1
|
Zhang W, Ushimaru R, Kanaida M, Abe I. Pyrroline Ring Assembly via N-Prenylation and Oxidative Carbocyclization during Biosynthesis of Aeruginosin Derivatives. J Am Chem Soc 2025; 147:10853-10858. [PMID: 40080531 DOI: 10.1021/jacs.5c01994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Aeruginosins are linear peptide natural products isolated from cyanobacteria and contain various arginine derivatives at their termini. 1-Amino-2-(N-amidino-3-Δ3-pyrrolinyl)ethane (Aeap) is a structurally unique arginine derivative, as it has an unusual pyrroline ring with two additional carbon atoms of unknown biosynthetic origin. Here, we demonstrate that Aer3, a member of a newly identified subfamily of prenyltransferases, catalyzes selective isopentenylation of the internal N atom of agmatine. Rieske oxygenase AerC then catalyzes both carbocyclization and C-C bond cleavage to construct the pyrroline ring in Aeap. This pyrroline ring formation in Aeap biosynthesis, involving two novel enzymes, represents a unique route for heterocycle formation in nature.
Collapse
Affiliation(s)
- Wenhe Zhang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe, Shenyang 110016, China
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
- Institute for Advanced Study and Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- FOREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Masahiro Kanaida
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Adamczuk M, Bownik A, Pawlik-Skowrońska B. Single and mixture effect of cyanobacterial metabolites, cylindrospermopsin, anabaenopeptin-A, microginin-FR1 and aeruginosin 98-A, on behaviour, food uptake, oxygen consumption and muscular F-actin degradation of Thamnocephalus platyurus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 115:104677. [PMID: 40122194 DOI: 10.1016/j.etap.2025.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
This study showed that single cyanobacterial metabolites had various effects on the tested parameters. Among them, only cylindrospermopsin was lethal to the animals; cylindrospermopsin was also the most potent inhibitor of the remaining parameters. Cylindrospermopsin in binary mixtures with the other tested metabolites displayed antagonistic or additive effects for survival, movement, food uptake and oxygen consumption and synergistic effect for F-actin degradation. Aeruginosin 98 A at lower concentrations displayed an enhanced effect on movement, food uptake and oxygen consumption while inhibiting these parameters at higher concentrations. Anabaenopeptin-A at higher concentrations (> 250 µg/L) had a significant inhibitory effect on T. platyurus. Microginin-FR1 had the lowest impact on T. platyurus, but produced mainly synergistic effects in a binary mixture with aeruginosin 98 A and mostly antagonistic or additive effects in a mixture with anabaenopeptin-A. Quaternary mixtures of metabolites had mostly antagonistic effects on the examined parameters.
Collapse
Affiliation(s)
- Małgorzata Adamczuk
- Department of Hydrobiology, University of Life Sciences, B. Dobrzańskiego 37, Lublin 20-262, Poland.
| | - Adam Bownik
- Department of Hydrobiology, University of Life Sciences, B. Dobrzańskiego 37, Lublin 20-262, Poland
| | | |
Collapse
|
3
|
Overlingė D, Cegłowska M, Konkel R, Mazur-Marzec H. Aeruginosin 525 (AER525) from Cyanobacterium Aphanizomenon Sp. (KUCC C2): A New Serine Proteases Inhibitor. Mar Drugs 2024; 22:506. [PMID: 39590786 PMCID: PMC11595689 DOI: 10.3390/md22110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Aeruginosins (AERs) are one of the most common classes of cyanobacterial peptides synthesised through a hybrid non-ribosomal peptide synthase/polyketide synthase pathway. They have been found in Microcystis, Nodularia spumigena, Oscillatoria/Plantothrix, and Nostoc. The presence of AER in Aphanizomenon isolated from the Curonian Lagoon was reported for the first time in our previous work. Here, the structure of aeruginosin 525 (AER525), isolated from Aphanizomenon sp. KUCC C2, was characterised based on high-resolution mass spectrometry. This new AER variant shows potent activity against thrombin. It also inhibits trypsin and carboxypeptidase A but has no effect on elastase and chymotrypsin. In terms of the N-terminal residue and biological activity, AER525 displaces some similarity to dysinosins, which belongs to the most potent inhibitors of thrombin among AERs. The findings underline the potential of AER525 as a new anticoagulant agent.
Collapse
Affiliation(s)
- Donata Overlingė
- Marine Research Institute, Klaipėda University, Universiteto av. 17, LT-92294 Klaipėda, Lithuania
| | - Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81712 Sopot, Poland;
| | - Robert Konkel
- Department of Marine Biology and Biotechnology, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland; (R.K.); (H.M.-M.)
| | - Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland; (R.K.); (H.M.-M.)
| |
Collapse
|
4
|
Overlingė D, Toruńska-Sitarz A, Cegłowska M, Szubert K, Mazur-Marzec H. Phylogenetic and molecular characteristics of two Aphanizomenon strains from the Curonian Lagoon, Southeastern Baltic Sea and their biological activities. Sci Rep 2024; 14:24686. [PMID: 39433845 PMCID: PMC11493949 DOI: 10.1038/s41598-024-76064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Polyphasic approach has become a generally accepted method for the classification of cyanobacteria. In this study, we present a detailed characterisation of two strains, KUCC C1 and KUCC C2, isolated from the Curonian Lagoon and classified to the Aphanizomenon genus. Despite phylogenetic similarity, the strains differ with respect to morphology, ultrastructure characteristics, and the metabolite profile. In the KUCC C1 extract, three unknown peptides and eight anabaenopeptins were detected, while KUCC C2 produced one unknown peptide and one aeruginosin. In both strains, a total of eleven pigments were detected. The production of myxoxantophyll, chlorophyll-a, chlorophylide-a, and zeaxanthin was higher in KUCC C2 than in KUCC C1. Extracts from both strains of Aphanizomenon also had different effects in antibacterial, anticancer and enzyme inhibition assays. Comprehensive analyses of Aphanizomenon strains performed in this study showed significant diversity between the isolates from the same bloom sample. These differences should be considered when exploring the ecological significance and biotechnological potential of a given population.
Collapse
Affiliation(s)
- Donata Overlingė
- Marine Research Institute, Klaipėda University, Universiteto av. 17, LT-92294, Klaipeda, Lithuania.
| | - Anna Toruńska-Sitarz
- Departament of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Marta Cegłowska
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
| | - Karolina Szubert
- Departament of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Hanna Mazur-Marzec
- Departament of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| |
Collapse
|
5
|
Médice RV, Arruda RS, Yoon J, Borges RM, Noyma NP, Lürling M, Crnkovic CM, Marinho MM, Pinto E. Unlocking Biological Activity and Metabolomics Insights: Primary Screening of Cyanobacterial Biomass from a Tropical Reservoir. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2222-2231. [PMID: 39110011 DOI: 10.1002/etc.5962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/20/2024] [Accepted: 07/02/2024] [Indexed: 09/25/2024]
Abstract
Cyanobacterial harmful algal blooms can pose risks to ecosystems and human health worldwide due to their capacity to produce natural toxins. The potential dangers associated with numerous metabolites produced by cyanobacteria remain unknown. Only select classes of cyanopeptides have been extensively studied with the aim of yielding substantial evidence regarding their toxicity, resulting in their inclusion in risk management and water quality regulations. Information about exposure concentrations, co-occurrence, and toxic impacts of several cyanopeptides remains largely unexplored. We used liquid chromatography-mass spectrometry (LC-MS)-based metabolomic methods associated with chemometric tools (NP Analyst and Data Fusion-based Discovery), as well as an acute toxicity essay, in an innovative approach to evaluate the association of spectral signatures and biological activity from natural cyanobacterial biomass collected in a eutrophic reservoir in southeastern Brazil. Four classes of cyanopeptides were revealed through metabolomics: microcystins, microginins, aeruginosins, and cyanopeptolins. The bioinformatics tools showed high bioactivity correlation scores for compounds of the cyanopeptolin class (0.54), in addition to microcystins (0.54-0.58). These results emphasize the pressing need for a comprehensive evaluation of the (eco)toxicological risks associated with different cyanopeptides, considering their potential for exposure. Our study also demonstrated that the combined use of LC-MS/MS-based metabolomics and chemometric techniques for ecotoxicological research can offer a time-efficient strategy for mapping compounds with potential toxicological risk. Environ Toxicol Chem 2024;43:2222-2231. © 2024 SETAC.
