1
|
Sturm JS, Millanvois A, Bahri C, Golz P, Limberg N, Wiesner A, Riedel S. Streamlining Thionyl Tetrafluoride (SOF 4) and Pentafluoro-Oxosulfate [OSF 5] - Anions Syntheses. Chemistry 2024; 30:e202403365. [PMID: 39352264 DOI: 10.1002/chem.202403365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Indexed: 11/13/2024]
Abstract
A one pot room temperature synthesis of thionyl tetrafluoride (SOF4) from elemental fluorine (F2) and thionyl fluoride (SOF2) is reported. The selective decagram scale process (100 mmol) allows a quantitative preparation of SOF4 with high purity. The solid-state structure has also been elucidated and compared with the reported gas phase one. The use of this reagent for the formation of the emerging pentafluorooxosulfate [cat][OSF5] anions led to the preparation of multiple ion-pairs (cat=Ag, NEt3Me, PPN, PPh4) in different organic solvents. The SuFEx reservoir ability of this anion was studied and by tuning the solvent system, the reactivity of pure thionyl tetrafluoride was observed using Ag[OSF5] in THF and acetone.
Collapse
Affiliation(s)
- Johanna S Sturm
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie -, Anorganische Chemie Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Alexandre Millanvois
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie -, Anorganische Chemie Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Carlota Bahri
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie -, Anorganische Chemie Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Paul Golz
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie -, Anorganische Chemie Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Niklas Limberg
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie -, Anorganische Chemie Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Anja Wiesner
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie -, Anorganische Chemie Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Sebastian Riedel
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie -, Anorganische Chemie Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| |
Collapse
|
2
|
Shu D, Fayad E, Abu Ali OA, Qin HL. Discovery of A Synthetic Hub for Regio- and Stereoselective Construction of Triazolyl Vinyl Sulfonyl Fluorides. J Org Chem 2024; 89:16969-16974. [PMID: 39482943 DOI: 10.1021/acs.joc.4c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
A new sulfonyl fluoride reagent 1-bromobut-3-ene-1,3-disulfonyl difluoride (BEDF) was developed. This unique reagent possesses two clickable functionalities to be used for both azide-alkyne cycloaddition click and SuFEx click reactions. This new reagent was applied for the regioselective construction of a class of novel triazolyl vinyl sulfonyl fluorides in which the C-4 position 1H-1,2,3-triazoles were functionalized with vinyl sulfonyl fluorides of exclusively E-configuration.
Collapse
Affiliation(s)
- Dengfeng Shu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
3
|
Zheng SZ, Fayad E, Alshaye NA, Qin HL. Stereo- and Regioselective Installation of Vinyl Sulfonyl Fluoride onto Indoles without Transition-Metal Catalyst. J Org Chem 2024; 89:14564-14570. [PMID: 39315771 DOI: 10.1021/acs.joc.4c01689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Herein, we developed a practical method for synthesizing a class of novel and highly valuable indolyl vinyl sulfonyl fluorides. This protocol has carved out a path for constructing a broad range of vinyl sulfonyl fluorinated indoles with exclusive stereo- and regioselectivity through the Friedel-Crafts/elimination reaction without any transition-metal catalyst. This transformation features mild conditions, high efficiency, excellent selectivity, and rich substrate compatibility, highlighting its significant value in medicinal chemistry and many related disciplines.
Collapse
Affiliation(s)
- Shu-Zhen Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Najla A Alshaye
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
4
|
Wang SC, Zhou X, Li YX, Zhang CY, Zhang ZY, Xiong YS, Lu G, Dong J, Weng J. Enabling Modular Click Chemistry Library through Sequential Ligations of Carboxylic Acids and Amines. Angew Chem Int Ed Engl 2024; 63:e202410699. [PMID: 38943043 DOI: 10.1002/anie.202410699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
High-throughput synthesis and screening of chemical libraries play pivotal roles in drug discovery. Click chemistry has emerged as a powerful strategy for constructing highly modular chemical libraries. However, the development of new click reactions and unlocking new clickable building blocks remain exceedingly challenging. Herein, we describe a double-click strategy that enables the sequential ligations of widely available carboxylic acids and amines with fluorosulfuryl isocyanate (FSO2NCO) via a modular amidation/SuFEx (sulfur-fluoride exchange) process. This method provides facile access to chemical libraries of N-fluorosulfonyl amides (RCONHSO2F) and N-acylsulfamides (RCONHSO2NR'R'') in near-quantitative yields under simple and practical conditions. The robustness and efficiency of this double click strategy is showcased by the facile construction of chemical libraries in 96-well microtiter plates from a large number of carboxylic acids and amines. Preliminary biological activity screening reveals that some compounds exhibit high antimicrobial activities against Gram-positive bacterium S. aureus and drug-resistant MRSA (MIC up to 6.25 μg ⋅ mL-1). These results provide compelling evidence for the potential application of modular click chemistry library as an enabling technology in high-throughput medicinal chemistry.
Collapse
Affiliation(s)
- Sheng-Cai Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Xiang Zhou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Ying-Xian Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Chun-Yan Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Zi-Yan Zhang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Yan-Shi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Gui Lu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Jiajia Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiang Weng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| |
Collapse
|
5
|
Hou W, Zhang Y, Huang F, Chen W, Gu Y, Wang Y, Pang J, Dong H, Pan K, Zhang S, Ma P, Xu H. Bioinspired Selenium-Nitrogen Exchange (SeNEx) Click Chemistry Suitable for Nanomole-Scale Medicinal Chemistry and Bioconjugation. Angew Chem Int Ed Engl 2024; 63:e202318534. [PMID: 38343199 DOI: 10.1002/anie.202318534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Click chemistry is a powerful molecular assembly strategy for rapid functional discovery. The development of click reactions with new connecting linkage is of great importance for expanding the click chemistry toolbox. We report the first selenium-nitrogen exchange (SeNEx) click reaction between benzoselenazolones and terminal alkynes (Se-N to Se-C), which is inspired by the biochemical SeNEx between Ebselen and cysteine (Cys) residue (Se-N to Se-S). The formed selenoalkyne connection is readily elaborated, thus endowing this chemistry with multidimensional molecular diversity. Besides, this reaction is modular, predictable, and high-yielding, features fast kinetics (k2≥14.43 M-1 s-1), excellent functional group compatibility, and works well at miniaturization (nanomole-scale), opening up many interesting opportunities for organo-Se synthesis and bioconjugation, as exemplified by sequential click chemistry (coupled with ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) and sulfur-fluoride exchange (SuFEx)), selenomacrocycle synthesis, nanomole-scale synthesis of Se-containing natural product library and DNA-encoded library (DEL), late-stage peptide modification and ligation, and multiple functionalization of proteins. These results indicated that SeNEx is a useful strategy for new click chemistry developments, and the established SeNEx chemistry will serve as a transformative platform in multidisciplinary fields such as synthetic chemistry, material science, chemical biology, medical chemistry, and drug discovery.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Fuchao Huang
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wanting Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Jiacheng Pang
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hewei Dong
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kangyin Pan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Shuning Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 201210, Shanghai, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 201210, Shanghai, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| |
Collapse
|
6
|
Chao Y, Krishna A, Subramaniam M, Liang D, Pujari SP, Sue AC, Li G, Miloserdov FM, Zuilhof H. Sulfur-Phenolate Exchange: SuFEx-Derived Dynamic Covalent Reactions and Degradation of SuFEx Polymers. Angew Chem Int Ed Engl 2022; 61:e202207456. [PMID: 35819248 PMCID: PMC9540147 DOI: 10.1002/anie.202207456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/15/2022]
Abstract
The products of the SuFEx reaction between sulfonimidoyl fluorides and phenols, sulfonimidates, are shown to display dynamic covalent chemistry with other phenols. This reaction was shown to be enantiospecific, finished in minutes at room temperature in high yields, and useful for both asymmetric synthesis and sustainable polymer production. Its wide scope further extends the usefulness of SuFEx and related click chemistries.
