1
|
Zhu X, Wang S, Song Y, Chen T, Yan Y. LC-MS guided discovery of a new type of abyssomicin, glycoabyssomicin A, from a deep-sea derived Streptomyces. Nat Prod Res 2024:1-6. [PMID: 39440593 DOI: 10.1080/14786419.2024.2417839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/03/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Glycoabyssomicin A (1), a new type of abyssomicin containing a sugar unit, was isolated from the deep-sea derived Streptomyces koyangensis SCSIO 5802 guided by LC-MS. The structure of 1 was elucidated by HR-ESI-MS, 1D-NMR (1H,13C NMR), 2D-NMR (HSQC, COSY, HMBC, NOESY), and TFA hydrolysis and acetylation reactions. In the antibacterial activities evaluation against a series of gram-positive and gram-negative bacteria, it showed inactive at the concentration of 10 μg per filter paper disc. This finding would broaden the way for discovery of more lead compounds of abyssomicins.
Collapse
Affiliation(s)
- Xianglong Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Songtao Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao, Shandong, China
- SCSIO, Yazhou Scientific Bay, Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, Hainan, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Yan Yan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao, Shandong, China
- SCSIO, Yazhou Scientific Bay, Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, Hainan, China
| |
Collapse
|
2
|
Ishihara J. Progress in Lewis-Acid-Templated Diels-Alder Reactions. Molecules 2024; 29:1187. [PMID: 38474699 DOI: 10.3390/molecules29051187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The synthesis of natural products with complicated architectures often requires the use of segments with functional groups that can be structurally transformed with the desired stereogenic centers. Bicyclic 𝛾-lactones have great potential as a suitable segment for natural product synthesis. However, the stereoselective construction of such functionalized bicyclic 𝛾-lactones is not as straightforward as one might expect. The template-mediated Diels-Alder reaction is one of the most powerful and versatile methods for providing bicyclic 𝛾-lactones with high regioselectivity and stereoselectivity. In this reaction, the diene is linked to the dienophile by a temporary tether, allowing the reaction to proceed efficiently, yielding a product that can be used for natural product synthesis. This review describes some important instances of the template-mediated Diels-Alder reaction and its application to the synthesis of biologically active compounds.
Collapse
Affiliation(s)
- Jun Ishihara
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 853-8521, Japan
| |
Collapse
|
3
|
Guo LD, Wu Y, Xu X, Lin Z, Tong R. Bent π-Conjugation within a Macrocycle: Asymmetric Total Syntheses of Spirohexenolides A and B. Angew Chem Int Ed Engl 2024; 63:e202316259. [PMID: 37988261 DOI: 10.1002/anie.202316259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Macrocycles with bent π-conjugation motif are extremely rare in nature and synthetically daunting and anticancer haouamines and spirohexenolides were representative of such rare natural products with synthetically challenging bent π-conjugation within a macrocycle. While the total synthesis of haouamines has been elegantly achieved, spirohexenolides remains an unmet synthetic challenge due to the highly strained bent 1,3,5-triene conjugation within C15 macrocycle. Inspired by the chemical synthesis of cycloparaphenylenes (CPPs) and haouamines, herein we devise a synthetic strategy to overcome the highly strained bent 1,3,5-triene conjugation within the macrocycle and achieve the first, asymmetric total synthesis of spirohexenolides A (>20 mg) and B (>50 mg). Our synthesis features strategic design of ring-closing metathesis (RCM) macrocyclization followed by double dehydration to achieve the C15 macrocycle with the deformed nonplanar 1,3,5-triene conjugation. In addition, we have developed a new enantioselective construction of highly functionalized spirotetronate fragment (northeast moiety) through RCM and Ireland-Claisen rearrangement. Our in vitro bioassay studies reveal that both spirohexenolides are cytotoxic against a panel of human cancer cells with IC50 1.2-13.3 μM and spirohexenolide A is consistently more potent (up to 3 times) than spirohexenolide B, suggesting the importance of alcohol for their bioactivity and for medicinal chemistry development.
Collapse
Affiliation(s)
- Lian-Dong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Yanting Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Xin Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
4
|
Canko A, Athanassopoulou GD, Psycharis V, Raptopoulou CP, Herniman JM, Mouchtouris V, Foscolos AS, Couladouros EA, Vidali VP. First total synthesis of type II abyssomicins: (±)-abyssomicin 2 and (±)-neoabyssomicin B. Org Biomol Chem 2023; 21:3761-3765. [PMID: 37083981 DOI: 10.1039/d3ob00476g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The intramolecular Diels-Alder reaction (IMDA) of a butenolide derivative, as an entry to the type II abyssomicin scaffold, and the total synthesis of (±)-abyssomicin 2 and (±)-neoabyssomicin B are reported for the first time. A facile route to the IMDA precursor, the formation of a type I intermediate and two paths to (±)-neoabyssomicin B are also discussed.
Collapse
Affiliation(s)
- Aleksander Canko
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Ag. Paraskevi, Athens, Greece.