Collapse
Affiliation(s)
- Rhuana Valdetário Médice
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renan Silva Arruda
- Department of Plant Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Jaewon Yoon
- Department of Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo Moreira Borges
- Walter Mors Natural Product Research Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Pessoa Noyma
- Department of Plant Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Miquel Lürling
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| | - Camila Manoel Crnkovic
- Department of Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo Manzi Marinho
- Department of Plant Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Ernani Pinto
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
6
|
Hagar M, Andersen RJ, Ryan KS. Prephenate decarboxylase: An unexplored branchpoint to unusual natural products. Cell Chem Biol 2024; 31:1610-1626. [PMID: 39059391 DOI: 10.1016/j.chembiol.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Prephenate decarboxylases are a small family of enzymes which initiate a specialized divergence from the shikimate pathway, where prephenate (2) is decarboxylated without aromatization. In addition to effecting a challenging chemical transformation, prephenate decarboxylases have been implicated in the production of rare specialized metabolites, sometimes directly constructing bioactive warheads. Many of the biosynthetic steps to natural products derived from prephenate decarboxylases remain elusive. Here, we review prephenate decarboxylase research thus far and highlight natural products that may be derived from biosynthetic pathways involving prephenate decarboxylases. We also highlight commonly encountered challenges in the structure elucidation of these natural products. Prephenate decarboxylases are a gateway into understudied biosynthetic pathways which present a high potential for the discovery of novel and bioactive natural products, as well as new biosynthetic enzymes.
Collapse
Affiliation(s)
- Mostafa Hagar
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Raymond J Andersen
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada; Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine S Ryan
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
7
|
Weisthal Algor S, Sukenik A, Carmeli S. Sulfated Aeruginosins from Lake Kinneret: Microcystis Bloom, Isolation, Structure Elucidation, and Biological Activity. Mar Drugs 2024; 22:389. [PMID: 39330270 PMCID: PMC11433283 DOI: 10.3390/md22090389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Aeruginosins are common metabolites of cyanobacteria. In the course of re-isolation of the known aeruginosins KT608A and KT608B for bioassay studies, we isolated three new sulfated aeruginosins, named aeruginosins KT688 (1), KT718 (2), and KT575 (3), from the extract of a Microcystis cell mass collected during the 2016 spring bloom event in Lake Kinneret, Israel. The structures of the new compounds were established on the basis of analyses of the 1D and 2D NMR, as well as HRESIMS data. Marfey's method, coupled with HR ESI LCMS and chiral HPLC, was used to establish the absolute configuration of the amino acid and hydroxyphenyl lactic acid residues, respectively. Compounds 1-3 were tested for inhibition of the serine protease trypsin, and compounds 1 and 2 were found to exhibit IC50 values of 2.38 and 1.43 µM, respectively.
Collapse
Affiliation(s)
- Shira Weisthal Algor
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Assaf Sukenik
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic & Limnological Research Institute, Migdal 49500, Israel;
| | - Shmuel Carmeli
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel;
| |
Collapse
|
8
|
Yancey CE, Hart L, Hefferan S, Mohamed OG, Newmister SA, Tripathi A, Sherman DH, Dick GJ. Metabologenomics reveals strain-level genetic and chemical diversity of Microcystis secondary metabolism. mSystems 2024; 9:e0033424. [PMID: 38916306 PMCID: PMC11264947 DOI: 10.1128/msystems.00334-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/22/2024] [Indexed: 06/26/2024] Open
Abstract
Microcystis spp. are renowned for producing the hepatotoxin microcystin in freshwater cyanobacterial harmful algal blooms around the world, threatening drinking water supplies and public and environmental health. However, Microcystis genomes also harbor numerous biosynthetic gene clusters (BGCs) encoding the biosynthesis of other secondary metabolites, including many with toxic properties. Most of these BGCs are uncharacterized and currently lack links to biosynthesis products. However, recent field studies show that many of these BGCs are abundant and transcriptionally active in natural communities, suggesting potentially important yet unknown roles in bloom ecology and water quality. Here, we analyzed 21 xenic Microcystis cultures isolated from western Lake Erie to investigate the diversity of the biosynthetic potential of this genus. Through metabologenomic and in silico approaches, we show that these Microcystis strains contain variable BGCs, previously observed in natural populations, and encode distinct metabolomes across cultures. Additionally, we find that the majority of metabolites and gene clusters are uncharacterized, highlighting our limited understanding of the chemical repertoire of Microcystis spp. Due to the complex metabolomes observed in culture, which contain a wealth of diverse congeners as well as unknown metabolites, these results underscore the need to deeply explore and identify secondary metabolites produced by Microcystis beyond microcystins to assess their impacts on human and environmental health.IMPORTANCEThe genus Microcystis forms dense cyanobacterial harmful algal blooms (cyanoHABs) and can produce the toxin microcystin, which has been responsible for drinking water crises around the world. While microcystins are of great concern, Microcystis also produces an abundance of other secondary metabolites that may be of interest due to their potential for toxicity, ecological importance, or pharmaceutical applications. In this study, we combine genomic and metabolomic approaches to study the genes responsible for the biosynthesis of secondary metabolites as well as the chemical diversity of produced metabolites in Microcystis strains from the Western Lake Erie Culture Collection. This unique collection comprises Microcystis strains that were directly isolated from western Lake Erie, which experiences substantial cyanoHAB events annually and has had negative impacts on drinking water, tourism, and industry.
Collapse
Affiliation(s)
- Colleen E. Yancey
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Lauren Hart
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sierra Hefferan
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
- Departments of Medicinal Chemistry, Chemistry, Microbiology, and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Osama G. Mohamed
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sean A. Newmister
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashootosh Tripathi
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Departments of Medicinal Chemistry, Chemistry, Microbiology, and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
- Cooperative Institute for Great Lakes Research (CIGLR), School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Hanessian S. My 50-Plus Years of Academic Research Collaborations with Industry. A Retrospective. J Org Chem 2024; 89:9147-9186. [PMID: 38865159 DOI: 10.1021/acs.joc.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A retrospective is presented highlighting the synthesis of selected "first-in-kind" natural products, their synthetic analogues, structure elucidations, and rationally designed bioactive synthetic compounds that were accomplished because of collaborations with past and present pharmaceutical and agrochemical companies. Medicinal chemistry projects involving structure-based design exploiting cocrystal structures of small molecules with biologically relevant enzymes, receptors, and bacterial ribosomes with synthetic small molecules leading to marketed products, clinical candidates, and novel drug prototypes were realized in collaboration. Personal reflections, historical insights, behind the scenes stories from various long-term projects are shared in this retrospective article.
Collapse
Affiliation(s)
- Stephen Hanessian
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
- Department of Pharmaceutical Sciences, University of California, Irvine, California 91266, United States
| |
Collapse
|
10
|
Yang HR, Cheng X, Chang X, Wang ZF, Dong XQ, Wang CJ. Copper/ruthenium relay catalysis enables 1,6-double chiral inductions with stereodivergence. Chem Sci 2024; 15:10135-10145. [PMID: 38966363 PMCID: PMC11220595 DOI: 10.1039/d4sc01804d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/11/2024] [Indexed: 07/06/2024] Open
Abstract
The dual catalysis strategy is an efficient and powerful tool to fulfill the stereodivergent synthesis of stereoisomeric products from the same set of starting materials. Great attention has been given to the construction of chiral compounds with two contiguous stereocenters. However, the synthesis of two remote noncontiguous stereocenters is more challenging and is less developed, despite the high demand for synthetic tactics. We herein developed an unprecedented example of the stereodivergent preparation of synthetically useful and biologically important chiral ζ-hydroxy amino ester derivatives containing remote 1,6-noncontiguous stereocenters and a unique β,γ-unsaturation moiety. This cascade dehydrogenation/1,6-Michael addition/hydrogenation protocol between readily-available ketoimine esters and racemic branched dienyl carbinols was rationally realized with bimetallic copper/ruthenium relay catalysis. The key features of the process were atom economy, step economy, and redox-neutrality. All four stereoisomers of chiral ζ-hydroxy amino ester derivatives were easily achieved by the orthogonal permutations of a chiral copper catalyst and chiral ruthenium catalyst. Importantly, a much more challenging stereodivergent synthesis of all eight stereoisomers of chiral peptide products containing three remote stereocenters was accomplished with excellent results through the cooperation of two chiral catalyst pairs and substrate enantiomers.