Collapse
Affiliation(s)
- Yang Chao
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
| | - Akash Krishna
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
| | - Muthusamy Subramaniam
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
| | - Dong‐Dong Liang
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
- Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Sidharam P. Pujari
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
| | | | - Guanna Li
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
- Biobased Chemistry and TechnologyWageningen UniversityBornse Weilanden 96708WGWageningenThe Netherlands
| | - Fedor M. Miloserdov
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
| | - Han Zuilhof
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
- Department of Chemical and Materials EngineeringFaculty of EngineeringKing Abdulaziz University21589JeddahSaudi Arabia
| |
Collapse
|
7
|
Wan H, Xu Q, Wu J, Lian C, Liu H, Zhang B, He J, Chen D, Lu J. SuFEx‐Enabled Elastic Polysulfates for Efficient Removal of Radioactive Iodomethane and Polar Aprotic Organics through Weak Intermolecular Forces. Angew Chem Int Ed Engl 2022; 61:e202208577. [DOI: 10.1002/anie.202208577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Haibo Wan
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou Jiangsu 215123 China
| | - Qingfeng Xu
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou Jiangsu 215123 China
| | - Jiacheng Wu
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou Jiangsu 215123 China
| | - Cheng Lian
- School of Chemistry and Molecular Engineering East China University of Science and Technology China
| | - Honglai Liu
- School of Chemistry and Molecular Engineering East China University of Science and Technology China
| | - Bing Zhang
- School of Renewable Energy North China Electric Power University China
| | - Jinghui He
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou Jiangsu 215123 China
| | - Dongyun Chen
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou Jiangsu 215123 China
| | - Jianmei Lu
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
8
|
Chao Y, Krishna A, Subramaniam M, Liang D, Pujari SP, Sue AC, Li G, Miloserdov FM, Zuilhof H. Sulfur–Phenolate Exchange: SuFEx‐Derived Dynamic Covalent Reactions and Degradation of SuFEx Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yang Chao
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Akash Krishna
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Muthusamy Subramaniam
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Dong‐Dong Liang
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Sidharam P. Pujari
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | | | - Guanna Li
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- Biobased Chemistry and Technology Wageningen University Bornse Weilanden 9 6708WG Wageningen The Netherlands
| | - Fedor M. Miloserdov
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Han Zuilhof
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- Department of Chemical and Materials Engineering Faculty of Engineering King Abdulaziz University 21589 Jeddah Saudi Arabia
| |
Collapse
|
9
|
Wan H, Xu Q, Wu J, Lian C, Liu H, Zhang B, He J, Chen D, Lu JM. SuFEx‐enabled Elastic Polysulfates for Efficient Removal of Radioactive Iodomethane and Polar Aprotic Organics through Weak Intermolecular Forces. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Haibo Wan
- Soochow University College of Chemistry Chemical Engineering and Materials Science College of Chemistry Chemical Engineering and Materials Science CHINA
| | - Qingfeng Xu
- Soochow University College of Chemistry Chemical Engineering and Materials Science College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Jiacheng Wu
- Soochow University College of Chemistry Chemical Engineering and Materials Science College of Chemistry Chemical Engineering and Materials Science CHINA
| | - Cheng Lian
- East China University of Science and Technology School of Chemistry and Molecular Engineering School of Chemistry and Molecular Engineering CHINA
| | - Honglai Liu
- East China University of Science and Technology School of Chemistry and Molecular Engineering School of Chemistry and Molecular Engineering CHINA
| | - Bing Zhang
- North China Electric Power University School of Renewable Energy School of Renewable Energy CHINA
| | - Jinghui He
- Soochow University College of Chemistry Chemical Engineering and Materials Science College of Chemistry Chemical Engineering and Materials Science CHINA
| | - Dongyun Chen
- Soochow University College of Chemistry Chemical Engineering and Materials Science College of Chemistry Chemical Engineering and Materials Science CHINA
| | - Jian-Mei Lu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science No.199 Renai RoadSuzhou Industrial Park 215123 Suzhou CHINA
| |
Collapse
|
10
|
Huang Y, Zhao X, Chen D, Zheng Y, Luo J, Huang S. Access to Sulfocoumarins via Three‐Component Reaction of β‐Keto Sulfonyl Fluorides, Arynes, and DMF. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuan Huang
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Xueyan Zhao
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Dengfeng Chen
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Yu Zheng
- Nanjing Forestry University Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources Nanjing CHINA
| | - Jinyue Luo
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Shenlin Huang
- Nanjing Forestry University College of Chemical Engineering No. 159, Longpan Road 210037 Nanjing CHINA
| |
Collapse
|
11
|
Magre M, Ni S, Cornella J. (Hetero)aryl-S VI Fluorides: Synthetic Development and Opportunities. Angew Chem Int Ed Engl 2022; 61:e202200904. [PMID: 35303387 PMCID: PMC9322316 DOI: 10.1002/anie.202200904] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/12/2022]
Abstract
(Hetero)arylsulfur compounds where the S atom is in the oxidation state VI represent a large percentage of the molecular functionalities present in organic chemistry. More specifically, (hetero)aryl-SVI fluorides have recently received enormous attention because of their potential as chemical biology probes, as a result of their reactivity in a simple, modular, and efficient manner. Whereas the synthesis and application of the level 1 fluorination at SVI atoms (sulfonyl and sulfonimidoyl fluorides) have been widely studied and reviewed, the synthetic strategies towards higher levels of fluorination (levels 2 to 5) are somewhat more limited. This Minireview evaluates and summarizes the progress in the synthesis of highly fluorinated aryl-SVI compounds at all levels, discussing synthetic strategies, reactivity, the advantages and disadvantages of the synthetic procedures, the proposed mechanisms, and the potential upcoming opportunities.
