1
|
Gong Y, Deng L, Xu X, Liu R, Li J, Huang N, Jiang D. Wiring Covalent Organic Frameworks with Conducting Polymers. Angew Chem Int Ed Engl 2024; 63:e202411806. [PMID: 38988007 DOI: 10.1002/anie.202411806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Covalent organic frameworks are a class of crystalline porous polymers formed by linking organic units into periodically aligned skeletons and pores. Here we report a strategy for wiring these frameworks with conducting polymers via wall engineering and polymerization. We anchored each edge site with one pyrrole unit, which is densely packed along the z direction yet protruded from pore walls. This assembly enables the polymerization of pyrrole units to form polypyrrole and creates a new polypyrrole chain conformation. The resultant framework constitutes six single file polypyrrole chains in each pore and develop spatially segregated yet built-in single molecular wires with exceptional stable polarons. Hall effect measurements revealed that the materials are p-type semiconductors, increase conductivity by eight orders of magnitude compared to the pristine frameworks, and achieve a carrier mobility as large as 13.2 cm2 V-1 s-1. Our results open an avenue to π electronic frameworks by interlayer molecular wiring with conducting polymers.
Collapse
Affiliation(s)
- Yifan Gong
- Integrative Sciences & Engineering, NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Lejian Deng
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, P. R. China
| | - Xiaoyi Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Juan Li
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, China
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Donglin Jiang
- Integrative Sciences & Engineering, NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, P. R. China
| |
Collapse
|
2
|
Mondal T, Seth J, Islam MS, Dahlous KA, Islam SM. Incorporation of CO2 in efficient oxazolidinone synthesis at mild condition by covalent triazine framework designed with Ag nanoparticles. J SOLID STATE CHEM 2024; 338:124819. [DOI: 10.1016/j.jssc.2024.124819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
|
3
|
Dinari M, Golshadi Z, Asadi P, Norton AE, Reid KR, Karimi B. Recent Progress on Covalent Organic Frameworks Supporting Metal Nanoparticles as Promising Materials for Nitrophenol Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1458. [PMID: 39269120 PMCID: PMC11397240 DOI: 10.3390/nano14171458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
With the utilization of nitrophenols in manufacturing various materials and the expansion of industry, nitrophenols have emerged as water pollutants that pose significant risks to both humans and the environment. Therefore, it is imperative to convert nitrophenols into aminophenols, which are less toxic. This conversion process is achieved through the use of noble metal nanoparticles, such as gold, silver, copper, and palladium. The primary challenge with noble metal nanoparticles lies in their accumulation and deactivation, leading to a decrease in catalyst activity. Covalent organic frameworks (COFs) are materials characterized by a crystalline structure, good stability, and high porosity with active sites. These properties make them ideal substrates for noble metal nanoparticles, enhancing catalytic activity. This overview explores various articles that focus on the synthesis of catalysts containing noble metal nanoparticles attached to COFs as substrates to reduce nitrophenols to aminophenols.
Collapse
Affiliation(s)
- Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Zaynab Golshadi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Parvin Asadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Amie E Norton
- Department of Entomology, Kansas State University, 123 W Waters Hall, 1603 Old Claflin Place, Manhattan, KS 66503, USA
| | - Katelyn R Reid
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| | - Benson Karimi
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| |
Collapse
|
4
|
Sun J, Wang X, Yuan H, Liu Y, Yang J, Zhao Q, Gao Y, Wang T, Zhang YW, Wang J. Frameworked Electrolytes: A Pathway Towards Solid Future of Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308849. [PMID: 38149507 DOI: 10.1002/smll.202308849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/12/2023] [Indexed: 12/28/2023]
Abstract
All-solid-state batteries (ASSBs) represent a highly promising next-generation energy storage technology owing to their inherently high safety, device reliability, and potential for achieving high energy density in the post-ara of lithium-ion batteries, and therefore extensive searches are ongoing for ideal solid-state electrolytes (SSEs). Though promising, there is still a huge barrier that limits the large-scale applications of ASSBs, where there are a couple of bottleneck technical issues. In this perspective, a novel category of electrolytes known as frameworked electrolytes (FEs) are examined, where the solid frameworks are intentionally designed to contain 3D ionic channels at sub-nano scales, rendering them macroscopically solid. The distinctive structural design of FEs gives rise to not only high ionic conductivity but also desirable interfaces with electrode solids. This is achieved through the presence of sub-nano channels within the framework, which exhibit significantly different ion diffusion behavior due to the confinement effect. This perspective offers a compelling insight into the potential of FEs in the pursuit of ASSBs, where FEs offer an exciting opportunity to overcome the limitations of traditional solid-state electrolytes and propel the development of ASSBs as the holy grail of energy storage technology.
Collapse
Affiliation(s)
- Jianguo Sun
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Republic of Singapore
| | - Xingyang Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Republic of Singapore
| | - Hao Yuan
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Yu Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Republic of Singapore
| | - Jing Yang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Qi Zhao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Republic of Singapore
| | - Yulin Gao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Republic of Singapore
- ST Engineering Advanced Material Engineering Pte. Ltd., Singapore, 619523, Republic of Singapore
| | - Tuo Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Republic of Singapore
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Republic of Singapore
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, P. R. China
| |
Collapse
|
5
|
Liu Y, Liu X, Su A, Gong C, Chen S, Xia L, Zhang C, Tao X, Li Y, Li Y, Sun T, Bu M, Shao W, Zhao J, Li X, Peng Y, Guo P, Han Y, Zhu Y. Revolutionizing the structural design and determination of covalent-organic frameworks: principles, methods, and techniques. Chem Soc Rev 2024; 53:502-544. [PMID: 38099340 DOI: 10.1039/d3cs00287j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Covalent organic frameworks (COFs) represent an important class of crystalline porous materials with designable structures and functions. The interconnected organic monomers, featuring pre-designed symmetries and connectivities, dictate the structures of COFs, endowing them with high thermal and chemical stability, large surface area, and tunable micropores. Furthermore, by utilizing pre-functionalization or post-synthetic functionalization strategies, COFs can acquire multifunctionalities, leading to their versatile applications in gas separation/storage, catalysis, and optoelectronic devices. Our review provides a comprehensive account of the latest advancements in the principles, methods, and techniques for structural design and determination of COFs. These cutting-edge approaches enable the rational design and precise elucidation of COF structures, addressing fundamental physicochemical challenges associated with host-guest interactions, topological transformations, network interpenetration, and defect-mediated catalysis.
