1
|
Erguven M, Cornelissen NV, Peters A, Karaca E, Rentmeister A. Enzymatic Generation of Double-Modified AdoMet Analogues and Their Application in Cascade Reactions with Different Methyltransferases. Chembiochem 2022; 23:e202200511. [PMID: 36288101 PMCID: PMC10100234 DOI: 10.1002/cbic.202200511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/26/2022] [Indexed: 01/25/2023]
Abstract
Methyltransferases (MTases) have become an important tool for site-specific alkylation and biomolecular labelling. In biocatalytic cascades with methionine adenosyltransferases (MATs), transfer of functional moieties has been realized starting from methionine analogues and ATP. However, the widespread use of S-adenosyl-l-methionine (AdoMet) and the abundance of MTases accepting sulfonium centre modifications limit selective modification in mixtures. AdoMet analogues with additional modifications at the nucleoside moiety bear potential for acceptance by specific MTases. Here, we explored the generation of double-modified AdoMets by an engineered Methanocaldococcus jannaschii MAT (PC-MjMAT), using 19 ATP analogues in combination with two methionine analogues. This substrate screening was extended to cascade reactions and to MTase competition assays. Our results show that MTase targeting selectivity can be improved by using bulky substituents at the N6 of adenine. The facile access to >10 new AdoMet analogues provides the groundwork for developing MAT-MTase cascades for orthogonal biomolecular labelling.
Collapse
Affiliation(s)
- Mehmet Erguven
- Department of Chemistry and PharmacyInstitute of BiochemistryUniversity of MünsterCorrensstr. 36, 48149MünsterGermany
- Cells in Motion Interfaculty CentreUniversity of MünsterWaldeyerstraße 1548149MünsterGermany
| | - Nicolas V. Cornelissen
- Department of Chemistry and PharmacyInstitute of BiochemistryUniversity of MünsterCorrensstr. 36, 48149MünsterGermany
| | - Aileen Peters
- Department of Chemistry and PharmacyInstitute of BiochemistryUniversity of MünsterCorrensstr. 36, 48149MünsterGermany
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center35330IzmirTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylul University, 35340 Izmir (Turkey)
| | - Andrea Rentmeister
- Department of Chemistry and PharmacyInstitute of BiochemistryUniversity of MünsterCorrensstr. 36, 48149MünsterGermany
- Cells in Motion Interfaculty CentreUniversity of MünsterWaldeyerstraße 1548149MünsterGermany
| |
Collapse
|
2
|
Ospina F, Schülke KH, Soler J, Klein A, Prosenc B, Garcia‐Borràs M, Hammer SC. Selective Biocatalytic N-Methylation of Unsaturated Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202213056. [PMID: 36202763 PMCID: PMC9827881 DOI: 10.1002/anie.202213056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Indexed: 11/19/2022]
Abstract
Methods for regioselective N-methylation and -alkylation of unsaturated heterocycles with "off the shelf" reagents are highly sought-after. This reaction could drastically simplify synthesis of privileged bioactive molecules. Here we report engineered and natural methyltransferases for challenging N-(m)ethylation of heterocycles, including benzimidazoles, benzotriazoles, imidazoles and indazoles. The reactions are performed through a cyclic enzyme cascade that consists of two methyltransferases using only iodoalkanes or methyl tosylate as simple reagents. This method enables the selective synthesis of important molecules that are otherwise difficult to access, proceeds with high regioselectivity (r.r. up to >99 %), yield (up to 99 %), on a preparative scale, and with nearly equimolar concentrations of simple starting materials.
Collapse
Affiliation(s)
- Felipe Ospina
- Faculty of ChemistryOrganic Chemistry and BiocatalysisBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Kai H. Schülke
- Faculty of ChemistryOrganic Chemistry and BiocatalysisBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Jordi Soler
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaCarrer Maria Aurèlia Capmany 69Girona17003CataloniaSpain
| | - Alina Klein
- Faculty of ChemistryOrganic Chemistry and BiocatalysisBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Benjamin Prosenc
- Faculty of ChemistryOrganic Chemistry and BiocatalysisBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Marc Garcia‐Borràs
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaCarrer Maria Aurèlia Capmany 69Girona17003CataloniaSpain
| | - Stephan C. Hammer
- Faculty of ChemistryOrganic Chemistry and BiocatalysisBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
3
|
Abdelraheem E, Thair B, Varela RF, Jockmann E, Popadić D, Hailes HC, Ward JM, Iribarren AM, Lewkowicz ES, Andexer JN, Hagedoorn P, Hanefeld U. Methyltransferases: Functions and Applications. Chembiochem 2022; 23:e202200212. [PMID: 35691829 PMCID: PMC9539859 DOI: 10.1002/cbic.202200212] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Indexed: 11/25/2022]
Abstract
In this review the current state-of-the-art of S-adenosylmethionine (SAM)-dependent methyltransferases and SAM are evaluated. Their structural classification and diversity is introduced and key mechanistic aspects presented which are then detailed further. Then, catalytic SAM as a target for drugs, and approaches to utilise SAM as a cofactor in synthesis are introduced with different supply and regeneration approaches evaluated. The use of SAM analogues are also described. Finally O-, N-, C- and S-MTs, their synthetic applications and potential for compound diversification is given.
