1
|
Sunani P, Thiruvengetam P, Chand DK. A double-chain based metallomicellar catalyst for aerobic oxidative synthesis of benzimidazoles in water. Dalton Trans 2025. [PMID: 39866074 DOI: 10.1039/d4dt03406f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The oxomolybdenum complexes Mo1, Mo2 and Mo3, which share a common ONO donor ligand backbone but differ in their peripheral substituents, were explored to study their reactivity in organic transformations in water. The ligand backbones of Mo1 and Mo2 were covalently linked to a methyl group and a single hydrophobic n-hexadecyl chain via an ether linkage, respectively. The complex Mo3 was found to possess two n-hexadecyl chains attached to the ligand backbone via a common amine-N. Complexes Mo2 and Mo3 formed metallomicelle when dispersed in water due to the surfactant presence in their structures, enabling them to uptake organic substrates. The catalytic potential of the complexes was evaluated for the oxidative coupling of benzylamine with 1,2-diaminobenzene to synthesize benzimidazole in neat water using open air as the sole oxidant. The double-chain surfactant-type catalyst Mo3 displayed superior activity compared to the single-chain surfactant-type complex, Mo2. A wide variety of benzimidazoles were synthesized in good to excellent yields under environmentally benign conditions using Mo3 as the catalyst. The practical utility of the process was validated through multi-gram scale-up reactions and recyclability experiments. A plausible mechanism was proposed based on several controlled experiments and literature support.
Collapse
Affiliation(s)
- Pragyansmruti Sunani
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | | | - Dillip Kumar Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
2
|
Zhang S, Lu Y, Song J, Guan J, Dai Y, Cao W, Xu H. Assembly Regulates Gamma Radiation Polymerization of Polytelluoxane. Angew Chem Int Ed Engl 2025; 64:e202415811. [PMID: 39289789 DOI: 10.1002/anie.202415811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Regulating chemical drug's responsiveness to gamma radiation is crucial for achieving better therapeutic effects in cancer treatment. Most research focused on thermodynamic chemical structure design, while little attention was paid to kinetic regulate strategy, which possesses greater universality and security. In this study, we achieved a kinetic-based regulate strategy of gamma radiation reaction, through the construction of microphase environment during polymerization of polytelluoxane (PTeO). We designed hydrophobic segments forming large compound micelles (LCMs) assembly to create kinetically favorable higher concentration for radiation-induced reaction. It exhibited a > ten times higher responsiveness and, as far as we know, merely required a minimum dosage of 5 Gy for polymerization to occur. What's more, by taking advantages of the assembly change with Te-O hydrophilic segments and gamma radiation, polymerization became milder with lower polydispersity than previous methods. Such kinetic-based regulate strategy could offer a novel perspective on the design of radiation-responsive chemoradiotherapy and other radiation-induced chemical process.
Collapse
Affiliation(s)
- Shenghan Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering and Laboratory of Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yijie Lu
- Key Lab of Organic Optoelectronics & Molecular Engineering and Laboratory of Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Junjie Song
- Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jun Guan
- Key Laboratory of Chemical Resource Engineering, Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yiheng Dai
- Key Lab of Organic Optoelectronics & Molecular Engineering and Laboratory of Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Wei Cao
- Key Lab of Radiopharmaceuticals of the Ministry of Education, Department of Chemistry, Beijing Normal University, 100785, Beijing, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, 510640, Guangzhou, China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering and Laboratory of Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
3
|
Buntkowsky G, Hoffmann M. NMR and MD Simulations of Non-Ionic Surfactants. Molecules 2025; 30:309. [PMID: 39860179 PMCID: PMC11767737 DOI: 10.3390/molecules30020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Non-ionic surfactants are an important solvent in the field of green chemistry with tremendous application potential. Understanding their phase properties in bulk or in confined environments is of high commercial value. In recent years, the combination of molecular dynamics (MD) simulations with multinuclear solid-state NMR spectroscopy and calorimetric techniques has evolved into the most powerful tool for their investigation. Showing recent examples from our groups, the present review demonstrates the power and versatility of this approach, which can handle both small model-surfactants like octanol and large technical surfactants like technical polyethylene glycol (PEG) mixtures and reveals otherwise unobtainable knowledge about their phase behavior and the underlying molecular arrangements.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Department of Chemistry, Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany
| | - Markus Hoffmann
- Department of Chemistry and Biochemistry, State University of New York Brockport, Brockport, NY 14420, USA
| |
Collapse
|
4
|
Blayo C, Jones BE, Bennison MJ, Evans RC. Size and shape matter for micellar catalysis using light-responsive azobenzene surfactants. Org Biomol Chem 2024; 23:138-144. [PMID: 39509081 PMCID: PMC11563304 DOI: 10.1039/d4ob01587h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
The micellar catalysis of a model Claisen-Schmidt aldol condensation reaction using heterogeneous nanoreactors based on cationic azobenzene trimethylammonium bromide (AzoTAB) photosurfactants is investigated. Under UV irradiation, AzoTABs undergo a trans-cis photoisomerisation, which changes not only the critical micelle concentration, but also the shape and size of the micelle. The effect of surfactant structure (tail and spacer lengths), concentration and temperature on the reaction yield were investigated. Monitoring of the zeta potential during the reaction indicated that it proceeds at the micelle/water interface for AzoTABs, with the enolate intermediate stabilised in micelle/water interface (i.e. the Stern layer). The reaction yield was found to correlate directly to micellar shape and size, with smaller, more spherical micelles typical of cis-AzoTABs favouring higher reaction efficiencies.
Collapse
Affiliation(s)
- Camille Blayo
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Beatrice E Jones
- Department of Material Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| | - Michael J Bennison
- Department of Material Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| | - Rachel C Evans
- Department of Material Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| |
Collapse
|
5
|
Hegelmann M, Zuber J, Luibl J, Jandl C, Korth W, Jess A, Cokoja M. Dynamic Phase Behavior of Surface-Active Fluorinated Ionic Liquid Epoxidation Catalysts. Chemistry 2024; 30:e202402985. [PMID: 39225624 DOI: 10.1002/chem.202402985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
We report on the synthesis of amphiphobic fluorinated surface-active ionic liquid (FSAIL) epoxidation catalysts, which show reversible temperature-controlled solubility in water. The solubility of FSAILs containing the catalytically active perrhenate- and tungstate anions was studied in both the aqueous and the substrate phase, showing a significant solubility decrease in both media compared to their non-fluorinated congeners. It was shown that both the epoxide product and the catalyst additive phenylphosphonic acid (PPA) are efficient in transferring the FSAIL catalyst into the organic phase, rendering the reaction homogeneous. The FSAILs were used as catalysts for the epoxidation of olefins using aqueous H2O2 as oxidant, showing an exceptionally high catalytic activity at mild conditions. Catalyst recycling was demonstrated over ten consecutive runs by phase separation and subsequent product distillation.