Collapse
Affiliation(s)
- Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaona Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - An Su
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Chengtao Gong
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Shenwei Chen
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Liwei Xia
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Chengwei Zhang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaohuan Tao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yue Li
- Institute of Intelligent Computing, Zhejiang Lab, Hangzhou 311121, China
| | - Yonghe Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Tulai Sun
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Mengru Bu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Wei Shao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Jia Zhao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaonian Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yongwu Peng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Peng Guo
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu Han
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
6
|
Deori N, Borah R, Lahkar S, Brahma S. Title: Cr(III) Incorporated Melamine‐Terephthalaldehyde Porous Organic Framework Nanosheet Catalyst for Carbon Dioxide Fixation Reaction. ChemistrySelect 2023. [DOI: 10.1002/slct.202204881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Naranarayan Deori
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Rakhimoni Borah
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Surabhi Lahkar
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Sanfaori Brahma
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| |
Collapse
|
7
|
Guan X, Chen F, Qiu S, Fang Q. Three-Dimensional Covalent Organic Frameworks: From Synthesis to Applications. Angew Chem Int Ed Engl 2023; 62:e202213203. [PMID: 36253336 DOI: 10.1002/anie.202213203] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 12/05/2022]
Abstract
Three-dimensional covalent organic frameworks (3D COFs) with spatially periodic networks demonstrate significant advantages over their 2D counterparts, including enhanced specific surface areas, interconnected channels, and more sufficiently exposed active sites. Nevertheless, research on these materials has met an impasse due to serious problems in crystallization and stability, which must be solved for practical applications. In this Minireview, we first summarize some strategies for preparing functional 3D COFs, including crystallization techniques and functionalization methods. Hereafter, applications of these functional materials are presented, covering adsorption, separation, catalysis, fluorescence, sensing, and batteries. Finally, the future challenges and perspectives for the development of 3D COFs are discussed.
Collapse
Affiliation(s)
- Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
8
|
Mohajer F, Mohammadi Ziarani G, Badiei A. Encapsulation of porous materials. PRINCIPLES OF BIOMATERIALS ENCAPSULATION : VOLUME TWO 2023:93-114. [DOI: 10.1016/b978-0-12-824345-9.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
9
|
Gong YN, Guan X, Jiang HL. Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and performance. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Sarkar P, Hazra Chowdhury A, Riyajuddin S, Ghosh S, Islam SM. Constructing a metal-free 2D covalent organic framework for visible-light-driven photocatalytic reduction of CO 2: a sustainable strategy for atmospheric CO 2 utilization. REACT CHEM ENG 2023. [DOI: 10.1039/d2re00241h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A 2D polyimide-linked covalent organic framework (COF) with band gap energy of 2.2 eV is developed as a stable and efficient porous photocatalyst which shows CO2 reduction to formic acid, formaldehyde and methanol.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, 741235, W.B., India
| | - Arpita Hazra Chowdhury
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
| | - Sk. Riyajuddin
- Institute of Nano Science and Technology, Mohali, 160062, India
| | - Swarbhanu Ghosh
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, 741235, W.B., India
| | - Sk. Manirul Islam
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, 741235, W.B., India
| |
Collapse
|
11
|
Heravifard Z, Akbarzadeh AR, Tayebi L, Rahimi R. Structural Properties Covalent Organic Frameworks (COFs): From Dynamic Covalent Bonds to their Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zahra Heravifard
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Ali Reza Akbarzadeh
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Leila Tayebi
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Rahmatollah Rahimi
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| |
Collapse
|
12
|
Lai Q, Pei L, Fei T, Yin P, Pang S, Shreeve JM. Size-matched hydrogen bonded hydroxylammonium frameworks for regulation of energetic materials. Nat Commun 2022; 13:6937. [PMID: 36376317 PMCID: PMC9663426 DOI: 10.1038/s41467-022-34686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Size matching molecular design utilizing host-guest chemistry is a general, promising strategy for seeking new functional materials. With the growing trend of multidisciplinary investigations, taming the metastable high-energy guest moiety in well-matched frameworks is a new pathway leading to innovative energetic materials. Presented is a selective encapsulation in hydrogen-bonded hydroxylammonium frameworks (HHF) by screening different sized nitrogen-rich azoles. The size-match between a sensitive high-energy guest and an HHF not only gives rise to higher energetic performance by dense packing, but also reinforces the layer-by-layer structure which can stabilize the resulting materials towards external mechanic stimuli. Preliminary assessment based on calculated detonation properties and mechanical sensitivity indicates that HHF competed well with the energetic performance and molecular stability (detonation velocity = 9286 m s-1, impact sensitivity = 50 J). This work highlights the size-matched phenomenon of HHF and may serve as an alternative strategy for exploring next generation advanced energetic materials.
Collapse
Affiliation(s)
- Qi Lai
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
- Department of Chemistry, University of Idaho, Moscow, ID, USA
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China
| | - Le Pei
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
- Department of Chemistry, University of Idaho, Moscow, ID, USA
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China
| | - Teng Fei
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Ping Yin
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.
- Department of Chemistry, University of Idaho, Moscow, ID, USA.
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China.
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.
| | | |
Collapse
|
13
|
Venkatesh N, Murugadoss G, Mohamed AAA, Kumar MR, Peera SG, Sakthivel P. A Novel Nanocomposite Based on Triazine Based Covalent Organic Polymer Blended with Porous g-C 3N 4 for Photo Catalytic Dye Degradation of Rose Bengal and Fast Green. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217168. [PMID: 36363995 PMCID: PMC9657678 DOI: 10.3390/molecules27217168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023]
Abstract
Metal free visible light active photocatalysts of covalent organic polymers (COPs) and polymeric graphitic carbon nitride (g-C3N4) are interesting porous catalysts that have enormous potential for application in organic pollutant degradation. Imine condensation for COPs, and thermal condensation for g-C3N4 were used to produce the catalysts. FT-IR, Raman, NMR, UV-Vis Spectroscopy, X-ray diffraction, and scanning electron microscopy studies were used to investigate the structural, optical, and morphological features of the metal free catalysts. We have constructed COPs with a π-electron deficient (Lewis acidic) triazine core and π -electron rich (Lewis basic) naphthalene and anthraquinone rings coupled by -O and -N donors in this study. Furthermore, the prepared Bulk-g-C3N4 (B-GCN) was converted to porous g-C3N4 (P-GCN) using a chemical oxidation process, and the generated P-GCN was efficiently mixed with the COP to create a novel nanocomposite for photocatalytic application. Using the anthraquinone-based COP and P-GCN (1:1 ratio, PA-GCN) catalyst, the highest photodegradation efficiencies for the polymeric graphitic carbon nitride of 88.2% and 82.3% were achieved using the Fast green (FG) and Rose bengal (RB) dyes, respectively. The rate constant values of 0.032 and 0.024/min were determined for FG and RB degradation, respectively. Higher activity may be related to the incorporation of COP and PA-GCN, which act significantly well in higher visible light absorption, have superior reactive oxygen generation (ROS), and demonstrate an excellent pollutant-catalyst interaction.