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | | | - Vassilis Psycharis
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Ag. Paraskevi, Athens, Greece.
| | - Catherine P Raptopoulou
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Ag. Paraskevi, Athens, Greece.
| | - Julie M Herniman
- Faculty of Engineering and Physical Sciences, School of Chemistry, University of Southampton, Highfield, Southampton, UK
| | - Vasileios Mouchtouris
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Angeliki Sofia Foscolos
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Ag. Paraskevi, Athens, Greece.
| | - Elias A Couladouros
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Veroniki P Vidali
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Ag. Paraskevi, Athens, Greece.
| |
Collapse
|
5
|
Bewley CA, Sulikowski GA, Yang ZJ, Bifulco G, Cho HM, Fullenkamp CR. Properties of Configurationally Stable Atropoenantiomers in Macrocyclic Natural Products and the Chrysophaentin Family. Acc Chem Res 2023; 56:414-424. [PMID: 36731116 PMCID: PMC11416723 DOI: 10.1021/acs.accounts.2c00648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
development of antibiotics, antineoplastics, and therapeutics for other diseases. Natural products are unique among all other small molecules in that they are produced by dedicated enzymatic assembly lines that are the protein products of biosynthetic gene clusters. As the products of chiral macromolecules, natural products have distinct three-dimensional shapes and stereochemistry is often encoded in their structures through the presence of stereocenters, or in the case of molecules that lack a stereocenter, the presence of an axis or plane of chirality. In the latter forms of chirality, if the barrier to rotation about the chiral axis or chiral plane is sufficiently high, stable conformers may exist allowing for isolation of discrete conformers, also known as atropisomers. Importantly, the diverse functions and biological activities of natural products are contingent upon their structures, stereochemistry and molecular shape. With continued innovation in methods for natural products discovery, synthetic chemistry, and analytical and computational tools, new insights into atropisomerism in natural products and related scaffolds are being made. As molecular complexity increases, more than one form of stereoisomerism may exist in a single compound (for example, point chirality, chiral axes, and chiral planes), sometimes creating atypical or noncanonical atropisomers, a term used to distinguish physically noninterconvertable atropisomers from typical atropisomers.Here we provide an account of the discovery and unusual structural and stereochemical features of the chrysophaentins, algal derived inhibitors of the bacterial cytoskeletal protein FtsZ and its associated protein partners. Eleven members of the chrysophaentin family have been discovered to date; seven of these are macrocyclic bis-bibenzyl ethers wherein the site of the ether linkage yields either a symmetrical or asymmetrical macrocyclic ring system. The asymmetrical ring system is highly strained and corresponds to the compounds having the most potent antimicrobial activity among the family. We review the structure elucidation and NMR properties that indicate restricted rotation between axes of two biaryl ethers, and the plane represented by the substituted 2-Z-butene bridge common to all of the macrocycles. Computational studies that corroborate high barriers to rotation about one representative plane, on the order of 20+ kcal/mol are presented. These barriers to rotation fix the conformation of the macrocycle into a bowl-like structure and suggest that an atropisomer should exist. Experimental evidence for atropisomerism is presented, consistent with computational predictions. These properties are discussed in the context of the total synthesis of 9-dechlorochrysophaenin A and its ring C isomers. Last, we discuss the implications for the presence of enantiomers in the biological activity and macrocyclization of the natural product.
Collapse
Affiliation(s)
- Carole A Bewley
- Laboratory of Bioorganic Chemistry, 8 Center Drive, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gary A Sulikowski
- Department of Chemistry, Vanderbilt University, 2213 Garland Avenue, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, 2213 Garland Avenue, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Giuseppe Bifulco
- Dipartimento di Farmacia, Università di Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Hyo-Moon Cho
- Laboratory of Bioorganic Chemistry, 8 Center Drive, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Christopher R Fullenkamp
- Department of Chemistry, Vanderbilt University, 2213 Garland Avenue, Nashville, Tennessee 37235, United States
| |
Collapse
|
6
|
Wang N, Xu JB, Li XH, Zhou XL, Gao F. Ir-Catalyzed Biomimetic Photoisomerization of Cyclopropane in Lathyrane-Type Euphorbia Diterpenes. Org Lett 2022; 24:8598-8602. [DOI: 10.1021/acs.orglett.2c03172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Neng Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
| | - Jin-Bu Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
| | - Xiao-Huan Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
| | - Xian-Li Zhou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
| |
Collapse
|
7
|
Hetzler BE, Trauner D, Lawrence AL. Natural product anticipation through synthesis. Nat Rev Chem 2022; 6:170-181. [PMID: 36747591 PMCID: PMC9899497 DOI: 10.1038/s41570-021-00345-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
Natural product synthesis remains one of the most vibrant and intellectually rewarding areas of chemistry, although the justifications for pursuing it have evolved over time. In the early years, the emphasis lay on structure elucidation and confirmation through synthesis, as exemplified by celebrated studies on cocaine, morphine, strychnine and chlorophyll. This was followed by a phase where the sheer demonstration that highly complex molecules could be recreated in the laboratory in a rational manner was enough to justify the economic expense and intellectual agonies of a synthesis. Since then, syntheses of natural products have served as platforms for the demonstration of elegant strategies, for inventing new methodology 'on the fly' or to demonstrate the usefulness and scope of methods established with simpler molecules. We now add another aspect that we find fascinating, viz. 'natural product anticipation'. In this Review, we survey cases where the synthesis of a compound in the laboratory has preceded its isolation from nature. The focus of our Review lies on examples where this anticipation of a natural product has triggered a successful search or where synthesis and isolation have occurred independently. Finally, we highlight cases where a potential natural product structure has been suggested as a result of synthetic endeavours but not yet confirmed by isolation, inviting further collaborations between synthetic and natural product chemists.