Collapse
Affiliation(s)
- Markus Hegelmann
- Technical University of Munich, Catalysis Research Center and School of Natural Sciences, Department of Chemistry, Ernst-Otto-Fischer-Straße 1, D-85748, Garching bei München, Germany
| | - Julian Zuber
- Technical University of Munich, Catalysis Research Center and School of Natural Sciences, Department of Chemistry, Ernst-Otto-Fischer-Straße 1, D-85748, Garching bei München, Germany
| | - Johannes Luibl
- University of Bayreuth, Faculty of Engineering Science, Chair of Chemical Engineering, Universitätsstraße 30, D-95447, Bayreuth, Germany
| | - Christian Jandl
- ELDICO Scientific AG, Switzerland Innovation Park Basel Area, Hegenheimermattweg 167 A, 4123, Allschwil, Switzerland
| | - Wolfgang Korth
- University of Bayreuth, Faculty of Engineering Science, Chair of Chemical Engineering, Universitätsstraße 30, D-95447, Bayreuth, Germany
| | - Andreas Jess
- University of Bayreuth, Faculty of Engineering Science, Chair of Chemical Engineering, Universitätsstraße 30, D-95447, Bayreuth, Germany
| | - Mirza Cokoja
- Technical University of Munich, Catalysis Research Center and School of Natural Sciences, Department of Chemistry, Ernst-Otto-Fischer-Straße 1, D-85748, Garching bei München, Germany
| |
Collapse
|
6
|
Ling Q, Harrison MD, Hassanpour M, Zhang Z. Rice husk derived lignin/silica hybrid nanoparticles stabilized Pickering emulsion for phytosterol ester biosynthesis. Int J Biol Macromol 2024; 283:137600. [PMID: 39542307 DOI: 10.1016/j.ijbiomac.2024.137600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
This study investigates the production of lignin/silica hybrid nanoparticles (LSNPs) from rice husks, an abundant agricultural waste, and their capacity to stabilize Pickering emulsions for biocatalysis. Lignin extracted from rice husks under alkaline conditions was co-precipitated with silica to produce LSNPs in the presence or absence of ethanol as a co-solvent. Characterization of LSNPs revealed that ethanol played a key role in forming uniform, spherical nanoparticles and minimizing aggregation. Lignin imparted amphiphilicity to the LSNPs, which significantly improved their capacity to form stable Pickering emulsions. LSNPs were able to form stable oil-in-water Pickering emulsions while droplet size and emulsion stability were influenced by LSNPs concentration, oil/water ratio, temperature and pH. LSNPs-stabilized Pickering emulsions were evaluated for lipase-mediated biosynthesis of phytosterol esters, which are plant bioactive compounds that can reduce dietary cholesterol uptake. LSNPs-stabilized emulsions provided 1.915 × 106 times larger interfacial areas compared to conventional biphasic systems which facilitated improved mass transfer and lipase activity. Under optimal conditions, LSNPs-stabilized Pickering emulsion systems delivered 90.6% phytosterol ester conversion in 4 h, compared to 10 h in biphasic systems. This research highlights the potential of sustainable, biomass-derived nanoparticles in Pickering emulsion applications and offers an environmentally friendly approach to produce bioactive compounds.
Collapse
Affiliation(s)
- Qiyang Ling
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Mark D Harrison
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Morteza Hassanpour
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.
| | - Zhanying Zhang
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
7
|
Wu S, Yang X, Zhou J, Yu W. Copper-catalysed bromine atom transfer cyclisation in SDS micelles. Chem Commun (Camb) 2024; 60:13883-13886. [PMID: 39499534 DOI: 10.1039/d4cc03903c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The atom transfer radical cyclisation (ATRC) of non-activated alkyl bromides was realized under blue light irradiation in carbonate-buffered aqueous SDS solution using a catalytic system of CuBr2, Me6-TREN and ascorbic acid. The beneficial effect of SDS micelles can be accounted for by the activation of the C-Br bond as well as by the suppression of competitive reductive cyclisation.
Collapse
Affiliation(s)
- Shuoren Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Xue Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Jianlin Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
Thieghi LT, Alves SI. Effect of DMSO Addition on the Hexagonal Phase of the System Triton X/Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21985-21994. [PMID: 39392386 PMCID: PMC11500494 DOI: 10.1021/acs.langmuir.4c01937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
This research studied the role of DMSO in a binary system of Triton X and water in the hexagonal mesophase. One effect of DMSO addition, determined using polarized optical microscopy and small-angle X-ray scattering measurements, is to promote a decrease in the hexagonal to isotropic phase transition temperature, TH-ISO, decreasing the range of temperatures of the hexagonal phase until the hexagonal phase completely disappears when DMSO is added up to 5.0 mol %. The periodicity and the lattice parameter of the hexagonal arrangement, calculated as a function of DMSO concentration, slight increased due to the insertion of DMSO molecules in the water region, causing a greater distance between the cylindrical micelles, while the radius of the apolar domains kept constant at 22 (1) Å.
Collapse
Affiliation(s)
- Leila T. Thieghi
- Instituto de Ciências
Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP 09913-030, Brasil
| | - Sarah I.P.M.N. Alves
- Instituto de Ciências
Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP 09913-030, Brasil
| |
Collapse
|
9
|
Zhang W, Zhu J, Ren J, Qu X. Smart Bioorthogonal Nanozymes: From Rational Design to Appropriate Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405318. [PMID: 39149782 DOI: 10.1002/adma.202405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Bioorthogonal chemistry has provided an elaborate arsenal to manipulate native biological processes in living systems. As the great advancement of nanotechnology in recent years, bioorthogonal nanozymes are innovated to tackle the challenges that emerged in practical biomedical applications. Bioorthogonal nanozymes are uniquely positioned owing to their advantages of high customizability and tunability, as well as good adaptability to biological systems, which bring exciting opportunities for biomedical applications. More intriguingly, the great advancement in nanotechnology offers an exciting opportunity for innovating bioorthogonal catalytic materials. In this comprehensive review, the significant progresses of bioorthogonal nanozymes are discussed with both spatiotemporal controllability and high performance in living systems, and highlight their design principles and recent rapid applications. The remaining challenges and future perspectives are then outlined along this thriving field. It is expected that this review will inspire and promote the design of novel bioorthogonal nanozymes, and facilitate their clinical translation.
