1
|
Pu M, Cao H, Zhang H, Wang T, Li Y, Xiao S, Gu Z. ROS-responsive hydrogels: from design and additive manufacturing to biomedical applications. MATERIALS HORIZONS 2024; 11:3721-3746. [PMID: 38894682 DOI: 10.1039/d4mh00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hydrogels with intricate 3D networks and high hydrophilicity have qualities resembling those of biological tissues, making them ideal candidates for use as smart biomedical materials. Reactive oxygen species (ROS) responsive hydrogels are an innovative class of smart hydrogels, and are cross-linked by ROS-responsive modules through covalent interactions, coordination interactions, or supramolecular interactions. Due to the introduction of ROS response modules, this class of hydrogels exhibits a sensitive response to the oxidative stress microenvironment existing in organisms. Simultaneously, due to the modularity of the ROS-responsive structure, ROS-responsive hydrogels can be manufactured on a large scale through additive manufacturing. This review will delve into the design, fabrication, and applications of ROS-responsive hydrogels. The main goal is to clarify the chemical principles that govern the response mechanism of these hydrogels, further providing new perspectives and methods for designing responsive hydrogel materials.
Collapse
Affiliation(s)
- Minju Pu
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Huan Cao
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Shimeng Xiao
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| |
Collapse
|
2
|
Feuerstein A, Boßmann B, Rittner T, Leiner R, Janka O, Gallei M, Schäfer A. Polycobaltoceniumylmethylene - A Water-Soluble Polyelectrolyte Prepared by Ring-Opening Transmetalation Polymerization. ACS Macro Lett 2023; 12:1019-1024. [PMID: 37428818 DOI: 10.1021/acsmacrolett.3c00336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The synthesis of a water-soluble polycobaltoceniumylmethylene chloride (PCM-Cl) via ring-opening transmetalation polymerization is presented. Starting from a carba[1]magnesocenophane and cobalt(II) chloride, this route gives access to a polymer with methylene-bridged cobaltocenium moieties within the polymers' main-chain. The polymer was characterized by NMR spectroscopy, elemental analysis, TGA, DSC, XRD, and CV measurements, as well as UV-vis spectroscopy. Furthermore, GPC measurements in an aqueous eluent versus pullulan standards were conducted to gain insight into the obtained molar masses and distributions. In addition, the ion-dependent solubility was demonstrated by anion exchange, tuning the hydrophobic/hydrophilic properties of this redox-responsive material.
Collapse
Affiliation(s)
- Aylin Feuerstein
- Inorganic Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Blandine Boßmann
- Polymer Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Till Rittner
- Polymer Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Regina Leiner
- Polymer Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Oliver Janka
- Inorganic Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Markus Gallei
- Polymer Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - André Schäfer
- Inorganic Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| |
Collapse
|
3
|
Zhang T, Conrad ED, Gates DP. Di- and tri-block copolymers from the sequential living anionic copolymerization a phosphaalkene with styrene. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Guo W, Cao P, Dai F, Li Y, Wang R, Song P, He Y. Reversible addition‐fragmentation chain transfer polymerization for fabrication of polymer cations‐adjustable porous materials with excellent antibacterial activity. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wenling Guo
- Key Lab. Eco‐functional Polymer Materials of MOE Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Peng Cao
- Key Lab. Eco‐functional Polymer Materials of MOE Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Fengli Dai
- Key Lab. Eco‐functional Polymer Materials of MOE Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Yonggang Li
- Key Lab. Eco‐functional Polymer Materials of MOE Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Rongmin Wang
- Key Lab. Eco‐functional Polymer Materials of MOE Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Pengfei Song
- Key Lab. Eco‐functional Polymer Materials of MOE Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Yufeng He
- Key Lab. Eco‐functional Polymer Materials of MOE Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| |
Collapse
|
5
|
Oligo- and polymerization of phospha [2]ferrocenophanes to one dimensional phosphorus chains with ferrocenylene handles. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Han Y, Zhang R. Quantitative Theoretical Study of Molecular and Chain-Level Conformational Properties of Poly(ferrocenyldimethylsilanes). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yi Han
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Rui Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
7
|
Poly(ferrocenylsilane)s from planar-chiral sila[1]ferrocenophanes: How to twist a zig-zag chain into a helix. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Concentration Effect over Thermoresponse Derived from Organometallic Compounds of Functionalized Poly( N-isopropylacrylamide- co-dopamine Methacrylamide). Polymers (Basel) 2021; 13:polym13223921. [PMID: 34833220 PMCID: PMC8620241 DOI: 10.3390/polym13223921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
The functionalization of smart polymers is opening a new perspective in catalysis, drug carriers and biosensors, due to the fact that they can modulate the response regarding conventional devices. This smart response could be affected by the presence of organometallic complexes in terms of interactions which could affect the physical chemical properties. In this sense, the thermoresponsive behavior of copolymers based on N-isopropylacrylamide (NIPAM) could be affected due to the presence of hydrophobic groups and concentration effect. In this work, the functionalization of a copolymer based on NIPAM and dopamine methacrylamide with different amounts of bis(cyclopentadienyl)titanium (IV) dichloride was carried out. The resulting materials were characterized, showing a clear idea about the mechanism of functionalization through FTIR spectroscopy. The thermoresponsive behavior was also studied for various polymeric solutions in water by UV-vis spectroscopy and calorimetry. The hydrophobic interactions promoted by the organometallic complex could affect the transition associated with the lower critical solution temperature (LCST), specifically, the segments composed by pure NIPAM. That fact would explain the reduction of the width of the LCST-transition, contrary to what could be expected. In addition, the hydrophobicity was tested by the contact angle and also DNA interactions.