Collapse
Affiliation(s)
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, NY, USA
| | | |
Collapse
|
8
|
Khademi Z, Heravi MM. Applications of Claisen condensations in total synthesis of natural products. An old reaction, a new perspective. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Bunbamrung N, Kittisrisopit S, Intaraudom C, Dramae A, Thawai C, Niemhom N, Harding DJ, Auncharoen P, Pittayakhajonwut P. Abyssomicin derivatives from the rhizosphere soil actinomycete Microbispora rhizosphaerae sp. nov. TBRC6028. PHYTOCHEMISTRY 2021; 185:112700. [PMID: 33647781 DOI: 10.1016/j.phytochem.2021.112700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Three undescribed abyssomicin derivatives, including microbimisin, abyssomicins Z1, and Z2, were isolated from the soil actinomycete Microbispora rhizosphaerae sp. nov. TBRC6028. Chemical structures were determined by NMR spectroscopic data (1H, 13C, COSY, HSQC, HMBC, and NOESY spectra) and the absolute configurations were verified by single-crystal X-ray diffraction analyses together with the ECD spectral data. Microbimisin and abyssomicin Z1 exhibited weak antibacterial activity against Bacillus cereus with MIC values of 25.0 and 50.0 μg/mL without cytotoxicity against MCF-7 and Vero cells at the concentration of 50 μg/mL.
Collapse
Affiliation(s)
- Nantiya Bunbamrung
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Suchada Kittisrisopit
- Department of biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Aibrohim Dramae
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Chitti Thawai
- Department of biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand; Antinobacterial Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand; Center of Excellence in Applied Biosciences, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Nantawan Niemhom
- Scientific Instruments Centre, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - David J Harding
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Patchanee Auncharoen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand.
| |
Collapse
|
10
|
Mandal S, Thirupathi B. Strategies for the construction of γ-spirocyclic butenolides in natural product synthesis. Org Biomol Chem 2021; 18:5287-5314. [PMID: 32633316 DOI: 10.1039/d0ob00954g] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last four decades, a number of γ-spirocyclic butenolide containing natural products, drugs, and medicinally useful synthetic compounds have been reported. In this review, we discuss diverse chemical approaches to synthesize γ-spiro butenolides and their application towards natural product synthesis. The collective perception of various methods may allow superior approaches capable of delivering efficient synthetic approaches to obtain γ-spiro butenolide comprising natural products and their hybrid analogues for further drug discovery and development.
Collapse
Affiliation(s)
- Sudip Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, Berhampur 760 010, Odisha, India.
| | - Barla Thirupathi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, Berhampur 760 010, Odisha, India.
| |
Collapse
|
11
|
Thorat SS, Kontham R. Strategies for the synthesis of furo-pyranones and their application in the total synthesis of related natural products. Org Chem Front 2021. [DOI: 10.1039/d0qo01421d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The furo-pyranone framework is widely present in the molecular structure of various biologically potent natural products and un-natural small molecules, and it represents a valuable target in synthetic organic chemistry and medicinal chemistry.
Collapse
Affiliation(s)
- Sagar S. Thorat
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Ravindar Kontham
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
12
|
Tanino K, Sato K. Synthetic Studies on Cyclocitrinol: Construction of the ABC Ring System Based on Epoxy–Nitrile Cyclization. Synlett 2020. [DOI: 10.1055/a-1334-6100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe stereoselective synthesis of a model compound containing the ABC ring system of cyclocitrinol was accomplished. After connecting a C ring allyltitanium segment with an A ring bicyclo[4.1.0]heptanone segment, the seven-membered B ring moiety was constructed by an intramolecular cyclization reaction of an epoxy nitrile. The enone moiety was introduced through an oxidative decyanation reaction, and the bicyclo[4.4.1]undecane skeleton with the highly strained olefin moiety was formed through a ring-opening reaction of the bicyclo[4.1.0]heptane substructure.
Collapse
Affiliation(s)
- Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University
| | - Kazuto Sato
- Graduate School of Chemical Sciences and Engineering, Hokkaido University
| |
Collapse
|
13
|
Nicolaou KC, Rigol S. Perspectives from nearly five decades of total synthesis of natural products and their analogues for biology and medicine. Nat Prod Rep 2020; 37:1404-1435. [PMID: 32319494 PMCID: PMC7578074 DOI: 10.1039/d0np00003e] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 1970 to 2020By definition total synthesis is the art and science of making the molecules of living Nature in the laboratory, and by extension, their analogues. Although obvious, its application to the synthesis of molecules for biology and medicine was not always the purpose of total synthesis. In recent years, however, the field has acquired momentum as its power to reach higher molecular complexity and diversity is increasing, and as the demand for rare bioactive natural products and their analogues is expanding due to their recognised potential to facilitate biology and drug discovery and development. Today this component of total synthesis endeavors is considered highly desirable, and could be part of interdisciplinary academic and/or industrial partnerships, providing further inspiration and momentum to the field. In this review we provide a brief historical background of the emergence of the field of total synthesis as it relates to making molecules for biology and medicine. We then discuss specific examples of this practice from our laboratories as they developed over the years. The review ends with a conclusion and future perspectives for natural products chemistry and its applications to biology and medicine and other added-value contributions to science and society.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA.