Collapse
Affiliation(s)
- Eman Abdelraheem
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Benjamin Thair
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Romina Fernández Varela
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Emely Jockmann
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Désirée Popadić
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - John M. Ward
- Department of Biochemical EngineeringBernard Katz BuildingUniversity College LondonLondonWC1E 6BTUK
| | - Adolfo M. Iribarren
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Elizabeth S. Lewkowicz
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Jennifer N. Andexer
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Peter‐Leon Hagedoorn
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Ulf Hanefeld
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| |
Collapse
|
4
|
Soualmia F, Guillot A, Sabat N, Brewee C, Kubiak X, Haumann M, Guinchard X, Benjdia A, Berteau O. Exploring the Biosynthetic Potential of TsrM, a B 12 -dependent Radical SAM Methyltransferase Catalyzing Non-radical Reactions. Chemistry 2022; 28:e202200627. [PMID: 35253932 DOI: 10.1002/chem.202200627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 12/20/2022]
Abstract
B12 -dependent radical SAM enzymes are an emerging enzyme family with approximately 200,000 proteins. These enzymes have been shown to catalyze chemically challenging reactions such as methyl transfer to sp2- and sp3-hybridized carbon atoms. However, to date we have little information regarding their complex mechanisms and their biosynthetic potential. Here we show, using X-ray absorption spectroscopy, mutagenesis and synthetic probes that the vitamin B12 -dependent radical SAM enzyme TsrM catalyzes not only C- but also N-methyl transfer reactions further expanding its synthetic versatility. We also demonstrate that TsrM has the unique ability to directly transfer a methyl group to the benzyl core of tryptophan, including the least reactive position C4. Collectively, our study supports that TsrM catalyzes non-radical reactions and establishes the usefulness of radical SAM enzymes for novel biosynthetic schemes including serial alkylation reactions at particularly inert C-H bonds.
Collapse
Affiliation(s)
- Feryel Soualmia
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Nazarii Sabat
- UPR 2301, Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, 91198, Gif-sur-Yvette, France
| | - Clémence Brewee
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Xavier Kubiak
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Xavier Guinchard
- UPR 2301, Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, 91198, Gif-sur-Yvette, France
| | - Alhosna Benjdia
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Olivier Berteau
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
5
|
Martins NS, Ángel AYB, Anghinoni JM, Lenardão EJ, Barcellos T, Alberto EE. From Stoichiometric Reagents to Catalytic Partners: Selenonium Salts as Alkylating Agents for Nucleophilic Displacement Reactions in Water. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202100797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nayara Silva Martins
- Grupo de Síntese e Catálise Orgânica – GSCO Departamento de Química Universidade Federal de Minas Gerais – UFMG 31.270-901 Belo Horizonte, MG Brazil
| | - Alix Y. Bastidas Ángel
- Grupo de Síntese e Catálise Orgânica – GSCO Departamento de Química Universidade Federal de Minas Gerais – UFMG 31.270-901 Belo Horizonte, MG Brazil
| | - João M. Anghinoni
- Laboratório de Síntese Orgânica Limpa – LASOL CCQFA Universidade Federal de Pelotas – UFPel P.O. box 354 96010-900 Pelotas, RS Brazil
| | - Eder J. Lenardão
- Laboratório de Síntese Orgânica Limpa – LASOL CCQFA Universidade Federal de Pelotas – UFPel P.O. box 354 96010-900 Pelotas, RS Brazil
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products Universidade de Caxias do Sul 95070-560 Caxias do Sul, RS Brazil
| | - Eduardo E. Alberto
- Grupo de Síntese e Catálise Orgânica – GSCO Departamento de Química Universidade Federal de Minas Gerais – UFMG 31.270-901 Belo Horizonte, MG Brazil
| |
Collapse
|
6
|
Tang Q, Pavlidis IV, Badenhorst CPS, Bornscheuer UT. From Natural Methylation to Versatile Alkylations Using Halide Methyltransferases. Chembiochem 2021; 22:2584-2590. [PMID: 33890381 PMCID: PMC8453949 DOI: 10.1002/cbic.202100153] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Indexed: 11/06/2022]
Abstract
Halide methyltransferases (HMTs) enable the enzymatic synthesis of S-adenosyl-l-methionine (SAM) from S-adenosyl-l-homocysteine (SAH) and methyl iodide. Characterisation of a range of naturally occurring HMTs and subsequent protein engineering led to HMT variants capable of synthesising ethyl, propyl, and allyl analogues of SAM. Notably, HMTs do not depend on chemical synthesis of methionine analogues, as required by methionine adenosyltransferases (MATs). However, at the moment MATs have a much broader substrate scope than the HMTs. Herein we provide an overview of the discovery and engineering of promiscuous HMTs and how these strategies will pave the way towards a toolbox of HMT variants for versatile chemo- and regioselective biocatalytic alkylations.