Collapse
|
9
|
Synthesis and structure of an asymmetrical sila[1]magnesocenophane. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The synthesis and structure of an asymmetrical sila[1]magnesocenophane, featuring a cyclopentadienyl and a tetramethylcyclopentadienyl group, are reported. The compound was obtained as a bis(tetrahydrofuran) adduct and exhibits a slipped sandwich structure in the solid state.
Collapse
|
10
|
Understanding the chemical bonding in sandwich complexes of transition metals coordinated to nine-membered rings: energy decomposition analysis and the donor–acceptor charge transfers. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02802-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
|
12
|
You J, Liu L, Huang W, Manners I, Dou H. Redox-Active Micelle-Based Reaction Platforms for In Situ Preparation of Noble Metal Nanocomposites with Photothermal Conversion Capability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13648-13657. [PMID: 33688724 DOI: 10.1021/acsami.0c21925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyferrocenylsilane (PFS)-based polymers are an attractive family of organometallic polymers with unique redox-active properties. Herein, we report a novel amphiphilic redox-active PFS-based homopolymer, poly(ferrocenylmethylethylthiocarboxypropylsilane) (PFC), with a hydrophobic backbone chain and hydrophilic carboxylic acid side groups in each repeating unit. Self-assembly was induced by addition of water to a molecularly dispersed solution of PFC in DMSO. Spherical PFC micelles with controllable hydrodynamic diameters (60-180 nm) were obtained under various conditions. These PFC micelles could be readily endocytosed by A549 cells and HUVEC cells and show no significant cytotoxicity toward them at the concentration of 200 μg/mL. On this basis, Au nanoparticles (AuNPs) were prepared through in situ reduction of HAuCl4 by PFC micelles as nanoreactors without requiring any other reductants. The PFC/Au nanocomposites (NCs) were found to exhibit significant photothermal behavior. Moreover, PFC micelles could also act as nanoreactors for other noble metals such as Ag, Pd, and Pt. By taking advantage of properties of the nanostructures and noble metal nanoparticles comprising these materials, the PFC micelles and PFC/noble metal NCs may have great potential in biomedical or catalytic applications.
Collapse
Affiliation(s)
- Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Lingshan Liu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Wanqiu Huang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
13
|
|
14
|
Winter T, Haider W, Schießer A, Presser V, Gallei M, Schäfer A. Rings and Chains: Synthesis and Characterization of Polyferrocenylmethylene. Macromol Rapid Commun 2021; 42:e2000738. [PMID: 33554420 DOI: 10.1002/marc.202000738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The synthesis and characterization of polyferrocenylmethylene (PFM) starting from dilithium 2,2-bis(cyclopentadienide)propane and a Me2 C[1]magnesocenophane is reported. Molecular weights of up to Mw = 11 700 g mol-1 featuring a dispersity, Ð, of 1.40 can be achieved. The material is studied by different methods comprising nuclear magnetic resonance (NMR) spectroscopy, matrix-assisted laser desorption/ionization time of flight (MALDI-ToF) mass spectrometry, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) measurements elucidating the molecular structure and thermal properties of these novel polymers. Moreover, cyclic voltammetry (CV) reveals quasi-reversible oxidation and reduction behavior and communication between the iron centers. Also, the crystal structure of a related cyclic hexamer is presented.
Collapse
Affiliation(s)
- Tamara Winter
- Ernst-Berl-Institute of Chemical Engineering and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany.,Department of Chemistry, Saarland University, Saarbrücken, 66123, Germany.,Department of Materials Science and Engineering, Saarland University, Campus D2 2, Saarbrücken, 66123, Germany
| | - Wasim Haider
- Department of Chemistry, Saarland University, Saarbrücken, 66123, Germany
| | - Alexander Schießer
- Mass Spectrometry, Department of Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Volker Presser
- Department of Materials Science and Engineering, Saarland University, Campus D2 2, Saarbrücken, 66123, Germany.,INM - Leibniz-Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
| | - Markus Gallei
- Department of Chemistry, Saarland University, Saarbrücken, 66123, Germany
| | - André Schäfer
- Department of Chemistry, Saarland University, Saarbrücken, 66123, Germany
| |
Collapse
|
15
|
He Z, Zhang Z, Asare-Yeboah K, Bi S, Chen J, Li D. Polyferrocenylsilane Semicrystalline Polymer Additive for Solution-Processed p-Channel Organic Thin Film Transistors. Polymers (Basel) 2021; 13:polym13030402. [PMID: 33513894 PMCID: PMC7865563 DOI: 10.3390/polym13030402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we demonstrated for the first time that a metal-containing semicrystalline polymer was used as an additive to mediate the thin film morphology of solution-grown, small-molecule organic semiconductors. By mixing polyferrocenylsilane (PFS) with an extensively-studied organic semiconductor 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene), PFS as a semicrystalline polymer independently forms nucleation and crystallization while simultaneously ameliorating diffusivity of the blend system and tuning the surface energies as a result of its partially amorphous property. We discovered that the resultant blend film exhibited a 6-fold reduction in crystal misorientation angle and a 3-fold enlargement in average grain width. Enhanced crystal orientation considerably reduces mobility variation, while minimized defects and trap centers located at grain boundaries lessen the adverse impact on the charge transport. Consequently, bottom-gate, top-contact organic thin film transistors (OTFTs) based on the TIPS pentacene/PFS mixture yielded a 40% increase in performance consistency (represented by the ratio of average mobility to the standard deviation of mobility). The PFS semicrystalline polymer-controlled crystallization can be used to regulate the thin film morphology of other high-performance organic semiconductors and shed light on applications in organic electronic devices.
