1
|
Choi YJ, Koo J, Wi Y, Jang J, Oh M, Rim M, Ko H, Yoon WJ, You NH, Jeong KU. Coatable Negative Dispersion Retarder: Kinetically Controlled Self-Assembly Pathway of Butterfly-Shaped Molecular Building Blocks for the Construction of Nanocolumns. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41000-41006. [PMID: 37585907 DOI: 10.1021/acsami.3c09139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Disc-shaped building blocks with columnar phases have attracted attention for their potential in optical applications, including a retarder. However, to achieve coatable high-performance optical films, it is essential to understand a subtle interaction balance between building blocks and relevant self-assembled behaviors during material processing. Herein, we studied a self-assembled nanocolumn evaluation of linear butterfly-shaped dendrons (T-A3D) consisting of thiophene-based conjugated core and flexible alkyl dendron. X-ray diffraction provided insight into the unique hexagonal columnar liquid crystal phase of T-A3D, driven by intermolecular hydrogen bonding and coplanarity of the thiophene-based conjugated core. The formation of a self-assembled nanocolumn with high mobility enabled the uniaxial orientation of butterfly-shaped T-A3D on the aligned rod-shaped nematic reactive mesogens, resulting in a transparent and colorless two-layered negative retarder. The self-assembled nanocolumn consisting of butterfly-shaped molecule would break a new ground for developing advanced optical thin films.
Collapse
Affiliation(s)
- Yu-Jin Choi
- Department of Polymer-Nano Science and Technology and Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Jahyeon Koo
- Department of Polymer-Nano Science and Technology and Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Youngjae Wi
- Department of Polymer-Nano Science and Technology and Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Junhwa Jang
- Department of Polymer-Nano Science and Technology and Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Mintaek Oh
- Department of Polymer-Nano Science and Technology and Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Minwoo Rim
- Department of Polymer-Nano Science and Technology and Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyeyoon Ko
- Department of Polymer-Nano Science and Technology and Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Won-Jin Yoon
- Department of Chemistry and Biochemistry and Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Nam-Ho You
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Chudong-ro 92, Bongdong-eup, Wanju-gun, Jeonbuk 55324, South Korea
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology and Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Bujosa S, Greciano EE, Martínez MA, Sánchez L, Soberats B. Unveiling the Role of Hydrogen Bonds in Luminescent N-Annulated Perylene Liquid Crystals. Chemistry 2021; 27:14282-14286. [PMID: 34323342 PMCID: PMC8596826 DOI: 10.1002/chem.202102446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 12/26/2022]
Abstract
We report the liquid-crystalline (LC) and luminescent properties of a series of N-annulated perylenes (1-4) in whose molecular structures amide and ester groups alternate. We found that the LC properties of these compounds not only depend on the number of hydrogen-bonding units, but also on the relative position of the amide linkers in the molecule. The absence of amide groups in compound 1 leads to no LC properties, whereas four amide groups induce the formation of a wide temperature range columnar hexagonal phase in compound 4. Remarkably, compound 3, with two amide groups in the inner part of the structure, stabilizes the columnar LC phases better than its structural isomer 2, with the amide groups in the outer part of the molecule. Similarly, we found that only compounds 1 and 2, which have no hydrogen bonding units in the inner part of the molecule, exhibit luminescence vapochromism upon exposure to organic solvent vapors.
Collapse
Affiliation(s)
- Sergi Bujosa
- Department of ChemistryUniversitat de les Illes BalearsCra. Valldemossa, Km. 7.507122Palma de MallorcaSpain
| | - Elisa E. Greciano
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de Madrid Ciudad Universitaria, s/n28040MadridSpain
| | - Manuel A. Martínez
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de Madrid Ciudad Universitaria, s/n28040MadridSpain
| | - Luis Sánchez
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de Madrid Ciudad Universitaria, s/n28040MadridSpain
| | - Bartolome Soberats
- Department of ChemistryUniversitat de les Illes BalearsCra. Valldemossa, Km. 7.507122Palma de MallorcaSpain
| |
Collapse
|
3
|
Eichhorn SH, El-Ballouli AO, Cassar A, Kaafarani BR. Columnar Mesomorphism of Board-Shaped Perylene, Diketopyrrolopyrrole, Isoindigo, Indigo, and Quinoxalino-Phenanthrophenazine Dyes. Chempluschem 2021; 86:319-339. [PMID: 33624951 DOI: 10.1002/cplu.202100024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Indexed: 12/12/2022]
Abstract
The properties of organic dyes depend as much on their intermolecular interactions as on their molecular structure. While it is generally predictable what supramolecular structure would be ideal for a specific application, the generation of specific supramolecular structures by molecular design and suitable processing methods remains to be a challenge. A versatile approach to different supramolecular structures has been the application of mesomorphism in conjunction with alignment techniques and self-assembly at interfaces. Reviewed here is the columnar mesomorphism of board-shaped dyes perylene, indigo, isoindigo, diketopyrrolopyrrole, and quinoxalinophenanthrophenazine. They generate a larger number of different supramolecular structures than conventional disc-shaped (discotic) mesogens because of their non-circular shape and directional intermolecular interactions. The mesomorphism of all but the perylene derivatives is systematically and comprehensively covered for the first time.