Collapse
Affiliation(s)
- Qingyun Tang
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417489GreifswaldGermany
| | - Ioannis V. Pavlidis
- Dept. of ChemistryUniversity of CreteVoutes University Campus70013HeraklionGreece
| | | | - Uwe T. Bornscheuer
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417489GreifswaldGermany
| |
Collapse
|
7
|
McKean IJW, Hoskisson PA, Burley GA. Biocatalytic Alkylation Cascades: Recent Advances and Future Opportunities for Late‐Stage Functionalization. Chembiochem 2020; 21:2890-2897. [DOI: 10.1002/cbic.202000187] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Iain J. W. McKean
- Department of Pure & Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL United Kingdom
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy & Biomedical Sciences University of Strathclyde 161 Cathedral Street Glasgow G4 0RE United Kingdom
| | - Glenn A. Burley
- Department of Pure & Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL United Kingdom
| |
Collapse
|
8
|
Huber TD, Clinger JA, Liu Y, Xu W, Miller MD, Phillips GN, Thorson JS. Methionine Adenosyltransferase Engineering to Enable Bioorthogonal Platforms for AdoMet-Utilizing Enzymes. ACS Chem Biol 2020; 15:695-705. [PMID: 32091873 DOI: 10.1021/acschembio.9b00943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The structural conservation among methyltransferases (MTs) and MT functional redundancy is a major challenge to the cellular study of individual MTs. As a first step toward the development of an alternative biorthogonal platform for MTs and other AdoMet-utilizing enzymes, we describe the evaluation of 38 human methionine adenosyltransferase II-α (hMAT2A) mutants in combination with 14 non-native methionine analogues to identify suitable bioorthogonal mutant/analogue pairings. Enabled by the development and implementation of a hMAT2A high-throughput (HT) assay, this study revealed hMAT2A K289L to afford a 160-fold inversion of the hMAT2A selectivity index for a non-native methionine analogue over the native substrate l-Met. Structure elucidation of K289L revealed the mutant to be folded normally with minor observed repacking within the modified substrate pocket. This study highlights the first example of exchanging l-Met terminal carboxylate/amine recognition elements within the hMAT2A active-site to enable non-native bioorthgonal substrate utilization. Additionally, several hMAT2A mutants and l-Met substrate analogues produced AdoMet analogue products with increased stability. As many AdoMet-producing (e.g., hMAT2A) and AdoMet-utlizing (e.g., MTs) enzymes adopt similar active-site strategies for substrate recognition, the proof of concept first generation hMAT2A engineering highlighted herein is expected to translate to a range of AdoMet-utilizing target enzymes.
Collapse
Affiliation(s)
- Tyler D. Huber
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | | | - Yang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | | | | | | | - Jon S. Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
9
|
McKean IJW, Sadler JC, Cuetos A, Frese A, Humphreys LD, Grogan G, Hoskisson PA, Burley GA. S-Adenosyl Methionine Cofactor Modifications Enhance the Biocatalytic Repertoire of Small Molecule C-Alkylation. Angew Chem Int Ed Engl 2019; 58:17583-17588. [PMID: 31573135 DOI: 10.1002/anie.201908681] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/11/2019] [Indexed: 01/10/2023]
Abstract
A tandem enzymatic strategy to enhance the scope of C-alkylation of small molecules via the in situ formation of S-adenosyl methionine (SAM) cofactor analogues is described. A solvent-exposed channel present in the SAM-forming enzyme SalL tolerates 5'-chloro-5'-deoxyadenosine (ClDA) analogues modified at the 2-position of the adenine nucleobase. Coupling SalL-catalyzed cofactor production with C-(m)ethyl transfer to coumarin substrates catalyzed by the methyltransferase (MTase) NovO forms C-(m)ethylated coumarins in superior yield and greater substrate scope relative to that obtained using cofactors lacking nucleobase modifications. Establishing the molecular determinants that influence C-alkylation provides the basis to develop a late-stage enzymatic platform for the preparation of high value small molecules.