Collapse
Affiliation(s)
- Nachimuthu Venkatesh
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Govindhasamy Murugadoss
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
- Correspondence: (G.M.); (S.G.P.); (P.S.)
| | - Abdul Azeez Ashif Mohamed
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Manavalan Rajesh Kumar
- Institute of Natural Science and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Shaik Gouse Peera
- Department of Environmental Science, Keimyung University, Dalseo-gu, Daegu 42601, Korea
- Correspondence: (G.M.); (S.G.P.); (P.S.)
| | - Pachagounder Sakthivel
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
- Correspondence: (G.M.); (S.G.P.); (P.S.)
| |
Collapse
|
14
|
Liu X, Xiao S, Jin T, Gao F, Wang M, Gao Y, Zhang W, Ouyang Y, Ye G. Selective entrapment of thorium using a three-dimensional covalent organic framework and its interaction mechanism study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Rasheed T. Covalent organic frameworks as promising adsorbent paradigm for environmental pollutants from aqueous matrices: Perspective and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155279. [PMID: 35429563 DOI: 10.1016/j.scitotenv.2022.155279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs) are an emerging class of new porous crystalline polymers materials having robust framework, outstanding structural regularity, highly ordered aperture size, inherent porosity, and chemical stability with designer properties, making them an ideal material for adsorbing a variety of contaminants from water bodies. Presented study focusses on the current advances and progress of pristine COFs as well as COFs based composites as an emerging substitute for the adsorption and removal of a variety of pollutants including water desalination technique, heavy metals, pharmaceuticals, dyes and organic pollutants. The absorption capabilities of COFs-derived architecture are evaluated and equated with those of other commonly used adsorbents. The interaction between sorption ability and structural property as well as some regularly utilized ways to improve the adsorption performance of COFs-based materials are also reviewed. Finally, perspective and a summary about the challenges and opportunities of COFs and COFs-derived materials are discussed to deliver some exciting data for fabricating and designing of COFs and COFs-derived materials for remediation of environmental pollutants.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
16
|
Yang X, Gong L, Liu X, Zhang P, Li B, Qi D, Wang K, He F, Jiang J. Mesoporous Polyimide-Linked Covalent Organic Framework with Multiple Redox-Active Sites for High-Performance Cathodic Li Storage. Angew Chem Int Ed Engl 2022; 61:e202207043. [PMID: 35638157 DOI: 10.1002/anie.202207043] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 12/20/2022]
Abstract
Covalent organic frameworks (COFs) are gaining increasing attention as renewable cathode materials for Li-ion batteries. However, COF electrodes reported so far still exhibit unsatisfying capacity due to their limited active site density and insufficient utilization. Herein, a new two-dimensional polyimide-linked COF, HATN-AQ-COF with multiple redox-active sites for storing Li+ ions, was designed and fabricated from a new module of 2,3,8,9,14,15-hexacarboxyl hexaazatrinaphthalene trianhydrides with a 2,6-diaminoanthraquinone linker. HATN-AQ-COF possessing excellent stability, good conductivity, and a large pore size of 3.8 nm enables the stable and fast ion transport. This, in combination with the abundant redox active sites, results in a high reversible capacity of 319 mAh g-1 at 0.5 C (1 C=358 mA g-1 ) for the HATN-AQ-COF electrode with a high active site utilization of 89 % and good cycle performance, representing one of the best performances among the reported COF electrodes.
Collapse
Affiliation(s)
- Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Pianpian Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Bowen Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Feng He
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
17
|
Zhang Y, Lu J, Li B, Chen W, Xiong W, Ruan Z, Zhang H, Sun S, Chen L, Gao L, Cai J. On-surface synthesis and characterization of nitrogen-doped covalent-organic frameworks on Ag(111) substrate. J Chem Phys 2022; 157:031103. [DOI: 10.1063/5.0099995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Atomically precise fabrication of covalent-organic frameworks with well-defined heteroatom-dopant sites and further understanding of their electronic properties at the atomic level remain a challenge. Herein, we demonstrate the bottom-up synthesis of well-organized covalent-organic frameworks doped by nitrogen atoms on an Ag(111) substrate. Using high-resolution scanning tunneling microscopy and non-contact atomic force microscopy, the atomic structures of the intermediate metal–organic frameworks and the final covalent-organic frameworks are clearly identified. Scanning tunneling spectroscopy characterization reveals that the electronic bandgap of the as-formed N-doped covalent-organic framework is 2.45 eV, in qualitative agreement with the theoretical calculations. The calculated band structure together with the projected density of states analysis clearly unveils that the incorporation of nitrogen atoms into the covalent-organic framework backbone will remarkably tune the bandgap owing to the fact that the foreign nitrogen atom has one more electron than the carbon atom. Such covalent-organic frameworks may offer an atomic-scale understanding of the local electronic structure of heteroatom-doped covalent-organic frameworks and hold great promise for all relevant wide bandgap semiconductor technologies, for example, electronics, photonics, high-power and high-frequency devices, and solar energy conversion.
Collapse
Affiliation(s)
- Yong Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China
| | - Jianchen Lu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China
| | - Baijin Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China
| | - Weiben Chen
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei Xiong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China
| | - Zilin Ruan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China
| | - Hui Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China
| | - Shijie Sun
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lei Gao
- Faculty of Science, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, China
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China
| |
Collapse
|
18
|
Nabais AR, Ahmed S, Younis M, Zhou JX, Pereira JR, Freitas F, Mecerreyes D, Crespo JG, Huang MH, Neves LA, Tomé LC. Mixed matrix membranes based on ionic liquids and porous organic polymers for selective CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Yang X, Gong L, Liu X, Zhang P, Li B, Qi D, Wang K, He F, Jiang J. Mesoporous Polyimide‐Linked Covalent Organic Framework with Multiple Redox‐Active Sites for High‐Performance Cathodic Li Storage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Pianpian Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Bowen Li
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Feng He
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| |
Collapse
|
20
|
Pasricha S, Chaudhary A, Srivastava A. Evolving Trends for C−C Bond Formation Using Functionalized Covalent Organic Frameworks as Heterogeneous Catalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202200576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sharda Pasricha
- Department of Chemistry Sri Venkateswara College University of Delhi India
| | - Ankita Chaudhary
- Department of Chemistry Maitreyi College, Bapu New Delhi 110021 India
| | - Abhay Srivastava
- Abhay Srivastava Material Research Centre Indian Institute of Science, Bangalore India
| |
Collapse
|
21
|
Chang PH, Sil MC, Reddy KSK, Lin CH, Chen CM. Polyimide-Based Covalent Organic Framework as a Photocurrent Enhancer for Efficient Dye-Sensitized Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25466-25477. [PMID: 35604330 DOI: 10.1021/acsami.2c04507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Covalent organic frameworks (COFs) are of great interest in the energy and optoelectronic fields due to their high porosity, superior thermal stability, and highly ordered conjugated architecture, which are beneficial for charge migration, charge separation, and light harvesting. In this study, polyimide COFs (PI-COFs) are synthesized through the condensation reaction of pyromellitic dianhydride (PMDA) with tris(4-aminophenyl) amine (TAPA) and then doped in the TiO2 photoelectrode of a dye-sensitized solar cell (DSSC) to co-work with N719 dye to explore their functionality. As a benchmark, the pristine DSSC without the doping of PI-COFs exhibits a power conversion efficiency of 9.05% under simulated one sun illumination. The doping of 0.04 wt % PI-COFs contributes an enhanced short-circuit current density (JSC) from 17.43 to 19.03 mA/cm2, and therefore, the cell efficiency is enhanced to 9.93%. The enhancement of JSC is attributed to the bifunctionality of PI-COFs, which enhances the charge transfer/injection and suppresses the charge recombination through the host (PI-COF)-guest (N719 dye) interaction. In addition, the PI-COFs also function as a cosensitizer and contribute a small quantity of photoinduced electrons upon sunlight illumination. Surface modification of oxygen plasma improves the hydrophilicity of PI-COF particles and reinforces the heterogeneous linkage between PI-COF and TiO2 nanoparticles, giving rise to more efficient charge injection. As a result, the champion cell exhibits a high power conversion efficiency of 10.46% with an enhanced JSC of 19.43 mA/cm2. This methodology of increasing solar efficiency by modification of the photoelectrode with the doping of PI-COFs in the TiO2 nanoparticles is promising in the development of DSSCs.
