1
|
Velisoju VK, Ramos-Fernández EV, Kancherla R, Ahmad R, Pal K, Mohamed H, Cerrillo JL, Meijerink MJ, Cavallo L, Rueping M, Castaño P. Highly Dispersed Pd@ZIF-8 for Photo-Assisted Cross-Couplings and CO 2 to Methanol: Activity and Selectivity Insights. Angew Chem Int Ed Engl 2024; 63:e202409490. [PMID: 39126183 DOI: 10.1002/anie.202409490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Our study unveils a pioneering methodology that effectively distributes Pd species within a zeolitic imidazolate framework-8 (ZIF-8). We demonstrate that Pd can be encapsulated within ZIF-8 as atomically dispersed Pd species that function as an excited-state transition metal catalyst for promoting carbon-carbon (C-C) cross-couplings at room temperature using visible light as the driving force. Furthermore, the same material can be reduced at 250 °C, forming Pd metal nanoparticles encapsulated in ZIF-8. This catalyst shows high rates and selectivity for carbon dioxide hydrogenation to methanol under industrially relevant conditions (250 °C, 50 bar): 7.46 molmethanol molmetal -1 h-1 and >99 %. Our results demonstrate the correlations of the catalyst structure with the performances at experimental and theoretical levels.
Collapse
Affiliation(s)
- Vijay K Velisoju
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Enrique V Ramos-Fernández
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, E-03080, Alicante, Spain
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rafia Ahmad
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kuntal Pal
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hend Mohamed
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jose L Cerrillo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mark J Meijerink
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pedro Castaño
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Chemical Engineering Program, Physical Science and Engineering (PSE) Division, KAUST, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Yu H, Zhang Q, Zi W. Enantioselective Three‐Component Photochemical 1,4‐Bisalkylation of 1,3‐Butadiene with Pd/Cu Catalysis. Angew Chem Int Ed Engl 2022; 61:e202208411. [DOI: 10.1002/anie.202208411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 12/26/2022]
Affiliation(s)
- Huimin Yu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300071 China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300071 China
| |
Collapse
|
3
|
Elavarasan S, Preety J, Abinaya R, Saravanan T, Balasunramaniam KK, Venkatramaiah N, Baskar B. Visible Light Driven Metal-Free Photoredox Catalyzed α-benzylation and α-oxygenation of N-substituted tetrahydroisoquinolines: Applications to Synthesis of Natural Products. Chem Asian J 2022; 17:e202200878. [PMID: 36073541 DOI: 10.1002/asia.202200878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/06/2022] [Indexed: 11/07/2022]
Abstract
Herein, visible light mediated organophoto redox catalysed simple and convenient method for the a-benzylation and a-oxygenation of tertiary amines is demonstrated. Synthesis of novel thiophenol based donor acceptor organophotoredox catalysts 4a - 4d were investigated along with commercial catalyst 4-CzIPN ( 4e ). A diverse biologically active a-benzylated tetrahydroisoquinolines and natural products such as (±)-Norlaudanosine, (±)-laudanosine and (±)-xylopinine have been synthesized under the optimized conditions in yields ranging from from 62-91%. Exploitation of synthesized a-benzylated compound using present phtoredox catalyzed conditions gave rise to dehydyrogenative benzylic oxidation product under oxygen atmosphere which is known to display biologically and structurally important properties. Also, various N-protected tertiary amines were found to be suitable for the a-oxygenation reactions using catalyst 4e and resulted in good yields (61-85%).