Collapse
Affiliation(s)
- Iain J W McKean
- Department or Pure and Applied Chemistry, University of Strathclyde, 298 Cathedral Street, Glasgow, G1 1XL, UK.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Joanna C Sadler
- Department or Pure and Applied Chemistry, University of Strathclyde, 298 Cathedral Street, Glasgow, G1 1XL, UK.,GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, SG12NY, UK
| | - Anibal Cuetos
- Department or Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Amina Frese
- Department or Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Luke D Humphreys
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, SG12NY, UK
| | - Gideon Grogan
- Department or Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Glenn A Burley
- Department or Pure and Applied Chemistry, University of Strathclyde, 298 Cathedral Street, Glasgow, G1 1XL, UK
| |
Collapse
|
10
|
McKean IJW, Sadler JC, Cuetos A, Frese A, Humphreys LD, Grogan G, Hoskisson PA, Burley GA. S
‐Adenosyl Methionine Cofactor Modifications Enhance the Biocatalytic Repertoire of Small Molecule
C
‐Alkylation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Iain J. W. McKean
- Department or Pure and Applied ChemistryUniversity of Strathclyde 298 Cathedral Street Glasgow G1 1XL UK
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Joanna C. Sadler
- Department or Pure and Applied ChemistryUniversity of Strathclyde 298 Cathedral Street Glasgow G1 1XL UK
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| | - Anibal Cuetos
- Department or ChemistryUniversity of York Heslington York YO10 5DD UK
| | - Amina Frese
- Department or ChemistryUniversity of York Heslington York YO10 5DD UK
| | - Luke D. Humphreys
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| | - Gideon Grogan
- Department or ChemistryUniversity of York Heslington York YO10 5DD UK
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Glenn A. Burley
- Department or Pure and Applied ChemistryUniversity of Strathclyde 298 Cathedral Street Glasgow G1 1XL UK
| |
Collapse
|
11
|
Schultz EE, Braffman NR, Luescher MU, Hager HH, Balskus EP. Biocatalytic Friedel–Crafts Alkylation Using a Promiscuous Biosynthetic Enzyme. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Erica E. Schultz
- Department of Chemistry Lake Forest College 555 Sheridan Rd Lake Forest IL 60045 USA
| | - Nathaniel R. Braffman
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Michael U. Luescher
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Harry H. Hager
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| |
Collapse
|
12
|
Schultz EE, Braffman NR, Luescher MU, Hager HH, Balskus EP. Biocatalytic Friedel–Crafts Alkylation Using a Promiscuous Biosynthetic Enzyme. Angew Chem Int Ed Engl 2019; 58:3151-3155. [DOI: 10.1002/anie.201814016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Erica E. Schultz
- Department of Chemistry Lake Forest College 555 Sheridan Rd Lake Forest IL 60045 USA
| | - Nathaniel R. Braffman
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Michael U. Luescher
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Harry H. Hager
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| |
Collapse
|
13
|
Deen J, Vranken C, Leen V, Neely RK, Janssen KPF, Hofkens J. Methyltransferase-Directed Labeling of Biomolecules and its Applications. Angew Chem Int Ed Engl 2017; 56:5182-5200. [PMID: 27943567 PMCID: PMC5502580 DOI: 10.1002/anie.201608625] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Indexed: 01/01/2023]
Abstract
Methyltransferases (MTases) form a large family of enzymes that methylate a diverse set of targets, ranging from the three major biopolymers to small molecules. Most of these MTases use the cofactor S-adenosyl-l-Methionine (AdoMet) as a methyl source. In recent years, there have been significant efforts toward the development of AdoMet analogues with the aim of transferring moieties other than simple methyl groups. Two major classes of AdoMet analogues currently exist: doubly-activated molecules and aziridine based molecules, each of which employs a different approach to achieve transalkylation rather than transmethylation. In this review, we discuss the various strategies for labelling and functionalizing biomolecules using AdoMet-dependent MTases and AdoMet analogues. We cover the synthetic routes to AdoMet analogues, their stability in biological environments and their application in transalkylation reactions. Finally, some perspectives are presented for the potential use of AdoMet analogues in biology research, (epi)genetics and nanotechnology.
Collapse
Affiliation(s)
- Jochem Deen
- Laboratory of Nanoscale BiologySchool of Engineering, EPFL, STI IBI-STI LBEN BM 5134 (Bâtiment BM)Station 17CH-1015LausanneSwitzerland
| | - Charlotte Vranken
- Laboratory of Photochemistry and Spectroscopy, Department of ChemistryKU LeuvenCelestijnenlaan 200FB-3001HeverleeBelgium
| | - Volker Leen
- Laboratory of Photochemistry and Spectroscopy, Department of ChemistryKU LeuvenCelestijnenlaan 200FB-3001HeverleeBelgium
| | - Robert K. Neely
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Kris P. F. Janssen
- Laboratory of Photochemistry and Spectroscopy, Department of ChemistryKU LeuvenCelestijnenlaan 200FB-3001HeverleeBelgium
| | - Johan Hofkens
- Laboratory of Photochemistry and Spectroscopy, Department of ChemistryKU LeuvenCelestijnenlaan 200FB-3001HeverleeBelgium
| |
Collapse
|
14
|
Sadler JC, Humphreys LD, Snajdrova R, Burley GA. A Tandem Enzymatic sp 2 -C-Methylation Process: Coupling in Situ S-Adenosyl-l-Methionine Formation with Methyl Transfer. Chembiochem 2017; 18:992-995. [PMID: 28371017 DOI: 10.1002/cbic.201700115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Indexed: 01/07/2023]
Abstract
A one-pot, two-step biocatalytic platform for the regiospecfic C-methylation and C-ethylation of aromatic substrates is described. The tandem process utilises SalL (Salinospora tropica) for in situ synthesis of S-adenosyl-l-methionine (SAM), followed by alkylation of aromatic substrates by the C-methyltransferase NovO (Streptomyces spheroides). The application of this methodology is demonstrated for the regiospecific labelling of aromatic substrates by the transfer of methyl, ethyl and isotopically labelled 13 CH3,13 CD3 and CD3 groups from their corresponding SAM analogues formed in situ.