Collapse
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Shengyang Ni
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Josep Cornella
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
12
|
Magre M, Ni S, Cornella J. (Hetero)aryl‒S(VI) Fluorides: Synthetic Development and Opportunities. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1Muelheim an der Ruhr 45470 Muelheim an der Ruhr GERMANY
| | - Shengyang Ni
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1Muelheim an der Ruhr 45470 Muelheim an der Ruhr GERMANY
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| |
Collapse
|
13
|
Smedley CJ, Homer JA, Gialelis TL, Barrow AS, Koelln RA, Moses JE. Accelerated SuFEx Click Chemistry For Modular Synthesis. Angew Chem Int Ed Engl 2022; 61:e202112375. [PMID: 34755436 PMCID: PMC8867595 DOI: 10.1002/anie.202112375] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/20/2021] [Indexed: 01/23/2023]
Abstract
SuFEx click chemistry is a powerful method designed for the selective, rapid, and modular synthesis of functional molecules. Classical SuFEx reactions form stable S-O linkages upon exchange of S-F bonds with aryl silyl-ether substrates, and while near-perfect in their outcome, are sometimes disadvantaged by relatively high catalyst loadings and prolonged reaction times. We herein report the development of accelerated SuFEx click chemistry (ASCC), an improved SuFEx method for the efficient and catalytic coupling of aryl and alkyl alcohols with a range of SuFExable hubs. We demonstrate Barton's hindered guanidine base (2-tert-butyl-1,1,3,3-tetramethylguanidine; BTMG) as a superb SuFEx catalyst that, when used in synergy with silicon additive hexamethyldisilazane (HMDS), yields stable S-O bond linkages in a single step; often within minutes. The powerful combination of BTMG and HMDS reagents allows for catalyst loadings as low as 1.0 mol % and, in congruence with click-principles, provides a scalable method that is safe, efficient, and practical for modular synthesis. ASSC expands the number of accessible SuFEx products and will find significant application in organic synthesis, medicinal chemistry, chemical biology, and materials science.
Collapse
Affiliation(s)
| | - Joshua A. Homer
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | - Andrew S. Barrow
- L. I. M. S., Science Dr, Bundoora, Melbourne, VIC 3086, Australia
| | - Rebecca A. Koelln
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - John E. Moses
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA,
| |
Collapse
|
14
|
Smedley CJ, Homer JA, Gialelis TL, Barrow AS, Koelln RA, Moses JE. Accelerated SuFEx Click Chemistry For Modular Synthesis**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Joshua A. Homer
- Cancer Center Cold Spring Harbor Laboratory 1 Bungtown Road Cold Spring Harbor NY 11724 USA
| | | | | | - Rebecca A. Koelln
- Cancer Center Cold Spring Harbor Laboratory 1 Bungtown Road Cold Spring Harbor NY 11724 USA
| | - John E. Moses
- Cancer Center Cold Spring Harbor Laboratory 1 Bungtown Road Cold Spring Harbor NY 11724 USA
| |
Collapse
|
15
|
Tilby MJ, Dewez DF, Hall A, Martínez Lamenca C, Willis MC. Exploiting Configurational Lability in Aza‐Sulfur Compounds for the Organocatalytic Enantioselective Synthesis of Sulfonimidamides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael J. Tilby
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Damien F. Dewez
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | | | | | - Michael C. Willis
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
16
|
Tilby MJ, Dewez DF, Hall A, Martínez Lamenca C, Willis MC. Exploiting Configurational Lability in Aza-Sulfur Compounds for the Organocatalytic Enantioselective Synthesis of Sulfonimidamides. Angew Chem Int Ed Engl 2021; 60:25680-25687. [PMID: 34558788 PMCID: PMC9298307 DOI: 10.1002/anie.202109160] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/20/2021] [Indexed: 11/19/2022]
Abstract
Methods for establishing the absolute configuration of sulfur‐stereogenic aza‐sulfur derivatives are scarce, often relying on cumbersome protocols and a limited pool of enantioenriched starting materials. We have addressed this by exploiting, for the first time, a feature of sulfonimidamides in which it is possible for tautomeric structures to also be enantiomeric. Such sulfonimidamides can readily generate prochiral ions, which we have exploited in an enantioselective alkylation process. Selectivity is achieved using a readily prepared bis‐quaternized phase‐transfer catalyst. The overall process establishes the capability of configurationally labile aza‐sulfur species to be used in asymmetric catalysis.
Collapse
Affiliation(s)
- Michael J Tilby
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Damien F Dewez
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Adrian Hall
- UCB Biopharma, 1420, Braine-l'Alleud, Belgium
| | | | - Michael C Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
17
|
Kim H, Zhao J, Bae J, Klivansky LM, Dailing EA, Liu Y, Cappiello JR, Sharpless KB, Wu P. Chain-Growth Sulfur(VI) Fluoride Exchange Polycondensation: Molecular Weight Control and Synthesis of Degradable Polysulfates. ACS CENTRAL SCIENCE 2021; 7:1919-1928. [PMID: 34841062 PMCID: PMC8614101 DOI: 10.1021/acscentsci.1c01015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 05/05/2023]
Abstract
Sulfur(VI) fluoride exchange (SuFEx) click chemistry has offered a facile and reliable approach to produce polysulfates and polysulfonates. However, the current SuFEx polymerization methods lack precise control of target molecular weight and dispersity. Herein, we report the first chain-growth SuFEx polycondensation process by exploiting the unique reactivity and selectivity of S-F bonds under SuFEx catalysis. Given the higher reactivity of iminosulfur oxydifluoride versus fluorosulfate, the chain-growth SuFEx polycondensation is realized by using an iminosulfur oxydifluoride-containing compound as the reactive chain initiator and deactivated AB-type aryl silyl ether-fluorosulfates bearing an electron-withdrawing group as monomers. When 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) was utilized as the polymerization catalyst, precise control over the polymer molecular weight and polydispersity was achieved. The resulting polymers possess great thermal stability but are easily degradable under mild acidic and basic conditions.