Collapse
Affiliation(s)
- Pei-Hsuan Chang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Manik Chandra Sil
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Kamani Sudhir K Reddy
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Ching-Hsuan Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Chih-Ming Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
22
|
Chakraborty D, Mullangi D, Chandran C, Vaidhyanathan R. Nanopores of a Covalent Organic Framework: A Customizable Vessel for Organocatalysis. ACS OMEGA 2022; 7:15275-15295. [PMID: 35571831 PMCID: PMC9096826 DOI: 10.1021/acsomega.2c00235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/05/2022] [Indexed: 05/14/2023]
Abstract
Covalent organic frameworks (COFs) as crystalline polymers possess ordered nanochannels. When their channels are adorned with catalytically active functional groups, their highly insoluble and fluffy powder texture makes them apt heterogeneous catalysts that can be dispersed in a range of solvents and heated to high temperatures (80-180 °C). This would mean very high catalyst density, facile active-site access, and easy separation leading to high isolated yields. Different approaches have been devised to anchor or disperse the catalytic sites into the nanospaces offered by the COF pores. Such engineered COFs have been investigated as catalysts for many organic transformation reactions. These range from Suzuki-Miyaura coupling, Heck coupling, Knoevenagel condensation, Michael addition, alkene epoxidation, CO2 utilization, and more complex biomimetic catalysis. Such catalysts employ COF as a "passive" support that merely docks catalytically active inorganic clusters, or in other cases, the COF itself participates as an "active" support by altering the electronics of the inorganic catalytic sites through the redox activity of its framework. Even more, catalytic organic pockets or metal complexes have been directly tethered to COF walls to make them behave like single-site organocatalysts. Here, we have listed most COF-based organic transformations by categorizing them as metal-free non-noble-metal@COF and noble-metal@COF. The initial part of this review highlights the advantages of COFs as a component of a heterogeneous catalyst, while the latter part discusses all of the current literature on this topic.
Collapse
Affiliation(s)
- Debanjan Chakraborty
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune 411008, India
- Centre
for Energy Science, Indian Institute of
Science Education and Research, Pune 411008, India
| | - Dinesh Mullangi
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune 411008, India
| | - Chandana Chandran
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune 411008, India
| | - Ramanathan Vaidhyanathan
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune 411008, India
- Centre
for Energy Science, Indian Institute of
Science Education and Research, Pune 411008, India
| |
Collapse
|
23
|
Yan X, Lyu S, Xu X, Chen W, Shang P, Yang Z, Zhang G, Chen W, Wang Y, Chen L. Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficient Solar Steam Generation. Angew Chem Int Ed Engl 2022; 61:e202201900. [DOI: 10.1002/anie.202201900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoli Yan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Shanzhi Lyu
- Department of Energy and Power Engineering Tsinghua University Beijing 100084 China
| | - Xiao‐Qi Xu
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Weiben Chen
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Pengna Shang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Zongfan Yang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Guang Zhang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Weihua Chen
- College of Chemistry and Green Catalysis Center Zhengzhou University Henan 450001 China
| | - Yapei Wang
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| |
Collapse
|
24
|
Sarkar P, Das A, Ghosh S, Islam SM. Visible Light‐Driven Carboxylation of Olefins by Using 2D Metal‐Free Covalent Organic Framework asIntrinsicPhotocatalyst: A Sustainable Approach for CO2 Utilization. ChemCatChem 2022. [DOI: 10.1002/cctc.202200186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Anjan Das
- University of Kalyani Chemistry INDIA
| | | | - Sk. Manirul Islam
- University of Kalyani Department of Chemistry Kalyani Ghoshpara 741235 Kalyani INDIA
| |
Collapse
|
25
|
Sun R, Wang X, Wang X, Tan B. Three-Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angew Chem Int Ed Engl 2022; 61:e202117668. [PMID: 35038216 DOI: 10.1002/anie.202117668] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/09/2022]
Abstract
The growth of crystalline covalent triazine frameworks (CTFs) is still considered as a great challenge due to the less reversible covalent bonds of triazine linkages. The research studies of crystalline CTFs to date have been limited to two-dimensional (2D) structures, and the three-dimensional (3D) crystalline CTFs have never been reported before. Herein we report the design and synthesis of two 3D crystalline CTFs, termed 3D CTF-TPM and 3D CTF-TPA through a reversible/irreversible polycondensation approach. The targeted 3D CTFs adopt ctn topology, and show moderate crystallinity, relatively large surface area (ca. 2000 m2 g-1 ), and high CO2 uptake capacity (23.61 wt.%). Moreover, these 3D CTFs exhibit ultrastability in the presence of boiling water, strong acid (1 M HCl) and strong base (1 M NaOH). This contribution represents the first report of 3D crystalline CTFs, which not only extends their structural diversity but also offers a synthetic strategy and structural basis for expanding practical applications of CTF materials.
Collapse
Affiliation(s)
- Ruixue Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xiaoyan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xuepeng Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| |
Collapse
|
26
|
Yu X, Li C, Chang J, Wang Y, Xia W, Suo J, Guan X, Valtchev V, Yan Y, Qiu S, Fang Q. Gating Effects for Ion Transport in Three-Dimensional Functionalized Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202200820. [PMID: 35072979 DOI: 10.1002/anie.202200820] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/12/2022]
Abstract
The development of bioinspired nano/subnano-sized (<2 nm) ion channels is still considered a great challenge due to the difficulty in precisely controlling pore's internal structure and chemistry. Herein, for the first time, we report that three-dimensional functionalized covalent organic frameworks (COFs) can act as an effective nanofluidic platform for intelligent modulation of the ion transport. By strategic attachment of 12-crown-4 groups to the monomers as ion-driver door locks, we demonstrate that gating effects of functionalized COFs can be activated by lithium ions. The obtained materials exhibit an outstanding selective ion transmission performance with a high gating ratio (up to 23.6 for JUC-590), which is among the highest values in metal ion-activated solid-state nanochannels reported so far. Furthermore, JUC-590 offers high tunability, selectivity, and recyclability of ion transport proved by the experimental and simulated studies.