Collapse
Affiliation(s)
- Joanna C Sadler
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK.,WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Luke D Humphreys
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK.,Present address: Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, AB, T6S 1A1, Canada
| | - Radka Snajdrova
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Glenn A Burley
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| |
Collapse
|
15
|
Deen J, Vranken C, Leen V, Neely RK, Janssen KPF, Hofkens J. Die Methyltransferase-gesteuerte Markierung von Biomolekülen und ihre Anwendungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201608625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jochem Deen
- Laboratory of Nanoscale Biology; School of Engineering, EPFL, STI IBI-STI LBEN BM 5134 (Bâtiment BM); Station 17 CH-1015 Lausanne Schweiz
| | - Charlotte Vranken
- Laboratory of Photochemistry and Spectroscopy, Department of Chemistry; KU Leuven; Celestijnenlaan 200F B-3001 Heverlee Belgien
| | - Volker Leen
- Laboratory of Photochemistry and Spectroscopy, Department of Chemistry; KU Leuven; Celestijnenlaan 200F B-3001 Heverlee Belgien
| | - Robert K. Neely
- School of Chemistry; University of Birmingham; Edgbaston Birmingham B15 2TT Großbritannien
| | - Kris P. F. Janssen
- Laboratory of Photochemistry and Spectroscopy, Department of Chemistry; KU Leuven; Celestijnenlaan 200F B-3001 Heverlee Belgien
| | - Johan Hofkens
- Laboratory of Photochemistry and Spectroscopy, Department of Chemistry; KU Leuven; Celestijnenlaan 200F B-3001 Heverlee Belgien
| |
Collapse
|
16
|
Sommer-Kamann C, Fries A, Mordhorst S, Andexer JN, Müller M. Asymmetric C-Alkylation by the S
-Adenosylmethionine-Dependent Methyltransferase SgvM. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609375] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christina Sommer-Kamann
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Alexander Fries
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Silja Mordhorst
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Jennifer N. Andexer
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Michael Müller
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg Germany
| |
Collapse
|
17
|
Sommer-Kamann C, Fries A, Mordhorst S, Andexer JN, Müller M. Asymmetric C-Alkylation by the S-Adenosylmethionine-Dependent Methyltransferase SgvM. Angew Chem Int Ed Engl 2017; 56:4033-4036. [PMID: 28247461 DOI: 10.1002/anie.201609375] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/13/2016] [Indexed: 11/06/2022]
Abstract
S-Adenosylmethionine-dependent methyltransferases (MTs) play a decisive role in the biosynthesis of natural products and in epigenetic processes. MTs catalyze the methylation of heteroatoms and even of carbon atoms, which, in many cases, is a challenging reaction in conventional synthesis. However, C-MTs are often highly substrate-specific. Herein, we show that SgvM from Streptomyces griseoviridis features an extended substrate scope with respect to the nucleophile as well as the electrophile. Aside from its physiological substrate 4-methyl-2-oxovalerate, SgvM catalyzes the (di)methylation of pyruvate, 2-oxobutyrate, 2-oxovalerate, and phenylpyruvate at the β-carbon atom. Chiral-phase HPLC analysis revealed that the methylation of 2-oxovalerate occurs with R selectivity while the ethylation of 2-oxobutyrate with S-adenosylethionine results in the S enantiomer of 3-methyl-2-oxovalerate. Thus SgvM could be a valuable tool for asymmetric biocatalytic C-alkylation reactions.
Collapse
Affiliation(s)
- Christina Sommer-Kamann
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Alexander Fries
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Silja Mordhorst
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Jennifer N Andexer
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Michael Müller
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| |
Collapse
|
18
|
Mordhorst S, Siegrist J, Müller M, Richter M, Andexer JN. Catalytic Alkylation Using a CyclicS-Adenosylmethionine Regeneration System. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Silja Mordhorst
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Jutta Siegrist
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Michael Richter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Bio, Electro and Chemocatalysis BioCat; Straubing branch; Schulgasse 11a 94315 Straubing Germany
| | - Jennifer N. Andexer
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| |
Collapse
|
19
|
Mordhorst S, Siegrist J, Müller M, Richter M, Andexer JN. Catalytic Alkylation Using a CyclicS-Adenosylmethionine Regeneration System. Angew Chem Int Ed Engl 2017; 56:4037-4041. [DOI: 10.1002/anie.201611038] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Silja Mordhorst
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Jutta Siegrist
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Michael Richter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Bio, Electro and Chemocatalysis BioCat; Straubing branch; Schulgasse 11a 94315 Straubing Germany
| | - Jennifer N. Andexer
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| |
Collapse
|
20
|
Friedrich S, Hemmerling F, Lindner F, Warnke A, Wunderlich J, Berkhan G, Hahn F. Characterisation of the Broadly-Specific O-Methyl-transferase JerF from the Late Stages of Jerangolid Biosynthesis. Molecules 2016; 21:molecules21111443. [PMID: 27801873 PMCID: PMC6273487 DOI: 10.3390/molecules21111443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/03/2022] Open
Abstract
We describe the characterisation of the O-methyltransferase JerF from the late stages of jerangolid biosynthesis. JerF is the first known example of an enzyme that catalyses the formation of a non-aromatic, cyclic methylenolether. The enzyme was overexpressed in E. coli and the cell-free extracts were used in bioconversion experiments. Chemical synthesis gave access to a series of substrate surrogates that covered a broad structural space. Enzymatic assays revealed a broad substrate tolerance and high regioselectivity of JerF, which makes it an attractive candidate for an application in chemoenzymatic synthesis with particular usefulness for late stage application on 4-methoxy-5,6-dihydro-2H-pyran-2-one-containing natural products.