Collapse
Affiliation(s)
- Hyunseok Kim
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jiayu Zhao
- Department
of NanoEngineering, University of California
San Diego, La Jolla, California 92093, United States
| | - Jinhye Bae
- Department
of NanoEngineering, University of California
San Diego, La Jolla, California 92093, United States
| | - Liana M. Klivansky
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Eric A. Dailing
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Yi Liu
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - John R. Cappiello
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - K. Barry Sharpless
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Peng Wu
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| |
Collapse
|
18
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
19
|
Bui TT, Tran VH, Kim H. Visible‐Light‐Mediated Synthesis of Sulfonyl Fluorides from Arylazo Sulfones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tien Tan Bui
- Department of Chemistry Iowa State University Ames Iowa 50011 United States
- Department of Nuclear Medicine Molecular Imaging & Therapeutic Medicine Research Center Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
| | - Van Hieu Tran
- Department of Nuclear Medicine Molecular Imaging & Therapeutic Medicine Research Center Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
| | - Hee‐Kwon Kim
- Department of Nuclear Medicine Molecular Imaging & Therapeutic Medicine Research Center Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University- Biomedical Research Institute of Jeonbuk National University Hospital Jeonju 54907 Republic of Korea
| |
Collapse
|
20
|
Sun S, Gao B, Chen J, Sharpless KB, Dong J. Fluorosulfuryl Isocyanate Enabled SuFEx Ligation of Alcohols and Amines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shoujun Sun
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences University of Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 P. R. China
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Junyu Chen
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences University of Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - K. Barry Sharpless
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Jiajia Dong
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences University of Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 P. R. China
| |
Collapse
|
21
|
Sun S, Gao B, Chen J, Sharpless KB, Dong J. Fluorosulfuryl Isocyanate Enabled SuFEx Ligation of Alcohols and Amines. Angew Chem Int Ed Engl 2021; 60:21195-21199. [PMID: 34259368 PMCID: PMC9881234 DOI: 10.1002/anie.202105583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/21/2021] [Indexed: 01/31/2023]
Abstract
Fluorosulfuryl isocyanate (FSI, FSO2 NCO) is established as a reliable bis-electrophilic linker for stepwise attachment of an alcohol bearing module to an amine bearing module and thence a new module RO-C(=O)-NH-SO2 -NR'R'' is created. FSI's isocyanate motif fuses directly and quickly with alcohols and phenols, affording fluorosulfuryl carbamates in nearly quantitative yield. A new reagent and process to deliver the FSI-derived fluorosulfuryl carbamate fragment to amines are also developed. The resulting SVI -F motifs from step-1 are remarkably stable, given the great structural complexities in diverse products. In the step-2 reaction with amines, the best yield of the S-N linked products arise with water alone. This "on water" interfacial reactivity phenomenon is crucial, revealing the latent reactivity of SVI -F probe for potential covalent capture of proteins in vivo which is important in today's drug discovery. The scope of the SuFEx chemistry is largely expanded thereby and the facile entry to these phosphate-like connections should prove useful to click chemistry across diverse fields.
Collapse
Affiliation(s)
- Shoujun Sun
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences. University of Chinese Academy of Sciences. 345 Ling-Ling Road, Shanghai 200032 (P. R. China)
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University. Changsha, Hunan 410082 (P. R. China)
| | - Junyu Chen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences. University of Chinese Academy of Sciences. 345 Ling-Ling Road, Shanghai 200032 (P. R. China)
| | - K. Barry Sharpless
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jiajia Dong
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences. University of Chinese Academy of Sciences. 345 Ling-Ling Road, Shanghai 200032 (P. R. China)
| |
Collapse
|
22
|
Wei M, Liang D, Cao X, Luo W, Ma G, Liu Z, Li L. A Broad‐Spectrum Catalytic Amidation of Sulfonyl Fluorides and Fluorosulfates**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingjie Wei
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Dacheng Liang
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Xiaohui Cao
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 P. R. China
| | - Wenjun Luo
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Guojian Ma
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Zeyuan Liu
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Le Li
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| |
Collapse
|
23
|
Wei M, Liang D, Cao X, Luo W, Ma G, Liu Z, Li L. A Broad-Spectrum Catalytic Amidation of Sulfonyl Fluorides and Fluorosulfates*. Angew Chem Int Ed Engl 2021; 60:7397-7404. [PMID: 33337566 DOI: 10.1002/anie.202013976] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/30/2020] [Indexed: 12/18/2022]
Abstract
A broad-spectrum, catalytic method has been developed for the synthesis of sulfonamides and sulfamates. With the activation by the combination of a catalytic amount of 1-hydroxybenzotriazole (HOBt) and silicon additives, amidations of sulfonyl fluorides and fluorosulfates proceeded smoothly and excellent yields were generally obtained (87-99 %). Noticeably, this protocol is particularly efficient for sterically hindered substrates. Catalyst loading is generally low and only 0.02 mol % of catalyst is required for the multidecagram-scale synthesis of an amantadine derivative. In addition, the potential of this method in medicinal chemistry has been demonstrated by the synthesis of the marketed drug Fedratinib via a key intermediate sulfonyl fluoride 13. Since a large number of amines are commercially available, this route provides a facile entry to access Fedratinib analogues for biological screening.
Collapse
Affiliation(s)
- Mingjie Wei
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dacheng Liang
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Wenjun Luo
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Guojian Ma
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zeyuan Liu
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Le Li
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
24
|
Liang DD, Streefkerk DE, Jordaan D, Wagemakers J, Baggerman J, Zuilhof H. Silicon-Free SuFEx Reactions of Sulfonimidoyl Fluorides: Scope, Enantioselectivity, and Mechanism. Angew Chem Int Ed Engl 2020; 59:7494-7500. [PMID: 32157791 PMCID: PMC7216998 DOI: 10.1002/anie.201915519] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/30/2020] [Indexed: 12/20/2022]
Abstract
SuFEx reactions, in which an S−F moiety reacts with a silyl‐protected phenol, have been developed as powerful click reactions. In the current paper we open up the potential of SuFEx reactions as enantioselective reactions, analyze the role of Si and outline the mechanism of this reaction. As a result, fast, high‐yielding, “Si‐free” and enantiospecific SuFEx reactions of sulfonimidoyl fluorides have been developed, and their mechanism shown, by both experimental and theoretical methods, to yield chiral products.