Collapse
Affiliation(s)
- Xiuqin Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Cuiyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Jianhong Chang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Weifeng Xia
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Song Ling Rd, Qingdao, Shandong, 266101, China.,Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, 14050, Caen, France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, DE 19716, USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
27
|
Yan X, Lyu S, Xu X, Chen W, Shang P, Yang Z, Zhang G, Chen W, Wang Y, Chen L. Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficient Solar Steam Generation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoli Yan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Shanzhi Lyu
- Department of Energy and Power Engineering Tsinghua University Beijing 100084 China
| | - Xiao‐Qi Xu
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Weiben Chen
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Pengna Shang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Zongfan Yang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Guang Zhang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Weihua Chen
- College of Chemistry and Green Catalysis Center Zhengzhou University Henan 450001 China
| | - Yapei Wang
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| |
Collapse
|
28
|
Yu X, Li C, Chang J, Wang Y, Xia W, Suo J, Guan X, Valtchev V, Yan Y, Qiu S, Fang Q. Gating Effects for Ion Transport in Three‐Dimensional Functionalized Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiuqin Yu
- Jilin University College of Chemistry CHINA
| | - Cuiyan Li
- Jilin University College of Chemistry CHINA
| | | | - Yujie Wang
- Jilin University College of Chemistry CHINA
| | | | | | - Xinyu Guan
- Jilin University College of Chemistry CHINA
| | - Valentin Valtchev
- Normandie Université: Normandie Universite Laboratoire Catalyse et Spectrochimie FRANCE
| | - Yushan Yan
- University of Delaware Chemical and Biomolecular Engineering UNITED STATES
| | - Shilun Qiu
- Jilin University College of Chemistry 2699 Qianjin StreetChangchun 130118 Changchun CHINA
| | - Qianrong Fang
- Jilin University Department of Chemistry 2699 Qianjin Street 130012 Changchun CHINA
| |
Collapse
|
29
|
Sun R, Wang X, Wang X, Tan B. Three‐Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruixue Sun
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Xiaoyan Wang
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Xuepeng Wang
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Bien Tan
- Huazhong University of Science and Technology School of Chemisry & Chemical Engineering 1037 Luoyu Road 430074 Wuhan CHINA
| |
Collapse
|
30
|
Gowrisankar S, Bernhardt B, Becker J, Schreiner PR. Regioselective Synthesis of
meta
‐Tetraaryl‐Substituted Adamantane Derivatives and Evaluation of Their White Light Emission. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saravanan Gowrisankar
- Institute of Organic Chemistry Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research Heinrich-Buff-Ring 16 35392 Giessen Germany
| | - Bastian Bernhardt
- Institute of Organic Chemistry Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research Heinrich-Buff-Ring 16 35392 Giessen Germany
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry Justus Liebig University 35392 Giessen Germany
| | - Peter R. Schreiner
- Institute of Organic Chemistry Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| |
Collapse
|
31
|
Emmerling ST, Ziegler F, Fischer FR, Schoch R, Bauer M, Plietker B, Buchmeiser MR, Lotsch BV. Olefin Metathesis in Confinement: Towards Covalent Organic Framework Scaffolds for Increased Macrocyclization Selectivity. Chemistry 2021; 28:e202104108. [PMID: 34882848 PMCID: PMC9305778 DOI: 10.1002/chem.202104108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 12/02/2022]
Abstract
Covalent organic frameworks (COFs) offer vast structural and chemical diversity enabling a wide and growing range of applications. While COFs are well‐established as heterogeneous catalysts, so far, their high and ordered porosity has scarcely been utilized to its full potential when it comes to spatially confined reactions in COF pores to alter the outcome of reactions. Here, we present a highly porous and crystalline, large‐pore COF as catalytic support in α,ω‐diene ring‐closing metathesis reactions, leading to increased macrocyclization selectivity. COF pore‐wall modification by immobilization of a Grubbs‐Hoveyda‐type catalyst via a mild silylation reaction provides a molecularly precise heterogeneous olefin metathesis catalyst. An increased macro(mono)cyclization (MMC) selectivity over oligomerization (O) for the heterogeneous COF‐catalyst (MMC:O=1.35) of up to 51 % compared to the homogeneous catalyst (MMC:O=0.90) was observed along with a substrate‐size dependency in selectivity, pointing to diffusion limitations induced by the pore confinement.
Collapse
Affiliation(s)
- Sebastian T Emmerling
- Max-Planck-Institut für Festkörperforschung: Max-Planck-Institut fur Festkorperforschung, Nanochemistry, GERMANY
| | | | | | | | | | - Bernd Plietker
- Technische Universitat Dresden, Organische Chemie, GERMANY
| | | | - Bettina Valeska Lotsch
- Max Planck Institute for Solid State Research, Nanochemistry, Heisenbergstraße 1, 70569, Stuttgart, GERMANY
| |
Collapse
|
32
|
Xu NY, Guo P, Chen JK, Zhang JH, Wang BJ, Xie SM, Yuan LM. Chiral core-shell microspheres β-CD-COF@SiO 2 used for HPLC enantioseparation. Talanta 2021; 235:122754. [PMID: 34517622 DOI: 10.1016/j.talanta.2021.122754] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022]
Abstract
Chiral covalent organic frameworks (CCOFs) have potential application in enantioseparation due to their advantages, such as large surface area, abundant chiral recognition sites and good chemical stability in organic solvents. However, the application of CCOFs in high performance liquid chromatography (HPLC) for enantioseparation has been rarely reported because of the shortcomings of CCOFs, such as light weight, irregular shape, and wide particle size distribution. In order to overcome the above shortcomings, a one-pot synthetic method was adopted to prepare a core-shell composite (β-CD-COF@SiO2) via the growth of chiral β-CD COF on the surface of amino-functionalized SiO2 microspheres. The as-prepared β-CD-COF@SiO2 microspheres were used as a stationary phase for HPLC enantioseparation. The resolution ability of the β-CD-COF@SiO2-packed column toward various chiral compounds was investigated using n-hexane/isopropanol as the mobile phase. The results show that the chiral β-CD-COF@SiO2-packed column exhibited excellent chiral recognition ability for 24 pairs of chiral compounds with good reproducibility. These successful applications indicate that the preparation of the chiral COFs@SiO2 core-shell microspheres as a novel stationary phase for enantioseparation has good application prospects in HPLC.
Collapse
Affiliation(s)
- Na-Yan Xu
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Ping Guo
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Ji-Kai Chen
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Bang-Jin Wang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China.
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China.