Collapse
Affiliation(s)
- Steffen Friedrich
- Zentrum für Biomolekulare Wirkstoffe, Leibniz-Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany.
| | - Franziska Hemmerling
- Zentrum für Biomolekulare Wirkstoffe, Leibniz-Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany.
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Frederick Lindner
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Anna Warnke
- Zentrum für Biomolekulare Wirkstoffe, Leibniz-Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany.
| | - Johannes Wunderlich
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Gesche Berkhan
- Zentrum für Biomolekulare Wirkstoffe, Leibniz-Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany.
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Frank Hahn
- Zentrum für Biomolekulare Wirkstoffe, Leibniz-Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany.
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Universitätsstraße 30, 95447 Bayreuth, Germany.
| |
Collapse
|
21
|
Huber TD, Wang F, Singh S, Johnson BR, Zhang J, Sunkara M, Van Lanen SG, Morris AJ, Phillips GN, Thorson JS. Functional AdoMet Isosteres Resistant to Classical AdoMet Degradation Pathways. ACS Chem Biol 2016; 11:2484-91. [PMID: 27351335 DOI: 10.1021/acschembio.6b00348] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
S-adenosyl-l-methionine (AdoMet) is an essential enzyme cosubstrate in fundamental biology with an expanding range of biocatalytic and therapeutic applications. We report the design, synthesis, and evaluation of stable, functional AdoMet isosteres that are resistant to the primary contributors to AdoMet degradation (depurination, intramolecular cyclization, and sulfonium epimerization). Corresponding biochemical and structural studies demonstrate the AdoMet surrogates to serve as competent enzyme cosubstrates and to bind a prototypical class I model methyltransferase (DnrK) in a manner nearly identical to AdoMet. Given this conservation in function and molecular recognition, the isosteres presented are anticipated to serve as useful surrogates in other AdoMet-dependent processes and may also be resistant to, and/or potentially even inhibit, other therapeutically relevant AdoMet-dependent metabolic transformations (such as the validated drug target AdoMet decarboxylase). This work also highlights the ability of the prototypical class I model methyltransferase DnrK to accept non-native surrogate acceptors as an enabling feature of a new high-throughput methyltransferase assay.
Collapse
Affiliation(s)
- Tyler D. Huber
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Fengbin Wang
- Department
of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77251-1892, United States
| | - Shanteri Singh
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Brooke R. Johnson
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Jianjun Zhang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Manjula Sunkara
- Division
of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, 1000 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Steven G. Van Lanen
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Andrew J. Morris
- Division
of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, 1000 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - George N. Phillips
- Department
of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77251-1892, United States
- Department
of Chemistry, Rice University, Space Science 201, Houston, Texas 77251-1892, United States
| | - Jon S. Thorson
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
22
|
Weissenborn MJ, Löw SA, Borlinghaus N, Kuhn M, Kummer S, Rami F, Plietker B, Hauer B. Enzyme-Catalyzed Carbonyl Olefination by theE. coliProtein YfeX in the Absence of Phosphines. ChemCatChem 2016. [DOI: 10.1002/cctc.201600227] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Martin J. Weissenborn
- Institute of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Sebastian A. Löw
- Institute of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Niels Borlinghaus
- Institute of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Miriam Kuhn
- Institute of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Stefanie Kummer
- Institute of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Fabian Rami
- Institute of Organic Chemistry; University of Stuttgart; Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Bernd Plietker
- Institute of Organic Chemistry; University of Stuttgart; Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Bernhard Hauer
- Institute of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
23
|
Tengg M, Stecher H, Offner L, Plasch K, Anderl F, Weber H, Schwab H, Gruber-Khadjawi M. Methyltransferases: Green Catalysts for Friedel-Crafts Alkylations. ChemCatChem 2016. [DOI: 10.1002/cctc.201501306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Tengg
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Molecular Biotechnology; Graz University of Technology; Petersgasse 14 8010 Graz Austria
| | - Harald Stecher
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Lisa Offner
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Katharina Plasch
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Felix Anderl
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Hansjörg Weber
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Helmut Schwab
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Molecular Biotechnology; Graz University of Technology; Petersgasse 14 8010 Graz Austria
| | - Mandana Gruber-Khadjawi
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| |
Collapse
|
24
|
Siegrist J, Aschwanden S, Mordhorst S, Thöny-Meyer L, Richter M, Andexer JN. Regiocomplementary O-Methylation of Catechols by Using Three-Enzyme Cascades. Chembiochem 2015; 16:2576-9. [PMID: 26437744 DOI: 10.1002/cbic.201500410] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 11/10/2022]
Abstract
S-Adenosylmethionine (SAM)-dependent enzymes have great potential for selective alkylation processes. In this study we investigated the regiocomplementary O-methylation of catechols. Enzymatic methylation is often hampered by the need for a stoichiometric supply of SAM and the inhibitory effect of the SAM-derived byproduct on most methyltransferases. To counteract these issues we set up an enzyme cascade. Firstly, SAM was generated from l-methionine and ATP by use of an archaeal methionine adenosyltransferase. Secondly, 4-O-methylation of the substrates dopamine and dihydrocaffeic acid was achieved by use of SafC from the saframycin biosynthesis pathway in 40-70 % yield and high selectivity. The regiocomplementary 3-O-methylation was catalysed by catechol O-methyltransferase from rat. Thirdly, the beneficial influence of a nucleosidase on the overall conversion was demonstrated. The results of this study are important milestones on the pathway to catalytic SAM-dependent alkylation processes.