Collapse
Affiliation(s)
- Hao-Ran Yang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xiang Cheng
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Zuo-Fei Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
11
|
Zhang J, Yang H, Sun Y, Yan B, Chen W, Fan D. The potential use of microalgae for nutrient supply and health enhancement in isolated and confined environments. Compr Rev Food Sci Food Saf 2024; 23:e13418. [PMID: 39073089 DOI: 10.1111/1541-4337.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Exploring isolated and confined environments (IACEs), such as deep-sea ecosystems, polar regions, and outer space, presents multiple challenges. Among these challenges, ensuring sustainable food supply over long timescales and maintaining the health of personnel are fundamental issues that must be addressed. Microalgae, as a novel food resource, possess favorable physiological and nutritional characteristics, demonstrating potential as nutritional support in IACEs. In this review, we discuss the potential of microalgae as a nutritional supplement in IACEs from four perspectives. The first section provides a theoretical foundation by reviewing the environmental adaptability and previous studies in IACEs. Subsequently, the typical nutritional components of microalgae and their bioavailability are comprehensively elucidated. And then focus on the impact of these ingredients on health enhancement and elucidate its mechanisms in IACEs. Combining the outstanding stress resistance, rich active ingredients, the potential to alleviate osteoporosis, regulate metabolism, and promote mental well-being, microalgae demonstrate significant value for food applications. Furthermore, the development of novel microalgae biomatrices enhances health safeguards. Nevertheless, the widespread application of microalgae in IACEs still requires extensive studies and more fundamental data, necessitating further exploration into improving bioavailability, high biomass cultivation methods, and enhancing palatability.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Huayu Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yuying Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Nagahawatta DP, Liyanage NM, Jayawardena TU, Jayawardhana HHACK, Jeong SH, Kwon HJ, Jeon YJ. Role of marine natural products in the development of antiviral agents against SARS-CoV-2: potential and prospects. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:280-297. [PMID: 38827130 PMCID: PMC11136918 DOI: 10.1007/s42995-023-00215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/17/2023] [Indexed: 06/04/2024]
Abstract
A novel coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has surfaced and caused global concern owing to its ferocity. SARS-CoV-2 is the causative agent of coronavirus disease 2019; however, it was only discovered at the end of the year and was considered a pandemic by the World Health Organization. Therefore, the development of novel potent inhibitors against SARS-CoV-2 and future outbreaks is urgently required. Numerous naturally occurring bioactive substances have been studied in the clinical setting for diverse disorders. The intricate infection and replication mechanism of SARS-CoV-2 offers diverse therapeutic drug targets for developing antiviral medicines by employing natural products that are safer than synthetic compounds. Marine natural products (MNPs) have received increased attention in the development of novel drugs owing to their high diversity and availability. Therefore, this review article investigates the infection and replication mechanisms, including the function of the SARS-CoV-2 genome and structure. Furthermore, we highlighted anti-SARS-CoV-2 therapeutic intervention efforts utilizing MNPs and predicted SARS-CoV-2 inhibitor design. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00215-9.
Collapse
Affiliation(s)
- D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
| | - N. M. Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
| | - Thilina U. Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3 Canada
| | | | - Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
- Marine Science Institute, Jeju National University, Jeju, 63333 Republic of Korea
| |
Collapse
|
13
|
Abstract
Covering: 1997 to 2023The shikimate pathway is the metabolic process responsible for the biosynthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. Seven metabolic steps convert phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P) into shikimate and ultimately chorismate, which serves as the branch point for dedicated aromatic amino acid biosynthesis. Bacteria, fungi, algae, and plants (yet not animals) biosynthesize chorismate and exploit its intermediates in their specialized metabolism. This review highlights the metabolic diversity derived from intermediates of the shikimate pathway along the seven steps from PEP and E4P to chorismate, as well as additional sections on compounds derived from prephenate, anthranilate and the synonymous aminoshikimate pathway. We discuss the genomic basis and biochemical support leading to shikimate-derived antibiotics, lipids, pigments, cofactors, and other metabolites across the tree of life.
Collapse
Affiliation(s)
- Vikram V Shende
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Katherine D Bauman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
14
|
Bownik A, Pawlik-Skowrońska B, Wlodkowic D, Mieczan T. Interactive effects of cyanobacterial metabolites aeruginosin-98B, anabaenopeptin-B and cylindrospermopsin on physiological parameters and novel in vivo fluorescent indicators in Chironomus aprilinus larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169846. [PMID: 38185144 DOI: 10.1016/j.scitotenv.2023.169846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
We aimed to determine the effects of single cyanobacterial metabolites aeruginosin-B (AER-B), anabaenopeptin-B (ANA-B), cylindrospermopsin (CYL), their binary and ternary mixtures on biomarkers of Chironomus aprilinus larvae: oxygen consumption, fat body structure and two novel fluorescent indicators: imaging of nuclei in cells of body integument, and the catecholamine level. The obtained results showed that oxygen consumption was inhibited by single tested cyanobacterial metabolites except for ANA-B at the lowest concentration (250 μg/L). Although the mixtures of the metabolites inhibited oxygen consumption with antagonistic interactions between the components stimulation was noted in the group exposed to the lowest concentrations of AER-B + CYL (125 μg/L + 125 μg/L, respectively) and the ternary mixture of AER-B + ANA-B + CYL (83.3 μg/L + 83.3 μg/L + 83.3 μg/L, respectively). In vivo fluorescent staining with Hoechst 34580 showed that single AER-B had lower cytotoxic potential on body integument cells than ANA-B and CYL and most binary mixtures except for AER-B + CYL induced synergistic toxicity. Catecholamine level was decreased in animals exposed to single metabolites, their binary and ternary mixtures; however, the interactions between the components in the ternary mixture were antagonistic. Fat body was found to be disrupted in the larvae exposed to single metabolites and their combinations. Antagonistic toxic interactions between the oligopeptide components were found in most binary and the ternary mixtures; however, synergistic effect was noted in the binary mixture of AER-B + CYL. The results suggest that in natural conditions Chironomus larvae and possibly other benthic invertebrates may be affected by cyanobacterial metabolites, however various components and in mixtures and their concentrations may determine varied physiological effects and diverse interactions.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland.
| | - Barbara Pawlik-Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Plenty Road, P.O. Box 71, Bundoora, VIC 3083, Australia
| | - Tomasz Mieczan
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland
| |
Collapse
|
15
|
Korotaev VY, Kutyashev IB, Sannikov MS, Mishchenko MA, Zavyalova LS, Kochnev IA, Barkov AY, Zimnitskiy NS, Sosnovskikh VY. Tunable Zinc-Mediated Reductive Cyclization of Diastereomeric 3-Nitro-4-phenacyl-2-(trihalomethyl)chromanes to Fused Pyrroline N-Oxides, Pyrrolines, and Pyrrolidines. J Org Chem 2024; 89:1567-1590. [PMID: 38243900 DOI: 10.1021/acs.joc.3c02191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Reductive cyclization of trans,trans- and trans,cis-isomers of the 2-CF3-substituted 3-nitro-4-phenacylchromanes with Zn-based reductive systems, depending on the conditions, affords 4-CF3-substituted 1,3a,4,9b-tetrahydrochromeno[3,4-b]pyrrole 3-oxides, 1,3a,4,9b-tetrahydrochromeno[3,4-b]pyrroles, or 1,2,3,3a,4,9b-hexahydrochromeno[3,4-b]pyrroles in good yields without changing the relative configuration of the pyran ring. A similar process involving the 2-CCl3-substituted 3-nitro-4-phenacylchromanes is accompanied by reductive dehalogenation to form the corresponding 4-dichloromethyl-substituted fused chromanes along with the 3-(2-hydroxyaryl)-2-(2,2-dichlorovinyl)-5-phenyl-2H-pyrroline 1-oxides as pyran ring opening products. The structure and relative configuration of the obtained products was reliably confirmed by X-ray diffraction analysis and 2D NMR spectroscopy.