Collapse
Affiliation(s)
- S Elavarasan
- SRM Institute of Science and Technology, Chemistry, INDIA
| | - J Preety
- SRM Institute of Science and Technology, Chemistry, INDIA
| | - R Abinaya
- SRM Institute of Science and Technology, Chemistry, INDIA
| | - T Saravanan
- University of Hyderabad, School of Chemistry, INDIA
| | | | | | - Baburaj Baskar
- SRM University, Chemistry, Kattankulathur, 603203, India, 603203, Chennai, INDIA
| |
Collapse
|
4
|
Yu H, Zhang Q, Zi W. Enantioselective Three‐Component Photochemical 1,4‐Bisalkylation of 1,3‐Butadiene with Pd/Cu Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Huimin Yu
- Nankai University College of Chemistry State Key Laboratory and Institute of Elemento-Organic Chemistry CHINA
| | - Qinglong Zhang
- Nankai University College of Chemistry State Key Laboratory and Institute of Elemento-Organic Chemistry CHINA
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry Chemistry Department of Nankai University 94 Weijin Rd. 300071 Tianjin CHINA
| |
Collapse
|
5
|
Sang R, Noble A, Aggarwal VK. Chiral Benzothiophene Synthesis via Enantiospecific Coupling of Benzothiophene S-Oxides with Boronic Esters. Angew Chem Int Ed Engl 2021; 60:25313-25317. [PMID: 34582085 DOI: 10.1002/anie.202112180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Benzothiophenes are valuable heterocycles that are widely used in medicines, agrochemicals, and materials science. Herein, we report a general method for the synthesis of enantioenriched 2,3-disubstituted benzothiophenes via a transition-metal-free C2-alkylation of benzothiophenes with boronic esters. The reactions utilize benzothiophene S-oxides in lithiation-borylations to generate intermediate arylboronate complexes, and subsequent Tf2 O-promoted S-O bond cleavage to trigger a Pummerer-type 1,2-metalate shift, which gives the coupled products with complete enantiospecificity. Primary, secondary and tertiary alkyl boronic esters and aryl boronic esters are successfully coupled with a range of C3-substituted benzothiophenes. Importantly, this transformation does not require the use of C3 directing groups, therefore it overcomes a major limitation of previously developed transition-metal-mediated C2 alkylations of benzothiophenes.
Collapse
Affiliation(s)
- Ruocheng Sang
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
6
|
Sang R, Noble A, Aggarwal VK. Chiral Benzothiophene Synthesis via Enantiospecific Coupling of Benzothiophene S‐Oxides with Boronic Esters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruocheng Sang
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Adam Noble
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
7
|
Yang Z, Koenigs RM. Photoinduced Palladium-Catalyzed Dicarbofunctionalization of Terminal Alkynes. Chemistry 2021; 27:3694-3699. [PMID: 33427348 PMCID: PMC7986663 DOI: 10.1002/chem.202005391] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 01/26/2023]
Abstract
Herein, a conceptually distinct approach was developed that allowed for the dicarbofunctionalization of alkynes at room temperature using simple, bench-stable alkyl iodides and a second molecule of alkyne as coupling partner. Specifically, the photochemical activation of palladium complexes enabled this strategic dicarbofunctionalization via addition of alkyl radicals from secondary and tertiary alkyl iodides and formation of an intermediate palladium vinyl complex that could undergo subsequent Sonogashira reaction with a second alkyne molecule. This alkylation-alkynylation sequence allowed the one-step synthesis of 1,3-enynes including heteroarenes and biologically active compounds with high efficiency without exogenous photosensitizers or oxidants and now opens up pathways towards cascade reactions via photochemical palladium catalysis.
Collapse
Affiliation(s)
- Zhen Yang
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Rene M. Koenigs
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
8
|
Murugesan K, Donabauer K, König B. Visible-Light-Promoted Metal-Free Synthesis of (Hetero)Aromatic Nitriles from C(sp 3 )-H Bonds*. Angew Chem Int Ed Engl 2021; 60:2439-2445. [PMID: 33053270 PMCID: PMC7898869 DOI: 10.1002/anie.202011815] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/29/2020] [Indexed: 01/18/2023]
Abstract
The metal-free activation of C(sp3 )-H bonds to value-added products is of paramount importance in organic synthesis. We report the use of the commercially available organic dye 2,4,6-triphenylpyrylium tetrafluoroborate (TPP) for the conversion of methylarenes to the corresponding aryl nitriles via a photocatalytic process. Applying this methodology, a variety of cyanobenzenes have been synthesized in good to excellent yield under metal- and cyanide-free conditions. We demonstrate the scope of the method with over 50 examples including late-stage functionalization of drug molecules (celecoxib) and complex structures such as l-menthol, amino acids, and cholesterol derivatives. Furthermore, the presented synthetic protocol is applicable for gram-scale reactions. In addition to methylarenes, selected examples for the cyanation of aldehydes, alcohols and oximes are demonstrated as well. Detailed mechanistic investigations have been carried out using time-resolved luminescence quenching studies, control experiments, and NMR spectroscopy as well as kinetic studies, all supporting the proposed catalytic cycle.