Collapse
Affiliation(s)
- Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiawei Zhu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
10
|
Mori M, Sugai H, Sato K, Okada A, Matsuo T, Kinbara K. A bioinspired bifunctional catalyst: an amphiphilic organometallic catalyst for ring-closing metathesis forming liquid droplets in aqueous media. Chem Commun (Camb) 2024; 60:7979-7982. [PMID: 38976255 DOI: 10.1039/d4cc01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Inspired by phase-separated biopolymers with enzymatic activity, we developed an amphiphilic catalyst consisting of alternating hydrophilic oligo(ethylene glycol) and hydrophobic aromatic units bearing a Hoveyda-Grubbs catalyst center (MAHGII). MAHGII served as both a droplet-forming scaffold and a catalyst for ring-closing metathesis reactions, providing a new biomimetic system that promotes organic reactions in an aqueous environment.
Collapse
Affiliation(s)
- Miki Mori
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Hiroka Sugai
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Asuki Okada
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Takashi Matsuo
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
11
|
Thiruvengetam P, Sunani P, Kumar Chand D. A Metallomicellar Catalyst for Controlled Oxidation of Alcohols and Lignin Mimics in Water using Open Air as Oxidant. CHEMSUSCHEM 2024; 17:e202301754. [PMID: 38224525 DOI: 10.1002/cssc.202301754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Alcohol groups and β-O-4 (C-C) linkages are widespread in biomass feedstock that are abundant renewable resource for value-added chemicals. The development of sustainable protocols for direct oxidation or oxidative cleavage of feedstock materials in a controlled fashion, using open air as an oxidant is an intellectually stimulating task to produce industrially important value-added carbonyls. Further, the oxidative depolymerization of lignin into fine chemicals has evoked interest in recent times. Herein, we report the first example of a catalyst system that could activate molecular oxygen from atmospheric air for controlled oxidation and oxidative cleavage/depolymerization of feedstock materials such as alcohols, β-O-4 (C-C) linkages and real lignin in water under open air conditions. The selectivity of carbonyl products is controlled by altering the pH between ~7.0 and ~12.0. The current strategy highlights the non-involvement of any external co-catalyst, oxidant, radical additives, and/or destructive organic solvents. The catalyst shows a wide substrate scope and eminent functional group tolerance. The upscaled multigram synthesis using an inexpensive catalyst and easily available oxidant evidences the practical utility of the developed protocol. A plausible mechanism has been proposed with the help of a few controlled experiments, and kinetic and computational studies.
Collapse
Affiliation(s)
- Prabaharan Thiruvengetam
- IoE Centre of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Pragyansmruti Sunani
- IoE Centre of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Dillip Kumar Chand
- IoE Centre of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
12
|
Bodaghifard MA, Pourmousavi SA, Ahadi N, Zeynali P. An immobilized Schiff base-Mn complex as a hybrid magnetic nanocatalyst for green synthesis of biologically active [4,3- d]pyrido[1,2- a]pyrimidin-6-ones. NANOSCALE ADVANCES 2024; 6:2713-2721. [PMID: 38752148 PMCID: PMC11093261 DOI: 10.1039/d4na00131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/03/2024] [Indexed: 05/18/2024]
Abstract
The immobilization of metal ions on inorganic supports has garnered significant attention due to its wide range of applications. These immobilized metal ions serve as catalysts for chemical reactions and as probes for studying biological processes. In this study, we successfully prepared Fe3O4@SiO2@Mn-complex by immobilizing manganese onto the surface of magnetic Fe3O4@SiO2 nanoparticles through a layer-by-layer assembly technique. The structure of these hybrid nanoparticles was characterized by various analytical techniques, including Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), and inductively coupled plasma-optical emission spectrometry (ICP-OES). Fe3O4@SiO2@Mn-complex was successfully utilized in the synthesis of biologically active 7-aryl[4,3-d]pyrido[1,2-a]pyrimidin-6(7H)-one derivatives in an aqueous medium, providing environmentally friendly conditions. The desired products were manufactured in high yields (81-95%) without the formation of side products. The heterogeneity of the solid nanocatalyst was assessed using a hot filtration test that confirmed minimal manganese leaching during the reaction. This procedure offers numerous advantages, including short reaction times, the use of a green solvent, the ability to reuse the catalyst without a significant decrease in catalytic activity, and easy separation of the catalyst using an external magnet. Furthermore, this approach aligns with environmental compatibility and sustainability standards.
Collapse
Affiliation(s)
- Mohammad Ali Bodaghifard
- Department of Chemistry, Faculty of Science, Arak University Arak 384817758 Iran
- Institute of Nanosciences &Nanotechnology, Arak University Arak Iran
| | | | - Najmieh Ahadi
- Institute of Nanosciences &Nanotechnology, Arak University Arak Iran
| | - Payam Zeynali
- School of Chemistry, Damghan University Damghan 36716-45667 Iran
| |
Collapse
|
13
|
Suzuki H, Akiyama Y, Yamashina M, Tanaka Y, Toyota S. Transformation of Highly Hydrophobic Triarylphosphines into Amphiphiles via Staudinger Reaction with Hydrophilic Trichlorophenyl Azide. Chemistry 2023; 29:e202303017. [PMID: 37766651 DOI: 10.1002/chem.202303017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
Owing to its hydrophobic properties and reactivity, triarylphosphines (PAr3 ) are promising precursors for the development of new amphiphiles. However, an efficient and reliable synthetic method for amphiphiles based on highly hydrophobic PAr3 is still required. Herein, a straightforward transformation of highly hydrophobic PAr3 into amphiphiles via the Staudinger reaction is reported. By simply mixing PAr3 and a hydrophilic trichlorophenyl azide containing two hydrophilic chains, amphiphiles bearing a N=P bond (i. e., an azaylide moiety) were quantitatively formed. The obtained azaylide-based amphiphiles were remarkably water-soluble, enabling their spontaneous self-assembly into 2 nm-sized micelles composed of 4-5 molecules in water with a low critical micelle concentration (up to 0.05 mM or less) due to the effective intermolecular interactions among the hydrophobic surfaces. Although the azaylide moiety is easily hydrolyzed in the presence of water, the azaylide in the amphiphiles displayed notable stability in water even at 60 h, which stems from the LUMO modulation induced by the presence of three electron-withdrawing chloro groups and two twisted alkoxycarbonyl groups, according to DFT calculations. An amphiphile having a large hydrophobic surface solubilized various hydrophobic organic dyes through efficient intermolecular interactions, resulting in the dyes exhibiting either monomer or excimer emissions in water.