Collapse
Affiliation(s)
- Vladislav Y Korotaev
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| | - Igor B Kutyashev
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| | - Maxim S Sannikov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| | - Maria A Mishchenko
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| | - Lyudmila S Zavyalova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| | - Ivan A Kochnev
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| | - Alexey Y Barkov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| | - Nikolay S Zimnitskiy
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| | - Vyacheslav Y Sosnovskikh
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| |
Collapse
|
16
|
Entfellner E, Baumann KBL, Edwards C, Kurmayer R. High Structural Diversity of Aeruginosins in Bloom-Forming Cyanobacteria of the Genus Planktothrix as a Consequence of Multiple Recombination Events. Mar Drugs 2023; 21:638. [PMID: 38132959 PMCID: PMC10744761 DOI: 10.3390/md21120638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Many compounds produced by cyanobacteria act as serine protease inhibitors, such as the tetrapeptides aeruginosins (Aer), which are found widely distributed. The structural diversity of Aer is intriguingly high. However, the genetic basis of this remains elusive. In this study, we explored the genetic basis of Aer synthesis among the filamentous cyanobacteria Planktothrix spp. In total, 124 strains, isolated from diverse freshwater waterbodies, have been compared regarding variability within Aer biosynthesis genes and the consequences for structural diversity. The high structural variability could be explained by various recombination processes affecting Aer synthesis, above all, the acquisition of accessory enzymes involved in post synthesis modification of the Aer peptide (e.g., halogenases, glycosyltransferases, sulfotransferases) as well as a large-range recombination of Aer biosynthesis genes, probably transferred from the bloom-forming cyanobacterium Microcystis. The Aer structural composition differed between evolutionary Planktothrix lineages, adapted to either shallow or deep waterbodies of the temperate climatic zone. Thus, for the first time among bloom-forming cyanobacteria, chemical diversification of a peptide family related to eco-evolutionary diversification has been described. It is concluded that various Aer peptides resulting from the recombination event act in chemical defense, possibly as a replacement for microcystins.
Collapse
Affiliation(s)
- Elisabeth Entfellner
- Research Department for Limnology, Universität Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria; (E.E.); (K.B.L.B.)
| | - Kathrin B. L. Baumann
- Research Department for Limnology, Universität Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria; (E.E.); (K.B.L.B.)
| | - Christine Edwards
- CyanoSol Research Group, Pharmacy & Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK;
| | - Rainer Kurmayer
- Research Department for Limnology, Universität Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria; (E.E.); (K.B.L.B.)
| |
Collapse
|
17
|
Pawlik-Skowrońska B, Bownik A, Pogorzelec M, Kulczycka J, Sumińska A. First report on adverse effects of cyanobacterial anabaenopeptins, aeruginosins, microginin and their mixtures with microcystin and cylindrospermopsin on aquatic plant physiology: An experimental approach. Toxicon 2023; 236:107333. [PMID: 37951248 DOI: 10.1016/j.toxicon.2023.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/12/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Cyanobacteria produce a variety of oligopeptides beyond microcystins and other metabolites. Their biological activities are not fully recognized especially to aquatic plants. Acute toxicity tests on Spirodela polyrhiza and Lemna minor exposed to a range of concentrations of cyanobacterial metabolites: anabaenopeptins (ANA-A, ANA-B), aeruginosins 98 (Aer-A, Aer-B), microginin-FR1 (MG-FR1), microcystin-LR (MC-LR) and cylindrospermopsin (Cyl) were carried out to compare their influence on plant physiology. Effects of their binary mixtures were determined by isobole approach and calculation of the combination index (CI) that indicates a type of metabolites' interaction. Cyclic oligopeptides microcystin-LR and anabaenopeptin-A revealed the strongest inhibition of S. polyrhiza growth while other metabolites appeared less toxic. Oxygen evolution was inhibited by Cyl, MC-LR, ANA-A, ANA-B, while both variants of aeruginosins and MG-FR1 did not affect this process. Photosynthetic pigments' contents decreased in S. polyrhiza exposed to ANA-A and Cyl, while MC-LR and Aer-A caused their slight increase. 96 h-EC50 values showed that the growth of L. minor was more sensitive to MC-LR, ANA-A, MG-FR1 and Cyl than the growth of S. polyrhiza. In S. polyrhiza synergistic effects of all the binary mixtures of peptides with MC-LR on oxygen evolution were observed, while antagonistic one on the growth of S. polyrhiza exposed to the mixtures with aeruginosins and ANA-A. The mixtures of MC-LR and MG-FR1 with cylindrospermopsin revealed synergistic effects on the growth but antagonistic one to the O2 evolution. Quadruple mixtures (ANA-A + MC-LR + MG-FR1+Cyl) did not reveal any inhibitive effect on the plant growth and very slight on the oxygen evolution, irrespectively of their total concentrations. Various effects caused by ANA-A and ANA-B suggest the importance of molecule structures of metabolites for toxicity. Composition of the mixtures of cyanobacterial metabolites was essential for the observed effects.
Collapse
Affiliation(s)
- Barbara Pawlik-Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences in Lublin, Dobrzanskiego 37, 20-262, Lublin, Poland.
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences in Lublin, Dobrzanskiego 37, 20-262, Lublin, Poland
| | - Magdalena Pogorzelec
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences in Lublin, Dobrzanskiego 37, 20-262, Lublin, Poland
| | - Justyna Kulczycka
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences in Lublin, Dobrzanskiego 37, 20-262, Lublin, Poland
| | - Aleksandra Sumińska
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences in Lublin, Dobrzanskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
18
|
D'Agostino PM. Highlights of biosynthetic enzymes and natural products from symbiotic cyanobacteria. Nat Prod Rep 2023; 40:1701-1717. [PMID: 37233731 DOI: 10.1039/d3np00011g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Covering: up to 2023Cyanobacteria have long been known for their intriguing repertoire of natural product scaffolds, which are often distinct from other phyla. Cyanobacteria are ecologically significant organisms that form a myriad of different symbioses including with sponges and ascidians in the marine environment or with plants and fungi, in the form of lichens, in terrestrial environments. Whilst there have been several high-profile discoveries of symbiotic cyanobacterial natural products, genomic data is scarce and discovery efforts have remained limited. However, the rise of (meta-)genomic sequencing has improved these efforts, emphasized by a steep increase in publications in recent years. This highlight focuses on selected examples of symbiotic cyanobacterial-derived natural products and their biosyntheses to link chemistry with corresponding biosynthetic logic. Further highlighted are remaining gaps in knowledge for the formation of characteristic structural motifs. It is anticipated that the continued rise of (meta-)genomic next-generation sequencing of symbiontic cyanobacterial systems will lead to many exciting discoveries in the future.