| | | |
Collapse
|
14
|
Leger PR, Kuroda Y, Chang S, Jurczyk J, Sarpong R. C-C Bond Cleavage Approach to Complex Terpenoids: Development of a Unified Total Synthesis of the Phomactins. J Am Chem Soc 2020; 142:15536-15547. [PMID: 32799452 PMCID: PMC7771649 DOI: 10.1021/jacs.0c07316] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rearrangement of carbon-carbon (C-C) single bonds in readily available carbocyclic scaffolds can yield uniquely substituted carbocycles that would be challenging to construct otherwise. This is a powerful and often non-intuitive approach for complex molecule synthesis. The transition-metal-mediated cleavage of C-C bonds has the potential to broaden the scope of this type of skeletal remodeling by providing orthogonal selectivities compared to more traditional pericyclic and carbocation-based rearrangements. To highlight this emerging technology, a unified, asymmetric, total synthesis of the phomactin terpenoids was developed, enabled by the selective C-C bond cleavage of hydroxylated pinene derivatives obtained from carvone. In this full account, the challenges, solutions, and intricacies of Rh(I)-catalyzed cyclobutanol C-C cleavage in a complex molecule setting are described. In addition, details of the evolution of strategies that ultimately led to the total synthesis of phomactins A, K, P, R, and T, as well as the synthesis and structural reassignment of Sch 49027, are given.
Collapse
Affiliation(s)
- Paul R Leger
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yusuke Kuroda
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Stanley Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin Jurczyk
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Vidali VP, Canko A, Peroulias AD, Georgas ET, Bouzas E, Herniman JM, Couladouros EA. An Improved Biomimetic Formal Synthesis of Abyssomicin C and atrop
-Abyssomicin C. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Veroniki P. Vidali
- NCSR "Demokritos"; Institute of Nanoscience & Nanotechnology; Patr. Grigoriou & Neapoleos 25 153 41 Athens Greece
| | - Aleksander Canko
- NCSR "Demokritos"; Institute of Nanoscience & Nanotechnology; Patr. Grigoriou & Neapoleos 25 153 41 Athens Greece
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - Angelos D. Peroulias
- School of Chemistry; University of Southampton; 17 1BJ Southampton SO United Kingdom
| | - Evangelos T. Georgas
- NCSR "Demokritos"; Institute of Nanoscience & Nanotechnology; Patr. Grigoriou & Neapoleos 25 153 41 Athens Greece
- Department of Chemistry; University of Athens; Athens Greece
| | - Emmanuel Bouzas
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - Julie M. Herniman
- School of Chemistry; University of Southampton; 17 1BJ Southampton SO United Kingdom
| | - Elias A. Couladouros
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| |
Collapse
|
16
|
Krishna Chaitanya N, Dinda S, Mainkar PS, Chandrasekhar S. Epoxy-Tethered Diels-Alder Reaction toward the Tricyclic Core of Kalihinols. Org Lett 2020; 22:3557-3560. [PMID: 32294388 DOI: 10.1021/acs.orglett.0c00998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A chiral-template-driven intramolecular Diels-Alder reaction has been used to build the tricyclic core of kalihinols, a group of antimalarial marine natural products. The key starting materials are commercially available nerol and sulcatone.
Collapse
Affiliation(s)
| | | | - Prathama S Mainkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | | |
Collapse
|
17
|
Iglesias A, Latorre-Pérez A, Stach JEM, Porcar M, Pascual J. Out of the Abyss: Genome and Metagenome Mining Reveals Unexpected Environmental Distribution of Abyssomicins. Front Microbiol 2020; 11:645. [PMID: 32351480 PMCID: PMC7176366 DOI: 10.3389/fmicb.2020.00645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 12/27/2022] Open
Abstract
Natural products have traditionally been discovered through the screening of culturable microbial isolates from diverse environments. The sequencing revolution allowed the identification of dozens of biosynthetic gene clusters (BGCs) within single bacterial genomes, either from cultured or uncultured strains. However, we are still far from fully exploiting the microbial reservoir, as most of the species are non-model organisms with complex regulatory systems that can be recalcitrant to engineering approaches. Genomic and metagenomic data produced by laboratories worldwide covering the range of natural and artificial environments on Earth, are an invaluable source of raw information from which natural product biosynthesis can be accessed. In the present work, we describe the environmental distribution and evolution of the abyssomicin BGC through the analysis of publicly available genomic and metagenomic data. Our results demonstrate that the selection of a pathway-specific enzyme to direct genome mining is an excellent strategy; we identified 74 new Diels–Alderase homologs and unveiled a surprising prevalence of the abyssomicin BGC within terrestrial habitats, mainly soil and plant-associated. We also identified five complete and 12 partial new abyssomicin BGCs and 23 new potential abyssomicin BGCs. Our results strongly support the potential of genome and metagenome mining as a key preliminary tool to inform bioprospecting strategies aimed at the identification of new bioactive compounds such as -but not restricted to- abyssomicins.
Collapse
Affiliation(s)
- Alba Iglesias
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - James E M Stach
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Centre for Synthetic Biology and the Bioeconomy, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manuel Porcar
- Darwin Bioprospecting Excellence S.L., Paterna, Spain.,Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain
| | | |
Collapse
|
18
|
Ishihara J. Chiral Lewis Acid-template Diels-Alder Reaction and the Application of Natural Product Synthesis. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jun Ishihara
- Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
19
|
Ning S, Liu Z, Wang Z, Liao M, Xie Z. Biomimetic Synthesis of Psiguajdianone Guided Discovery of the Meroterpenoids from Psidium guajava. Org Lett 2019; 21:8700-8704. [PMID: 31609125 DOI: 10.1021/acs.orglett.9b03299] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Psiguajdianone (1), a novel caryophyllene-derived meroterpenoid dimer, was isolated from Psidium guajava. The structure of 1 was determined by X-ray analysis and confirmed by total synthesis. Our synthetic strategy involves biomimetic cascade Knoevenagel condensation/hetero-Diels-Alder reaction and dimerization. Notably, the caryophyllene-derived meroterpenoids obtained during our synthesis were first identified as artifacts in the laboratory, and five of them were proven to be natural products present in the plant. Moreover, these compounds show significant anti-inflammatory activity.