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| |
Collapse
|
33
|
Tang J, Su C, Shao Z. Covalent Organic Framework (COF)-Based Hybrids for Electrocatalysis: Recent Advances and Perspectives. SMALL METHODS 2021; 5:e2100945. [PMID: 34928017 DOI: 10.1002/smtd.202100945] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/25/2021] [Indexed: 06/14/2023]
Abstract
Developing highly efficient electrocatalysts for renewable energy conversion and environment purification has long been a research priority in the past 15 years. Covalent organic frameworks (COFs) have emerged as a burgeoning family of organic materials internally connected by covalent bonds and have been explored as promising candidates in electrocatalysis. The reticular geometry of COFs can provide an excellent platform for precise incorporation of the active sites in the framework, and the fine-tuning hierarchical porous architectures can enable efficient accessibility of the active sites and mass transportation. Considerable advances are made in rational design and controllable fabrication of COF-based organic-inorganic hybrids, that containing organic frameworks and inorganic electroactive species to induce novel physicochemical properties, and take advantage of the synergistic effect for targeted electrocatalysis with the hybrid system. Branches of COF-based hybrids containing a diversity form of metals, metal compounds, as well as metal-free carbons have come to the fore as highly promising electrocatalysts. This review aims to provide a systematic and profound understanding of the design principles behind the COF-based hybrids for electrocatalysis applications. Particularly, the structure-activity relationship and the synergistic effects in the COF-based hybrid systems are discussed to shed some light on the future design of next-generation electrocatalysts.
Collapse
Affiliation(s)
- Jiayi Tang
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA6102, Australia
| | - Chao Su
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA6102, Australia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
34
|
Chen F, Guan X, Li H, Ding J, Zhu L, Tang B, Valtchev V, Yan Y, Qiu S, Fang Q. Three-Dimensional Radical Covalent Organic Frameworks as Highly Efficient and Stable Catalysts for Selective Oxidation of Alcohols. Angew Chem Int Ed Engl 2021; 60:22230-22235. [PMID: 34387410 DOI: 10.1002/anie.202108357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/08/2021] [Indexed: 01/18/2023]
Abstract
With excellent designability, large accessible inner surface, and high chemical stability, covalent organic frameworks (COFs) are promising candidates as metal-free heterogeneous catalysts. Here, we report two 3D radical-based COFs (JUC-565 and JUC-566) in which radical moieties (TEMPO) are uniformly decorated on the channel walls via a bottom-up approach. Based on grafted functional groups and suitable regular channels, these materials open up the application of COFs as highly efficient and selective metal-free redox catalysts in aerobic oxidation of alcohols to relevant aldehydes or ketones with outstanding turn over frequency (TOF) up to 132 h-1 , which has exceeded other TEMPO-modified catalytic materials tested under similar conditions. These stable COF-based catalysts could be easily recovered and reused for multiple runs. This study promotes potential applications of 3D functional COFs anchored with stable radicals in organic synthesis and material science.
Collapse
Affiliation(s)
- Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Liangkui Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Bin Tang
- Deakin University, Institute for Frontier Materials, Geelong, Victoria, 3216, Australia
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Song Ling Rd, Qingdao, Shandong, 266101, China.,Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, 14050, Caen, France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, DE, 19716, USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
35
|
Chen F, Guan X, Li H, Ding J, Zhu L, Tang B, Valtchev V, Yan Y, Qiu S, Fang Q. Three‐Dimensional Radical Covalent Organic Frameworks as Highly Efficient and Stable Catalysts for Selective Oxidation of Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Liangkui Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Bin Tang
- Deakin University Institute for Frontier Materials Geelong Victoria 3216 Australia
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences 189 Song Ling Rd Qingdao Shandong 266101 China
- Normandie Univ, ENSICAEN UNICAEN CNRS Laboratoire Catalyse et Spectrochimie 6 Marechal Juin 14050 Caen France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering Center for Catalytic Science and Technology University of Delaware Newark DE 19716 USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
36
|
Verma P, Le Brocq JJ, Raja R. Rational Design and Application of Covalent Organic Frameworks for Solar Fuel Production. Molecules 2021; 26:4181. [PMID: 34299457 PMCID: PMC8304392 DOI: 10.3390/molecules26144181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Harnessing solar energy and converting it into renewable fuels by chemical processes, such as water splitting and carbon dioxide (CO2) reduction, is a highly promising yet challenging strategy to mitigate the effects arising from the global energy crisis and serious environmental concerns. In recent years, covalent organic framework (COF)-based materials have gained substantial research interest because of their diversified architecture, tunable composition, large surface area, and high thermal and chemical stability. Their tunable band structure and significant light absorption with higher charge separation efficiency of photoinduced carriers make them suitable candidates for photocatalytic applications in hydrogen (H2) generation, CO2 conversion, and various organic transformation reactions. In this article, we describe the recent progress in the topology design and synthesis method of COF-based nanomaterials by elucidating the structure-property correlations for photocatalytic hydrogen generation and CO2 reduction applications. The effect of using various kinds of 2D and 3D COFs and strategies to control the morphology and enhance the photocatalytic activity is also summarized. Finally, the key challenges and perspectives in the field are highlighted for the future development of highly efficient COF-based photocatalysts.
Collapse
Affiliation(s)
- Priyanka Verma
- School of Chemistry, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, UK;
| | | | - Robert Raja
- School of Chemistry, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, UK;
| |
Collapse
|
37
|
Cusin L, Peng H, Ciesielski A, Samorì P. Chemical Conversion and Locking of the Imine Linkage: Enhancing the Functionality of Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021; 60:14236-14250. [PMID: 33491860 DOI: 10.1002/anie.202016667] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 11/05/2022]
Abstract
Imine-based covalent organic frameworks (COFs) are a widely studied class of functional, crystalline, and porous nanostructures which combine a relatively facile crystallization with tuneable compositions and porosities. However, the imine linkage constitutes an intrinsic limitation due to its reduced stability in harsh chemical conditions and its unsuitability for in-plane π-conjugation in COFs. Urgent solutions are therefore required in order to exploit the full potential of these materials, thereby enabling their technological application in electronics, sensing, and energy storage devices. In this context, the advent of a new generation of linkages derived from the chemical conversion and locking of the imine bond represents a cornerstone for the synthesis of new COFs. A marked increase in the framework robustness is in fact often combined with the incorporation of novel functionalities including, for some of these reactions, an extension of the in-plane π-conjugation. This Minireview describes the most enlightening examples of one-pot reactions and post-synthetic modifications towards the chemical locking of the imine bond in COFs.
