cells and mice. Finally, we offer the conclusions and our perspective on the various and potential applications of this reaction. We hope that this review will contribute to the research of biocompatible reactions for their versatile applications in protein labeling and molecular imaging.
Collapse
Affiliation(s)
- Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhiliang Luo
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
9
|
Hananya N, Shabat D. A Glowing Trajectory between Bio- and Chemiluminescence: From Luciferin-Based Probes to Triggerable Dioxetanes. Angew Chem Int Ed Engl 2017; 56:16454-16463. [DOI: 10.1002/anie.201706969] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/06/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Nir Hananya
- School of Chemistry; Raymond and Beverly Sackler Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| | - Doron Shabat
- School of Chemistry; Raymond and Beverly Sackler Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
10
|
Hananya N, Shabat D. Bio- und Chemilumineszenz in der biologischen Bildgebung: von Luciferin-basierten Sonden zu aktivierbaren Dioxetanen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706969] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nir Hananya
- School of Chemistry; Raymond and Beverly Sackler Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| | - Doron Shabat
- School of Chemistry; Raymond and Beverly Sackler Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
11
|
Li S, Hu R, Yang C, Zhang X, Zeng Y, Wang S, Guo X, Li Y, Cai X, Li S, Han C, Yang G. An ultrasensitive bioluminogenic probe of γ-Glutamyltranspeptidase in vivo and in human serum for tumor diagnosis. Biosens Bioelectron 2017; 98:325-329. [DOI: 10.1016/j.bios.2017.06.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022]
|
12
|
Mao W, Xia L, Xie H. Detection of Carbapenemase-Producing Organisms with a Carbapenem-Based Fluorogenic Probe. Angew Chem Int Ed Engl 2017; 56:4468-4472. [DOI: 10.1002/anie.201612495] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/27/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Wuyu Mao
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Lingying Xia
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| |
Collapse
|
13
|
Mao W, Xia L, Xie H. Detection of Carbapenemase-Producing Organisms with a Carbapenem-Based Fluorogenic Probe. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wuyu Mao
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Lingying Xia
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| |
Collapse
|
14
|
Yang C, Ren C, Zhou J, Liu J, Zhang Y, Huang F, Ding D, Xu B, Liu J. Dual Fluorescent- and Isotopic-Labelled Self-Assembling Vancomycin for in vivo Imaging of Bacterial Infections. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
- Department of Chemistry; Brandeis University; Waltham MA 02454 USA
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| | - Jie Zhou
- Department of Chemistry; Brandeis University; Waltham MA 02454 USA
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology; Nankai University; Tianjin 300071 P.R. China
| | - Bing Xu
- Department of Chemistry; Brandeis University; Waltham MA 02454 USA
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| |
Collapse
|
15
|
Yang C, Ren C, Zhou J, Liu J, Zhang Y, Huang F, Ding D, Xu B, Liu J. Dual Fluorescent- and Isotopic-Labelled Self-Assembling Vancomycin for in vivo Imaging of Bacterial Infections. Angew Chem Int Ed Engl 2017; 56:2356-2360. [DOI: 10.1002/anie.201610926] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/15/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
- Department of Chemistry; Brandeis University; Waltham MA 02454 USA
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| | - Jie Zhou
- Department of Chemistry; Brandeis University; Waltham MA 02454 USA
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology; Nankai University; Tianjin 300071 P.R. China
| | - Bing Xu
- Department of Chemistry; Brandeis University; Waltham MA 02454 USA
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 P.R. China
| |
Collapse
|
16
|
Wang J, Lee TS, Zhang Z, Tung CH. A Bioluminogenic Probe for Monitoring Tyrosinase Activity. Chem Asian J 2017; 12:397-400. [PMID: 28052521 DOI: 10.1002/asia.201601659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/29/2016] [Indexed: 11/10/2022]
Abstract
A bioluminogenic probe based on luciferin was designed and synthesized to monitor tyrosinase activity. This probe was efficient in assessing tyrosinase activity in a buffered aqueous solution and in measuring endogenous tyrosinase activity in melanoma cells.