Collapse
Affiliation(s)
- Zhengran He
- Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Ziyang Zhang
- Department of Electrical Engineering, Columbia University, New York City, NY 10027, USA;
| | - Kyeiwaa Asare-Yeboah
- Department of Electrical and Computer Engineering, Penn State Behrend, Erie, PA 16563, USA;
| | - Sheng Bi
- Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of Education, Dalian University of Technology, Dalian 116024, China;
| | - Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence: (J.C.); (D.L.); Tel.: +1-(865)576-3385 (J.C.); +1-(205)348-9930 (D.L.)
| | - Dawen Li
- Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
- Correspondence: (J.C.); (D.L.); Tel.: +1-(865)576-3385 (J.C.); +1-(205)348-9930 (D.L.)
| |
Collapse
|
16
|
Abstract
Metallocenes with interlinked cyclopentadienide ligands are commonly referred to as ansa-metallocenes or metallocenophanes. These can have drastically different properties than their unbridged parent compounds. While this concept is best known for transition metals such as iron, it can also be adopted for many main-group elements. This review aims to summarize recent advances in the field of metallocenophanes based on main-group elements of group 2, group 13, group 14 and group 15, focusing on synthesis, structure and properties of these compounds.
Collapse
Affiliation(s)
- Lisa Wirtz
- Faculty of Natural Science and TechnologyDepartment of ChemistrySaarland UniversityCampus Saarbrücken66123SaarbrückenGermany
| | - André Schäfer
- Faculty of Natural Science and TechnologyDepartment of ChemistrySaarland UniversityCampus Saarbrücken66123SaarbrückenGermany
| |
Collapse
|
17
|
Singh A, Dutta A, Singh AK, Trivedi M, Kociok‐Köhn G, Muddassir M, Kumar A. Tertiary phosphine‐appended transition metal ferrocenyl dithiocarbamates: Syntheses, Hirshfeld surface, and electrochemical analyses. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Amita Singh
- Department of Chemistry, Faculty of science University of Lucknow Lucknow 226007 India
| | - Archisman Dutta
- Department of Chemistry, Faculty of science University of Lucknow Lucknow 226007 India
- Chemical Division Geological Survey of India Northern Region Lucknow 226024 India
| | - Ashish Kumar Singh
- Department of Chemistry Guru Ghasidas Vishwavidyala, Koni Bilaspur 495009 India
| | - Manoj Trivedi
- Department of Chemistry University of Delhi Delhi India
| | - Gabriele Kociok‐Köhn
- Material and Chemical Characterization Facility (MC2) University of Bath Bath BA27AY UK
| | - Mohd. Muddassir
- Department of Chemistry, College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Abhinav Kumar
- Department of Chemistry, Faculty of science University of Lucknow Lucknow 226007 India
| |
Collapse
|
18
|
Dhara M, Giri N, Dutta A, Patra A, Sastry P, Ingole MS, Jana T. Enhancing segmental compatibility and tuning the structure-property relationship in ferrocenylsilane tethered polyurethane. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
3D Micro/Nanopatterning of a Vinylferrocene Copolymer. Molecules 2020; 25:molecules25102438. [PMID: 32456151 PMCID: PMC7287958 DOI: 10.3390/molecules25102438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022] Open
Abstract
In nanoimprint lithography (NIL), a pattern is created by mechanical deformation of an imprint resist via embossing with a stamp, where the adhesion behavior during the filling of the imprint stamp and its subsequent detachment may impose some practical challenges. Here we explored thermal and reverse NIL patterning of polyvinylferrocene and vinylferrocene-methyl methacrylate copolymers to prepare complex non-spherical objects and patterns. While neat polyvinylferrocene was found to be unsuitable for NIL, freshly-prepared vinylferrocene-methyl methacrylate copolymers, for which identity and purity were established, have been structured into 3D-micro/nano-patterns using NIL. The cross-, square-, and circle-shaped columnar structures form a 3 × 3 mm arrangement with periodicity of 3 µm, 1 µm, 542 nm, and 506 nm. According to our findings, vinylferrocene-methyl methacrylate copolymers can be imprinted without further additives in NIL processes, which opens the way for redox-responsive 3D-nano/micro-objects and patterns via NIL to be explored in the future.
Collapse
|
20
|
Dey S, Buzsáki D, Bruhn C, Kelemen Z, Pietschnig R. Bulky 1,1'-bisphosphanoferrocenes and their coordination behaviour towards Cu(i). Dalton Trans 2020; 49:6668-6681. [PMID: 32342065 DOI: 10.1039/d0dt00941e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Two bulky mesityl substituted dppf-analogues Fe(C5H4PMes2)2 (Mes = 2,4,6-Me3C6H2, 1) and Fe(C5H4PMes2)(C5H4PPh2) (Mes = 2,4,6-Me3C6H2, Ph = C6H5, 3) have been prepared and their properties as donor ligands have been explored using heteronuclear NMR spectroscopy and in particular via1JP-Se coupling, cyclic voltammetry and DFT calculations. Based on the results obtained, a series of mono- and dinuclear Cu(i) complexes have been prepared with these new diphosphane ligands using Br-, I-, and BF4- as counter anions. For the very bulky ligand 1 rare and unprecedented double bridging complexation modes have been observed containing two non-planar Cu2Br2 units, while for the other dinuclear complexes planar Cu2Br2 units have been found. The Cu(i) complexes of 1 and 3 were then used as catalysts for CO2-fixation reaction with terminal alkynes, and complexes with ligand 3 were found to be more efficient than those with 1. DFT calculations performed on compounds 1, 3 and their Cu(i) complexes were able to verify the trend of these catalytic reactions.
Collapse
Affiliation(s)
- Subhayan Dey
- Institut für Chemie und CINSaT, University of Kassel, Heinrich Plett-Straße 40, 34132 Kassel, Germany.
| | - Daniel Buzsáki
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, and MTA-BME Computation Driven Chemistry Research Group, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Clemens Bruhn
- Institut für Chemie und CINSaT, University of Kassel, Heinrich Plett-Straße 40, 34132 Kassel, Germany.