Collapse
Affiliation(s)
- Hayate Suzuki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Yoshimori Akiyama
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Masahiro Yamashina
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
14
|
Cheng D, Zhang J, Fu J, Song H, Yu C. A hierarchical spatial assembly approach of silica-polymer composites leads to versatile silica/carbon nanoparticles. SCIENCE ADVANCES 2023; 9:eadi7502. [PMID: 37792932 PMCID: PMC10550229 DOI: 10.1126/sciadv.adi7502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Assembly of silica and polymer in the absence of surfactant templates is an emerging strategy to construct intricate nanostructures, whereas the underlying mechanism and structural versatility remain largely unexplored. We report a hierarchical spatial assembly strategy of silica-polymer composites to produce silica and carbon nanoparticles with unprecedented structures. The assembly hierarchy involves a higher length scale asymmetric A-B-A core-shell-type spatial assembly in a composite sphere, and a nanoscale assembly in the middle layer B in which the silica/polymer ratio governs the assembled structures of silica nanodomains. Through an in-depth understanding of the hierarchical spatial assembly mechanism, a series of silica and carbon nanoparticles with intriguing and controllable architectures are obtained that cannot be easily achieved via conventional surfactant-templating approaches. This work opens an avenue toward the designed synthesis of nanoparticles with precisely regulated structures.
Collapse
Affiliation(s)
- Dan Cheng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jianye Fu
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266555, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
15
|
Di Pino S, Perez Sirkin YA, Morzan UN, Sánchez VM, Hassanali A, Scherlis DA. Water Self-Dissociation is Insensitive to Nanoscale Environments. Angew Chem Int Ed Engl 2023; 62:e202306526. [PMID: 37379226 DOI: 10.1002/anie.202306526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Nanoconfinement effects on water dissociation and reactivity remain controversial, despite their importance to understand the aqueous chemistry at interfaces, pores, or aerosols. The pKw in confined environments has been assessed from experiments and simulations in a few specific cases, leading to dissimilar conclusions. Here, with the use of carefully designed ab initio simulations, we demonstrate that the energetics of bulk water dissociation is conserved intact to unexpectedly small length-scales, down to aggregates of only a dozen molecules or pores of widths below 2 nm. The reason is that most of the free-energy involved in water autoionization comes from breaking the O-H covalent bond, which has a comparable barrier in the bulk liquid, in a small droplet of nanometer size, or in a nanopore in the absence of strong interfacial interactions. Thus, dissociation free-energy profiles in nanoscopic aggregates or in 2D slabs of 1 nm width reproduce the behavior corresponding to the bulk liquid, regardless of whether the corresponding nanophase is delimited by a solid or a gas interface. The present work provides a definite and fundamental description of the mechanism and thermodynamics of water dissociation at different scales with broader implications on reactivity and self-ionization at the air-liquid interface.
Collapse
Affiliation(s)
- Solana Di Pino
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, I-34151, Trieste, Italy
| | - Yamila A Perez Sirkin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
| | - Uriel N Morzan
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, I-34151, Trieste, Italy
| | - Verónica M Sánchez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
| | - Ali Hassanali
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, I-34151, Trieste, Italy
| | - Damian A Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, I-34151, Trieste, Italy
| |
Collapse
|
16
|
Neethu KM, Nag K, Dar AH, Bajaj A, Gopal SA, Gowri V, Nagpure M, Sartaliya S, Sharma R, Solanki AK, Ehesan Ali M, Muthukrishnan A, Jayamurugan G. A study of [2 + 2] cycloaddition-retroelectrocyclization in water: observation of substrate-driven transient-nanoreactor-induced new reactivity. Org Biomol Chem 2023; 21:2922-2929. [PMID: 36943100 DOI: 10.1039/d3ob00053b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Organic solvents limit [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) in biological fields. We examined the formation of 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs) through CA-RE reactions and their unusual reactivity to produce N-heterocyclic compounds when the nature of the surfactant and the concentrations were varied in the aqueous phase. An environment in which transient self-assemblies (vesicles) were induced by the substrate and surfactant molecules initiated new reactivity through H2O addition on the TCBD, generating the enol form of the intermediate, which results in the formation of the 6,6-dicyano-heteropentafulvene (amidofulvene) compound, while lamellar sheets at higher concentrations favored TCBD generation. Interestingly, the amidofulvene underwent a clean transformation to 6-membered heterocycles that resemble cardiotonic drugs (milrinone, amrinone) via keto-enol tautomerism mediated by a polar aprotic solvent, opening up a new avenue for drug discovery. Unlike organic-solvent-mediated CA-RE reactions, the present nanoreactor-mediated approach enabled the selective production of TCBDs as well as new heterocycles using H2O as a green solvent. In addition to the widely explored organic electronics/materials, we believe that this study will help to overcome the long-standing limitation of CA-RE reaction applicability in biological fields.
Collapse
Affiliation(s)
- K M Neethu
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India.
| | - Kritika Nag
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India.
| | - Arif Hassan Dar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India.
| | - Ashima Bajaj
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India.
| | - S Arya Gopal
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Vijayendran Gowri
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India.
| | - Mithilesh Nagpure
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India.
| | - Shaifali Sartaliya
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India.
| | - Raina Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India.
| | - Arun Kumar Solanki
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India.
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India.
| | - Azhagumuthu Muthukrishnan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Govindasamy Jayamurugan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India.
| |
Collapse
|
17
|
Xu H, Li X, Ma J, Zuo J, Song X, Lv J, Yang D. An electron donor–acceptor photoactivation strategy for the synthesis of S-aryl dithiocarbamates using thianthrenium salts under mild aqueous micellar conditions. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
18
|
Yamashita M, Kawakami N, Miyamoto K. Hydrophobization of a TIP60 Protein Nanocage for the Encapsulation of Hydrophobic Compounds. Chempluschem 2023; 88:e202200392. [PMID: 36775805 DOI: 10.1002/cplu.202200392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
Encapsulation of hydrophobic molecules in protein-based nanocages is a promising approach for dispersing these molecules in water. Here, we report a chemical modification approach to produce a protein nanocage with a hydrophobic interior surface based on our previously developed nanocage, TIP60. The large pores of TIP60 act as tunnels for small molecules, allowing modification of the interior surface by hydrophobic compounds without nanocage disassembly. We used four different hydrophobic compounds for modification. The largest modification group tested, pyrene, resulted in a modified TIP60 that could encapsulate aromatic photosensitizer zinc phthalocyanine (ZnPC) more efficiently than the other modification compounds. The encapsulated ZnPC generated singlet oxygen upon light activation in the aqueous phase, whereas ZnPC alone formed inert aggregates under the same experimental conditions. Given that chemical modification allows a wider diversity of modifications than mutagenesis, this approach could be used to develop more suitable nanocages for encapsulating hydrophobic molecules of interest.