Collapse
Affiliation(s)
| | | | - Burkhard König
- Faculty of Chemistry and PharmacyUniversity of RegensburgGermany
| |
Collapse
|
9
|
Murugesan K, Donabauer K, König B. Visible‐Light‐Promoted Metal‐Free Synthesis of (Hetero)Aromatic Nitriles from C(sp
3
)−H Bonds**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Burkhard König
- Faculty of Chemistry and Pharmacy University of Regensburg Germany
| |
Collapse
|
10
|
Pradhan S, Roy S, Sahoo B, Chatterjee I. Utilization of CO 2 Feedstock for Organic Synthesis by Visible-Light Photoredox Catalysis. Chemistry 2020; 27:2254-2269. [PMID: 32931070 DOI: 10.1002/chem.202003685] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/08/2020] [Indexed: 12/20/2022]
Abstract
CO2 is a highly abundant, green, and sustainable carbon feedstock. Despite its kinetic inertness and thermodynamic stability, the development of various catalytic techniques has enabled the conversion of CO2 to value-added products such as carboxylic acids, amino acids, and heterocyclic compounds, where visible-light photocatalysis has emerged to be an efficient promoter of these processes. This Minireview covers the progress in the areas of CO2 incorporation onto organic matters based on the combined venture of renewable resources of CO2 and light energy with significant emphasis on the last three years' developments.
Collapse
Affiliation(s)
- Suman Pradhan
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| | - Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and, Research (IISER) Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram, 695551, Kerala, India
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| |
Collapse
|
11
|
Ratushnyy M, Kvasovs N, Sarkar S, Gevorgyan V. Visible‐Light‐Induced Palladium‐Catalyzed Generation of Aryl Radicals from Aryl Triflates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Maxim Ratushnyy
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Nikita Kvasovs
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Sumon Sarkar
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Vladimir Gevorgyan
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| |
Collapse
|
12
|
Ratushnyy M, Kvasovs N, Sarkar S, Gevorgyan V. Visible-Light-Induced Palladium-Catalyzed Generation of Aryl Radicals from Aryl Triflates. Angew Chem Int Ed Engl 2020; 59:10316-10320. [PMID: 32155303 PMCID: PMC7446712 DOI: 10.1002/anie.201915962] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 12/31/2022]
Abstract
A mild visible-light-induced Pd-catalyzed intramolecular C-H arylation of amides is reported. The method operates by cleavage of a C(sp2 )-O bond, leading to hybrid aryl Pd-radical intermediates. The following 1,5-hydrogen atom translocation, intramolecular cyclization, and rearomatization steps lead to valuable oxindole and isoindoline-1-one motifs. Notably, this method provides access to products with readily enolizable functional groups that are incompatible with traditional Pd-catalyzed conditions.
Collapse
Affiliation(s)
- Maxim Ratushnyy
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Nikita Kvasovs
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Sumon Sarkar
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Vladimir Gevorgyan
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| |
Collapse
|
13
|
Kalvet I, Deckers K, Funes‐Ardoiz I, Magnin G, Sperger T, Kremer M, Schoenebeck F. Selective ortho-Functionalization of Adamantylarenes Enabled by Dispersion and an Air-Stable Palladium(I) Dimer. Angew Chem Int Ed Engl 2020; 59:7721-7725. [PMID: 32065717 PMCID: PMC7317867 DOI: 10.1002/anie.202001326] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/16/2020] [Indexed: 12/15/2022]
Abstract
Contrary to the general belief that Pd-catalyzed cross-coupling at sites of severe steric hindrance are disfavored, we herein show that the oxidative addition to C-Br ortho to an adamantyl group is as favored as the corresponding adamantyl-free system due to attractive dispersion forces. This enabled the development of a fully selective arylation and alkylation of C-Br ortho to an adamantyl group, even if challenged with competing non-hindered C-OTf or C-Cl sites. The method makes use of an air-stable PdI dimer and enables straightforward access to diversely substituted therapeutically important adamantylarenes in 5-30 min.