Collapse
Affiliation(s)
- S Holger Eichhorn
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - A O El-Ballouli
- College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 11481, Kingdom of Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Adam Cassar
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - Bilal R Kaafarani
- Department of Chemistry, American University of Beirut, Beirut, 1107-2020, Lebanon
| |
Collapse
|
4
|
Kumar GD, Banasiewicz M, Jacquemin D, Gryko DT. Switch-On Diketopyrrolopyrrole-Based Chemosensors for Cations Possessing Lewis Acid Character. Chem Asian J 2021; 16:355-362. [PMID: 33434391 DOI: 10.1002/asia.202001376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/09/2021] [Indexed: 12/17/2022]
Abstract
For the first time diketopyrrolopyrroles (DPPs) have been synthesized directly from nitriles possessing (aza)crown ethers leading to macrocycle-dye hybrids. Depending on the nature of the linkage between DPP and macrocyclic ring, various coordination effects are found. The strong interaction of the cations possessing Lewis acid character such as Li+ , Mg2+ and Zn2+ with 2-aminopyridin-4-yl-DPPs, leading to a bathochromic shift of both emission and absorption, as well as to strong enhancement of fluorescence was rationalized in terms of strong binding of these cations to the N=C-NR2 functionality. The same effect has been observed for protonation. Depending on the size and the structure of the macrocyclic ring the complexation of cations by aza-crown ethers plays an important but secondary role. The interaction of Na+ and K+ with 2-aminopyridin-4-yl-DPPs leads to moderate enhancement of fluorescence due to the aza-crown ethers binding. The very weak fluorescence of DPP bearing 2-dialkylamino-pyridine-4-yl substituents is due to the closely lying T2 state and the resulting intersystem crossing.
Collapse
Affiliation(s)
- G Dinesh Kumar
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Marzena Banasiewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland
| | - Denis Jacquemin
- CEISAM UMR 6230, CNRS, Université de Nantes, 44000, Nantes, France
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
5
|
Tian J, Liu Z, Jiang W, Shi D, Chen L, Zhang X, Zhang G, Di CA, Zhang D. A Conjugated Polymer Containing Arylazopyrazole Units in the Side Chains for Field-Effect Transistors Optically Tunable by Near Infra-Red Light. Angew Chem Int Ed Engl 2020; 59:13844-13851. [PMID: 32385919 DOI: 10.1002/anie.202003706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/06/2020] [Indexed: 12/21/2022]
Abstract
Optically tunable field-effect transistors (FETs) with near infra-red (NIR) light show promising applications in various areas. Now, arylazopyrazole groups are incorporated in the side chains of a semiconducting donor-acceptor (D-A) polymer. The cis-trans interconversion of the arylazopyrazole can be controlled by 980 nm and 808 nm NIR light irradiation, by utilizing NaYF4 :Yb,Tm upconversion nanoparticles and the photothermal effect of conjugated D-A polymers, respectively. This reversible transformation affects the interchain packing of the polymer thin film, which in turn reversibly tunes the semiconducting properties of the FETs by the successive 980 nm and 808 nm light irradiation. The resultant FETs display fast response to NIR light, good resistance to photofatigue, and stability in storage for up to 120 days. These unique features will be useful in future memory and bioelectronic wearable devices.