Collapse
Affiliation(s)
- Maika Yamashita
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223- 8522, Japan
| | - Norifumi Kawakami
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223- 8522, Japan
| | - Kenji Miyamoto
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223- 8522, Japan
| |
Collapse
|
19
|
Zhang T, Xu G, Blum FD. Eco-Friendly Room-Temperature Polymerization in Emulsions and Beyond. POLYM REV 2023. [DOI: 10.1080/15583724.2023.2176514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Tan Zhang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
- Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Gu Xu
- Brewer Science Inc., Rolla, Missouri, USA
| | - Frank D. Blum
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
20
|
Mattiello S, Ghiglietti E, Zucchi A, Beverina L. Selectivity in micellar catalysed reactions. The role of interfacial dipole, compartmentalisation, and specific interactions with the surfactants. Curr Opin Colloid Interface Sci 2023. [DOI: 10.1016/j.cocis.2023.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
21
|
Sun J, Tan H, Gao Y, Li J, Wei J, Zhang S, Ouyang J, Na N. Confined surface-enhanced indole cation-radical cyclization studied by mass spectrometry. Analyst 2023; 148:262-268. [PMID: 36503912 DOI: 10.1039/d2an01719a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reactions in confined spaces exhibit unique reactivity, while how the confinement effect enhances reactions remains unclear. Herein, the reaction in the confined space of a nanopipette reactor was examined by in situ nano-electrospray mass spectrometry (nanoESI-MS). The indole cation-radical cyclization was selected as the model reaction, catalyzed by a common visible-light-harvesting complex Ru(bpz)3(PF6)2 (1% eq.) rather than traditional harsh reaction conditions (high temperature or pressure, etc.). As demonstrated by in situ nanoESI-MS, this reaction was readily promoted in the nanopipette under mild conditions, while it was inefficient in both normal flasks and microdroplets. Both experimental and theoretical evidence demonstrated the formation of concentrated Ru(II)-complexes on the inner surface of the nanopipette, which facilitated the accelerated reactions. As a result, dissociative reactive cation radicals with lower HOMO-LUMO gap were generated from the Ru(II)-complexes by ligand-to-metal charge transfer (LMCT). Furthermore, the crucial cation radical intermediates were captured and dynamically monitored via in situ nanoESI-MS, responsible for the electronically matched [4 + 2] cycloaddition and subsequent intramolecular dehydrogenation. This work inspires a deeper understanding of the unique reactions in confined spaces.
Collapse
Affiliation(s)
- Jianghui Sun
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Hongwei Tan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yixuan Gao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jingjing Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Juanjuan Wei
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Shengxi Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jin Ouyang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Na Na
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
22
|
YOSHIZAWA M, CATTI L. Aromatic micelles: toward a third-generation of micelles. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:29-38. [PMID: 36631075 PMCID: PMC9851959 DOI: 10.2183/pjab.99.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Micelles are useful and widely applied molecular assemblies, formed from amphiphilic molecules, in water. The majority of amphiphiles possess an alkyl chain as the hydrophobic part. Amphiphiles bearing hydrophilic and hydrophobic polymer chains generate so-called polymeric micelles in water. This review focuses on the recent progress of "aromatic micelles", formed from bent polyaromatic/aromatic amphiphiles, for the development of third-generation micelles. Thanks to multiple host-guest interactions, e.g., the hydrophobic effect and π-π/CH-π interactions, the present micelles display wide-ranging uptake abilities toward various hydrophobic compounds in water. In addition to such host functions, new stimuli-responsive aromatic micelles with pH, light, and redox switches, aromatic oligomer micelles, saccharide-coated aromatic micelles, and related cycloalkane-based micelles were recently developed by our group.
Collapse
Affiliation(s)
- Michito YOSHIZAWA
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Lorenzo CATTI
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
23
|
Racheeti PB, Gunturu RB, Pinapati SR, Kowthalam A, Tamminana R, Rudraraju R. Hypervalent iodine(III) promoted synthesis of isothiocyanates in water. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2148222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ratna Babu Gunturu
- Department of Chemistry, Acharya Nagarjuna University, Guntur, AP, India
| | | | - Anitha Kowthalam
- Department of Chemistry, Sri Krishna Devaraya University, Ananthapur, AP, India
| | - Ramana Tamminana
- Department of Chemistry, VIT-AP University, Amaravati, AP, India
| | | |
Collapse
|
24
|
Borrego E, Caballero A, Pérez PJ. Micellar Catalysis as a Tool for C-H Bond Functionalization toward C-C Bond Formation. Organometallics 2022; 41:3084-3098. [PMID: 37810590 PMCID: PMC10552653 DOI: 10.1021/acs.organomet.2c00309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 11/29/2022]
Abstract
Micelles generated upon dissolving surfactants in water can be employed as nanovessels for catalytic transformations, in the so-called micellar catalysis methodology. This review is focused on the use of micellar catalysis in the context of the catalytic functionalization of carbon-hydrogen bonds. The micelles accumulate catalyst and reactants in their inner volume in such a high local concentration that kinetics are favored. The consequence is that, in most cases, processes that in conventional organic solvents require high temperatures and long reaction times are achieved in milder conditions when micellar catalysis is employed.
Collapse
Affiliation(s)
- Elena Borrego
- Laboratorio de Catálisis
Homogénea, Unidad Asociada al CSIC, CIQSO Centro de Investigación
en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Carmen, 21007 Huelva, Spain
| | - Ana Caballero
- Laboratorio de Catálisis
Homogénea, Unidad Asociada al CSIC, CIQSO Centro de Investigación
en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Carmen, 21007 Huelva, Spain
| | - Pedro J. Pérez
- Laboratorio de Catálisis
Homogénea, Unidad Asociada al CSIC, CIQSO Centro de Investigación
en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Carmen, 21007 Huelva, Spain
| |
Collapse
|
25
|
Effective screening of Coulomb repulsions in water accelerates reactions of like-charged compounds by orders of magnitude. Nat Commun 2022; 13:6451. [PMID: 36307412 PMCID: PMC9616817 DOI: 10.1038/s41467-022-34182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
The reaction kinetics between like-charged compounds in water is extremely slow due to Coulomb repulsions. Here, we demonstrate that by screening these interactions and, in consequence, increasing the local concentration of reactants, we boost the reactions by many orders of magnitude. The reaction between negatively charged Coenzyme A molecules accelerates ~5 million-fold using cationic micelles. That is ~104 faster kinetics than in 0.5 M NaCl, although the salt is ~106 more concentrated. Rate enhancements are not limited to micelles, as evidenced by significant catalytic effects (104-105-fold) of other highly charged species such as oligomers and polymers. We generalize the observed phenomenon by analogously speeding up a non-covalent complex formation-DNA hybridization. A theoretical analysis shows that the acceleration is correlated to the catalysts' surface charge density in both experimental systems and enables predicting and controlling reaction rates of like-charged compounds with counter-charged species.