Collapse
Affiliation(s)
- Indrek Kalvet
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Kristina Deckers
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Ignacio Funes‐Ardoiz
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Guillaume Magnin
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Theresa Sperger
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Marius Kremer
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | |
Collapse
|
14
|
Zhu D, Wu Q, Li H, Li H, Lang J. Hantzsch Ester as a Visible‐Light Photoredox Catalyst for Transition‐Metal‐Free Coupling of Arylhalides and Arylsulfinates. Chemistry 2020; 26:3484-3488. [DOI: 10.1002/chem.201905281] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/15/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Da‐Liang Zhu
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Qi Wu
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Hai‐Yan Li
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Hong‐Xi Li
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Jian‐Ping Lang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
15
|
Kalvet I, Deckers K, Funes‐Ardoiz I, Magnin G, Sperger T, Kremer M, Schoenebeck F. Selective
ortho
‐Functionalization of Adamantylarenes Enabled by Dispersion and an Air‐Stable Palladium(I) Dimer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Indrek Kalvet
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Kristina Deckers
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Ignacio Funes‐Ardoiz
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Guillaume Magnin
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Theresa Sperger
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Marius Kremer
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
16
|
Koy M, Bellotti P, Katzenburg F, Daniliuc CG, Glorius F. Synthesis of All‐Carbon Quaternary Centers by Palladium‐Catalyzed Olefin Dicarbofunctionalization. Angew Chem Int Ed Engl 2020; 59:2375-2379. [DOI: 10.1002/anie.201911012] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Maximilian Koy
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Peter Bellotti
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Felix Katzenburg
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
17
|
Koy M, Bellotti P, Katzenburg F, Daniliuc CG, Glorius F. Synthese quartärer Kohlenstoffzentren durch palladiumkatalysierte Dicarbofunktionalisierung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maximilian Koy
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Peter Bellotti
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Felix Katzenburg
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
18
|
Chuentragool P, Kurandina D, Gevorgyan V. Catalysis with Palladium Complexes Photoexcited by Visible Light. Angew Chem Int Ed Engl 2019; 58:11586-11598. [PMID: 30600875 DOI: 10.1002/anie.201813523] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 01/24/2023]
Abstract
Palladium catalysis induced by visible light is an emerging field of catalysis. In contrast to classical reactions catalyzed by Pd complexes in the ground state, which mostly proceed through two-electron redox processes, the mechanisms of these new methods based on photoexcited Pd complexes usually operate through transfer of a single electron. Such processes lead to putative hybrid Pd/radical species, which exhibit both radical and classical Pd-type reactivity. This Minireview highlights the recent progress in this rapidly growing area.