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, and MTA-BME Computation Driven Chemistry Research Group, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Rudolf Pietschnig
- Institut für Chemie und CINSaT, University of Kassel, Heinrich Plett-Straße 40, 34132 Kassel, Germany.
| |
Collapse
|
21
|
Regio- and stereoselective ring-opening metathesis polymerization of 3-ferrocenyl substituted cyclooctenes and copolymerization with norbornene derivatives. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
22
|
Bhattacharjee H, Zhu J, Müller J. Unique Bora[1]ferrocenophanes with Sterically Protected Boron: A Potential Gateway to Helical Polyferrocenes. Angew Chem Int Ed Engl 2019; 58:16575-16582. [PMID: 31518485 DOI: 10.1002/anie.201908993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 11/05/2022]
Abstract
Silicon-bridged [1]ferrocenophanes are a versatile class of monomers to obtain well-defined metallopolymers, however, their boron-bridged analogues are far less utilized despite being significantly higher strained. We assumed that the reactivity of known bora[1]ferrocenophanes towards ring-opening polymerization is hampered by π-donating R2 N groups at the bridging boron atom and therefore prepared the first bora[1]ferrocenophanes lacking such electronic stabilization. The new, isolated ferrocenophane with a 2,4,6-triisopropylphenyl group attached to the bridging boron atom exhibits the most tilted Cp rings among all isolated strained sandwich compounds [α(DFT)=33.3°] with a measured record value of the bathochromic shift (λmax =516 nm). Attempts to purify the mesityl analogue by vacuum sublimation transformed this monomer to a purple-colored polymer that resulted in Cotton effects in circular dichroism spectroscopy. DFT calculations revealed a left-handed helical structure for this polymer. This is the first evidence for a polyferrocene with a chiral secondary structure.
Collapse
Affiliation(s)
- Hridaynath Bhattacharjee
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada.,Present address: Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - Jianfeng Zhu
- Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada
| | - Jens Müller
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada
| |
Collapse
|
23
|
Bhattacharjee H, Zhu J, Müller J. Unique Bora[1]ferrocenophanes with Sterically Protected Boron: A Potential Gateway to Helical Polyferrocenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hridaynath Bhattacharjee
- Department of Chemistry University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
- Present address: Department of Chemistry Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Jianfeng Zhu
- Saskatchewan Structural Sciences Centre University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
| | - Jens Müller
- Department of Chemistry University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
| |
Collapse
|
24
|
Gao X, Deng L, Hu J, Zhang H. Ferrocene-Containing Conjugated Oligomers Synthesized by Acyclic Diene Metathesis Polymerization. Polymers (Basel) 2019; 11:polym11081334. [PMID: 31408998 PMCID: PMC6722986 DOI: 10.3390/polym11081334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022] Open
Abstract
A series of conjugated, symmetrical, and ferrocene-containing main-chain monomers was prepared following a gentle coupling reaction. Ferrocene-containing oligomers with all-trans-configured vinylene bonds could be synthesized via acyclic diene metathesis (ADMET) polymerization. These oligomers had a larger Stokes shift (2400 to 2600 cm−1) and both exhibited stable and reversible electrochemistry. Meanwhile, the copolymerization of 1,1’-bis[1-methyl-2-(4-vinylphenyl)ethenyl]ferrocene with 2,7-divinyl-9,9-dioctylfluorene was achieved. The structurally regular copolymers proved their optical and electrochemical properties. The fluorescence intensity of the copolymer gradually enhanced with the increasing number of fluorene units. At the same time, it was also found that the color of the copolymers had a significant change from yellow-green to red.
Collapse
Affiliation(s)
- Xin Gao
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Lei Deng
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Jianfeng Hu
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot 010021, China
| | - Hao Zhang
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot 010021, China.
| |
Collapse
|
25
|
Luo Q, Zhang R, Zhang J, Xia J. Synthesis of Conjugated Main-Chain Ferrocene-Containing Polymers through Melt-State Polymerization. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Qi Luo
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Rui Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Jing Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Jiangbin Xia
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
26
|
Cao MPT, Quail JW, Zhu J, Müller J. Enantiopure Ferrocenophanes with Phosphorus in Bridging Positions: Thermostability and Ring-Opening Polymerization. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Mitova V, Shestakova P, Koseva N, Troev K. Phosphorus and Silicon Containing Inorganic Polymer Poly(dimethylsilane H‐phosphonate): Synthesis and NMR Spectroscopic Characterization. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Violeta Mitova
- Institute of Polymers Bulgarian Academy of Sciences Akad. G. Bonchev St., Bl 103‐A 1113 Sofia Bulgaria
| | - Pavletta Shestakova
- NMR Centre, Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences Acad. G. Bontchev str. Bl. 9 1113 Sofia Bulgaria
| | - Neli Koseva
- Institute of Polymers Bulgarian Academy of Sciences Akad. G. Bonchev St., Bl 103‐A 1113 Sofia Bulgaria
| | - Kolio Troev
- Institute of Polymers Bulgarian Academy of Sciences Akad. G. Bonchev St., Bl 103‐A 1113 Sofia Bulgaria
| |
Collapse
|
28
|
Rüttiger C, Gemmer L, Schöttner S, Kuttich B, Stühn B, Gallei M. Preparation and self-assembly of polyferrocenyldimethylsilane-containing tri- and pentablock terpolymers. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Feng X, Hempenius MA, Vancso GJ. Metal Nanoparticle Foundry with Redox Responsive Hydrogels. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xueling Feng
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Mark A. Hempenius
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Gyula J. Vancso
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
30
|
Gallei M, Rüttiger C. Recent Trends in Metallopolymer Design: Redox-Controlled Surfaces, Porous Membranes, and Switchable Optical Materials Using Ferrocene-Containing Polymers. Chemistry 2018; 24:10006-10021. [PMID: 29532972 DOI: 10.1002/chem.201800412] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/06/2018] [Indexed: 01/24/2023]
Abstract
Metallopolymers with metal functionalities are a unique class of functional materials. Their redox-mediated optoelectronic and catalytic switching capabilities, their outstanding structure formation and separation capabilities have been reported recently. Within this Minireview, the scope and limitations of intriguing ferrocene-containing systems will be discussed. In the first section recent advances in metallopolymer design will be given leading to a plethora of novel metallopolymer architectures. Discussed synthetic pathways comprise controlled and living polymerization protocols as well as surface immobilization strategies. In the following sections, we focus on recent advances and new applications for side-chain and main-chain ferrocene-containing polymers as (i) remote-switchable materials, (ii) smart surfaces, (iii) redox-responsive membranes, and some recent trends in (iv) photonic structures and (v) other optical applications.