Collapse
|
26
|
Patel B, Singh S, Parikh K, Chavda V, Ray D, Aswal VK, Kumar S. Micro-Environment mapping of mole fraction inspired contrasting charged aqueous gemini micelles: A drug solubilization/release study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Das N, Maity C. Switchable aqueous catalytic systems for organic transformations. Commun Chem 2022; 5:115. [PMID: 36697818 PMCID: PMC9814960 DOI: 10.1038/s42004-022-00734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
In living organisms, enzyme catalysis takes place in aqueous media with extraordinary spatiotemporal control and precision. The mechanistic knowledge of enzyme catalysis and related approaches of creating a suitable microenvironment for efficient chemical transformations have been an important source of inspiration for the design of biomimetic artificial catalysts. However, in "nature-like" environments, it has proven difficult for artificial catalysts to promote effective chemical transformations. Besides, control over reaction rate and selectivity are important for smart application purposes. These can be achieved via incorporation of stimuli-responsive features into the structure of smart catalytic systems. Here, we summarize such catalytic systems whose activity can be switched 'on' or 'off' by the application of stimuli in aqueous environments. We describe the switchable catalytic systems capable of performing organic transformations with classification in accordance to the stimulating agent. Switchable catalytic activity in aqueous environments provides new possibilities for the development of smart materials for biomedicine and chemical biology. Moreover, engineering of aqueous catalytic systems can be expected to grow in the coming years with a further broadening of its application to diverse fields.
Collapse
Affiliation(s)
- Nikita Das
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Chandan Maity
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
28
|
Dong Q, Li X, Dong J. Synthesis of a branched surfactant from the castor derivative and its surface properties. Phys Chem Chem Phys 2022; 24:23612-23621. [PMID: 36134472 DOI: 10.1039/d2cp02298b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of ricinoleic acid-derived branched surfactant with a Y-shaped structure (ethoxylated monohydroxy stearic acid methyl ester, 12-HMEEn) was synthesized and characterized by introducing a polyoxyethylene head group in the hydroxyl position inside the molecule. The physicochemical properties and surface activities of 12-HMEEn with different degrees of ethoxylation at various concentrations were studied. The typical Y-shaped structure of the molecule facilitates its adsorption at the interface, which provides an excellent surface activity and affects its surfactant properties significantly. The dynamic contact angle, wettability, foaming properties, and compatibility tests of 12-HMEEn showed that it has good wetting performance, low foaming and fast defoaming properties, and good compatibility in formulation applications, indicating that the surfactant has potential application in industrial cleaning.
Collapse
Affiliation(s)
- Qingwen Dong
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Xu Li
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Jinxiang Dong
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China. .,School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
29
|
An efficient bioinspired functional micellar nanoreactor for dephosphorylation reactions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Kaur R, Kumar H, Kumar B, Singla M, Kumar V, Ghfar AA, Pandey S. Effect of amino acid on the surface adsorption and micellar properties of surface active ILs varying in cationic head groups. Heliyon 2022; 8:e10363. [PMID: 36082336 PMCID: PMC9445298 DOI: 10.1016/j.heliyon.2022.e10363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
The interfacial along with bulk characteristics of the aqueous solutions of ILs with dissimilar cationic head group viz. 1-dodecyl-3-methylimidazolium bromide ([C12mim][Br]), and N-dodecyl-N-methylmorpholinium bromide ([Mor1,12][Br]) in the absence and the presence of an amino acid L-Methionine as an external additive have been examined by electrical conductivity, UV-Visible, surface tension, and DLS measurements. The CMC values, and the lowest maximum surface excess concentration (Гmax) achieved from all three techniques, and surface tension measurements respectively displayed more surface activity of the [C12mim][Br] than the [Mor1,12][Br]. Also, the morpholinium head group is less hazardous than imidazolium, it can be utilised to design ILs that are greener, mainly in combination with polar, small, and non-toxic side chains and anions.
Collapse
|
31
|
Rijpkema SJ, van Egeraat R, Li W, Wilson DA. Photo-Cross-Linking Polymersome Nanoreactors with Size-Selective Permeability. Macromolecules 2022; 55:5744-5755. [PMID: 35847241 PMCID: PMC9281476 DOI: 10.1021/acs.macromol.2c00248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sjoerd J. Rijpkema
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Rik van Egeraat
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Wei Li
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
32
|
Kahana A, Lancet D, Palmai Z. Micellar Composition Affects Lipid Accretion Kinetics in Molecular Dynamics Simulations: Support for Lipid Network Reproduction. Life (Basel) 2022; 12:955. [PMID: 35888044 PMCID: PMC9325298 DOI: 10.3390/life12070955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mixed lipid micelles were proposed to facilitate life through their documented growth dynamics and catalytic properties. Our previous research predicted that micellar self-reproduction involves catalyzed accretion of lipid molecules by the residing lipids, leading to compositional homeostasis. Here, we employ atomistic Molecular Dynamics simulations, beginning with 54 lipid monomers, tracking an entire course of micellar accretion. This was done to examine the self-assembly of variegated lipid clusters, allowing us to measure entry and exit rates of monomeric lipids into pre-micelles with different compositions and sizes. We observe considerable rate-modifications that depend on the assembly composition and scrutinize the underlying mechanisms as well as the energy contributions. Lastly, we describe the measured potential for compositional homeostasis in our simulated mixed micelles. This affirms the basis for micellar self-reproduction, with implications for the study of the origin of life.