Collapse
Affiliation(s)
- Dong-Dong Liang
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Dieuwertje E Streefkerk
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Daan Jordaan
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Jorden Wagemakers
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Jacob Baggerman
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands.,School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Liang D, Streefkerk DE, Jordaan D, Wagemakers J, Baggerman J, Zuilhof H. Silicon‐Free SuFEx Reactions of Sulfonimidoyl Fluorides: Scope, Enantioselectivity, and Mechanism. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915519] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dong‐Dong Liang
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Dieuwertje E. Streefkerk
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Daan Jordaan
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Jorden Wagemakers
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Jacob Baggerman
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Han Zuilhof
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- School of Pharmaceutical Science and TechnologyTianjin University 92 Weijin Road Tianjin China
- Department of Chemical and Materials EngineeringFaculty of EngineeringKing Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
26
|
Huang YM, Wang SM, Leng J, Moku B, Zhao C, Alharbi NS, Qin HL. Converting (E)-(Hetero)arylethanesulfonyl Fluorides to (Z)-(Hetero)arylethanesulfonyl Fluorides Under Light Irradiation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yu-Mei Huang
- State Key Laboratory of Silicate Materials for Architectures; and; School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| | - Shi-Meng Wang
- State Key Laboratory of Silicate Materials for Architectures; and; School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| | - Jing Leng
- State Key Laboratory of Silicate Materials for Architectures; and; School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| | - Balakrishna Moku
- State Key Laboratory of Silicate Materials for Architectures; and; School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| | - Chuang Zhao
- State Key Laboratory of Silicate Materials for Architectures; and; School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| | - Njud S. Alharbi
- Biotechnology Research group; Department of Biological Sciences; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and; School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| |
Collapse
|
27
|
Liu F, Wang H, Li S, Bare GAL, Chen X, Wang C, Moses JE, Wu P, Sharpless KB. Biocompatible SuFEx Click Chemistry: Thionyl Tetrafluoride (SOF 4 )-Derived Connective Hubs for Bioconjugation to DNA and Proteins. Angew Chem Int Ed Engl 2019; 58:8029-8033. [PMID: 30998840 PMCID: PMC6546515 DOI: 10.1002/anie.201902489] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 11/08/2022]
Abstract
We report here the development of a suite of biocompatible SuFEx transformations from the SOF4 -derived iminosulfur oxydifluoride hub in aqueous buffer conditions. These biocompatible SuFEx reactions of iminosulfur oxydifluorides (R-N=SOF2 ) with primary amines give sulfamides (8 examples, up to 98 %), while the reaction with secondary amines furnish sulfuramidimidoyl fluoride products (8 examples, up to 97 %). Likewise, under mild buffered conditions, phenols react with the iminosulfur oxydifluorides (Ar-N=SOF2 ) to produce sulfurofluoridoimidates (13 examples, up to 99 %), which can themselves be further modified by nucleophiles. These transformations open the potential for asymmetric and trisubstituted linkages projecting from the sulfur(VI) center, including versatile S-N and S-O connectivity (9 examples, up to 94 %). Finally, the SuFEx bioconjugation of iminosulfur oxydifluorides to amine-tagged single-stranded DNA and to BSA protein demonstrate the potential of SOF4 -derived SuFEx click chemistry in biological applications.
Collapse
Affiliation(s)
- Feng Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Chemistry, Fudan University, Shanghai, 200438, P. R. China
| | - Hua Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Suhua Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Grant A L Bare
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xuemin Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - John E Moses
- La Trobe Institute For Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
28
|
Liu F, Wang H, Li S, Bare GAL, Chen X, Wang C, Moses JE, Wu P, Sharpless KB. Biocompatible SuFEx Click Chemistry: Thionyl Tetrafluoride (SOF
4
)‐Derived Connective Hubs for Bioconjugation to DNA and Proteins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902489] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Feng Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 P. R. China
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
- Department of Chemistry Fudan University Shanghai 200438 P. R. China
| | - Hua Wang
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| | - Suhua Li
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
- School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Grant A. L. Bare
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| | - Xuemin Chen
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Chu Wang
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - John E. Moses
- La Trobe Institute For Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Peng Wu
- Department of Molecular Medicine The Scripps Research Institute La Jolla CA 92037 USA
| | - K. Barry Sharpless
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
29
|
Smedley CJ, Zheng Q, Gao B, Li S, Molino A, Duivenvoorden HM, Parker BS, Wilson DJD, Sharpless KB, Moses JE. Bifluoride Ion Mediated SuFEx Trifluoromethylation of Sulfonyl Fluorides and Iminosulfur Oxydifluorides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813761] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Christopher J. Smedley
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Qinheng Zheng
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Bing Gao
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Suhua Li
- School of Chemistry Sun Yat-Sen University 135 Xingang Xi Road Guangzhou 510275 P. R. China
| | - Andrew Molino
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | | | - Belinda S. Parker
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - David J. D. Wilson
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - K. Barry Sharpless
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - John E. Moses
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| |
Collapse
|
30
|
Smedley CJ, Zheng Q, Gao B, Li S, Molino A, Duivenvoorden HM, Parker BS, Wilson DJD, Sharpless KB, Moses JE. Bifluoride Ion Mediated SuFEx Trifluoromethylation of Sulfonyl Fluorides and Iminosulfur Oxydifluorides. Angew Chem Int Ed Engl 2019; 58:4552-4556. [DOI: 10.1002/anie.201813761] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/03/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Christopher J. Smedley
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Qinheng Zheng
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Bing Gao
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Suhua Li
- School of Chemistry Sun Yat-Sen University 135 Xingang Xi Road Guangzhou 510275 P. R. China
| | - Andrew Molino
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | | | - Belinda S. Parker
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - David J. D. Wilson
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - K. Barry Sharpless
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - John E. Moses
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| |
Collapse
|
31
|
Zhang X, Moku B, Leng J, Rakesh KP, Qin HL. 2-Azidoethane-1-sulfonylfluoride (ASF): A VersatileBis-clickable Reagent for SuFEx and CuAAC Click Reactions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan 430070 China
| | - Balakrishna Moku
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan 430070 China
| | - Jing Leng
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan 430070 China
| | - K. P. Rakesh
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan 430070 China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan 430070 China
| |
Collapse
|
32
|
Martín‐Gago P, Olsen CA. Arylfluorosulfate-Based Electrophiles for Covalent Protein Labeling: A New Addition to the Arsenal. Angew Chem Int Ed Engl 2018; 58:957-966. [PMID: 30024079 PMCID: PMC6518939 DOI: 10.1002/anie.201806037] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/18/2018] [Indexed: 01/15/2023]
Abstract
Selective covalent modification of a targeted protein is a powerful tool in chemical biology and drug discovery, with applications ranging from identification and characterization of proteins and their functions to the development of targeted covalent inhibitors. Most covalent ligands contain an affinity motif and an electrophilic warhead that reacts with a nucleophilic residue of the targeted protein. Because the electrophilic warhead is prone to react and modify off‐target nucleophiles, its reactivity should be balanced carefully to maximize target selectivity. Arylfluorosulfates have recently emerged as latent electrophiles for selective labeling of context‐specific tyrosine and lysine residues in protein pockets. Here, we review the recent but intense introduction of arylfluorosulfates into the arsenal of available warheads for selective covalent modification of proteins. We highlight the untapped potential of this functional group for use in chemical biology and drug discovery.