Collapse
Affiliation(s)
- Jutta Siegrist
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Simon Aschwanden
- Laboratory for Biointerfaces, Empa. Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Silja Mordhorst
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Linda Thöny-Meyer
- Laboratory for Biointerfaces, Empa. Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.,AVSV, Blarerstrasse 2, 9001, St. Gallen, Switzerland
| | - Michael Richter
- Laboratory for Biointerfaces, Empa. Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland. .,Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Branch BioCat, Schulgasse 11a, 94315, Straubing, Germany.
| | - Jennifer N Andexer
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.
| |
Collapse
|
25
|
|
26
|
Andexer JN, Richter M. Emerging enzymes for ATP regeneration in biocatalytic processes. Chembiochem 2015; 16:380-6. [PMID: 25619338 DOI: 10.1002/cbic.201402550] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 12/15/2022]
Abstract
Adenosine-5'-triphosphate-dependent enzyme catalysed reactions are widespread in nature. Consequently, the enzymes involved have an intrinsic potential for use in syntheses of high value products. Although regeneration systems for ATP starting from adenosine-5'-diphosphate are available, certain limitations exist for both in vitro and in vivo applications requiring ATP regeneration from adenosine-5'-monophosphate, or adenosine. Following a short overview of the chemical and thermodynamic background, this Minireview focuses on emerging enzymes and methodologies for ATP regeneration. A large range of as yet unexploited reactions will be accessible with new, powerful, multistep ATP regeneration systems that use cheap phosphate donors and provide high longevity, compatibility, and robustness under process conditions. Their potential might go far beyond the direct use of ATP in enzymatic reactions; enzyme discovery, and engineering, as well as immobilisation strategies, will help to realise such systems.
Collapse
Affiliation(s)
- Jennifer N Andexer
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg (Germany).
| | | |
Collapse
|
27
|
Singh S, Zhang J, Huber TD, Sunkara M, Hurley K, Goff RD, Wang G, Zhang W, Liu C, Rohr J, Van Lanen SG, Morris AJ, Thorson JS. Facile chemoenzymatic strategies for the synthesis and utilization of S-adenosyl-(L)-methionine analogues. Angew Chem Int Ed Engl 2014; 53:3965-9. [PMID: 24616228 PMCID: PMC4076696 DOI: 10.1002/anie.201308272] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/16/2013] [Indexed: 01/22/2023]
Abstract
A chemoenzymatic platform for the synthesis of S-adenosyl-L-methionine (SAM) analogues compatible with downstream SAM-utilizing enzymes is reported. Forty-four non-native S/Se-alkylated Met analogues were synthesized and applied to probing the substrate specificity of five diverse methionine adenosyltransferases (MATs). Human MAT II was among the most permissive of the MATs analyzed and enabled the chemoenzymatic synthesis of 29 non-native SAM analogues. As a proof of concept for the feasibility of natural product "alkylrandomization", a small set of differentially-alkylated indolocarbazole analogues was generated by using a coupled hMAT2-RebM system (RebM is the sugar C4'-O-methyltransferase that is involved in rebeccamycin biosynthesis). The ability to couple SAM synthesis and utilization in a single vessel circumvents issues associated with the rapid decomposition of SAM analogues and thereby opens the door for the further interrogation of a wide range of SAM utilizing enzymes.