Collapse
Affiliation(s)
- Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Christian Rüttiger
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| |
Collapse
|
31
|
Sadeh S, Cao MPT, Quail JW, Zhu J, Müller J. Enantiopure Phospha[1]ferrocenophanes: Textbook Examples of Through-Space Nuclear Spin-Spin Coupling. Chemistry 2018; 24:8298-8301. [PMID: 29660195 DOI: 10.1002/chem.201801139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 12/22/2022]
Abstract
Three enantiopure phospha[1]ferrocenophanes (2R ) equipped with either a phenyl, an isopropyl, or a tert-butyl group at the bridging phosphorus atom were synthesized by a salt-metathesis approach in isolated yields between 52 and 63 %. The chirality in these strained sandwich compounds stems from the planar-chiral ferrocene moiety, which is symmetrically equipped with two iPr groups adjacent to phosphorus. Surprisingly, all three phospha[1]ferrocenophanes show an uncommon through-space nuclear 1 H-31 P coupling. As a result of the embedded symmetry, these new compounds are ideal examples to differentiate between through-space and through-bond coupling mechanisms in NMR spectroscopy.
Collapse
Affiliation(s)
- Saeid Sadeh
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada.,Current address: Crosslight Software Inc., 230-3410 Lougheed Hwy, Vancouver, BC, V5M 2A4, Canada
| | - My P T Cao
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| | - J Wilson Quail
- Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| | - Jianfeng Zhu
- Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| | - Jens Müller
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| |
Collapse
|
32
|
Carriedo GA, de la Campa R, Soto AP. Polyphosphazenes - Synthetically Versatile Block Copolymers (“Multi-Tool”) for Self-Assembly. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Gabino A. Carriedo
- Department of Organic and Inorganic Chemistry; Facultad de Química; Universidad de Oviedo; Julián Clavería s/n 33006 Oviedo Spain
| | - Raquel de la Campa
- Department of Organic and Inorganic Chemistry; Facultad de Química; Universidad de Oviedo; Julián Clavería s/n 33006 Oviedo Spain
| | - Alejandro Presa Soto
- Department of Organic and Inorganic Chemistry; Facultad de Química; Universidad de Oviedo; Julián Clavería s/n 33006 Oviedo Spain
| |
Collapse
|
33
|
Musgrave RA, Hailes RLN, Schäfer A, Russell AD, Gates PJ, Manners I. New reactivity at the silicon bridge in sila[1]ferrocenophanes. Dalton Trans 2018; 47:2759-2768. [PMID: 29417116 DOI: 10.1039/c7dt04593j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe two new types of reactivity involving silicon-bridged [1]ferrocenophanes. In an attempt to form a [1]ferrocenophane with a bridging silyl cation, the reaction of sila[1]ferrocenophane [Fe(η-C5H4)2Si(H)TMP] (12) (TMP = 2,2,6,6-tetramethylpiperidyl) towards the hydride-abstraction reagent trityl tetrakis(pentafluorophenyl)borate ([CPh3][B(C6F5)4]) was explored. This yielded the unusual dinuclear species [Fe(η-C5H4)2Si(TMP·H)(η-C5H3)Fe(η-C5H4)Si(H)TMP][B(C6F5)4] [13][B(C6F5)4] in low yield. The formation of [13]+ is proposed to involve abstraction of hydride from the silicon bridge in 12 with subsequent C-H bond cleavage of a cyclopentadienyl group by the resulting electrophilic transient silyl cation intermediate. We also explored the reaction of dimethylsila[1]ferrocenophane [Fe(η-C5H4)2SiMe2] (1) with the Au(i) species AuCl(PMe3). This was found to result in addition of the Au-Cl bond across the Cpipso-Si bond to yield the ring-opened species [1'-(chlorodimethylsilyl)-ferrocenyl](trimethylphosphine)gold(i), [Fe(C5H4SiMe2Cl){C5H4Au(PMe3)}] (14). This represents the first example of ring-opening addition of a metallocenophane with a reagent possessing a transition metal-halogen bond.