Collapse
Affiliation(s)
- Padon Chuentragool
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois, 60607-7061, USA
| | - Daria Kurandina
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois, 60607-7061, USA
| | - Vladimir Gevorgyan
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois, 60607-7061, USA
| |
Collapse
|
19
|
Chuentragool P, Kurandina D, Gevorgyan V. Katalyse mit durch sichtbares Licht angeregten Palladiumkomplexen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813523] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Padon Chuentragool
- Department of Chemistry University of Illinois at Chicago 845 West Taylor Street Chicago Illinois 60607-7061 USA
| | - Daria Kurandina
- Department of Chemistry University of Illinois at Chicago 845 West Taylor Street Chicago Illinois 60607-7061 USA
| | - Vladimir Gevorgyan
- Department of Chemistry University of Illinois at Chicago 845 West Taylor Street Chicago Illinois 60607-7061 USA
| |
Collapse
|
20
|
Kancherla R, Muralirajan K, Maity B, Zhu C, Krach PE, Cavallo L, Rueping M. Oxidative Addition to Palladium(0) Made Easy through Photoexcited-State Metal Catalysis: Experiment and Computation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811439] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rajesh Kancherla
- KAUST Catalysis Center (KCC); King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Krishnamoorthy Muralirajan
- KAUST Catalysis Center (KCC); King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC); King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Chen Zhu
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Patricia E. Krach
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC); King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC); King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
21
|
Kancherla R, Muralirajan K, Maity B, Zhu C, Krach PE, Cavallo L, Rueping M. Oxidative Addition to Palladium(0) Made Easy through Photoexcited-State Metal Catalysis: Experiment and Computation. Angew Chem Int Ed Engl 2019; 58:3412-3416. [DOI: 10.1002/anie.201811439] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/20/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Rajesh Kancherla
- KAUST Catalysis Center (KCC); King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Krishnamoorthy Muralirajan
- KAUST Catalysis Center (KCC); King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC); King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Chen Zhu
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Patricia E. Krach
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC); King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC); King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
22
|
Zhao Y, Jin J, Chan PWH. Gold Catalyzed Photoredox C1‐Alkynylation of
N
‐Alkyl‐1,2,3,4‐tetrahydroisoquinolines by 1‐Bromoalkynes with UVA LED Light. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yichao Zhao
- School of Chemistry Monash University, Clayton Victoria 3800 Australia
| | - Jianwen Jin
- School of Chemistry Monash University, Clayton Victoria 3800 Australia
| | - Philip Wai Hong Chan
- School of Chemistry Monash University, Clayton Victoria 3800 Australia
- Department of Chemistry University of Warwick Coventry CV4 7AL United Kingdom
| |
Collapse
|
23
|
Wang C, Guo M, Qi R, Shang Q, Liu Q, Wang S, Zhao L, Wang R, Xu Z. Visible-Light-Driven, Copper-Catalyzed Decarboxylative C(sp3
)−H Alkylation of Glycine and Peptides. Angew Chem Int Ed Engl 2018; 57:15841-15846. [PMID: 30296349 DOI: 10.1002/anie.201809400] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/24/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Chao Wang
- Key Laboratory of Preclinical Study for New Drugs, of Gansu Province; School of Basic Medical Sciences; Lanzhou University; 199 West Donggang Road, Lanzhou 730000 China
| | - Mengzhun Guo
- Key Laboratory of Preclinical Study for New Drugs, of Gansu Province; School of Basic Medical Sciences; Lanzhou University; 199 West Donggang Road, Lanzhou 730000 China
| | - Rupeng Qi
- Key Laboratory of Preclinical Study for New Drugs, of Gansu Province; School of Basic Medical Sciences; Lanzhou University; 199 West Donggang Road, Lanzhou 730000 China
| | - Qinyu Shang