Collapse
Affiliation(s)
- Paul M D'Agostino
- Technical University of Dresden, Chair of Technical Biochemistry, Bergstraβe 66, 01069 Dresden, Germany.
| |
Collapse
|
19
|
Bownik A, Adamczuk M, Pawlik-Skowrońska B, Mieczan T. Cyanobacterial metabolites: aeruginosin 98A, microginin-FR1, anabaenopeptin-A, cylindrospermopsin and their mixtures affect behavioral and physiological responses of Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104161. [PMID: 37245609 DOI: 10.1016/j.etap.2023.104161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
We determined the effects influence of cyanobacterial products metabolites: aeruginosin-A (AER-A), microginin-FR1 (MG-FR1), anabaenopeptin-A (ANA-A), cylindrospermopsin (CYL) and their binary and quadruple mixtures on swimming behavior, heart rate, thoracic limb activity, oxygen consumption and in vivo cell health of Daphnia magna. The study showed that CYL induced mortality of daphnids at the highest concentrations, however three oligopeptides had no lethal effect. All the tested Each single metabolites inhibited swimming speed. The mixtures AER+MG-FR1 and AER-A+ANA-A induced antagonistic and the quadruple mixture synergistic effects. Physiological endpoints were depressed by CYL, however they were simulated by the oligopeptides and their binary mixtures. The quadruple mixture inhibited the physiological parameters with antagonistic interactions between the components were antagonistic. Single CYL, MG-FR1 and ANA-A induced cytotoxicity with synergistic interactions and the metabolites in mixtures showed. The study suggests that swimming behavior and physiological parameters may be affected by single cyanobacterial oligopeptides, however their mixtures may induce different total effects.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Małgorzata Adamczuk
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Barbara Pawlik-Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Tomasz Mieczan
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
20
|
Bownik A, Adamczuk M, Skowrońska BP. Effects of cyanobacterial metabolites: Aeruginosin 98A, microginin-FR1, anabaenopeptin-A, cylindrospermopsin in binary and quadruple mixtures on the survival and oxidative stress biomarkers of Daphnia magna. Toxicon 2023; 229:107137. [PMID: 37121403 DOI: 10.1016/j.toxicon.2023.107137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/04/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
The aim of our study was to determine the effects of aeruginosin 98 A (ARE-A), microginin-FR1 (MG-FR1), anabaenopeptin-A (ANA-A) cylindrospermopsin (CYL) and their binary and quadruple mixtures on the survival and the levels of oxidative stress biomarkers in Daphnia magna: total glutathione (GSH), catalase (CAT), dismutase (SOD) and malondialdehyde (MDA). The biochemical indicators were measured with ELISA kits and the interactive effects were determined by isobole and polygonal analysis with Compusyn® computer software. The study revealed that oligopeptides did not decrease daphnid survival, only CYL inhibited this parameter, with synergistic effects when it was used as a component. The single metabolites at the two highest concentrations and all the binary and quadruple mixtures at all concentrations diminished GSH level, however both in the binary and in the quadruple mixtures most of the interactions between the metabolites were antagonistic. Nearly additive effects were found only in AER-A + CYL and MG-FR1+CYL. On the other hand, CAT activity was slightly increased in daphnids exposed to the binary mixtures with antagonistic interactions, however nearly addivive effects were found in animals exposed to the mixture of AER-A + ANA-A and synergistic in the quadruple mixture. SOD was elevated in daphnids exposed to single AER-A and MG-FR1, however it was diminished in the animals exposed to ANA-A and CYL. Binary mixtures in which CYL was present as a component decreased the level of this enzyme with nearly additive interactions in ANA-A + CYL. The quadruple mixture increased SOD level, with antagonistic interactions. Both single cyanobacterial metabolites, their binary and quadruple mixtures induced lipid peroxidation measured by MDA level and most of interactions in the binary mixtures were synergistic. The study suggested that antioxidative system of Daphnia magna responded to the tested metabolites and the real exposure to mixtures of these products may lead to various interactive effects with varied total toxicity.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| | - Małgorzata Adamczuk
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Barbara Pawlik Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
21
|
McDonald K, DesRochers N, Renaud JB, Sumarah MW, McMullin DR. Metabolomics Reveals Strain-Specific Cyanopeptide Profiles and Their Production Dynamics in Microcystis aeruginosa and M. flos-aquae. Toxins (Basel) 2023; 15:254. [PMID: 37104192 PMCID: PMC10147050 DOI: 10.3390/toxins15040254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Cyanobacterial blooms that release biologically active metabolites into the environment are increasing in frequency as a result of the degradation of freshwater ecosystems globally. The microcystins are one group of cyanopeptides that are extensively studied and included in water quality risk management frameworks. Common bloom-forming cyanobacteria produce incredibly diverse mixtures of other cyanopeptides; however, data on the abundance, distribution, and biological activities of non-microcystin cyanopeptides are limited. We used non-targeted LC-MS/MS metabolomics to study the cyanopeptide profiles of five Microcystis strains: four M. aeruginosa and one M. flos-aquae. Multivariate analysis and GNPS molecular networking demonstrated that each Microcystis strain produced a unique mixture of cyanopeptides. In total, 82 cyanopeptides from the cyanopeptolin (n = 23), microviridin (n = 18), microginin (n = 12), cyanobactin (n = 14), anabaenopeptin (n = 6), aeruginosin (n = 5), and microcystin (n = 4) classes were detected. Microcystin diversity was low compared with the other detected cyanopeptide classes. Based on surveys of the literature and spectral databases, most cyanopeptides represented new structures. To identify growth conditions yielding high amounts of multiple cyanopeptide groups, we next examined strain-specific cyanopeptide co-production dynamics for four of the studied Microcystis strains. When strains were cultivated in two common Microcystis growth media (BG-11 and MA), the qualitative cyanopeptides profiles remained unchanged throughout the growth cycle. For each of the cyanopeptide groups considered, the highest relative cyanopeptide amounts were observed in the mid-exponential growth phase. The outcomes of this study will guide the cultivation of strains producing common and abundant cyanopeptides contaminating freshwater ecosystems. The synchronous production of each cyanopeptide group by Microcystis highlights the need to make more cyanopeptide reference materials available to investigate their distributions and biological functions.
Collapse
Affiliation(s)
| | - Natasha DesRochers
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Justin B. Renaud
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Mark W. Sumarah
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - David R. McMullin
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
22
|
Liu J, Zhang M, Huang Z, Fang J, Wang Z, Zhou C, Qiu X. Diversity, Biosynthesis and Bioactivity of Aeruginosins, a Family of Cyanobacteria-Derived Nonribosomal Linear Tetrapeptides. Mar Drugs 2023; 21:md21040217. [PMID: 37103356 PMCID: PMC10143770 DOI: 10.3390/md21040217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Aeruginosins, a family of nonribosomal linear tetrapeptides discovered from cyanobacteria and sponges, exhibit in vitro inhibitory activity on various types of serine proteases. This family is characterized by the existence of the 2-carboxy-6-hydroxy-octahydroindole (Choi) moiety occupied at the central position of the tetrapeptide. Aeruginosins have attracted much attention due to their special structures and unique bioactivities. Although many studies on aeruginosins have been published, there has not yet been a comprehensive review that summarizes the diverse research ranging from biogenesis, structural characterization and biosynthesis to bioactivity. In this review, we provide an overview of the source, chemical structure as well as spectrum of bioactivities of aeruginosins. Furthermore, possible opportunities for future research and development of aeruginosins were discussed.
Collapse
Affiliation(s)
- Jiameng Liu
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Mengli Zhang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Zhenkuai Huang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Jiaqi Fang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Zhongyuan Wang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Chengxu Zhou
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
| | - Xiaoting Qiu
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China
- Institute of Marine Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, China
- Correspondence:
| |
Collapse
|
23
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
24
|
Schneider YKH, Liaimer A, Isaksson J, Wilhelmsen OSB, Andersen JH, Hansen KØ, Hansen EH. Four new suomilides isolated from the cyanobacterium Nostoc sp. KVJ20 and proposal of their biosynthetic origin. Front Microbiol 2023; 14:1130018. [PMID: 37152725 PMCID: PMC10157211 DOI: 10.3389/fmicb.2023.1130018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
The suomilide and the banyasides are highly modified and functionalized non-ribosomal peptides produced by cyanobacteria of the order Nostocales. These compound classes share several substructures, including a complex azabicyclononane core, which was previously assumed to be derived from the amino acid tyrosine. In our study we were able to isolate and determine the structures of four suomilides, named suomilide B - E (1-4). The compounds differ from the previously isolated suomilide A by the functionalization of the glycosyl group. Compounds 1-4 were assayed for anti-proliferative, anti-biofilm and anti-bacterial activities, but no significant activity was detected. The sequenced genome of the producer organism Nostoc sp. KVJ20 enabled us to propose a biosynthetic gene cluster for suomilides. Our findings indicated that the azabicyclononane core of the suomilides is derived from prephenate and is most likely incorporated by a proline specific non-ribosomal peptide synthetase-unit.