Collapse
Affiliation(s)
- Rebecca A Musgrave
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | | | | | | | | | | |
Collapse
|
34
|
Rüttiger C, Hübner H, Schöttner S, Winter T, Cherkashinin G, Kuttich B, Stühn B, Gallei M. Metallopolymer-Based Block Copolymers for the Preparation of Porous and Redox-Responsive Materials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4018-4030. [PMID: 29313330 DOI: 10.1021/acsami.7b18014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metallopolymers are a unique class of functional materials because of their redox-mediated optoelectronic and catalytic switching capabilities and, as recently shown, their outstanding structure formation and separation capabilities. Within the present study, (tri)block copolymers of poly(isoprene) (PI) and poly(ferrocenylmethyl methacrylate) having different block compositions and overall molar masses up to 328 kg mol-1 are synthesized by anionic polymerization. The composition and thermal properties of the metallopolymers are investigated by state-of-the-art polymer analytical methods comprising size exclusion chromatography, 1H NMR spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. As a focus of this work, excellent microphase separation of the synthesized (tri)block copolymers is proven by transmission electron microscopy, scanning electron microcopy, energy-dispersive X-ray spectroscopy, small-angle X-ray scattering measurements showing spherical, cylindrical, and lamellae morphologies. As a highlight, the PI domains are subjected to ozonolysis for selective domain removal while maintaining the block copolymer morphology. In addition, the novel metalloblock copolymers can undergo microphase separation on cellulose-based substrates, again preserving the domain order after ozonolysis. The resulting nanoporous structures reveal an intriguing switching capability after oxidation, which is of interest for controlling the size and polarity of the nanoporous architecture.
Collapse
Affiliation(s)
- Christian Rüttiger
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Hanna Hübner
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Sebastian Schöttner
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Tamara Winter
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Gennady Cherkashinin
- Surface Science Group, Institute of Materials Science, Technische Universität Darmstadt , Otto-Berndt-Str. 3, D-64287 Darmstadt, Germany
| | - Björn Kuttich
- Institute of Condensed Matter Physics, Technische Universität Darmstadt , Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Bernd Stühn
- Institute of Condensed Matter Physics, Technische Universität Darmstadt , Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Markus Gallei
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| |
Collapse
|
35
|
Dong Q, Meng Z, Ho CL, Guo H, Yang W, Manners I, Xu L, Wong WY. A molecular approach to magnetic metallic nanostructures from metallopolymer precursors. Chem Soc Rev 2018; 47:4934-4953. [DOI: 10.1039/c7cs00599g] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This tutorial review summarizes the strategies of using metallopolymers as precursors for generating functional magnetic metal/metal alloy NPs and other metal nanostructures.
Collapse
Affiliation(s)
- Qingchen Dong
- MOE Key Laboratory for Interface Science and Engineering in Advanced Materials and Research Center of Advanced Materials Science and Technology
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Zhengong Meng
- School of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Cheuk-Lam Ho
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute
| | - Hongen Guo
- MOE Key Laboratory for Interface Science and Engineering in Advanced Materials and Research Center of Advanced Materials Science and Technology
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Weiyou Yang
- Institute of Materials
- Ningbo University of Technology
- Ningbo 315016
- P. R. China
| | - Ian Manners
- School of Chemistry
- University of Bristol
- Bristol BS8 1TS
- UK
| | - Linli Xu
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute
| |
Collapse
|
36
|
Al-Kharusi HN, Wu L, Whittell G, Harniman R, Manners I. Synthesis, thin-film self-assembly, and pyrolysis of ruthenium-containing polyferrocenylsilane block copolymers. Polym Chem 2018. [DOI: 10.1039/c8py00168e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The self-assembly of a ruthenium-containing polyferrocenylsilane in bulk and thin films yielded spherical or cylindrical domains in a PS matrix; pyrolysis provided a route to bimetallic Fe/Ru NPs for potential catalytic applications.
Collapse
Affiliation(s)
| | - Lipeng Wu
- School of Chemistry
- University of Bristol
- UK
| | | | | | | |
Collapse
|
37
|
Bhattacharjee H, Dey S, Zhu J, Sun W, Müller J. Strained azabora[2]ferrocenophanes. Chem Commun (Camb) 2018; 54:5562-5565. [DOI: 10.1039/c8cc02965b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The first BN-bridged [2]ferrocenophanes were synthesized and their structures and strain enthalpies were investigated.
Collapse
Affiliation(s)
| | - Subhayan Dey
- Department of Chemistry
- University of Saskatchewan
- Saskatoon
- Canada
| | - Jianfeng Zhu
- Saskatchewan Structural Sciences Centre
- University of Saskatchewan
- Saskatoon
- Canada
| | - Wei Sun
- Saskatchewan Structural Sciences Centre
- University of Saskatchewan
- Saskatoon
- Canada
| | - Jens Müller
- Department of Chemistry
- University of Saskatchewan
- Saskatoon
- Canada
| |
Collapse
|
38
|
Zhang K, Feng X, Ye C, Hempenius MA, Vancso GJ. Hydrogels with a Memory: Dual-Responsive, Organometallic Poly(ionic liquid)s with Hysteretic Volume-Phase Transition. J Am Chem Soc 2017; 139:10029-10035. [PMID: 28654756 PMCID: PMC5538755 DOI: 10.1021/jacs.7b04920] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 11/28/2022]
Abstract
We report on the synthesis and structure-property relations of a novel, dual-responsive organometallic poly(ionic liquid) (PIL), consisting of a poly(ferrocenylsilane) backbone of alternating redox-active, silane-bridged ferrocene units and tetraalkylphosphonium sulfonate moieties in the side groups. This PIL is redox responsive due to the presence of ferrocene in the backbone and also exhibits a lower critical solution temperature (LCST)-type thermal responsive behavior. The LCST phase transition originates from the interaction between water molecules and the ionic substituents and shows a concentration-dependent, tunable transition temperature in aqueous solution. The PIL's LCST-type transition temperature can also be influenced by varying the redox state of ferrocene in the polymer main chain. As the polymer can be readily cross-linked and is easily converted into hydrogels, it represents a new dual-responsive materials platform. Interestingly, the as-formed hydrogels display an unusual, strongly hysteretic volume-phase transition indicating useful thermal memory properties. By employing the dispersing abilities of this cationic PIL, CNT-hydrogel composites were successfully prepared. These hybrid conductive composite hydrogels showed bi-stable states and tunable resistance in heating-cooling cycles.