- Key Laboratory of Preclinical Study for New Drugs, of Gansu Province; School of Basic Medical Sciences; Lanzhou University; 199 West Donggang Road, Lanzhou 730000 China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; 222 South Tianshui Road Lanzhou 730000 China
| | - Shan Wang
- Key Laboratory of Preclinical Study for New Drugs, of Gansu Province; School of Basic Medical Sciences; Lanzhou University; 199 West Donggang Road, Lanzhou 730000 China
| | - Long Zhao
- Key Laboratory of Preclinical Study for New Drugs, of Gansu Province; School of Basic Medical Sciences; Lanzhou University; 199 West Donggang Road, Lanzhou 730000 China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs, of Gansu Province; School of Basic Medical Sciences; Lanzhou University; 199 West Donggang Road, Lanzhou 730000 China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs, of Gansu Province; School of Basic Medical Sciences; Lanzhou University; 199 West Donggang Road, Lanzhou 730000 China
| |
Collapse
|
24
|
Wang C, Guo M, Qi R, Shang Q, Liu Q, Wang S, Zhao L, Wang R, Xu Z. Visible-Light-Driven, Copper-Catalyzed Decarboxylative C(sp3
)−H Alkylation of Glycine and Peptides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809400] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chao Wang
- Key Laboratory of Preclinical Study for New Drugs, of Gansu Province; School of Basic Medical Sciences; Lanzhou University; 199 West Donggang Road, Lanzhou 730000 China
| | - Mengzhun Guo
- Key Laboratory of Preclinical Study for New Drugs, of Gansu Province; School of Basic Medical Sciences; Lanzhou University; 199 West Donggang Road, Lanzhou 730000 China
| | - Rupeng Qi
- Key Laboratory of Preclinical Study for New Drugs, of Gansu Province; School of Basic Medical Sciences; Lanzhou University; 199 West Donggang Road, Lanzhou 730000 China
| | - Qinyu Shang
- Key Laboratory of Preclinical Study for New Drugs, of Gansu Province; School of Basic Medical Sciences; Lanzhou University; 199 West Donggang Road, Lanzhou 730000 China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; 222 South Tianshui Road Lanzhou 730000 China
| | - Shan Wang
- Key Laboratory of Preclinical Study for New Drugs, of Gansu Province; School of Basic Medical Sciences; Lanzhou University; 199 West Donggang Road, Lanzhou 730000 China
| | - Long Zhao
- Key Laboratory of Preclinical Study for New Drugs, of Gansu Province; School of Basic Medical Sciences; Lanzhou University; 199 West Donggang Road, Lanzhou 730000 China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs, of Gansu Province; School of Basic Medical Sciences; Lanzhou University; 199 West Donggang Road, Lanzhou 730000 China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs, of Gansu Province; School of Basic Medical Sciences; Lanzhou University; 199 West Donggang Road, Lanzhou 730000 China
| |
Collapse
|
25
|
Abdiaj I, Huck L, Mateo JM, de la Hoz A, Gomez MV, Díaz‐Ortiz A, Alcázar J. Photoinduced Palladium‐Catalyzed Negishi Cross‐Couplings Enabled by the Visible‐Light Absorption of Palladium–Zinc Complexes. Angew Chem Int Ed Engl 2018; 57:13231-13236. [DOI: 10.1002/anie.201808654] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Irini Abdiaj
- Discovery Sciences, Janssen Research and DevelopmentJanssen-Cilag, S.A. Jarama 75A 45007 Toledo Spain
| | - Lena Huck
- Discovery Sciences, Janssen Research and DevelopmentJanssen-Cilag, S.A. Jarama 75A 45007 Toledo Spain
| | - José Miguel Mateo
- Facultad de Ciencias QuímicasUniversidad de Castilla-La Mancha Av. Camilo José Cela 10 13071 Ciudad Real Spain
| | - Antonio de la Hoz
- Facultad de Ciencias QuímicasUniversidad de Castilla-La Mancha Av. Camilo José Cela 10 13071 Ciudad Real Spain
| | - M. Victoria Gomez
- Instituto Regional de Investigación Científica AplicadaUniversidad de Castilla-La Mancha Av. Camilo José Cela sn 13071 Ciudad Real Spain
| | - Angel Díaz‐Ortiz
- Facultad de Ciencias QuímicasUniversidad de Castilla-La Mancha Av. Camilo José Cela 10 13071 Ciudad Real Spain
| | - Jesús Alcázar
- Discovery Sciences, Janssen Research and DevelopmentJanssen-Cilag, S.A. Jarama 75A 45007 Toledo Spain
| |
Collapse
|
26
|
Abdiaj I, Huck L, Mateo JM, de la Hoz A, Gomez MV, Díaz‐Ortiz A, Alcázar J. Photoinduced Palladium‐Catalyzed Negishi Cross‐Couplings Enabled by the Visible‐Light Absorption of Palladium–Zinc Complexes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Irini Abdiaj