Collapse
Affiliation(s)
- Pablo Martín‐Gago
- Center for Biopharmaceuticals &, Department of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals &, Department of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| |
Collapse
|
33
|
Martín‐Gago P, Olsen CA. Arylfluorsulfat‐basierte Elektrophile für die kovalente Proteinmarkierung. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pablo Martín‐Gago
- Center for Biopharmaceuticals &, Department of Drug Design and PharmacologyUniversität Kopenhagen Universitetsparken 2 2100 Kopenhagen Dänemark
| | - Christian A. Olsen
- Center for Biopharmaceuticals &, Department of Drug Design and PharmacologyUniversität Kopenhagen Universitetsparken 2 2100 Kopenhagen Dänemark
| |
Collapse
|
34
|
Randall JD, Eyckens DJ, Stojcevski F, Francis PS, Doeven EH, Barlow AJ, Barrow AS, Arnold CL, Moses JE, Henderson LC. Modification of Carbon Fibre Surfaces by Sulfur-Fluoride Exchange Click Chemistry. Chemphyschem 2018; 19:3176-3181. [PMID: 30253016 DOI: 10.1002/cphc.201800789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 01/28/2023]
Abstract
Technologies that enable surface modification are in high demand and are critical for the implementation of new functional materials and devices. Here, we describe the first modification of a carbon surface (in this case carbon fiber) using the sulfur-fluoride exchange (SuFEx) reaction. The parent sulfur (VI) fluoride moiety can be installed directly to the surface via electrochemical deposition of the fluorosulfate phenyldiazonium tetrafluoroborate salt, or by 'SuFExing' a phenol on the carbon surface followed by treatment of the material with SO2 F2 ; similar to a 'graft to' or 'graft from' functionalization approach. We demonstrate that these SuFEx-able surfaces readily undergo exchange with aryl silyl ethers, and that the subsequent sulfate linkages are themselves stable under electrochemical redox conditions. Finally, we showcase the utility of the SuFEx chemistry by installing a pendant amino group to the fiber surface resulting in interfacial shear strength improvements of up to 130 % in epoxy resin.
Collapse
Affiliation(s)
- James D Randall
- Deakin University, 75 Pigdons Road, Geelong, Waurn Ponds, Victoria, Australia, 3216
| | - Daniel J Eyckens
- Deakin University, 75 Pigdons Road, Geelong, Waurn Ponds, Victoria, Australia, 3216
| | - Filip Stojcevski
- Deakin University, 75 Pigdons Road, Geelong, Waurn Ponds, Victoria, Australia, 3216
| | - Paul S Francis
- Deakin University, 75 Pigdons Road, Geelong, Waurn Ponds, Victoria, Australia, 3216
| | - Egan H Doeven
- Deakin University, 75 Pigdons Road, Geelong, Waurn Ponds, Victoria, Australia, 3216
| | - Anders J Barlow
- Centre for Materials and Surface Science and Department of Chemistry and Physics, School of Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia, 3086
| | - Andrew S Barrow
- The Click Chemistry Research Laboratory, La Trobe Institute for Molecular Science, Bundoora, Melbourne, Victoria, Australia, 3083
| | - Chantelle L Arnold
- Deakin University, 75 Pigdons Road, Geelong, Waurn Ponds, Victoria, Australia, 3216
| | - John E Moses
- The Click Chemistry Research Laboratory, La Trobe Institute for Molecular Science, Bundoora, Melbourne, Victoria, Australia, 3083
| | - Luke C Henderson
- Deakin University, 75 Pigdons Road, Geelong, Waurn Ponds, Victoria, Australia, 3216
| |
Collapse
|
35
|
Wang SM, Moku B, Leng J, Qin HL. Rh-Catalyzed Carboxylates Directed C-H Activation for the Synthesis of ortho
-Carboxylic 2-Arylethenesulfonyl Fluorides: Access to Unique Electrophiles for SuFEx Click Chemistry. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800762] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shi-Meng Wang
- School of Chemistry; Chemical Engineering and Life Science; and State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; 205 Luoshi Road 430070 Wuhan China
| | - Balakrishna Moku
- School of Chemistry; Chemical Engineering and Life Science; and State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; 205 Luoshi Road 430070 Wuhan China
| | - Jing Leng
- School of Chemistry; Chemical Engineering and Life Science; and State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; 205 Luoshi Road 430070 Wuhan China
| | - Hua-Li Qin
- School of Chemistry; Chemical Engineering and Life Science; and State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; 205 Luoshi Road 430070 Wuhan China
| |
Collapse
|
36
|
Gahtory D, Sen R, Kuzmyn AR, Escorihuela J, Zuilhof H. Strain-Promoted Cycloaddition of Cyclopropenes with o-Quinones: A Rapid Click Reaction. Angew Chem Int Ed Engl 2018; 57:10118-10122. [PMID: 29542846 PMCID: PMC6099469 DOI: 10.1002/anie.201800937] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 02/06/2023]
Abstract
Novel click reactions are of continued interest in fields as diverse as bio-conjugation, polymer science and surface chemistry. Qualification as a proper "click" reaction requires stringent criteria, including fast kinetics and high conversion, to be met. Herein, we report a novel strain-promoted cycloaddition between cyclopropenes and o-quinones in solution and on a surface. We demonstrate the "click character" of the reaction in solution and on surfaces for both monolayer and polymer brush functionalization.
Collapse
Affiliation(s)
- Digvijay Gahtory
- Laboratory of Organic ChemistryWageningen University and ResearchStippeneng 46708WEWageningenThe Netherlands
| | - Rickdeb Sen
- Laboratory of Organic ChemistryWageningen University and ResearchStippeneng 46708WEWageningenThe Netherlands
| | - Andriy R. Kuzmyn
- Laboratory of Organic ChemistryWageningen University and ResearchStippeneng 46708WEWageningenThe Netherlands
| | - Jorge Escorihuela
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad de ValenciaAvda. Vicente Andrés Estellés s.n.46100-BurjassotValenciaSpain
| | - Han Zuilhof
- Laboratory of Organic ChemistryWageningen University and ResearchStippeneng 46708WEWageningenThe Netherlands
- School of Pharmaceutical Sciences and TechnologyTianjin University92 Weijin RoadTianjinP.R. China
- Department of Chemical and Materials EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
37
|
Affiliation(s)
- Praveen K. Chinthakindi
- Department of Medicinal Chemistry; Drug Design and Discovery; Uppsala University; Box 574 SE-75123 Uppsala Sweden
| | - Per I. Arvidsson
- Catalysis and Peptide Research Unit; University of KwaZulu Natal; Durban South Africa
- Science for Life Laboratory, Drug Discovery and Development Platform and Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
38
|
Gahtory D, Sen R, Pujari S, Li S, Zheng Q, Moses JE, Sharpless KB, Zuilhof H. Quantitative and Orthogonal Formation and Reactivity of SuFEx Platforms. Chemistry 2018; 24:10550-10556. [PMID: 29949211 PMCID: PMC6099289 DOI: 10.1002/chem.201802356] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 01/14/2023]
Abstract
The constraints of minute reactant amounts and the impossibility to remove any undesired surface‐bound products during monolayer functionalization of a surface necessitate the selection of efficient, modular and orthogonal reactions that lead to quantitative conversions. Herein, we explore the character of sulfur–fluoride exchange (SuFEx) reactions on a surface, and explore the applicability for quantitative and orthogonal surface functionalization. To this end, we demonstrate the use of ethenesulfonyl fluoride (ESF) as an efficient SuFEx linker for creating “SuFEx‐able” monolayer surfaces, enabling three distinct approaches to utilize SuFEx chemistry on a surface. The first approach relies on a di‐SuFEx loading allowing dual functionalization with a nucleophile, while the two latter approaches focus on dual (CuAAC–SuFEx/SPOCQ–SuFEx) click platforms. The resultant strategies allow facile attachment of two different substrates sequentially on the same platform. Along the way we also demonstrate the Michael addition of ethenesulfonyl fluoride to be a quantitative surface‐bound reaction, indicating significant promise in materials science for this reaction.