Collapse
Affiliation(s)
| | | | - Chongnan Ye
- Materials Science and Technology
of Polymers, MESA+ Institute for Nanotechnology,
University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Mark A. Hempenius
- Materials Science and Technology
of Polymers, MESA+ Institute for Nanotechnology,
University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - G. Julius Vancso
- Materials Science and Technology
of Polymers, MESA+ Institute for Nanotechnology,
University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| |
Collapse
|
39
|
Li H, Chi W, Liu Y, Yuan W, Li Y, Li Y, Tang BZ. Ferrocene-Based Hyperbranched Polytriazoles: Synthesis by Click Polymerization and Application as Precursors to Nanostructured Magnetoceramics. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/24/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Hongkun Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Weiwen Chi
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Yajing Liu
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
| | - Wei Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Yaowen Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Yongfang Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Ben Zhong Tang
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
| |
Collapse
|
40
|
Li H, Yang P, Pageni P, Tang C. Recent Advances in Metal-Containing Polymer Hydrogels. Macromol Rapid Commun 2017; 38:10.1002/marc.201700109. [PMID: 28547817 PMCID: PMC5599250 DOI: 10.1002/marc.201700109] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/31/2017] [Indexed: 12/14/2022]
Abstract
Metal-containing polymer hydrogels have attracted increasing interest in recent years due to their outstanding properties such as biocompatibility, recoverability, self-healing, and/or redox activity. In this short review, methods for the preparation of metal-containing polymer hydrogels are introduced and an overview of these hydrogels with various functionalities is given. It is hoped that this short update can stimulate innovative ideas to promote the research of metal-containing hydrogels in the communities.
Collapse
Affiliation(s)
- Hui Li
- School of Chemistry and Chemical Engineering and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan, 250022, China
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Peng Yang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Parasmani Pageni
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
41
|
Surface-initiated atom transfer radical polymerization of electrochemically responsive cobalt-methacrylates. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Jiang H, Geng D, Liu D, Lanigan N, Wang X. Flexibility and Stability of Metal Coordination Macromolecules. Chemistry 2017; 23:8280-8285. [PMID: 28334462 DOI: 10.1002/chem.201701133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 11/09/2022]
Abstract
The effect of chain structure on flexibility and stability of macromolecules containing weak P-Fe metal coordination bonds is studied. Migration insertion polymerization (MIP) of FpCX Fp (1) and PR2 CY PR2 (2) (Fp: CpFe(CO)2 ; CX and CY : alkyl spacers; P: phosphine; R: phenyl or isopropyl) generates P(1/2), in which the P-Fe and Fe-P bonds with opposite bonding direction are alternatively arranged in the backbone. On the other hand, P(FpCX P) synthesized from AB-type monomers (FpCX P) has P-Fe bonds arranged in the same direction. P(1/2) is more rigid and stable than P(FpCX P), which is attributed to the chain conformation resulting from the P-Fe bonding direction. In addition, the longer spacers render P(1/2) relatively flexible; the phenyl substituents, as compared with the isopropyl groups, improves the rigidity, thermal, and solution stability of P(1/2). It is therefore possible to incorporate weak metal coordination bonds into macromolecules with improved stability and adjustable flexibility for material processing.
Collapse
Affiliation(s)
- Heyan Jiang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, 400067, P.R. China
| | - Diya Geng
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Dapeng Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Nicholas Lanigan
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Xiaosong Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
43
|
Latendresse TP, Bhuvanesh NS, Nippe M. Slow Magnetic Relaxation in a Lanthanide-[1]Metallocenophane Complex. J Am Chem Soc 2017; 139:8058-8061. [DOI: 10.1021/jacs.7b01499] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Trevor P. Latendresse
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Nattamai S. Bhuvanesh
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Michael Nippe
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
44
|
Khozeimeh Sarbisheh E, Esteban Flores J, Anderson BJ, Zhu J, Müller J. Thermal Ring-Opening Polymerization of Planar-Chiral Sila[1]ferrocenophanes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elaheh Khozeimeh Sarbisheh
- Department
of Chemistry and #Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Jose Esteban Flores
- Department
of Chemistry and #Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Brady J. Anderson
- Department
of Chemistry and #Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Jianfeng Zhu
- Department
of Chemistry and #Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Jens Müller
- Department
of Chemistry and #Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
45
|
Khozeimeh Sarbisheh E, Bhattacharjee H, Cao MPT, Zhu J, Müller J. How Strained are [1]Ferrocenophanes? Organometallics 2017. [DOI: 10.1021/acs.organomet.6b00808] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Elaheh Khozeimeh Sarbisheh
- Department
of Chemistry and ‡Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Hridaynath Bhattacharjee
- Department
of Chemistry and ‡Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - My Phan Thuy Cao
- Department
of Chemistry and ‡Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Jianfeng Zhu
- Department
of Chemistry and ‡Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Jens Müller
- Department
of Chemistry and ‡Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
46
|
Xu F, Cui ZM, Li H, Luo YL. Electrochemical determination of trace pesticide residues based on multiwalled carbon nanotube grafted acryloyloxy ferrocene carboxylates with different spacers. RSC Adv 2017. [DOI: 10.1039/c6ra26436k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We report the preparation of nanohybrid composites with good electrochemical response for the detection of pesticide residues by combining esterification with ATRP.