- Discovery Sciences, Janssen Research and DevelopmentJanssen-Cilag, S.A. Jarama 75A 45007 Toledo Spain
| | - Lena Huck
- Discovery Sciences, Janssen Research and DevelopmentJanssen-Cilag, S.A. Jarama 75A 45007 Toledo Spain
| | - José Miguel Mateo
- Facultad de Ciencias QuímicasUniversidad de Castilla-La Mancha Av. Camilo José Cela 10 13071 Ciudad Real Spain
| | - Antonio de la Hoz
- Facultad de Ciencias QuímicasUniversidad de Castilla-La Mancha Av. Camilo José Cela 10 13071 Ciudad Real Spain
| | - M. Victoria Gomez
- Instituto Regional de Investigación Científica AplicadaUniversidad de Castilla-La Mancha Av. Camilo José Cela sn 13071 Ciudad Real Spain
| | - Angel Díaz‐Ortiz
- Facultad de Ciencias QuímicasUniversidad de Castilla-La Mancha Av. Camilo José Cela 10 13071 Ciudad Real Spain
| | - Jesús Alcázar
- Discovery Sciences, Janssen Research and DevelopmentJanssen-Cilag, S.A. Jarama 75A 45007 Toledo Spain
| |
Collapse
|
27
|
Xu W, Ma J, Yuan XA, Dai J, Xie J, Zhu C. Synergistic Catalysis for the Umpolung Trifluoromethylthiolation of Tertiary Ethers. Angew Chem Int Ed Engl 2018; 57:10357-10361. [DOI: 10.1002/anie.201805927] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Wentao Xu
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; National Demonstration Center for Experimental Chemistry, Education; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
| | - Junyang Ma
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; National Demonstration Center for Experimental Chemistry, Education; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
| | - Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 P. R. China
| | - Jie Dai
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; National Demonstration Center for Experimental Chemistry, Education; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; National Demonstration Center for Experimental Chemistry, Education; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; National Demonstration Center for Experimental Chemistry, Education; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Shanghai 200032 P. R. China
| |
Collapse
|
28
|
Xu W, Ma J, Yuan XA, Dai J, Xie J, Zhu C. Synergistic Catalysis for the Umpolung Trifluoromethylthiolation of Tertiary Ethers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805927] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wentao Xu
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; National Demonstration Center for Experimental Chemistry, Education; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
| | - Junyang Ma
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; National Demonstration Center for Experimental Chemistry, Education; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
| | - Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 P. R. China
| | - Jie Dai
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; National Demonstration Center for Experimental Chemistry, Education; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; National Demonstration Center for Experimental Chemistry, Education; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; National Demonstration Center for Experimental Chemistry, Education; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Shanghai 200032 P. R. China
| |
Collapse
|
29
|
Xue F, Wang F, Liu J, Di J, Liao Q, Lu H, Zhu M, He L, He H, Zhang D, Song H, Liu XY, Qin Y. A Desulfurative Strategy for the Generation of Alkyl Radicals Enabled by Visible-Light Photoredox Catalysis. Angew Chem Int Ed Engl 2018; 57:6667-6671. [PMID: 29671934 DOI: 10.1002/anie.201802710] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 01/25/2023]
Abstract
Herein, we present a new desulfurative method for generating primary, secondary, and tertiary alkyl radicals through visible-light photoredox catalysis. A process that involves the generation of N-centered radicals from sulfinamide intermediates, followed by subsequent fragmentation, is critical to forming the corresponding alkyl radical species. This strategy has been successfully applied to conjugate addition reactions that features mild reaction conditions, broad substrate scope (>60 examples), and good functional-group tolerance.