Collapse
Affiliation(s)
- Digvijay Gahtory
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Rickdeb Sen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Sidharam Pujari
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Suhua Li
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,School of Chemistry, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, 510275, P.R. China
| | - Qinheng Zheng
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - John E Moses
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Victoria, 3086, Australia
| | - K Barry Sharpless
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin, P.R. China.,Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
39
|
Fan H, Ji Y, Xu Q, Zhou F, Wu B, Wang L, Li Y, Lu J. Sulfur (VI) Fluoride Exchange Polymerization for Large Conjugate Chromophores and Functional Main-Chain Polysulfates with Nonvolatile Memory Performance. Chempluschem 2018; 83:407-413. [PMID: 31957370 DOI: 10.1002/cplu.201800067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/10/2018] [Indexed: 11/10/2022]
Abstract
Sulfur (VI) fluoride exchange (SuFEx) reactions can be applied not only in organic click synthesis, but also in the preparation of functional main-chain polymers. In this work, four functional main-chain polysulfates (PNT-PS, NPNT-PS, PHF-PS, and TPE-PS) are synthesized in high yield using the SuFEx reaction at room temperature. The polysulfates exhibit satisfactory thermal stability and solution processability. They are used as the active layer for memory devices (ITO/PNT-PS/Al, ITO/NPNT-PS/Al, ITO/PHF-PS/Al, and ITO/TPE-PS/Al). I-V measurements show that ITO/PNT-PS/Al and ITO/NPNT-PS/Al exhibit stable flash-memory (write-read-erase) behavior, while ITO/PHF-PS/Al and ITO/TPE-PS/Al exhibit WORM (write once read many) behavior. Our studies provide a feasible and efficient synthetic methodology for the preparation of new memory materials.
Collapse
Affiliation(s)
- Huiru Fan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Yujin Ji
- Functional Nano, Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Feng Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Bin Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Lihua Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Youyong Li
- Functional Nano, Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| |
Collapse
|
40
|
Gahtory D, Sen R, Kuzmyn AR, Escorihuela J, Zuilhof H. Strain-Promoted Cycloaddition of Cyclopropenes with o
-Quinones: A Rapid Click Reaction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Digvijay Gahtory
- Laboratory of Organic Chemistry; Wageningen University and Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Rickdeb Sen
- Laboratory of Organic Chemistry; Wageningen University and Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Andriy R. Kuzmyn
- Laboratory of Organic Chemistry; Wageningen University and Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Jorge Escorihuela
- Departamento de Química Orgánica; Facultad de Química; Universidad de Valencia; Avda. Vicente Andrés Estellés s.n. 46100-Burjassot Valencia Spain
| | - Han Zuilhof
- Laboratory of Organic Chemistry; Wageningen University and Research; Stippeneng 4 6708 WE Wageningen The Netherlands
- School of Pharmaceutical Sciences and Technology; Tianjin University; 92 Weijin Road Tianjin P.R. China
- Department of Chemical and Materials Engineering; King Abdulaziz University; Jeddah Saudi Arabia
| |
Collapse
|
41
|
Shinde DN, Trivedi R, Vamsi Krishna N, Lingamallu G, Sridhar B, Khursade PS, Reddy Shetty P. 2,4-Thiazolidinedione as a Bioactive Linker for Ferrocenyl Sugar-Triazole Conjugates: Synthesis, Characterization and Biological Properties. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dilip N. Shinde
- Inorganic and Physical Chemistry Division; CSIR-Indian Institute of Chemical Technology; 500007 Hyderabad Telangana India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IICT Campus; 500007 Hyderabad Telangana India
| | - Rajiv Trivedi
- Inorganic and Physical Chemistry Division; CSIR-Indian Institute of Chemical Technology; 500007 Hyderabad Telangana India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IICT Campus; 500007 Hyderabad Telangana India
| | - Narra Vamsi Krishna
- Inorganic and Physical Chemistry Division; CSIR-Indian Institute of Chemical Technology; 500007 Hyderabad Telangana India
| | - Giribabu Lingamallu
- Inorganic and Physical Chemistry Division; CSIR-Indian Institute of Chemical Technology; 500007 Hyderabad Telangana India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IICT Campus; 500007 Hyderabad Telangana India
| | - Balasubramanian Sridhar
- Center for X-ray Crystallography; CSIR-Indian Institute of Chemical Technology; 500007 Hyderabad Telangana India
| | - Parag S. Khursade
- Medicinal Chemistry and Biotechnology Division; CSIR-Indian Institute of Chemical Technology; 500007 Hyderabad Telangana India
| | - Prakasham Reddy Shetty
- Medicinal Chemistry and Biotechnology Division; CSIR-Indian Institute of Chemical Technology; 500007 Hyderabad Telangana India
| |
Collapse
|
42
|
Gao B, Li S, Wu P, Moses JE, Sharpless KB. SuFEx Chemistry of Thionyl Tetrafluoride (SOF 4 ) with Organolithium Nucleophiles: Synthesis of Sulfonimidoyl Fluorides, Sulfoximines, Sulfonimidamides, and Sulfonimidates. Angew Chem Int Ed Engl 2018; 57:1939-1943. [PMID: 29314580 PMCID: PMC6005182 DOI: 10.1002/anie.201712145] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 11/08/2022]
Abstract
Thionyl tetrafluoride (SOF4 ) is a valuable connective gas for sulfur fluoride exchange (SuFEx) click chemistry that enables multidimensional linkages to be created via sulfur-oxygen and sulfur-nitrogen bonds. Herein, we expand the available SuFEx chemistry of SOF4 to include organolithium nucleophiles, and demonstrate, for the first time, the controlled projection of sulfur-carbon links at the sulfur center of SOF4 -derived iminosulfur oxydifluorides (R1 -N=SOF2 ). This method provides rapid and modular access to sulfonimidoyl fluorides (R1 -N=SOFR2 ), another array of versatile SuFEx connectors with readily tunable reactivity of the S-F handle. Divergent connections derived from these valuable sulfonimidoyl fluoride units are also demonstrated, including the synthesis of sulfoximines, sulfonimidamides, and sulfonimidates.