Collapse
Affiliation(s)
- Yannik K.-H. Schneider
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Yannik K.-H. Schneider,
| | - Anton Liaimer
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Johan Isaksson
- Department of Chemistry, Faculty of Natural Sciences, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Oda S. B. Wilhelmsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Jeanette H. Andersen
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Kine Ø. Hansen
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Espen H. Hansen
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
25
|
Zhang F, Ren BT, Zhou Y, Liu Y, Feng X. Enantioselective construction of cis-hydroindole scaffolds via an asymmetric inverse-electron-demand Diels-Alder reaction: application to the formal total synthesis of (+)-minovincine. Chem Sci 2022; 13:5562-5567. [PMID: 35694337 PMCID: PMC9116300 DOI: 10.1039/d2sc01458k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
cis-Hydroindole scaffolds widely exist in a large number of natural products, pharmaceuticals, and organocatalysts. Therefore, the development of efficient and enantioselective methods for the construction of cis-hydroindoles is of great interest and importance. Herein, a novel approach for the enantioselective synthesis of cis-hydroindole scaffolds has been realized through a chiral N,N'-dioxide/Mg(OTf)2 complex catalyzed asymmetric inverse-electron-demand Diels-Alder (IEDDA) reaction of 2-pyrones and cyclic enamines. A series of substituted cis-hydroindole derivatives bearing multiple contiguous stereocenters and functional groups were obtained in good to excellent yields and enantioselectivities (up to 99% yield, and 95% ee) under mild reaction conditions. Moreover, the enantioselective formal total synthesis of (+)-minovincine was concisely furnished with high efficiency and stereoselectivity to demonstrate the synthetic potential of this method.
Collapse
Affiliation(s)
- Fangqing Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- Shenzhen Bay Laboratory Shenzhen 518055 China
| | | | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yangbin Liu
- Shenzhen Bay Laboratory Shenzhen 518055 China
| | - Xiaoming Feng
- Shenzhen Bay Laboratory Shenzhen 518055 China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
26
|
Heinilä LMP, Jokela J, Ahmed MN, Wahlsten M, Kumar S, Hrouzek P, Permi P, Koistinen H, Fewer DP, Sivonen K. Discovery of varlaxins, new aeruginosin-type inhibitors of human trypsins. Org Biomol Chem 2022; 20:2681-2692. [PMID: 35293909 DOI: 10.1039/d1ob02454j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-molecular weight natural products display vast structural diversity and have played a key role in the development of novel therapeutics. Here we report the discovery of novel members of the aeruginosin family of natural products, which we named varlaxins. The chemical structures of varlaxins 1046A and 1022A were determined using a combination of mass spectrometry, analysis of one- and two-dimensional NMR spectra, and HPLC analysis of Marfey's derivatives. These analyses revealed that varlaxins 1046A and 1022A are composed of the following moieties: 2-O-methylglyceric acid 3-O-sulfate, isoleucine, 2-carboxy-6-hydroxyoctahydroindole (Choi), and a terminal arginine derivative. Varlaxins 1046A and 1022A differ in the cyclization of this arginine moiety. Interestingly, an unusual α-D-glucopyranose moiety derivatized with two 4-hydroxyphenylacetic acid residues was bound to Choi, a structure not previously reported for other members of the aeruginosin family. We sequenced the complete genome of Nostoc sp. UHCC 0870 and identified the putative 36 kb varlaxin biosynthetic gene cluster. Bioinformatics analysis confirmed that varlaxins belong to the aeruginosin family of natural products. Varlaxins 1046A and 1022A strongly inhibited the three human trypsin isoenzymes with IC50 of 0.62-3.6 nM and 97-230 nM, respectively, including a prometastatic trypsin-3, which is a therapeutically relevant target in several types of cancer. These results substantially broaden the genetic and chemical diversity of the aeruginosin family and provide evidence that the aeruginosin family is a source of strong inhibitors of human serine proteases.
Collapse
Affiliation(s)
- L M P Heinilä
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - J Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - M N Ahmed
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland. .,Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - M Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - S Kumar
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - P Hrouzek
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - P Permi
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland.,Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - H Koistinen
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - D P Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - K Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
27
|
Valadez-Cano C, Hawkes K, Calvaruso R, Reyes-Prieto A, Lawrence J. Amplicon-based and metagenomic approaches provide insights into toxigenic potential in understudied Atlantic Canadian lakes. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyanobacterial blooms and their toxigenic potential threaten freshwater resources worldwide. In Atlantic Canada, despite an increase of cyanobacterial blooms in the last decade, little is known about the toxigenic potential and the taxonomic affiliation of bloom-forming cyanobacteria. In this study, we employed polymerase chain reaction (PCR) and metagenomic approaches to assess the potential for cyanotoxin and other bioactive metabolite production in Harvey Lake (oligotrophic) and Washademoak Lake (mesotrophic) in New Brunswick, Canada, during summer and early fall months. The PCR survey detected the potential for microcystin (hepatotoxin) and anatoxin-a (neurotoxin) production in both lakes, despite a cyanobacterial bloom only being visible in Washademoak. Genus-specific PCR associated microcystin production potential with the presence of Microcystis in both lakes. The metagenomic strategy provided insight into temporal variations in the microbial communities of both lakes. It also permitted the recovery of a near-complete Microcystis aeruginosa genome with the genetic complement to produce microcystin and other bioactive metabolites such as piricyclamide, micropeptin/cyanopeptolin, and aeruginosin. Our approaches demonstrate the potential for production of a diverse complement of bioactive compounds and establish important baseline data for future studies of understudied lakes, which are frequently affected by cyanobacterial blooms.
Collapse
Affiliation(s)
- Cecilio Valadez-Cano
- Department of Biology, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada
| | - Kristen Hawkes
- Department of Biology, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada
| | - Rossella Calvaruso
- Department of Biology, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada
| | - Janice Lawrence
- Department of Biology, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
28
|
Ahmed MN, Wahlsten M, Jokela J, Nees M, Stenman UH, Alvarenga DO, Strandin T, Sivonen K, Poso A, Permi P, Metsä-Ketelä M, Koistinen H, Fewer DP. Potent Inhibitor of Human Trypsins from the Aeruginosin Family of Natural Products. ACS Chem Biol 2021; 16:2537-2546. [PMID: 34661384 PMCID: PMC8609519 DOI: 10.1021/acschembio.1c00611] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Serine proteases
regulate many physiological processes and play
a key role in a variety of cancers. Aeruginosins are a family of natural
products produced by cyanobacteria that exhibit pronounced structural
diversity and potent serine protease inhibition. Here, we sequenced
the complete genome of Nodularia sphaerocarpa UHCC 0038 and identified the 43.7 kb suomilide biosynthetic gene
cluster. Bioinformatic analysis demonstrated that suomilide belongs
to the aeruginosin family of natural products. We identified 103 complete
aeruginosin biosynthetic gene clusters from 12 cyanobacterial genera
and showed that they encode an unexpected chemical diversity. Surprisingly,
purified suomilide inhibited human trypsin-2 and -3, with IC50 values of 4.7 and 11.5 nM, respectively, while trypsin-1 was inhibited
with an IC50 of 104 nM. Molecular dynamics simulations
suggested that suomilide has a long residence time when bound to trypsins.