Collapse
Affiliation(s)
- Luca Cusin
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg and CNRS, 8 alleé Gaspard Monge, 67000, Strasbourg, France
| | - Haijun Peng
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg and CNRS, 8 alleé Gaspard Monge, 67000, Strasbourg, France
| | - Artur Ciesielski
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg and CNRS, 8 alleé Gaspard Monge, 67000, Strasbourg, France
| | - Paolo Samorì
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg and CNRS, 8 alleé Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
38
|
Cusin L, Peng H, Ciesielski A, Samorì P. Chemical Conversion and Locking of the Imine Linkage: Enhancing the Functionality of Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Luca Cusin
- Institut de Science et d'Ingénierie Supramoléculaires Université de Strasbourg and CNRS 8 alleé Gaspard Monge 67000 Strasbourg France
| | - Haijun Peng
- Institut de Science et d'Ingénierie Supramoléculaires Université de Strasbourg and CNRS 8 alleé Gaspard Monge 67000 Strasbourg France
| | - Artur Ciesielski
- Institut de Science et d'Ingénierie Supramoléculaires Université de Strasbourg and CNRS 8 alleé Gaspard Monge 67000 Strasbourg France
| | - Paolo Samorì
- Institut de Science et d'Ingénierie Supramoléculaires Université de Strasbourg and CNRS 8 alleé Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
39
|
Liu W, Song S, Hao L, Wang C, Wu Q, Wang Z. Benzoxazine Porous Organic Polymer as an Efficient Solid-Phase Extraction Adsorbent for the Enrichment of Chlorophenols from Water and Honey Samples. J Chromatogr Sci 2021; 59:396-404. [PMID: 33367492 DOI: 10.1093/chromsci/bmaa106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/29/2020] [Accepted: 11/03/2020] [Indexed: 11/12/2022]
Abstract
Porous organic polymers have gained great research interest in the field of adsorption. A benzoxazine porous organic polymer (BoxPOP) constructed from p-phenylenediamine, 1,3,5-trihydroxybenzene and paraformaldehyde was fabricated and explored as an adsorbent for solid-phase extraction (SPE) of four chlorophenols from water and honey samples. Under the optimized SPE conditions, the response linearity for the analysis of the SPE extract of the chlorophenols by high performance liquid chromatography-diode array detector was observed in the range of 0.2-40.0 ng mL-1 for water samples and 5.0-400.0 ng g-1 for honey samples. The method detection limits of the analytes were 0.06-0.08 ng mL-1 for water samples and 1.5-2.0 ng g-1 for honey samples. The recoveries of the analytes from fortified water and honey samples ranged from 84.8 to 119.0% with the relative standard deviations below 8.4%. The results indicate that the prepared BoxPOP is an effective adsorbent for the chlorophenols. The established method provides an alternative approach for the determination of chlorophenols in real samples.
Collapse
Affiliation(s)
- Weihua Liu
- Department of Chemistry, College of Science, Hebei Agricultural University, 289 Lingyusi Street, Baoding 071001, China.,Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071001, China
| | - Shuangju Song
- Department of Chemistry, College of Science, Hebei Agricultural University, 289 Lingyusi Street, Baoding 071001, China
| | - Lin Hao
- Department of Chemistry, College of Science, Hebei Agricultural University, 289 Lingyusi Street, Baoding 071001, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, 289 Lingyusi Street, Baoding 071001, China
| | - Qiuhua Wu
- Department of Chemistry, College of Science, Hebei Agricultural University, 289 Lingyusi Street, Baoding 071001, China.,Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071001, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, 289 Lingyusi Street, Baoding 071001, China.,Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071001, China
| |
Collapse
|
40
|
Wang S, Da L, Hao J, Li J, Wang M, Huang Y, Li Z, Liu Z, Cao D. A Fully Conjugated 3D Covalent Organic Framework Exhibiting Band‐like Transport with Ultrahigh Electron Mobility. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shitao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Ling Da
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Jinsong Hao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Jin Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Mao Wang
- Department of Chemistry and Molecular Biology University of Gothenburg Kemigården 4 41296 Gothenburg Sweden
| | - Yan Huang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Zexu Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Zhiping Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Dapeng Cao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
41
|
Wang S, Da L, Hao J, Li J, Wang M, Huang Y, Li Z, Liu Z, Cao D. A Fully Conjugated 3D Covalent Organic Framework Exhibiting Band‐like Transport with Ultrahigh Electron Mobility. Angew Chem Int Ed Engl 2021; 60:9321-9325. [DOI: 10.1002/anie.202100464] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Shitao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Ling Da
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Jinsong Hao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Jin Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Mao Wang
- Department of Chemistry and Molecular Biology University of Gothenburg Kemigården 4 41296 Gothenburg Sweden
| | - Yan Huang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Zexu Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Zhiping Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Dapeng Cao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
42
|
Mallick A, Paul S, Ben T, Qiu S, Verpoort F, Roy S. Direct realization of an Operando Systems Chemistry Algorithm (OSCAL) for powering nanomotors. NANOSCALE 2021; 13:3543-3551. [PMID: 33514988 DOI: 10.1039/d0nr06849g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Systems chemistry focuses on emergent properties in a complex matter. To design and demonstrate such emergent properties like autonomous motion in nanomotors as an output of an Operando Systems Chemistry Algorithm (OSCAL), we employ a 2-component system comprising porous organic frameworks (POFs) and soft-oxometalates (SOMs). The OSCAL governs the motion of the nanocarpets by the coding and reading of information in an assembly/disassembly cascade switched on by a chemical stimulus. Assembly algorithm docks SOMs into the pores of the POFs of the nanocarpet leading to the encoding of supramolecular structural information in the SOM-POF hybrid nanocarpet. Input of a chemical fuel to the system induces a catalytic reaction producing propellant gases and switches on the disassembly of SOMs that are concomitantly released from the pores of the SOM-POF nanocarpets producing a ballast in the system as a read-out of the coded information acquired in the supramolecular assembly. The OSCAL governs the motion of the nanocarpets in steps. The assembly/disassembly of SOM-POFs, releasing SOMs from the pores of SOM-POFs induced by a catalytic reaction triggered by a chemical stimulus coupled with the evolution of gas are the input. The output is the autonomous linear motion of the SOM-POF nanocarpets resulting from the read-out of the input information. This work thus manifests the operation of a designed Systems Chemistry algorithm which sets supramolecularly assembled SOM-POF nanocarpets into autonomous ballistic motion.
Collapse
Affiliation(s)
- Apabrita Mallick
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science Education and Research, Kolkata, 741246, West Bengal, India.
| | - Shounik Paul
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science Education and Research, Kolkata, 741246, West Bengal, India.
| | - Teng Ben
- Department of Chemistry, Jilin University, Changchun 130012, China.
| | - Shilun Qiu
- Department of Chemistry, Jilin University, Changchun 130012, China.
| | - Francis Verpoort
- LOCOM, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 Wuhan, P.R. China and Ghent University - Global Campus Songdo, 119 Songdomunhwa-Ro, Ywonsu-Gu, Incheon, Republic of Korea. and National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russian Federation
| | - Soumyajit Roy
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science Education and Research, Kolkata, 741246, West Bengal, India.