Collapse
Affiliation(s)
- Shanteri Singh
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536 (USA). Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Jianjun Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536 (USA). Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Tyler D. Huber
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536 (USA). Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Manjula Sunkara
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY 40536 (USA)
| | - Katherine Hurley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53705 (USA)
| | - Randal D. Goff
- Western Wyoming Community College, 2500 College Dr. Rock Springs, WY 82902-0428
| | - Guojun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Wen Zhang
- Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, University of Kentucky, Lexington, KY 40536 (USA)
| | - Chunming Liu
- Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, University of Kentucky, Lexington, KY 40536 (USA)
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Steven G. Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY 40536 (USA)
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536 (USA). Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| |
Collapse
|
28
|
Singh S, Zhang J, Huber TD, Sunkara M, Hurley K, Goff RD, Wang G, Zhang W, Liu C, Rohr J, Van Lanen SG, Morris AJ, Thorson JS. Facile Chemoenzymatic Strategies for the Synthesis and Utilization ofS-Adenosyl-L-Methionine Analogues. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308272] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Schönherr H, Cernak T. Profound Methyl Effects in Drug Discovery and a Call for New CH Methylation Reactions. Angew Chem Int Ed Engl 2013; 52:12256-67. [DOI: 10.1002/anie.201303207] [Citation(s) in RCA: 569] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Indexed: 11/10/2022]
|
30
|
Schönherr H, Cernak T. Ausgeprägte Methyleffekte in der Wirkstoff-Forschung und der Bedarf an neuen C-H-Methylierungsreaktionen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303207] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
|
32
|
Struck AW, Thompson ML, Wong LS, Micklefield J. S-Adenosyl-Methionine-Dependent Methyltransferases: Highly Versatile Enzymes in Biocatalysis, Biosynthesis and Other Biotechnological Applications. Chembiochem 2012. [DOI: 10.1002/cbic.201200556] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Willnow S, Martin M, Lüscher B, Weinhold E. A Selenium-Based Click AdoMet Analogue for Versatile Substrate Labeling with Wild-Type Protein Methyltransferases. Chembiochem 2012; 13:1167-73. [DOI: 10.1002/cbic.201100781] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Indexed: 11/12/2022]
|
34
|
Niu S, Hu T, Li S, Xiao Y, Ma L, Zhang G, Zhang H, Yang X, Ju J, Zhang C. Characterization of a sugar-O-methyltransferase TiaS5 affords new Tiacumicin analogues with improved antibacterial properties and reveals substrate promiscuity. Chembiochem 2011; 12:1740-8. [PMID: 21633995 DOI: 10.1002/cbic.201100129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Indexed: 12/18/2022]
Abstract
The 18-membered macrocyclic glycoside tiacumicin B, an RNA polymerase inhibitor, is of great therapeutic significance in treating Clostridium difficile infections. The recent characterization of the tiacumicin B biosynthetic gene cluster from Dactylosporangium aurantiacum subsp. hamdenensis NRRL 18085 revealed the functions of two glycosyltransferases, a C-methyltransferase, an acyltransferase, two cytochrome P450s, and a tailoring dihalogenase in tiacumicin biosynthesis. Here we report the genetic confirmation and biochemical characterization of TiaS5 as a sugar-O-methyltransferase, requisite for tiacumicin B biosynthesis. The tiaS5-inactivation mutant is capable of producing 14 tiacumicin analogues (11 of which are new), all lacking the 2'-O-methyl group on the internal rhamnose moiety. Notably, two tiacumicin analogues exhibit improved antibacterial properties. We have also biochemically verified TiaS5 as an S-adenosyl-L-methionine-dependent O-methyltransferase, requiring divalent metal ions for activity. Substrate probing revealed TiaS5 to be a promiscuous enzyme, recognizing 12 tiacumicin analogues. These findings unequivocally establish that TiaS5 functions as a 2'-O-methyltransferase and provide direct biochemical evidence that TiaS5-catalyzed methylation is a tailoring step after glycosyl coupling in tiacumicin B biosynthesis.
Collapse
Affiliation(s)
- Siwen Niu
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Schrittwieser JH, Resch V, Sattler JH, Lienhart WD, Durchschein K, Winkler A, Gruber K, Macheroux P, Kroutil W. Biokatalytische enantioselektive oxidative C-C-Kupplung durch C-H-Aktivierung mit molekularem Sauerstoff. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006268] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Schrittwieser JH, Resch V, Sattler JH, Lienhart WD, Durchschein K, Winkler A, Gruber K, Macheroux P, Kroutil W. Biocatalytic enantioselective oxidative C-C coupling by aerobic C-H activation. Angew Chem Int Ed Engl 2011; 50:1068-71. [PMID: 21268196 DOI: 10.1002/anie.201006268] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Indexed: 11/09/2022]
Affiliation(s)
- Joerg H Schrittwieser
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Peters W, Willnow S, Duisken M, Kleine H, Macherey T, Duncan KE, Litchfield DW, Lüscher B, Weinhold E. Enzymatic site-specific functionalization of protein methyltransferase substrates with alkynes for click labeling. Angew Chem Int Ed Engl 2010; 49:5170-3. [PMID: 20572224 DOI: 10.1002/anie.201001240] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wibke Peters
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Peters W, Willnow S, Duisken M, Kleine H, Macherey T, Duncan K, Litchfield D, Lüscher B, Weinhold E. Enzymatische, sequenzspezifische Alkinfunktionalisierung von Proteinmethyltransferasesubstraten für die Markierung mittels Klickchemie. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001240] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|