Collapse
Affiliation(s)
- Bing Gao
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Suhua Li
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - John E Moses
- La Trobe Institute For Molecular Science, La Trobe University, Bundoora, Melbourne, Victoria, 3083, Australia
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
43
|
Guo T, Meng G, Zhan X, Yang Q, Ma T, Xu L, Sharpless KB, Dong J. A New Portal to SuFEx Click Chemistry: A Stable Fluorosulfuryl Imidazolium Salt Emerging as an “F−SO2
+” Donor of Unprecedented Reactivity, Selectivity, and Scope. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712429] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Taijie Guo
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Genyi Meng
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Xiongjie Zhan
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Qian Yang
- No.187 Building; 1799 Yinchun Road Shanghai 200032 P. R. China
| | - Tiancheng Ma
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Long Xu
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - K. Barry Sharpless
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Jiajia Dong
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| |
Collapse
|
44
|
Revathi L, Ravindar L, Leng J, Rakesh KP, Qin HL. Synthesis and Chemical Transformations of Fluorosulfates. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201700591] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lekkala Revathi
- School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 P. R. China
| | - Lekkala Ravindar
- School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 P. R. China
| | - Jing Leng
- School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 P. R. China
| | - Kadalipura Puttaswamy Rakesh
- School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 P. R. China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 P. R. China
| |
Collapse
|
45
|
Guo T, Meng G, Zhan X, Yang Q, Ma T, Xu L, Sharpless KB, Dong J. A New Portal to SuFEx Click Chemistry: A Stable Fluorosulfuryl Imidazolium Salt Emerging as an “F−SO2
+” Donor of Unprecedented Reactivity, Selectivity, and Scope. Angew Chem Int Ed Engl 2018; 57:2605-2610. [DOI: 10.1002/anie.201712429] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Taijie Guo
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Genyi Meng
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Xiongjie Zhan
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Qian Yang
- No.187 Building; 1799 Yinchun Road Shanghai 200032 P. R. China
| | - Tiancheng Ma
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Long Xu
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - K. Barry Sharpless
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Jiajia Dong
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| |
Collapse
|
46
|
Gao B, Li S, Wu P, Moses JE, Sharpless KB. SuFEx Chemistry of Thionyl Tetrafluoride (SOF4
) with Organolithium Nucleophiles: Synthesis of Sulfonimidoyl Fluorides, Sulfoximines, Sulfonimidamides, and Sulfonimidates. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712145] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bing Gao
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Suhua Li
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Peng Wu
- Department of Molecular Medicine; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - John E. Moses
- La Trobe Institute For Molecular Science; La Trobe University; Bundoora, Melbourne Victoria 3083 Australia
| | - K. Barry Sharpless
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
47
|
Smedley CJ, Barrow AS, Spiteri C, Giel MC, Sharma P, Moses JE. Sulfur-Fluoride Exchange (SuFEx)-Mediated Synthesis of Sterically Hindered and Electron-Deficient Secondary and Tertiary Amides via Acyl Fluoride Intermediates. Chemistry 2017; 23:9990-9995. [DOI: 10.1002/chem.201701552] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Christopher J. Smedley
- Department of Chemistry and Physics; La Trobe Institute for Molecular Science; La Trobe University; Melbourne, Victoria Australia
| | - Andrew S. Barrow
- Department of Chemistry and Physics; La Trobe Institute for Molecular Science; La Trobe University; Melbourne, Victoria Australia
| | - Christian Spiteri
- Department of Chemistry and Physics; La Trobe Institute for Molecular Science; La Trobe University; Melbourne, Victoria Australia
| | - Marie-Claire Giel
- Department of Chemistry and Physics; La Trobe Institute for Molecular Science; La Trobe University; Melbourne, Victoria Australia
| | - Pallavi Sharma
- Department of Chemistry and Physics; La Trobe Institute for Molecular Science; La Trobe University; Melbourne, Victoria Australia
| | - John E. Moses
- Department of Chemistry and Physics; La Trobe Institute for Molecular Science; La Trobe University; Melbourne, Victoria Australia
| |
Collapse
|
48
|
Zha GF, Bare GAL, Leng J, Shang ZP, Luo Z, Qin HL. Gram-Scale Synthesis of β-(Hetero)arylethenesulfonyl Fluorides via
a Pd(OAc)2
Catalyzed Oxidative Heck Process with DDQ or AgNO3
as an Oxidant. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700688] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gao-Feng Zha
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China
| | - Grant A. L. Bare
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla, CA 92037 USA
| | - Jing Leng
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China
| | - Zhen-Peng Shang
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China
| | - Zhixiong Luo
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China
| |
Collapse
|
49
|
Zha GF, Zheng Q, Leng J, Wu P, Qin HL, Sharpless KB. Palladium-Catalyzed Fluorosulfonylvinylation of Organic Iodides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701162] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gao-Feng Zha
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; Wuhan 430070 China
| | - Qinheng Zheng
- Department of Chemistry; The Scripps Research Institute; La Jolla CA 92037 USA
| | - Jing Leng
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; Wuhan 430070 China
| | - Peng Wu
- Department of Chemical Physiology; The Scripps Research Institute; La Jolla CA 92037 USA
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; Wuhan 430070 China
| | - K. Barry Sharpless
- Department of Chemistry; The Scripps Research Institute; La Jolla CA 92037 USA
| |
Collapse
|
50
|
Zha GF, Zheng Q, Leng J, Wu P, Qin HL, Sharpless KB. Palladium-Catalyzed Fluorosulfonylvinylation of Organic Iodides. Angew Chem Int Ed Engl 2017; 56:4849-4852. [PMID: 28370917 DOI: 10.1002/anie.201701162] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/07/2017] [Indexed: 11/06/2022]
Abstract
A palladium-catalyzed fluorosulfonylvinylation reaction of organic iodides is described. Catalytic Pd(OAc)2 with a stoichiometric amount of silver(I) trifluoroacetate enables the coupling process between either an (hetero)aryl or alkenyl iodide with ethenesulfonyl fluoride (ESF). The method is demonstrated in the successful syntheses of eighty-eight otherwise difficult to access compounds, in up to 99 % yields, including the unprecedented 2-heteroarylethenesulfonyl fluorides and 1,3-dienylsulfonyl fluorides.
Collapse
Affiliation(s)
- Gao-Feng Zha
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Qinheng Zheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jing Leng
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Peng Wu
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|