| |
Collapse
|
43
|
Gao T, Su X, Xu H, Hu H, Zeng C, Gao Y. Construction of the Copper‐Functionalized Covalent Organic Framework Used as a Heterogeneous Catalyst for Click Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.202004130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tingjun Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Hainan University No 58, Renmin Avenue Haikou 570228 China
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Hainan University No 58, Renmin Avenue Haikou 570228 China
| | - Huanjun Xu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Hainan University No 58, Renmin Avenue Haikou 570228 China
- School of Science Qiongtai Normal University No 1, Xiaoji Road Haikou 571127 China
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Hainan University No 58, Renmin Avenue Haikou 570228 China
| | - Chaoyuan Zeng
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Hainan University No 58, Renmin Avenue Haikou 570228 China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Hainan University No 58, Renmin Avenue Haikou 570228 China
| |
Collapse
|
44
|
Haase F, Hirschle P, Freund R, Furukawa S, Ji Z, Wuttke S. Beyond Frameworks: Structuring Reticular Materials across Nano-, Meso-, and Bulk Regimes. Angew Chem Int Ed Engl 2020; 59:22350-22370. [PMID: 32449245 PMCID: PMC7756821 DOI: 10.1002/anie.201914461] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/08/2020] [Indexed: 12/14/2022]
Abstract
Reticular materials are of high interest for diverse applications, ranging from catalysis and separation to gas storage and drug delivery. These open, extended frameworks can be tailored to the intended application through crystal-structure design. Implementing these materials in application settings, however, requires structuring beyond their lattices, to interface the functionality at the molecular level effectively with the macroscopic world. To overcome this barrier, efforts in expressing structural control across molecular, nano-, meso-, and bulk regimes is the essential next step. In this Review, we give an overview of recent advances in using self-assembly as well as externally controlled tools to manufacture reticular materials over all the length scales. We predict that major research advances in deploying these two approaches will facilitate the use of reticular materials in addressing major needs of society.
Collapse
Affiliation(s)
- Frederik Haase
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University, Yoshida, Sakyo-kuKyoto606-8501Japan
| | - Patrick Hirschle
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
| | - Ralph Freund
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University, Yoshida, Sakyo-kuKyoto606-8501Japan
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto University, Katsura, Nishikyo-kuKyoto615-8510Japan
| | - Zhe Ji
- Department of ChemistryStanford UniversityStanfordCalifornia94305-5012USA
| | - Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
- BCMaterialsBasque Center for MaterialsUPV/EHU Science Park48940LeioaSpain
- IkerbasqueBasque Foundation for Science48013BilbaoSpain
| |
Collapse
|
45
|
Affiliation(s)
- Hai‐Yang Cheng
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
46
|
Liu Y, Wang S, Meng X, Ye Y, Song X, Liang Z, Zhao Y. Molecular Expansion for Constructing Porous Organic Polymers with High Surface Areas and Well‐Defined Nanopores. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuchuan Liu
- State Key Lab of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 P. R. China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Shun Wang
- State Key Lab of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 P. R. China
| | - Xianyu Meng
- State Key Lab of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 P. R. China
| | - Yu Ye
- State Key Lab of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 P. R. China
| | - Xiaowei Song
- State Key Lab of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 P. R. China
| | - Zhiqiang Liang
- State Key Lab of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| |
Collapse
|
47
|
Haase F, Hirschle P, Freund R, Furukawa S, Ji Z, Wuttke S. Mehr als nur ein Netzwerk: Strukturierung retikulärer Materialien im Nano‐, Meso‐ und Volumenbereich. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Frederik Haase
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Patrick Hirschle
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
| | - Ralph Freund
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Zhe Ji
- Department of Chemistry Stanford University Stanford Kalifornien 94305-5012 USA
| | - Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
- BCMaterials Basque Center for Materials UPV/EHU Science Park 48940 Leioa Spanien
- Ikerbasque Basque Foundation for Science 48013 Bilbao Spanien
| |
Collapse
|
48
|
Liu Y, Dikhtiarenko A, Xu N, Sun J, Tang J, Wang K, Xu B, Tong Q, Heeres HJ, He S, Gascon J, Fan Y. Triphenylphosphine-Based Covalent Organic Frameworks and Heterogeneous Rh-P-COFs Catalysts. Chemistry 2020; 26:12134-12139. [PMID: 32488940 PMCID: PMC7540510 DOI: 10.1002/chem.202002150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 11/25/2022]
Abstract
The synthesis of phosphine-based functional covalent organic frameworks (COFs) has attracted great attention recently. Herein, we present two examples of triphenylphosphine-based COFs (termed P-COFs) with well-defined crystalline structures, high specific surface areas, and good thermal stability. Furthermore, rhodium catalysts with these P-COFs as support material show high turnover frequency for the hydroformylation of olefins, as well as excellent recycling performance. This work not only extends the phosphine-based COF family, but also demonstrates their application in immobilizing homogeneous metal-based (e.g., Rh-phosphine) catalysts for application in heterogeneous catalysis.
Collapse
Affiliation(s)
- Yubing Liu
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Alla Dikhtiarenko
- KAUST Catalysis Center, Advanced Catalytic MaterialsKing Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Naizhang Xu
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Jiawei Sun
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Jie Tang
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Kaiqiang Wang
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Bolian Xu
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Qing Tong
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Hero Jan Heeres
- Green Chemical Reaction EngineeringUniversity of Groningen9747 AGGroningenThe Netherlands
| | - Songbo He
- Green Chemical Reaction EngineeringUniversity of Groningen9747 AGGroningenThe Netherlands
| | - Jorge Gascon
- KAUST Catalysis Center, Advanced Catalytic MaterialsKing Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Yining Fan
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| |
Collapse
|
49
|
Xue R, Gou H, Zheng Y, Zhang L, Liu Y, Rao H, Zhao G. A New Squaraine‐Linked Triazinyl‐Based Covalent Organic Frameworks: Preparation, Characterization and Application for Sensitive and Selective Determination of Fe
3+
Cations. ChemistrySelect 2020. [DOI: 10.1002/slct.202002232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rui Xue
- School of Chemistry and Chemical Engineering Lanzhou City University, Lanzhou 730070 Gansu P. R. China
| | - Hao Gou
- School of Chemistry and Chemical Engineering Lanzhou City University, Lanzhou 730070 Gansu P. R. China
| | - Yanping Zheng
- School of Chemistry and Chemical Engineering Lanzhou City University, Lanzhou 730070 Gansu P. R. China
| | - Li Zhang
- School of Chemistry and Chemical Engineering Lanzhou City University, Lanzhou 730070 Gansu P. R. China
| | - Yinsheng Liu
- School of Chemistry and Chemical Engineering Lanzhou City University, Lanzhou 730070 Gansu P. R. China
| | - Honghong Rao
- School of Chemistry and Chemical Engineering Lanzhou City University, Lanzhou 730070 Gansu P. R. China
| | - Guohu Zhao
- School of Chemistry and Chemical Engineering Lanzhou City University, Lanzhou 730070 Gansu P. R. China
| |
Collapse
|
50
|
Liang L, Qiu Y, Wang WD, Han J, Luo Y, Yu W, Yin G, Wang Z, Zhang L, Ni J, Niu J, Sun J, Ma T, Wang W. Non‐Interpenetrated Single‐Crystal Covalent Organic Frameworks. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lin Liang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| | - Yi Qiu
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| | - Jing Han
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| | - Yi Luo
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| | - Guan‐Lin Yin
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| | - Zhi‐Peng Wang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| | - Lei Zhang
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Jianwei Ni
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| | - Jing Niu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Tianqiong Ma
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 China
| |
Collapse
|