Collapse
Affiliation(s)
- Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- P. R. China
| | - Zhuo-Miao Cui
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- P. R. China
| | - He Li
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- P. R. China
| | - Yan-Ling Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- P. R. China
| |
Collapse
|
47
|
Maeno Y, Ishizu Y, Kubo K, Kume S, Mizuta T. Synthesis and coordination chemistry of (PNEt 2) 2-bridged [2]ferrocenophanes. Dalton Trans 2016; 45:19034-19044. [PMID: 27853782 DOI: 10.1039/c6dt03729a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The trivalent phosphorus-bridged [2]ferrocenophane complex 2 having NEt2 groups on the respective phosphorus centers was prepared, and its reactions as a diphosphine ligand were examined for iron and chromium carbonyl complexes. Both the phosphorus centers of 2 coordinated to Fe(CO)4 fragments to form (μ-2)-[Fe(CO)4]2, while the bulkier Cr(CO)5 fragment formed only a monochromium complex [Cr(κ1-2)(CO)5]. Dissociation of CO from [Cr(κ1-2)(CO)5] changed the coordination mode of 2 from κ1 to κ2 to form [Cr(κ2-2)(CO)4] having a three-membered ring. A similar approach for the monoiron complex [Fe(κ1-2)(CO)4] did not afford a κ2 complex but instead an Et2NPC(O)PNEt2-bridged [3]ferrocenophane complex in which a CO fragment was inserted into the P-P bond of 2 and both the phosphorus centers coordinated to Fe(CO)3 as a chelate diphosphine. The reaction of this product with an Fe(CO)4 fragment gave μ-{Fe(C5H4PNEt2)2-κP:κP}-[Fe(CO)3]2 (8), in which one terminal CO and the CO group between the two phosphorus atoms were lost to give an [FeFe]hydrogenase mimic having a bis(phosphido)ferrocene chelate as a bridging unit. The two NEt2 groups of the bridging unit were expected to work as protonation sites. The protonated NEt2 groups contributed to an improvement in the reduction potential of the complex to a less negative area, i.e., -2.3 V for the free 8 to -1.0 V for the diprotonated 8. The catalytic reduction of the proton, however, required a more negative potential of -2.0 V, which is almost comparable to that of the phosphido-bridged [FeFe]hydrogenase model complex having no protonation site.
Collapse
Affiliation(s)
- Yuki Maeno
- Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-hiroshima 739-8526, Japan.
| | | | | | | | | |
Collapse
|
48
|
Braunschweig H, Krummenacher I, Lichtenberg C, Mattock JD, Schäfer M, Schmidt U, Schneider C, Steffenhagen T, Ullrich S, Vargas A. Dibora[2]ferrocenophan: ein carbenstabilisiertes Diboren in einer gespannten
cis
‐Konfiguration. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609601] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Holger Braunschweig
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie und Katalyse mit Bor als Schlüsselelement Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Ivo Krummenacher
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie und Katalyse mit Bor als Schlüsselelement Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Crispin Lichtenberg
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie und Katalyse mit Bor als Schlüsselelement Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - James D. Mattock
- Department of Chemistry, School of Life Sciences University of Sussex Brighton BN1 9QJ Sussex Großbritannien
| | - Marius Schäfer
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie und Katalyse mit Bor als Schlüsselelement Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Uwe Schmidt
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie und Katalyse mit Bor als Schlüsselelement Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Christoph Schneider
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie und Katalyse mit Bor als Schlüsselelement Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Thomas Steffenhagen
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie und Katalyse mit Bor als Schlüsselelement Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Stefan Ullrich
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie und Katalyse mit Bor als Schlüsselelement Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Alfredo Vargas
- Department of Chemistry, School of Life Sciences University of Sussex Brighton BN1 9QJ Sussex Großbritannien
| |
Collapse
|
49
|
Braunschweig H, Krummenacher I, Lichtenberg C, Mattock JD, Schäfer M, Schmidt U, Schneider C, Steffenhagen T, Ullrich S, Vargas A. Dibora[2]ferrocenophane: A Carbene-Stabilized Diborene in a Strained cis-Configuration. Angew Chem Int Ed Engl 2016; 56:889-892. [PMID: 27995698 DOI: 10.1002/anie.201609601] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Indexed: 11/08/2022]
Abstract
Unsaturated bridges that link the two cyclopentadienyl ligands together in strained ansa metallocenes are rare and limited to carbon-carbon double bonds. The synthesis and isolation of a strained ferrocenophane containing an unsaturated two-boron bridge, isoelectronic with a C=C double bond, was achieved by reduction of a carbene-stabilized 1,1'-bis(dihaloboryl)ferrocene. A combination of spectroscopic and electrochemical measurements as well as density functional theory (DFT) calculations was used to assess the influence of the unprecedented strained cis configuration on the optical and electrochemical properties of the carbene-stabilized diborene unit. Initial reactivity studies show that the dibora[2]ferrocenophane is prone to boron-boron double bond cleavage reactions.
Collapse
Affiliation(s)
- Holger Braunschweig
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry and Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry and Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Crispin Lichtenberg
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry and Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - James D Mattock
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, Sussex, UK
| | - Marius Schäfer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry and Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Uwe Schmidt
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry and Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christoph Schneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry and Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Thomas Steffenhagen
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry and Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Stefan Ullrich
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry and Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alfredo Vargas
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, Sussex, UK
| |
Collapse
|
50
|
Feng X, Zhang K, Chen P, Sui X, Hempenius MA, Liedberg B, Vancso GJ. Highly Swellable, Dual-Responsive Hydrogels Based on PNIPAM and Redox Active Poly(ferrocenylsilane) Poly(ionic liquid)s: Synthesis, Structure, and Properties. Macromol Rapid Commun 2016; 37:1939-1944. [DOI: 10.1002/marc.201600374] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/11/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Xueling Feng
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
- Centre for Biomimetic Sensor Science; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Drive Singapore 637553 Singapore
| | - Kaihuan Zhang
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Peng Chen
- Centre for Biomimetic Sensor Science; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Drive Singapore 637553 Singapore
| | - Xiaofeng Sui
- Key Laboratory of Science and Technology of Eco-Textile (Ministry of Education); Donghua University; Shanghai 201620 P. R. China
| | - Mark A. Hempenius
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Drive Singapore 637553 Singapore
| | - G. Julius Vancso
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|