Collapse
Affiliation(s)
- Shuai Ning
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , 730000 , China
| | - Zhenling Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , 730000 , China
| | - Zhichao Wang
- College of Chemical Engineering , Northwest Minzu University , Lanzhou , 730030 , China
| | - Minjian Liao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , 730000 , China
| | - Zhixiang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , 730000 , China
| |
Collapse
|
20
|
Monjas L, Fodran P, Kollback J, Cassani C, Olsson T, Genheden M, Larsson DGJ, Wallentin CJ. Synthesis and biological evaluation of truncated derivatives of abyssomicin C as antibacterial agents. Beilstein J Org Chem 2019; 15:1468-1474. [PMID: 31354863 PMCID: PMC6633193 DOI: 10.3762/bjoc.15.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/18/2019] [Indexed: 12/02/2022] Open
Abstract
The synthesis and antibacterial activity of two new highly truncated derivatives of the natural product abyssomicin C are reported. This work outlines the limits of structural truncation of the natural product and consequently provides insights for further structure–activity relationship studies towards novel antibiotics targeting 4-amino-4-deoxychorismate (ADC) synthase. Specifically, it is demonstrated that the synthetically challenging bicyclic motif is essential for activity towards methicillin-resistant Staphylococcus aureus (MRSA).
Collapse
Affiliation(s)
- Leticia Monjas
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 412 96, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Peter Fodran
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 412 96, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Johanna Kollback
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 412 96, Gothenburg, Sweden
| | - Carlo Cassani
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 412 96, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,current affiliation: Hit Discovery, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Thomas Olsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 412 96, Gothenburg, Sweden
| | - Maja Genheden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10, 413 46, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10, 413 46, Gothenburg, Sweden
| | - Carl-Johan Wallentin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 412 96, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Braddock AA, Theodorakis EA. Marine Spirotetronates: Biosynthetic Edifices That Inspire Drug Discovery. Mar Drugs 2019; 17:md17040232. [PMID: 31010150 PMCID: PMC6521127 DOI: 10.3390/md17040232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Spirotetronates are actinomyces-derived polyketides that possess complex structures and exhibit potent and unexplored bioactivities. Due to their anticancer and antimicrobial properties, they have potential as drug hits and deserve further study. In particular, abyssomicin C and tetrocarcin A have shown significant promise against antibiotic-resistant S. aureus and tuberculosis, as well as for the treatment of various lymphomas and solid tumors. Improved synthetic routes to these compounds, particularly the class II spirotetronates, are needed to access sufficient quantities for structure optimization and clinical applications.
Collapse
Affiliation(s)
- Alexander A Braddock
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093-0358, USA.
| | - Emmanuel A Theodorakis
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093-0358, USA.
| |
Collapse
|
22
|
Nicolaou KC, Rigol S, Yu R. Total Synthesis Endeavors and Their Contributions to Science and Society:A Personal Account. CCS CHEMISTRY 2019. [DOI: 10.31635/ccschem.019.20190006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The advent of organic synthesis in the 19th century, serendipitous as it was, set in motion a revolution in science that continues to evolve into increasing levels of sophistication and to expand into new domains of science and technology for the benefits of science and society. Its evolution was always driven by the challenges posed by natural products, whose structures were becoming increasingly complex and diverse. In response to these challenges, synthetic organic chemists were prompted to sharpen their art to reach their target molecules, whose structures were often confirmed only after their synthesis in the laboratory through the art and science of total synthesis. The latter became the “locomotive” and the “flagship” of organic synthesis, for through this practice novel synthetic methods were discovered and invented, and also tested for their generality, applicability, and scope with regard to molecular complexity and diversity. The purpose of total synthesis has also evolved over the years to include aspects beyond the synthesis of the molecule and confirmation of its structure. In this article, we briefly review the evolution of total synthesis in terms of its power and reach and demonstrate its current state of the art that combines fundamentals with translational aspects through examples from our laboratories. The highlighted examples reflect the newly emerged paradigm of the discipline that includes—in addition to the total synthesis of the target molecule—structural elucidations, method discovery and development, design, synthesis, and biological evaluation of analogues for biology and medicine, and training of young students, preparing them for academic and industrial careers in the various disciplines that require knowledge and skills to practice the central science of chemical synthesis. Such disciplines include chemical biology, drug discovery and development, materials science and nanotechnology, and other endeavors whose fundamentals depend and rely on the structure of the molecule and its synthesis.