Collapse
Affiliation(s)
- Jianguang Wang
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10065, USA.,Current address: School of Chemical and Environmental Engineering, Anyang Institute of Technology, West of HuangHe Road, Anyang, 455000, PR China
| | - Tae Sup Lee
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10065, USA.,Current address: Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Zhe Zhang
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10065, USA
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10065, USA
| |
Collapse
|
17
|
Mao W, Xia L, Wang Y, Xie H. A Self-Immobilizing and Fluorogenic Probe for β-Lactamase Detection. Chem Asian J 2016; 11:3493-3497. [DOI: 10.1002/asia.201601344] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/25/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Wuyu Mao
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Lingying Xia
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Yaqun Wang
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai 200237 P.R. China
| |
Collapse
|
18
|
Ioka S, Saitoh T, Iwano S, Suzuki K, Maki SA, Miyawaki A, Imoto M, Nishiyama S. Synthesis of Firefly Luciferin Analogues and Evaluation of the Luminescent Properties. Chemistry 2016; 22:9330-7. [PMID: 27220106 DOI: 10.1002/chem.201600278] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Indexed: 11/11/2022]
Abstract
Five new firefly luciferin (1) analogues were synthesized and their light emission properties were examined. Modifications of the thiazoline moiety in 1 were employed to produce analogues containing acyclic amino acid side chains (2-4) and heterocyclic rings derived from amino acids (5 and 6) linked to the benzothiazole moiety. Although methyl esters of all of the synthetic derivatives exhibited chemiluminescence activity, only carboluciferin (6), possessing a pyrroline-substituted benzothiazole structure, had bioluminescence (BL) activity (λmax =547 nm). Results of bioluminescence studies with AMP-carboluciferin (AMP=adenosine monophosphate) and AMP-firefly luciferin showed that the nature of the thiazoline mimicking moiety affected the adenylation step of the luciferin-luciferase reaction required for production of potent BL. In addition, BL of 6 in living mice differed from that of 1 in that its luminescence decay rate was slower.
Collapse
Affiliation(s)
- Shuji Ioka
- Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, 223-8522, Yokohama, Japan.,Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, 223-8522, Yokohama, Japan
| | - Tsuyoshi Saitoh
- Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, 223-8522, Yokohama, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIS), University of Tsukuba, Tennodai 1-1-1, Tsukuba-si, 305-8577, Ibaraki, Japan
| | - Satoshi Iwano
- Department of Engineering Science, The University of Electro-Communications, Chofugadake 1-5-1, Chofu, 182-8585, Tokyo, Japan.,Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Hirosawa 2-1, Wako, 351-0198, Saitama, Japan
| | - Koji Suzuki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, 223-8522, Yokohama, Japan
| | - Shojiro A Maki
- Department of Engineering Science, The University of Electro-Communications, Chofugadake 1-5-1, Chofu, 182-8585, Tokyo, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Hirosawa 2-1, Wako, 351-0198, Saitama, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, 223-8522, Yokohama, Japan
| | - Shigeru Nishiyama
- Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, 223-8522, Yokohama, Japan.
| |
Collapse
|
19
|
Steinhardt RC, O'Neill JM, Rathbun CM, McCutcheon DC, Paley MA, Prescher JA. Design and Synthesis of an Alkynyl Luciferin Analogue for Bioluminescence Imaging. Chemistry 2016; 22:3671-5. [PMID: 26784889 DOI: 10.1002/chem.201503944] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 01/20/2023]
Abstract
Herein, the synthesis and characterization of an alkyne-modified luciferin is reported. This bioluminescent probe was accessed using C-H activation methodology and was found to be stable in solution and capable of light production with firefly luciferase. The luciferin analogue was also cell permeant and emitted more redshifted light than d-luciferin, the native luciferase substrate. Based on these features, the alkynyl luciferin will be useful for a variety of imaging applications.
Collapse
Affiliation(s)
| | - Jessica M O'Neill
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Colin M Rathbun
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - David C McCutcheon
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Miranda A Paley
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA. .,Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA. .,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
20
|
Zheng M, Huang H, Zhou M, Wang Y, Zhang Y, Ye D, Chen HY. Cysteine-Mediated Intracellular Building of Luciferin to Enhance Probe Retention and Fluorescence Turn-On. Chemistry 2015; 21:10506-12. [DOI: 10.1002/chem.201500885] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 12/20/2022]
|
21
|
Cheng Y, Xie H, Sule P, Hassounah H, Graviss EA, Kong Y, Cirillo JD, Rao J. Fluorogenic probes with substitutions at the 2 and 7 positions of cephalosporin are highly BlaC-specific for rapid Mycobacterium tuberculosis detection. Angew Chem Int Ed Engl 2014; 53:9360-4. [PMID: 24989449 PMCID: PMC4499257 DOI: 10.1002/anie.201405243] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/03/2014] [Indexed: 11/29/2022]
Abstract
Current methods for the detection of Mycobacterium tuberculosis (Mtb) are either time consuming or require expensive instruments and are thus are not suitable for point-of-care diagnosis. The design, synthesis, and evaluation of fluorogenic probes with high specificity for BlaC, a biomarker expressed by Mtb, are described. The fluorogenic probe CDG-3 is based on cephalosporin with substitutions at the 2 and 7 positions and it demonstrates over 120,000-fold selectivity for BlaC over TEM-1 Bla, the most common β-lactamase. CDG-3 can detect 10 colony-forming units of the attenuated Mycobacterium bovis strain BCG in human sputum in the presence of high levels of contaminating β-lactamases expressed by other clinically prevalent bacterial strains. In a trial with 50 clinical samples, CDG-3 detected tuberculosis with 90% sensitivity and 73% specificity relative to Mtb culture within one hour, thus demonstrating its potential as a low-cost point-of-care test for use in resource-limited areas.