This was confirmed experimentally for trypsin-1 and -3 (residence
times of 1.5 and 57 min, respectively). Suomilide also inhibited the
invasion of aggressive and metastatic PC-3M prostate cancer cells
without affecting cell proliferation. The potent inhibition of trypsin-3,
together with a long residence time and the ability to inhibit prostate
cancer cell invasion, makes suomilide an attractive drug lead for
targeting cancers that overexpress trypsin-3. These results substantially
broaden the genetic and chemical diversity of the aeruginosin family
and suggest that aeruginosins may be a source of selective inhibitors
of human serine proteases.
Collapse
Affiliation(s)
- Muhammad N. Ahmed
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, P.O. Box 63, Helsinki FIN-00014, Finland
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
| | - Jouni Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University in Lublin, ul. Chodzki 1, Lublin 20-093, Poland
- Institute of Biomedicine and Western Cancer Centre FICAN West, University of Turku, Turku 20101, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, P.O. Box 63, Helsinki FIN-00014, Finland
| | - Danillo O. Alvarenga
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Tomas Strandin
- Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, Helsinki FIN-00014, Finland
| | - Kaarina Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, Kuopio FIN-70211, Finland
- Dept. of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, Tübingen DE-72076, Germany
| | - Perttu Permi
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box
35, Jyväskylä FI-40014, Finland
| | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, Turku FIN-20014, Finland
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, P.O. Box 63, Helsinki FIN-00014, Finland
| | - David P. Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, Helsinki FIN-00014, Finland
| |
Collapse
|
29
|
Majhi S. Applications of ultrasound in total synthesis of bioactive natural products: A promising green tool. ULTRASONICS SONOCHEMISTRY 2021; 77:105665. [PMID: 34298310 PMCID: PMC8322467 DOI: 10.1016/j.ultsonch.2021.105665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 05/04/2023]
Abstract
Total synthesisis frequently compared to climbing as it provides a suitable route to reach a high point from the floor, the complex natural product from simple and commercially available materials. The total synthesis has a privileged position of trust in confirming the hypothetical complex structures of natural products despite sophisticated analytical and spectroscopic instrumentation and techniques that are available presently. Moreover, total synthesis is also useful to prepare rare bioactive natural products in the laboratory as several bioactive secondary metabolites are obtained in small quantities from natural sources. The artistic aspect of the total synthesis of bioactive natural products continues to be praised today as it may provide environmental protection through the concept of green or clean chemistry. The use of ultrasound waves as a non-polluting source of energy is of great interest in the field of sustainable and pharmaceutical chemistry as it differs from conventional energy sources in terms of reaction rates, yields, selectivities, and purity of the products. The present review highlights the application of ultrasound as a green tool in the total synthesis of bioactive natural products as well as this article is also aimed to offer an overview of natural sources, structures, and biological activities of the promising natural products for the first time from 2005 to 2020 elegantly.
Collapse
Affiliation(s)
- Sasadhar Majhi
- Department of Chemistry (UG & PG), Triveni Devi Bhalotia College, Raniganj, West Bengal 713347, India.
| |
Collapse
|
30
|
Spatial and Temporal Diversity of Cyanometabolites in the Eutrophic Curonian Lagoon (SE Baltic Sea). WATER 2021. [DOI: 10.3390/w13131760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This work aims to determine the profiles of cyanopeptides and anatoxin synthetized by cyanobacteria in the Lithuanian part of the Curonian Lagoon (SE Baltic Sea) and to characterize their spatial and temporal patterns in this ecosystem. Cyanometabolites were analysed by a LC-MS/MS system and were coupled to a hybrid triple quadrupole/linear ion trap mass spectrometer. During the investigation period (2013–2017), 10 microcystins, nodularin, anatoxin-a, 16 anabaenopeptins, including 1 oscillamide, 12 aeruginosins, 1 aeruginosamide, 3 cyanopeptolins and 4 microginins were detected. The most frequently detected metabolites were found at all investigated sites. Demethylated microcystin variants and anabaenopeptins had the strongest relationship with Planktothrix agardhii, while non-demethylated microcystin variants and anatoxin had the strongest relationship with Microcystis spp. Low concentrations of some microcystins: [Asp3]MC-RR, MC-RR, MC-LR, as well as a few other cyanopeptides: AP-A and AEG-A were found during the cold period (December–March). Over the study period, Aphanizomenon, Planktothrix and Microcystis were the main dominant cyanobacteria species, while Planktothrix, Microcystis, and Dolichospermum were potentially producers of cyanopeptides and anatoxin detected in samples from the Curonian Lagoon.
Collapse
|
31
|
Zervou SK, Moschandreou K, Paraskevopoulou A, Christophoridis C, Grigoriadou E, Kaloudis T, Triantis TM, Tsiaoussi V, Hiskia A. Cyanobacterial Toxins and Peptides in Lake Vegoritis, Greece. Toxins (Basel) 2021; 13:toxins13060394. [PMID: 34205997 PMCID: PMC8230288 DOI: 10.3390/toxins13060394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/13/2023] Open
Abstract
Cyanotoxins (CTs) produced by cyanobacteria in surface freshwater are a major threat for public health and aquatic ecosystems. Cyanobacteria can also produce a wide variety of other understudied bioactive metabolites such as oligopeptides microginins (MGs), aeruginosins (AERs), aeruginosamides (AEGs) and anabaenopeptins (APs). This study reports on the co-occurrence of CTs and cyanopeptides (CPs) in Lake Vegoritis, Greece and presents their variant-specific profiles obtained during 3-years of monitoring (2018–2020). Fifteen CTs (cylindrospermopsin (CYN), anatoxin (ATX), nodularin (NOD), and 12 microcystins (MCs)) and ten CPs (3 APs, 4 MGs, 2 AERs and aeruginosamide (AEG A)) were targeted using an extended and validated LC-MS/MS protocol for the simultaneous determination of multi-class CTs and CPs. Results showed the presence of MCs (MC-LR, MC-RR, MC-YR, dmMC-LR, dmMC-RR, MC-HtyR, and MC-HilR) and CYN at concentrations of <1 μg/L, with MC-LR (79%) and CYN (71%) being the most frequently occurring. Anabaenopeptins B (AP B) and F (AP F) were detected in almost all samples and microginin T1 (MG T1) was the most abundant CP, reaching 47.0 μg/L. This is the first report of the co-occurrence of CTs and CPs in Lake Vegoritis, which is used for irrigation, fishing and recreational activities. The findings support the need for further investigations of the occurrence of CTs and the less studied cyanobacterial metabolites in lakes, to promote risk assessment with relevance to human exposure.
Collapse
Affiliation(s)
- Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
| | - Kimon Moschandreou
- The Goulandris Natural History Museum—Greek Biotope/Wetland Centre, 14th km Thessaloniki-Mihaniona, Thermi P.O. Box 60394, 57001 Thessaloniki, Greece; (K.M.); (V.T.)
| | - Aikaterina Paraskevopoulou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
| | - Christophoros Christophoridis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
| | - Elpida Grigoriadou
- Water Resources Management Agency of West Macedonia, 50100 Kozani, Decentralized Administration of Epirus—Western Macedonia, Greece;
| | - Triantafyllos Kaloudis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
| | - Theodoros M. Triantis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
| | - Vasiliki Tsiaoussi
- The Goulandris Natural History Museum—Greek Biotope/Wetland Centre, 14th km Thessaloniki-Mihaniona, Thermi P.O. Box 60394, 57001 Thessaloniki, Greece; (K.M.); (V.T.)
| | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str, 15310 Agia Paraskevi, Athens, Greece; (S.-K.Z.); (A.P.); (C.C.); (T.K.); (T.M.T.)