Collapse
Affiliation(s)
| | | | - Zoltan Palmai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 761001, Israel; (A.K.); (D.L.)
| |
Collapse
|
33
|
Petersen H, Ballmann M, Krause N, Weberskirch R. Gold(I) NHC Catalysts Immobilized to Amphiphilic Block Copolymers: A Versatile Approach to Micellar Gold Catalysis in Water. ChemCatChem 2022. [DOI: 10.1002/cctc.202200727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hanne Petersen
- TU Dortmund University: Technische Universitat Dortmund Fakultät für Chemie und Chem. Biologie Otto-Hahn Str. 6 44227 Dortmund GERMANY
| | - Monika Ballmann
- Technische Universität Dortmund: Technische Universitat Dortmund Fakultät für Chemie und Chem. Biologie Otto-Hahn Str. 6 44227 Dortmund GERMANY
| | - Norbert Krause
- TU Dortmund University: Technische Universitat Dortmund Fakultät für Chemie und Chem. Biologie Otto-Hahn Str. 6 44227 Dortmund GERMANY
| | - Ralf Weberskirch
- Dortmund University of Technology Fakultät Chemie und Chem. Biologie , organic chemistry Otto-Hahn-Str. 6Room: C2-04-702 44227 Dortmund GERMANY
| |
Collapse
|
34
|
Wani MM, Dar AA, Bhat BA. Micelle-guided Morita-Baylis-Hillman reaction of ketones in water. Org Biomol Chem 2022; 20:4888-4893. [PMID: 35670447 DOI: 10.1039/d2ob00638c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel Morita-Baylis-Hillman reaction employing electron-deficient alkenes like acrylonitrile with a wide range of aryl and aliphatic ketones using cooperative catalysis in micellar media has been delineated. This transformation executed in water under mild reaction conditions in a confined environment of micelles is aligned to the ideas of sustainable and green chemistry. The site of the reaction was established by incisive proton NMR studies in the palisade region of the micellar assembly. This study is expected to encourage the use of micellar catalysis for energetically less favorable chemical reactions.
Collapse
Affiliation(s)
- Mohmad Muzafar Wani
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar Srinagar-190005, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Aijaz Ahmad Dar
- Softmatter Research Group, Department of Chemistry, University of Kashmir, Srinagar 190006, J&K, India
| | - Bilal A Bhat
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar Srinagar-190005, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
35
|
Synthetic Access to Aromatic α-Haloketones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113583. [PMID: 35684526 PMCID: PMC9182500 DOI: 10.3390/molecules27113583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
Abstract
α-Haloketones play an essential role in the synthesis of complex N-, S-, O-heterocycles; of which some exhibit a remarkable biological activity. Research further illustrated that α-bromo-, α-chloro-, and α-iodoketones are key precursors for blockbuster pharmacological compounds. Over the past twenty years, substantial advances have been made in the synthesis of these industrially relevant building blocks. Efforts have focused on rendering the synthetic protocols greener, more effective and versatile. In this survey, we summarised and thoroughly evaluated the progress of the field, established in the past two decades, in terms of generality, efficacy and sustainability.
Collapse
|
36
|
Kushnazarova RA, Mirgorodskaya AB, Mikhailov VA, Belousova IA, Zubareva TM, Prokop’eva TM, Voloshina AD, Amerhanova SK, Zakharova LY. Dicationic Imidazolium Surfactants with a Hydroxyl Substituent in the Spacer Fragment. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222040077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Abedanzadeh S, Moosavi-Movahedi Z, Sheibani N, Moosavi-Movahedi AA. Nanozymes: Supramolecular perspective. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
38
|
Verma A, Dolui P, Hazra S, Elias AJ. Directing group enabled ‘On-Water’ C-H bond functionalization of ferrocene derivatives. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Lisuzzo L, Cavallaro G, Milioto S, Lazzara G. Halloysite nanotubes as nanoreactors for heterogeneous micellar catalysis. J Colloid Interface Sci 2022; 608:424-434. [PMID: 34626986 DOI: 10.1016/j.jcis.2021.09.146] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/08/2023]
Abstract
HYPOTHESIS Electrostatic attractions between the anionic head group of sodium alkylsulphates and the positively charged inner surface of halloysite nanotubes (HNTs) drive to the formation of tubular inorganic micelles, which might be employed as nanoreactors for the confinement of non polar compounds in aqueous media. On this basis, sodium alkylsulphates/halloysite hybrids could be efficient nanocatalysts for organic reactions occurring in water. EXPERIMENTS Sodium decylsulphate (NaDeS) and sodium dodecylsulphate (NaDS) were selected for the functionalization of the halloysite cavity. The composition, the structure and the surface charge properties of the hybrid nanotubes were determined. The actual formation of inorganic micelles was explored by studying the microviscosity and polarity characteristics of the surfactant modified nanotubes through fluorescence spectroscopy experiments using DiPyme as probe. The performances of the sodium alkylsulphates/halloysite composites as micellar catalysts for the Belousov-Zhabotinsky (BZ) reaction were investigated. FINDINGS The halloysite functionalization with sodium alkylsulphates generated the formation of hydrophobic microdomains with an enhanced microviscosity. Compared to the surfactant conventional micelles, the functionalized nanotubes induced larger enhancements on the rate constant of the BZ reaction. This is the first report on the surfactant/halloysite hybrids showing their efficiencies as reusable nanocatalysts, which are dependent on their peculiar microviscosity and polarity properties.
Collapse
Affiliation(s)
- Lorenzo Lisuzzo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy.
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
| |
Collapse
|
40
|
|
41
|
Chowdhury B, Sar P, Kumar D, Saha B. Advancement of Cu(III) and Fe(III) directed oxidative transformations: Recent impact of aqueous micellar environment. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Thiruvengetam P, Chand DK. Controlled and Predictably Selective Oxidation of Activated and Unactivated C(sp3)–H Bonds Catalyzed by a Molybdenum-Based Metallomicellar Catalyst in Water. J Org Chem 2022; 87:4061-4077. [DOI: 10.1021/acs.joc.1c02855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Dillip Kumar Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
43
|
Procházka K, Limpouchová Z, Štěpánek M, Šindelka K, Lísal M. DPD Modelling of the Self- and Co-Assembly of Polymers and Polyelectrolytes in Aqueous Media: Impact on Polymer Science. Polymers (Basel) 2022; 14:404. [PMID: 35160394 PMCID: PMC8838752 DOI: 10.3390/polym14030404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
This review article is addressed to a broad community of polymer scientists. We outline and analyse the fundamentals of the dissipative particle dynamics (DPD) simulation method from the point of view of polymer physics and review the articles on polymer systems published in approximately the last two decades, focusing on their impact on macromolecular science. Special attention is devoted to polymer and polyelectrolyte self- and co-assembly and self-organisation and to the problems connected with the implementation of explicit electrostatics in DPD numerical machinery. Critical analysis of the results of a number of successful DPD studies of complex polymer systems published recently documents the importance and suitability of this coarse-grained method for studying polymer systems.