Collapse
Affiliation(s)
- Jianwu Tian
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenlin Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dandan Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xisha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Tian J, Liu Z, Jiang W, Shi D, Chen L, Zhang X, Zhang G, Di C, Zhang D. A Conjugated Polymer Containing Arylazopyrazole Units in the Side Chains for Field‐Effect Transistors Optically Tunable by Near Infra‐Red Light. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jianwu Tian
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wenlin Jiang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Dandan Shi
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xisha Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chong‐an Di
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
7
|
Pieczykolan M, Sadowski B, Gryko DT. An Efficient Method for the Programmed Synthesis of Multifunctional Diketopyrrolopyrroles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michał Pieczykolan
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Bartłomiej Sadowski
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Daniel T. Gryko
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
8
|
Pieczykolan M, Sadowski B, Gryko DT. An Efficient Method for the Programmed Synthesis of Multifunctional Diketopyrrolopyrroles. Angew Chem Int Ed Engl 2020; 59:7528-7535. [DOI: 10.1002/anie.201915953] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Michał Pieczykolan
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Bartłomiej Sadowski
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Daniel T. Gryko
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
9
|
Schmidt H, Würthner F. A Periodic System of Supramolecular Elements. Angew Chem Int Ed Engl 2020; 59:8766-8775. [DOI: 10.1002/anie.201915643] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Hans‐Werner Schmidt
- Makromolekulare Chemie Universität Bayreuth Universitätsstrasse 30 95447 Bayreuth Germany
- Bavarian Polymer Institute (BPI) Universität Bayreuth & Universität Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Germany
- Bavarian Polymer Institute (BPI) Universität Bayreuth & Universität Würzburg Germany
| |
Collapse
|
10
|
Affiliation(s)
- Hans‐Werner Schmidt
- Makromolekulare Chemie Universität Bayreuth Universitätsstraße 30 95447 Bayreuth Deutschland
- Bayerisches Polymerinstitut (BPI) Universität Bayreuth & Universität Würzburg Deutschland
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Bayerisches Polymerinstitut (BPI) Universität Bayreuth & Universität Würzburg Deutschland
| |
Collapse
|
11
|
Gońka E, Yang L, Steinbock R, Pesciaioli F, Kuniyil R, Ackermann L. π-Extended Polyaromatic Hydrocarbons by Sustainable Alkyne Annulations through Double C-H/N-H Activation. Chemistry 2019; 25:16246-16250. [PMID: 31820511 PMCID: PMC6973059 DOI: 10.1002/chem.201905023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 12/12/2022]
Abstract
The widespread applications of substituted diketopyrrolopyrroles (DPPs) call for the development of efficient methods for their modular assembly. Herein, we present a π-expansion strategy for polyaromatic hydrocarbons (PAHs) by C-H activation in a sustainable fashion. Thus, twofold C-H/N-H activations were accomplished by versatile ruthenium(II)carboxylate catalysis, providing step-economical access to diversely decorated fluorogenic DPPs that was merged with late-stage palladium-catalyzed C-H arylation on the thus-assembled DPP motif.
Collapse
Affiliation(s)
- Elżbieta Gońka
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Long Yang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Ralf Steinbock
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Fabio Pesciaioli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
12
|
Casutt M, Dittmar B, Makowska H, Marszalek T, Kushida S, Bunz UHF, Freudenberg J, Jänsch D, Müllen K. A Diketopyrrolopyrrole‐Based Dimer as a Blue Pigment. Chemistry 2019; 25:2723-2728. [DOI: 10.1002/chem.201806121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/07/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Manuela Casutt
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- InnovationLab Speyerer Straße 4 69115 Heidelberg Germany
| | - Benedikt Dittmar
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Hanna Makowska
- Department of Molecular Physics, Faculty of Chemistry Lodz University of Technology Zeromskiego 116 90–924 Lodz Poland
| | - Tomasz Marszalek
- Max-Planck-Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Soh Kushida
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre of Advanced Materials Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- InnovationLab Speyerer Straße 4 69115 Heidelberg Germany
| | - Daniel Jänsch
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- InnovationLab Speyerer Straße 4 69115 Heidelberg Germany
| | - Klaus Müllen
- Max-Planck-Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
13
|
Haenle JC, Stöckl Y, Forschner R, Haenle E, Laschat S. Fluorophobic Effect Promoting Lamellar Self-Assembly of Donor Acceptor Dyes. Chemphyschem 2018; 19:2758-2767. [PMID: 29999251 DOI: 10.1002/cphc.201800449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 11/07/2022]
Abstract
To combine liquid crystalline and linear optical properties in the same molecule, the fluorophobic effect was probed for the first time in donor acceptor dyes. Thus, a series of mono-, bi-, and tricyclic donor acceptor dyes with 1H,1H-perfluorinated alkyl chains of different lengths as donor units and nitrile, malononitrile or barbiturate as acceptor units was synthesized in 5 steps and 1.4-6.6 % overall yield. UV/Vis and fluorescence spectroscopy, cyclic voltammetry and DFT calculations revealed that absorption and emission maxima, Stokes shifts and LUMO energies were mainly governed by the chromophore size and acceptor strengths. The perfluorinated chain was electronically almost decoupled from the remaining chromophore and induced only slight changes of the absorption maxima as compared to the alkyl substituted counterparts. However, in contrast to the non-mesomorphic alkyl donor-substituted derivatives, the perfluorinated donors resulted in self-assembly into partially interdigitated SmA bilayers according to differential scanning calorimetry (DSC), polarizing optical microscopy (POM), X-ray diffraction (WAXS, SAXS) studies and electron density profile calculations.
Collapse
Affiliation(s)
| | - Yannick Stöckl
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwalding 55, 70569, Stuttgart, Germany
| | - Robert Forschner
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwalding 55, 70569, Stuttgart, Germany
| | - Elena Haenle
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwalding 55, 70569, Stuttgart, Germany
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwalding 55, 70569, Stuttgart, Germany
| |
Collapse
|