Collapse
Affiliation(s)
- K. C. Nicolaou
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston,TX 77005 (United States of America)
| | - Stephan Rigol
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston,TX 77005 (United States of America)
| | - Ruocheng Yu
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston,TX 77005 (United States of America)
| |
Collapse
|
23
|
Hou XM, Wang CY, Gerwick WH, Shao CL. Marine natural products as potential anti-tubercular agents. Eur J Med Chem 2019; 165:273-292. [PMID: 30685527 DOI: 10.1016/j.ejmech.2019.01.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 02/01/2023]
Abstract
Tuberculosis has been one of the greatest global health challenges of all time. Although the current first-line anti-tuberculosis (anti-TB) medicines used in the clinic have reduced mortality, multidrug-resistance and extensively drug-resistance forms of the disease have now spread worldwide and become a global problem. Even so, few new clinically approved drugs have emerged during the past 30 years. Highly biodiverse marine organisms have received considerable attention for drug discovery in the past couple of decades, and emerging TB drug resistance has motivated interest in assessing marine natural products (MNPs) in the treatment of this disease. So far, more than 170 compounds have been isolated from marine organisms with anti-TB properties, ten of which exhibit potent activity and have the potential for further development. This review systematically surveys MNPs with anti-TB activity and illustrates the impact of these compounds on drug discovery research against tuberculosis.
Collapse
Affiliation(s)
- Xue-Mei Hou
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, United States.
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
24
|
Ishihara J, Usui F, Kurose T, Baba T, Kawaguchi Y, Watanabe Y, Hatakeyama S. Synthetic Studies on Spirolides A and B: Formation of the Upper Carbon Framework Based on a Lewis Acid Template-Catalyzed Diels-Alder Reaction. Chemistry 2018; 25:1543-1552. [DOI: 10.1002/chem.201804977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Ishihara
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Fuma Usui
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Tomohiro Kurose
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Tomohiro Baba
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Yasunori Kawaguchi
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Yuki Watanabe
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Susumi Hatakeyama
- Medical Innovation Center; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| |
Collapse
|
25
|
Trost BM, Bai WJ, Stivala CE, Hohn C, Poock C, Heinrich M, Xu S, Rey J. Enantioselective Synthesis of des-Epoxy-Amphidinolide N. J Am Chem Soc 2018; 140:17316-17326. [DOI: 10.1021/jacs.8b11827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Wen-Ju Bai
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Craig E. Stivala
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Christoph Hohn
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Caroline Poock
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Marc Heinrich
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Shiyan Xu
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Jullien Rey
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
26
|
Ma B, Zhao Y, He C, Ding H. Total Synthesis of an Atropisomer of the
Schisandra
Triterpenoid Schiglautone A. Angew Chem Int Ed Engl 2018; 57:15567-15571. [DOI: 10.1002/anie.201809076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Binjie Ma
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Yifan Zhao
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Chi He
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Hanfeng Ding
- Department of ChemistryZhejiang University Hangzhou 310058 China
- State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
27
|
Ma B, Zhao Y, He C, Ding H. Total Synthesis of an Atropisomer of the
Schisandra
Triterpenoid Schiglautone A. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Binjie Ma
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Yifan Zhao
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Chi He
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Hanfeng Ding
- Department of ChemistryZhejiang University Hangzhou 310058 China
- State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
28
|
Isolation, synthesis and bioactivity studies of phomactin terpenoids. Nat Chem 2018; 10:938-945. [PMID: 30061613 DOI: 10.1038/s41557-018-0084-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/15/2018] [Indexed: 01/19/2023]
Abstract
Studies of secondary metabolites (natural products) that cover their isolation, chemical synthesis and bioactivity investigation present myriad opportunities for discovery. For example, the isolation of novel secondary metabolites can inspire advances in chemical synthesis strategies to achieve their practical preparation for biological evaluation. In the process, chemical synthesis can also provide unambiguous structural characterization of the natural products. Although the isolation, chemical synthesis and bioactivity studies of natural products are mutually beneficial, they are often conducted independently. Here, we demonstrate the benefits of a collaborative study of the phomactins, diterpenoid fungal metabolites that serve as antagonists of the platelet activating factor receptor. Our isolation of novel phomactins has spurred the development of a bioinspired, unified approach that achieves the total syntheses of six congeners. We also demonstrate in vitro the beneficial effects of several phomactins in suppressing the rate of repopulation of tumour cells following gamma radiation therapy.
Collapse
|
29
|
Review on Abyssomicins: Inhibitors of the Chorismate Pathway and Folate Biosynthesis. Molecules 2018; 23:molecules23061371. [PMID: 29882815 PMCID: PMC6100094 DOI: 10.3390/molecules23061371] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
Antifolates targeting folate biosynthesis within the shikimate-chorismate-folate metabolic pathway are ideal and selective antimicrobials, since higher eukaryotes lack this pathway and rely on an exogenous source of folate. Resistance to the available antifolates, inhibiting the folate pathway, underlines the need for novel antibiotic scaffolds and molecular targets. While para-aminobenzoic acid synthesis within the chorismate pathway constitutes a novel molecular target for antifolates, abyssomicins are its first known natural inhibitors. This review describes the abyssomicin family, a novel spirotetronate polyketide Class I antimicrobial. It summarizes synthetic and biological studies, structural, biosynthetic, and biological properties of the abyssomicin family members. This paper aims to explain their molecular target, mechanism of action, structure⁻activity relationship, and to explore their biological and pharmacological potential. Thirty-two natural abyssomicins and numerous synthetic analogues have been reported. The biological activity of abyssomicins includes their antimicrobial activity against Gram-positive bacteria and mycobacteria, antitumor properties, latent human immunodeficiency virus (HIV) reactivator, anti-HIV and HIV replication inducer properties. Their antimalarial properties have not been explored yet. Future analoging programs using the structure⁻activity relationship data and synthetic approaches may provide a novel abyssomicin structure that is active and devoid of cytotoxicity. Abyssomicin J and atrop-o-benzyl-desmethylabyssomicin C constitute promising candidates for such programs.