Collapse
Affiliation(s)
- Yunfeng Cheng
- Molecular Imaging Program at Stanford, Departments of Radiology and Chemistry, Stanford University, 1201 Welch Road, Stanford, CA 94305-5484 (USA)
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Cheng Y, Xie H, Sule P, Hassounah H, Graviss EA, Kong Y, Cirillo JD, Rao J. Fluorogenic Probes with Substitutions at the 2 and 7 Positions of Cephalosporin are Highly BlaC-Specific for RapidMycobacterium tuberculosisDetection. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Shao Q, Zheng Y, Dong X, Tang K, Yan X, Xing B. A Covalent Reporter of β-Lactamase Activity for Fluorescent Imaging and Rapid Screening of Antibiotic-Resistant Bacteria. Chemistry 2013; 19:10903-10. [DOI: 10.1002/chem.201301654] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Indexed: 01/16/2023]
|
24
|
Zhao J, Fei J, Gao L, Cui W, Yang Y, Wang A, Li J. Bioluminescent microcapsules: applications in activating a photosensitizer. Chemistry 2013; 19:4548-55. [PMID: 23436585 DOI: 10.1002/chem.201203922] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/04/2013] [Indexed: 11/07/2022]
Abstract
Bioluminescent microcapsules uploading D-luciferin have been fabricated by using the covalent assembly of firefly luciferase and alginate dialdehyde through a layer-by-layer technique. Such assembled microcapsules can produce visible light in the region of 520-680 nm, which can activate the photosensitizers rose bengal (RB) and hypocrellin B (HB) after adding ATP. The microcapsules uploading photosensitizers (RB or HB) have an obvious property to prevent the proliferation of tumor cells in the dark. The assembled bioluminescent microcapsules can be potentially used as photon donors for bioimaging, ATP detection, and photodynamic therapy.
Collapse
Affiliation(s)
- Jie Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Lab of Colloid and Interface Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | | | | | | | | | | | | |
Collapse
|
25
|
Kojima R, Takakura H, Ozawa T, Tada Y, Nagano T, Urano Y. Rational Design and Development of Near-Infrared-Emitting Firefly Luciferins Available In Vivo. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Kojima R, Takakura H, Ozawa T, Tada Y, Nagano T, Urano Y. Rational design and development of near-infrared-emitting firefly luciferins available in vivo. Angew Chem Int Ed Engl 2012; 52:1175-9. [PMID: 23212783 DOI: 10.1002/anie.201205151] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/21/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Ryosuke Kojima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Sun Y, Liu J, Wang P, Zhang J, Guo W. D
‐Luciferinanaloga: eine vielfarbige Palette für die Biolumineszenzbildgebung. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuan‐Qiang Sun
- School of Chemistry and Chemical Engineering, Shanxi University, 92 Wucheng Road, Taiyuan 030006 (China)
| | - Jing Liu
- School of Chemistry and Chemical Engineering, Shanxi University, 92 Wucheng Road, Taiyuan 030006 (China)
| | - Pi Wang
- School of Chemistry and Chemical Engineering, Shanxi University, 92 Wucheng Road, Taiyuan 030006 (China)
| | - Jingyu Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, 92 Wucheng Road, Taiyuan 030006 (China)
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Shanxi University, 92 Wucheng Road, Taiyuan 030006 (China)
| |
Collapse
|
28
|
Sun Y, Liu J, Wang P, Zhang J, Guo W. D
‐Luciferin Analogues: a Multicolor Toolbox for Bioluminescence Imaging. Angew Chem Int Ed Engl 2012; 51:8428-30. [DOI: 10.1002/anie.201203565] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan‐Qiang Sun
- School of Chemistry and Chemical Engineering, Shanxi University, 92 Wucheng Road, Taiyuan 030006 (China)
| | - Jing Liu
- School of Chemistry and Chemical Engineering, Shanxi University, 92 Wucheng Road, Taiyuan 030006 (China)
| | - Pi Wang
- School of Chemistry and Chemical Engineering, Shanxi University, 92 Wucheng Road, Taiyuan 030006 (China)
| | - Jingyu Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, 92 Wucheng Road, Taiyuan 030006 (China)
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Shanxi University, 92 Wucheng Road, Taiyuan 030006 (China)
| |
Collapse
|
29
|
Conley NR, Dragulescu-Andrasi A, Rao J, Moerner WE. A selenium analogue of firefly D-luciferin with red-shifted bioluminescence emission. Angew Chem Int Ed Engl 2012; 51:3350-3. [PMID: 22344705 PMCID: PMC3494413 DOI: 10.1002/anie.201105653] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 01/18/2012] [Indexed: 01/16/2023]
Abstract
A selenium analogue of amino-D-luciferin, aminoseleno-D-luciferin, is synthesized and shown to be a competent substrate for the firefly luciferase enzyme. It has a red-shifted bioluminescence emission maximum at 600 nm and is suitable for bioluminescence imaging studies in living subjects.