Collapse
Affiliation(s)
- Fei Xue
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Falu Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiazhen Liu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiamei Di
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Qi Liao
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Huifang Lu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Min Zhu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Liping He
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Huan He
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Dan Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Hao Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiao-Yu Liu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yong Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
30
|
Xue F, Wang F, Liu J, Di J, Liao Q, Lu H, Zhu M, He L, He H, Zhang D, Song H, Liu X, Qin Y. A Desulfurative Strategy for the Generation of Alkyl Radicals Enabled by Visible‐Light Photoredox Catalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fei Xue
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Falu Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Jiazhen Liu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Jiamei Di
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Qi Liao
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Huifang Lu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Min Zhu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Liping He
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Huan He
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Dan Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Hao Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Xiao‐Yu Liu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Yong Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of EducationSichuan Research Center of Precision Engineering Technology for Small Molecule DrugsWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| |
Collapse
|
31
|
Jiao Z, Lim LH, Hirao H, Zhou JS. Palladium‐Catalyzed
para
‐Selective Alkylation of Electron‐Deficient Arenes. Angew Chem Int Ed Engl 2018; 57:6294-6298. [DOI: 10.1002/anie.201801967] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/22/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Zhiwei Jiao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link, SPMS-CBC-06-03 Singapore 637371 Singapore
| | - Li Hui Lim
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link, SPMS-CBC-06-03 Singapore 637371 Singapore
| | - Hajime Hirao
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong China
| | - Jianrong Steve Zhou
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link, SPMS-CBC-06-03 Singapore 637371 Singapore
| |
Collapse
|
32
|
Jiao Z, Lim LH, Hirao H, Zhou JS. Palladium‐Catalyzed
para
‐Selective Alkylation of Electron‐Deficient Arenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhiwei Jiao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link, SPMS-CBC-06-03 Singapore 637371 Singapore
| | - Li Hui Lim
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link, SPMS-CBC-06-03 Singapore 637371 Singapore
| | - Hajime Hirao
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong China
| | - Jianrong Steve Zhou
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link, SPMS-CBC-06-03 Singapore 637371 Singapore
| |
Collapse
|
33
|
Koy M, Sandfort F, Tlahuext‐Aca A, Quach L, Daniliuc CG, Glorius F. Palladium‐Catalyzed Decarboxylative Heck‐Type Coupling of Activated Aliphatic Carboxylic Acids Enabled by Visible Light. Chemistry 2018; 24:4552-4555. [DOI: 10.1002/chem.201800813] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Maximilian Koy
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Frederik Sandfort
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Adrian Tlahuext‐Aca
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Linda Quach
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
34
|
Ratushnyy M, Parasram M, Wang Y, Gevorgyan V. Palladium-Catalyzed Atom-Transfer Radical Cyclization at Remote Unactivated C(sp 3 )-H Sites: Hydrogen-Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates. Angew Chem Int Ed Engl 2018; 57:2712-2715. [PMID: 29341489 PMCID: PMC5829020 DOI: 10.1002/anie.201712775] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 12/12/2022]
Abstract
A novel mild, visible-light-induced palladium-catalyzed hydrogen atom translocation/atom-transfer radical cyclization (HAT/ATRC) cascade has been developed. This protocol involves a 1,5-HAT process of previously unknown hybrid vinyl palladium radical intermediates, thus leading to iodomethyl carbo- and heterocyclic structures.
Collapse
Affiliation(s)
- Maxim Ratushnyy
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607-7061, USA
| | - Marvin Parasram
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607-7061, USA
| | - Yang Wang
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607-7061, USA
| | - Vladimir Gevorgyan
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607-7061, USA
| |
Collapse
|
35
|
Tian S, Song X, Zhu D, Wang M. Alternative Palladium-Catalyzed Vinylic C−H Difluoroalkylation of Ketene Dithioacetals Using Bromodifluoroacetate Derivatives. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuangquan Tian
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry; Northeast Normal University; Renmin Street 5268 Changchun 130024 People's Republic of China
| | - Xiaoning Song
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry; Northeast Normal University; Renmin Street 5268 Changchun 130024 People's Republic of China
| | - Dongsheng Zhu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry; Northeast Normal University; Renmin Street 5268 Changchun 130024 People's Republic of China
| | - Mang Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry; Northeast Normal University; Renmin Street 5268 Changchun 130024 People's Republic of China
| |
Collapse
|
36
|
Ratushnyy M, Parasram M, Wang Y, Gevorgyan V. Palladium‐Catalyzed Atom‐Transfer Radical Cyclization at Remote Unactivated C(sp
3
)−H Sites: Hydrogen‐Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712775] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maxim Ratushnyy
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
| | - Marvin Parasram
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
| | - Yang Wang
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
| | - Vladimir Gevorgyan
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
| |
Collapse
|