Collapse
|
30
|
Affiliation(s)
- Sukalyan Bhadra
- Inorganic Materials and Catalysis Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, 364002 Gujarat, India
| | - Hisashi Yamamoto
- Molecular Catalyst Research Center, Chubu University, 1200, Matsumoto-Cho, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
31
|
A brief history of antibiotics and select advances in their synthesis. J Antibiot (Tokyo) 2017; 71:153-184. [DOI: 10.1038/ja.2017.62] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/17/2017] [Accepted: 04/23/2017] [Indexed: 12/20/2022]
|
32
|
Wang X, Elshahawi SI, Cai W, Zhang Y, Ponomareva LV, Chen X, Copley GC, Hower JC, Zhan CG, Parkin S, Rohr J, Van Lanen SG, Shaaban KA, Thorson JS. Bi- and Tetracyclic Spirotetronates from the Coal Mine Fire Isolate Streptomyces sp. LC-6-2. JOURNAL OF NATURAL PRODUCTS 2017; 80:1141-1149. [PMID: 28358212 PMCID: PMC5558431 DOI: 10.1021/acs.jnatprod.7b00108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The structures of 12 new "enantiomeric"-like abyssomicin metabolites (abyssomicins M-X) from Streptomyces sp. LC-6-2 are reported. Of this set, the abyssomicin W (11) contains an unprecedented 8/6/6/6 tetracyclic core, while the bicyclic abyssomicin X (12) represents the first reported naturally occurring linear spirotetronate. Metabolite structures were determined based on spectroscopic data and X-ray crystallography, and Streptomyces sp. LC-6-2 genome sequencing also revealed the corresponding putative biosynthetic gene cluster.
Collapse
Affiliation(s)
- Xiachang Wang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sherif I. Elshahawi
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Wenlong Cai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yinan Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xiabin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Gregory C. Copley
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511, United States
| | - James C. Hower
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511, United States
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Steven G. Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Khaled A. Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
33
|
Esguerra KVN, Xu W, Lumb JP. Unified Synthesis of 1,2-Oxy-aminoarenes via a Bio-inspired Phenol-Amine Coupling. Chem 2017. [DOI: 10.1016/j.chempr.2017.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
34
|
Abstract
We report a concise chemical synthesis of kalihinol C via a possible biosynthetic intermediate, "protokalihinol", which was targeted as a scaffold en route to antiplasmodial analogs. High stereocontrol of the kalihinol framework relies on a heterodendralene cascade to establish the target stereotetrad. Common problems of regio- and chemoselectivity encountered in the kalihinol class are explained and solved.
Collapse
Affiliation(s)
- Christopher A Reiher
- Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Ryan A Shenvi
- Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| |
Collapse
|
35
|
Iwakura M, Tokura H, Tanino K. Construction of bicyclic systems containing an oxygen bridge by isomerization of cyclic epoxy alcohols. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Affiliation(s)
| | | | | | | | - Masahisa Nakada
- Graduate School of Advanced Science and Engineering, Waseda University
| |
Collapse
|
37
|
Liu J, Bedell TA, West JG, Sorensen EJ. Design and Synthesis of Molecular Scaffolds with Anti-infective Activity. Tetrahedron 2016; 72:3579-3592. [PMID: 27284210 PMCID: PMC4894353 DOI: 10.1016/j.tet.2016.01.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - T. Aaron Bedell
- Department of Chemistry, Princeton University, Frick Chemical Laboratory, Princeton, New Jersey 08544, USA
| | - Julian G. West
- Department of Chemistry, Princeton University, Frick Chemical Laboratory, Princeton, New Jersey 08544, USA
| | - Erik J. Sorensen
- Department of Chemistry, Princeton University, Frick Chemical Laboratory, Princeton, New Jersey 08544, USA
| |
Collapse
|
38
|
Liu HX, Chen K, Yuan Y, Xu ZF, Tan HB, Qiu SX. Rhodomentones A and B, novel meroterpenoids with unique NMR characteristics from Rhodomyrtus tomentosa. Org Biomol Chem 2016; 14:7354-60. [DOI: 10.1039/c6ob01215a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel meroterpenoids were isolated from Rhodomyrtus tomentosa. Their structures with unique NMR characteristics were determined by extensive spectroscopic analysis, single-crystal X-ray diffraction, quantum molecular calculation, chemical transformation as well as total synthesis.
Collapse
Affiliation(s)
- Hong-Xin Liu
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Kai Chen
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Yao Yuan
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Zhi-Fang Xu
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Hai-Bo Tan
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Sheng-Xiang Qiu
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| |
Collapse
|
39
|
Zeng XP, Cao ZY, Wang X, Chen L, Zhou F, Zhu F, Wang CH, Zhou J. Activation of Chiral (Salen)AlCl Complex by Phosphorane for Highly Enantioselective Cyanosilylation of Ketones and Enones. J Am Chem Soc 2015; 138:416-25. [DOI: 10.1021/jacs.5b11476] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xing-Ping Zeng
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Zhong-Yan Cao
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xin Wang
- College
of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Long Chen
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Feng Zhou
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Feng Zhu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Cui-Hong Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Jian Zhou
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
40
|
Kennedy N, Lu G, Liu P, Cohen T. Reductive Lithiation in the Absence of Aromatic Electron Carriers. A Steric Effect Manifested on the Surface of Lithium Metal Leads to a Difference in Relative Reactivity Depending on Whether the Aromatic Electron Carrier Is Present or Absent. J Org Chem 2015. [DOI: 10.1021/acs.joc.5b01136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicole Kennedy
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Gang Lu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Theodore Cohen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
41
|
Lacoske M, Theodorakis EA. Spirotetronate polyketides as leads in drug discovery. JOURNAL OF NATURAL PRODUCTS 2015; 78:562-75. [PMID: 25434976 PMCID: PMC4380204 DOI: 10.1021/np500757w] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Indexed: 05/05/2023]
Abstract
The discovery of chlorothricin (1) defined a new family of microbial metabolites with potent antitumor antibiotic properties collectively referred to as spirotetronate polyketides. These microbial metabolites are structurally distinguished by the presence of a spirotetronate motif embedded within a macrocyclic core. Glycosylation at the periphery of this core contributes to the structural complexity and bioactivity of this motif. The spirotetronate family displays impressive chemical structures, potent bioactivities, and significant pharmacological potential. This review groups the family members based on structural and biosynthetic considerations and summarizes synthetic and biological studies that aim to elucidate their mode of action and explore their pharmacological potential.