Collapse
|
30
|
Conley NR, Dragulescu-Andrasi A, Rao J, Moerner WE. A Selenium Analogue of Firefly D-Luciferin with Red-Shifted Bioluminescence Emission. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201105653] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Takakura H, Kojima R, Urano Y, Terai T, Hanaoka K, Nagano T. Aminoluciferins as functional bioluminogenic substrates of firefly luciferase. Chem Asian J 2011; 6:1800-10. [PMID: 21416616 DOI: 10.1002/asia.201000873] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Indexed: 11/10/2022]
Abstract
Firefly luciferase is widely used as a reporter gene in assays to study gene expression, gene delivery, and so on because of its extremely high signal-to-noise ratio. The availability of a range of bioluminogenic substrates would greatly extend the applicability of the luciferin-luciferase system. Herein, we describe a design concept for functional bioluminogenic substrates based on the aminoluciferin (AL) scaffold, together with a convenient, high-yield method for synthesizing N-alkylated ALs. We confirmed the usefulness of ALs as bioluminogenic substrates by synthesizing three probes. The first was a conjugate of AL with glutamate, Glu-AL. When Glu-AL, the first membrane-impermeable bioluminogenic substrate of luciferases, was applied to cells transfected with luciferase, luminescence was not observed; that is, by using Glu-AL, we can distinguish between intracellular and extracellular events. The second was Cy5-AL, which consisted of Cy5, a near-infrared (NIR) cyanine fluorescent dye, and AL, and emitted NIR light. When Cy5-AL reacted with luciferase, luminescence derived from Cy5 was observed as a result of bioluminescence resonance energy transfer (BRET) from AL to Cy5. The NIR emission wavelength would allow a signal to be observed from deeper tissues in bioluminescence in vivo imaging. The third was biotin-DEVD-AL (DEVD = the amino acid sequence Asp-Glu-Val-Asp), which employed a caspase-3 substrate peptide as a switch to control the accessibility of the substrate to luciferase, and could detect the activity of caspase-3 in a time-dependent manner. This generalized design strategy should be applicable to other proteases. Our results indicate that the AL scaffold is appropriate for a range of functional luminophores and represents a useful alternative substrate to luciferin.
Collapse
Affiliation(s)
- Hideo Takakura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Ranjit S, Liu X. Direct Arylation of Benzothiazoles and Benzoxazoles with Aryl Boronic Acids. Chemistry 2011; 17:1105-8. [DOI: 10.1002/chem.201002787] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Indexed: 01/23/2023]
|
33
|
Zou L, Cheong WL, Chung WH, Leung YC, Wong KY, Wong MK, Chan PH. A Switch-On Fluorescence Assay for Bacterial β-Lactamases with Amyloid Fibrils as Fluorescence Enhancer and Visual Tool. Chemistry 2010; 16:13367-71. [DOI: 10.1002/chem.201001633] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Ma D, Xie S, Xue P, Zhang X, Dong J, Jiang Y. Efficient and Economical Access to Substituted Benzothiazoles: Copper-Catalyzed Coupling of 2-Haloanilides with Metal Sulfides and Subsequent Condensation. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900486] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Ma D, Xie S, Xue P, Zhang X, Dong J, Jiang Y. Efficient and Economical Access to Substituted Benzothiazoles: Copper-Catalyzed Coupling of 2-Haloanilides with Metal Sulfides and Subsequent Condensation. Angew Chem Int Ed Engl 2009; 48:4222-5. [PMID: 19425042 DOI: 10.1002/anie.200900486] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China.
| | | | | | | | | | | |
Collapse
|