Collapse
Affiliation(s)
- Karel Procházka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Zuzana Limpouchová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Karel Šindelka
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
| | - Martin Lísal
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632, 400 96 Ústí n. Labem, Czech Republic
| |
Collapse
|
44
|
Nakarajouyphon V, Bunchuay T, Yoshinari N, Konno T, Sangtrirutnugul P. Unsymmetrical PEG-substituted tris(triazolyl)amines as bi-functional surfactants for copper-catalyzed aerobic oxidation of alcohols in water. NEW J CHEM 2022. [DOI: 10.1039/d1nj04812k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic tris(triazolyl)amines functionalized with poly(ethylene glycol) 1-(1-R-1H-1,2,3-triazol-4-yl)-N,N-bis((1-benzy-1H-1,2,3-triazol-4-yl)methyl)methanamine [R = PEG200 (NBBT200-OH), mPEG550 (NBBT550), mPEG2000 (NBBT2000)] were investigated as bi-functional surfactants serving as N donor ligands and surfactants for copper-catalyzed aerobic...
Collapse
|
45
|
Rashid S, Bhat BA, Mehta G. Micelle‐Mediated Trimerization of Ynals to Orthogonally Substituted 4
H
‐Pyrans in Water: Downstream Rearrangement to Bioactive 2,8‐dioxabicyclo[3.3.1]nona‐3,6‐diene Frameworks. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Showkat Rashid
- Natural Products and Medicinal Chemistry CSIR-Indian Institute of Integrative Medicine Sanatnagar Srinagar 190005 India
- School of Chemistry University of Hyderabad Hyderabad 500046 India
| | - Bilal A. Bhat
- Natural Products and Medicinal Chemistry CSIR-Indian Institute of Integrative Medicine Sanatnagar Srinagar 190005 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| | - Goverdhan Mehta
- School of Chemistry University of Hyderabad Hyderabad 500046 India
| |
Collapse
|
46
|
Micellar Suzuki Cross-Coupling between Thiophene and Aniline in Water and under Air. ORGANICS 2021. [DOI: 10.3390/org2040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Suzuki–Miyaura cross-coupling reaction plays a fundamental role in modern synthetic organic chemistry, both in academia and industry. For this reason, scientists continue to search for new, more effective, cheaper and environmentally friendly procedures. Recently, micellar synthetic chemistry has been demonstrated to be an excellent strategy for achieving chemical transformations in a more efficient way, thanks to the creation of nanoreactors in aqueous environments using selected surfactants. In particular, the cheap and commercially available surfactant Kolliphor EL (a polyethoxylated castor oil derivative) has been used with success to achieve metal-catalyzed transformations in water with high yields and short reaction times, with the advantage of using air-sensitive catalysts without the need for inert atmosphere. In this work, the Kolliphor EL methodology was applied to the Suzuki cross-coupling reaction between thiophene and aniline, using the highly effective catalyst Pd(dtbpf)Cl2. The cross-coupling products were achieved at up to 98% yield, with reaction times of up to only 15 min, working at room temperature and without the need for inert atmosphere.
Collapse
|
47
|
Yang Z, Cao K, Peng X, Lin L, Fan D, Li J, Wang J, Zhang X, Jiang H, Li J. Micellar Catalysis: Visible‐Light Mediated Imidazo[1,2‐
a
]pyridine C—H Amination with
N
‐Aminopyridinium Salt Accelerated by Surfactant in Water. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhonglie Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Kun Cao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Xiaoyan Peng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Li Lin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Danchen Fan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Jun‐Long Li
- Antibiotics Research and Re‐evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu Sichuan 610106 China
| | - Jingxia Wang
- Irradiation Preservation Technology Key Laboratory of Sichuan Province Sichuan Institute of Atomic Energy Chengdu Sichuan 610101 China
| | - Xiaobin Zhang
- Irradiation Preservation Technology Key Laboratory of Sichuan Province Sichuan Institute of Atomic Energy Chengdu Sichuan 610101 China
| | - Hezhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Jiahong Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| |
Collapse
|
48
|
Abstract
This short overview describes the historical development of the physics and chemistry of organic solvents and solutions from the alchemist era until the present time based on some carefully selected examples that can be considered landmarks in the history of solution chemistry.
Collapse
Affiliation(s)
- Christian Reichardt
- Fachbereich Chemie, Philipps-Universität, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
49
|
Corti HR, Appignanesi GA, Barbosa MC, Bordin JR, Calero C, Camisasca G, Elola MD, Franzese G, Gallo P, Hassanali A, Huang K, Laria D, Menéndez CA, de Oca JMM, Longinotti MP, Rodriguez J, Rovere M, Scherlis D, Szleifer I. Structure and dynamics of nanoconfined water and aqueous solutions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:136. [PMID: 34779954 DOI: 10.1140/epje/s10189-021-00136-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
This review is devoted to discussing recent progress on the structure, thermodynamic, reactivity, and dynamics of water and aqueous systems confined within different types of nanopores, synthetic and biological. Currently, this is a branch of water science that has attracted enormous attention of researchers from different fields interested to extend the understanding of the anomalous properties of bulk water to the nanoscopic domain. From a fundamental perspective, the interactions of water and solutes with a confining surface dramatically modify the liquid's structure and, consequently, both its thermodynamical and dynamical behaviors, breaking the validity of the classical thermodynamic and phenomenological description of the transport properties of aqueous systems. Additionally, man-made nanopores and porous materials have emerged as promising solutions to challenging problems such as water purification, biosensing, nanofluidic logic and gating, and energy storage and conversion, while aquaporin, ion channels, and nuclear pore complex nanopores regulate many biological functions such as the conduction of water, the generation of action potentials, and the storage of genetic material. In this work, the more recent experimental and molecular simulations advances in this exciting and rapidly evolving field will be reported and critically discussed.
Collapse
Affiliation(s)
- Horacio R Corti
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina.
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Marcia C Barbosa
- Institute of Physics, Federal University of Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - J Rafael Bordin
- Department of Physics, Institute of Physics and Mathematics, 96050-500, Pelotas, RS, Brazil
| | - Carles Calero
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - M Dolores Elola
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Ali Hassanali
- Condensed Matter and Statistical Physics Section (CMSP), The International Center for Theoretical Physics (ICTP), Trieste, Italy
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Daniel Laria
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia A Menéndez
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Joan M Montes de Oca
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - M Paula Longinotti
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Rodriguez
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Damián Scherlis
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Igal Szleifer
- Biomedical Engineering Department, Northwestern University, Evanston, USA
| |
Collapse
|
50
|
Ishida Y. Manipulation of Precise Molecular Arrangements and Their Photochemical Properties on Inorganic Surfaces via Multiple Electrostatic Interactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yohei Ishida
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|