Collapse
Affiliation(s)
- Michelle
H. Lacoske
- Department of Chemistry and
Biochemistry, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0358, United States
| | - Emmanuel A. Theodorakis
- Department of Chemistry and
Biochemistry, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
42
|
Ishihara J, Nakadachi S, Watanabe Y, Hatakeyama S. Lewis Acid Template-Catalyzed Asymmetric Diels–Alder Reaction. J Org Chem 2015; 80:2037-41. [DOI: 10.1021/acs.joc.5b00055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Ishihara
- Graduate School of Biomedical
Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Shino Nakadachi
- Graduate School of Biomedical
Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yuki Watanabe
- Graduate School of Biomedical
Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Susumi Hatakeyama
- Graduate School of Biomedical
Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
43
|
León B, Navarro G, Dickey BJ, Stepan G, Tsai A, Jones GS, Morales ME, Barnes T, Ahmadyar S, Tsiang M, Geleziunas R, Cihlar T, Pagratis N, Tian Y, Yu H, Linington RG. Abyssomicin 2 reactivates latent HIV-1 by a PKC- and HDAC-independent mechanism. Org Lett 2015; 17:262-5. [PMID: 25560385 DOI: 10.1021/ol503349y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Screening of a marine natural products library afforded three new analogues of the tetronic acid containing polyketide abyssomicin family and identified abyssomicin 2 as a selective reactivator of latent HIV virus. Examination of the mode of action of this new latent HIV reactivating agent demonstrated that it functions via a distinct mechanism compared to that of existing reactivating agents and is effective at reactivating latent virus in a subset of primary patient cell lines.
Collapse
Affiliation(s)
- Brian León
- Department of Chemistry and Biochemistry, University of California, Santa Cruz , 1156 High Street, Santa Cruz, California 95064, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Smyth JE, Butler NM, Keller PA. A twist of nature – the significance of atropisomers in biological systems. Nat Prod Rep 2015; 32:1562-83. [DOI: 10.1039/c4np00121d] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review encompasses the synthesis and identification of recently detected natural atropisomers with potential therapeutic activity.
Collapse
Affiliation(s)
- Jamie E. Smyth
- School of Chemistry
- University of Wollongong
- Wollongong
- Australia 2522
| | | | - Paul A. Keller
- School of Chemistry
- University of Wollongong
- Wollongong
- Australia 2522
| |
Collapse
|
45
|
|
46
|
Shang H, Liu J, Bao R, Cao Y, Zhao K, Xiao C, Zhou B, Hu L, Tang Y. Biomimetic Synthesis: Discovery of Xanthanolide Dimers. Angew Chem Int Ed Engl 2014; 53:14494-8. [DOI: 10.1002/anie.201406461] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 10/01/2014] [Indexed: 11/07/2022]
|
47
|
Shang H, Liu J, Bao R, Cao Y, Zhao K, Xiao C, Zhou B, Hu L, Tang Y. Biomimetic Synthesis: Discovery of Xanthanolide Dimers. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Mak JYW, Pouwer RH, Williams CM. Naturstoffe mit Anti-Bredt- und Brückenkopf-Doppelbindung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400932] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
49
|
Mak JYW, Pouwer RH, Williams CM. Natural products with anti-Bredt and bridgehead double bonds. Angew Chem Int Ed Engl 2014; 53:13664-88. [PMID: 25399486 DOI: 10.1002/anie.201400932] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/25/2014] [Indexed: 11/11/2022]
Abstract
Well over a hundred years ago, Professor Julius Bredt embarked on a career pursuing and critiquing bridged bicyclic systems that contained ring strain induced by the presence of a bridgehead olefin. These endeavors founded what we now know as Bredt's rule (Bredtsche Regel). Physical, theoretical, and synthetic organic chemists have intensely studied this premise, pushing the boundaries of such systems to arrive at a better understood physical phenomenon. Mother nature has also seen fit to construct molecules containing bridgehead double bonds that encompass Bredt's rule. For the first time, this topic is reviewed in a natural product context.
Collapse
Affiliation(s)
- Jeffrey Y W Mak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane (Australia)
| | | | | |
Collapse
|
50
|
Hirai S, Utsugi M, Iwamoto M, Nakada M. Formal Total Synthesis of (−)-Taxol through Pd-Catalyzed Eight-Membered Carbocyclic Ring Formation. Chemistry 2014; 21:355-9. [DOI: 10.1002/chem.201404295] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Indexed: 11/11/2022]
|