- Correspondence:
| |
Collapse
|
32
|
Hamoda AM, Fayed B, Ashmawy NS, El-Shorbagi ANA, Hamdy R, Soliman SSM. Marine Sponge is a Promising Natural Source of Anti-SARS-CoV-2 Scaffold. Front Pharmacol 2021; 12:666664. [PMID: 34079462 PMCID: PMC8165660 DOI: 10.3389/fphar.2021.666664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
The current pandemic caused by SARS-CoV2 and named COVID-19 urgent the need for novel lead antiviral drugs. Recently, United States Food and Drug Administration (FDA) approved the use of remdesivir as anti-SARS-CoV-2. Remdesivir is a natural product-inspired nucleoside analogue with significant broad-spectrum antiviral activity. Nucleosides analogues from marine sponge including spongouridine and spongothymidine have been used as lead for the evolutionary synthesis of various antiviral drugs such as vidarabine and cytarabine. Furthermore, the marine sponge is a rich source of compounds with unique activities. Marine sponge produces classes of compounds that can inhibit the viral cysteine protease (Mpro) such as esculetin and ilimaquinone and human serine protease (TMPRSS2) such as pseudotheonamide C and D and aeruginosin 98B. Additionally, sponge-derived compounds such as dihydrogracilin A and avarol showed immunomodulatory activity that can target the cytokines storm. Here, we reviewed the potential use of sponge-derived compounds as promising therapeutics against SARS-CoV-2. Despite the reported antiviral activity of isolated marine metabolites, structural modifications showed the importance in targeting and efficacy. On that basis, we are proposing a novel structure with bifunctional scaffolds and dual pharmacophores that can be superiorly employed in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alshaimaa M. Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo, Egypt
| | - Naglaa S. Ashmawy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Abdel-Nasser A. El-Shorbagi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
33
|
Mata G, Kalnmals CA. Total Synthesis in the Trost Laboratories: Selected Milestones From the Past Twenty Years. Isr J Chem 2021. [DOI: 10.1002/ijch.202100022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guillaume Mata
- Arcus Biosciences, Inc. 3928 Point Eden Way Hayward CA 94545 USA
| | - Christopher A. Kalnmals
- Crop Protection Discovery Corteva Agriscience 9330 Zionsville Road Indianapolis IN 46268 USA
| |
Collapse
|
34
|
Lage S, Mazur-Marzec H, Gorokhova E. Competitive interactions as a mechanism for chemical diversity maintenance in Nodularia spumigena. Sci Rep 2021; 11:8970. [PMID: 33903638 PMCID: PMC8076297 DOI: 10.1038/s41598-021-88361-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Nodularia spumigena is a bloom-forming diazotrophic cyanobacterium inhabiting brackish waters worldwide. This species produces non-ribosomal peptides (NRPs), including the hepatotoxin nodularin, often referred to as cyanotoxin. Several known classes of NRPs have various biological activities, although their modes of action are poorly understood. In the Baltic N. spumigena, there is a high NRP chemodiversity among strains, allowing their grouping in specific chemotypes and subgroups. Therefore, it is relevant to ask whether the NRP production is affected by intraspecific interactions between the co-existing strains. Using a novel approach that combines culture technique and liquid chromatography-tandem mass spectrometry for the NRP analysis, we examined N. spumigena strains under mono- and co-culture conditions. The test strains were selected to represent N. spumigena belonging to the same or different chemotype subgroups. In this setup, we observed physiological and metabolic responses in the test strains grown without cell contact. The changes in NRP levels to co-culture conditions were conserved within a chemotype subgroup but different between the subgroups. Our results suggest that intraspecific interactions may promote a chemical diversity in N. spumigena population, with higher NRP production compared to a single-strain population. Studying allelochemical signalling in this cyanobacterium is crucial for understanding toxicity mechanisms and plankton community interactions in the Baltic Sea and other aquatic systems experiencing regular blooms.
Collapse
Affiliation(s)
- Sandra Lage
- grid.10548.380000 0004 1936 9377Department of Environmental Science, Stockholm University, Stockholm, Sweden ,grid.8585.00000 0001 2370 4076Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Gdynia, Poland
| | - Hanna Mazur-Marzec
- grid.8585.00000 0001 2370 4076Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Gdynia, Poland
| | - Elena Gorokhova
- grid.10548.380000 0004 1936 9377Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
35
|
Marquès C, Diaba F, Roca J, Bonjoch J. Synthesis and reactivity of hydroindole enelactams leading to densely functionalized scaffolds. Org Biomol Chem 2021; 19:2284-2301. [PMID: 33625434 DOI: 10.1039/d1ob00060h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 5-endo-trig radical cyclization of N-benzyl-N-[(2-substituted)cycloalkenyl] trichloroacetamides (tetrasubstituted enamides) using Bu3SnH and AIBN is a reliable synthetic procedure giving access to 3a-methyl- and 3a-methoxycarbonyl enelactams. The substrate-controlled diastereoselective enolate alkylation of these enelactams resulted in the synthesis of a set of 3-substituted derivatives that upon reduction furnished polyfunctionalized cis-octahydroindoles. The latter building blocks, which embody three consecutive stereocenters at C-3, C-3a, and C-7a, were also synthesized through an initial reductive radical cyclization using (carbo-substituted)dichloroacetamides.
Collapse
Affiliation(s)
- Clàudia Marquès
- Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain
| | - Faïza Diaba
- Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain
| | - Jaume Roca
- Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain
| | - Josep Bonjoch
- Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain
| |
Collapse
|
36
|
Kalaitzakis D, Bosveli A, Sfakianaki K, Montagnon T, Vassilikogiannakis G. Multi-Photocatalyst Cascades: Merging Singlet Oxygen Photooxygenations with Photoredox Catalysis for the Synthesis of Alkaloid Frameworks. Angew Chem Int Ed Engl 2021; 60:4335-4341. [PMID: 33119205 DOI: 10.1002/anie.202012379] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Indexed: 12/13/2022]
Abstract
The development of photocascades that rapidly transform simple and readily accessible furan substrates into polycyclic alkaloid frameworks or erythrina natural products is described. Each of the sequences developed makes use of photocatalyzed energy transfer processes, which generate singlet oxygen, to set up the substrates for the second photocatalyzed reaction, wherein electron transfer generates carbon-centered radicals for the cyclizations that give the final complex frameworks. A chemical switch has been developed that can "switch off" one photocatalyst; thus, allowing a second photocatalyst to take over control of the sequence. As a corollary, this strategy represents the first time it has been possible to use multiple photocatalysts in photocascades, and, as such, it expands significantly the reactions that can be included in such cascades and the order in which they can be initiated.
Collapse
Affiliation(s)
- Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete, Greece
| | - Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete, Greece
| | - Kalliopi Sfakianaki
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete, Greece
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete, Greece
| | | |
Collapse
|
37
|
Kalaitzakis D, Bosveli A, Sfakianaki K, Montagnon T, Vassilikogiannakis G. Multi‐Photocatalyst Cascades: Merging Singlet Oxygen Photooxygenations with Photoredox Catalysis for the Synthesis of Alkaloid Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dimitris Kalaitzakis
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion Crete Greece
| | - Artemis Bosveli
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion Crete Greece
| | - Kalliopi Sfakianaki
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion Crete Greece
| | - Tamsyn Montagnon
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion Crete Greece
| | | |
Collapse
|
38
|
de la Cruz-Sánchez P, Pàmies O. Metal-π-allyl mediated asymmetric cycloaddition reactions. ADVANCES IN CATALYSIS 2021. [DOI: 10.1016/bs.acat.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Mohammadkhani L, Heravi MM. Applications of Transition-Metal-Catalyzed Asymmetric Allylic Substitution in Total Synthesis of Natural Products: An Update. CHEM REC 2020; 21:29-68. [PMID: 33206466 DOI: 10.1002/tcr.202000086] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/14/2023]
Abstract
Metal-catalyzed asymmetric allylic substitution (AAS) reaction is one of the most synthetically useful reactions catalyzed by metal complexes for the formation of carbon-carbon and carbon-heteroatom bonds. It comprises the substitution of allylic substrates with a wide range of nucleophiles or SN 2'-type allylic substitution, which results in the formation of the above-mentioned bonds with high levels of enantioselective induction. AAS reaction tolerates a broad range of functional groups, thus has been successfully applied in the asymmetric synthesis of a wide range of optically pure compounds. This reaction has been extensively used in the total synthesis of several complex molecules, especially natural products. In this review, we try to highlight the applications of metal (Pd, Ir, Mo, or Cu)-catalyzed AAS reaction in the total synthesis of the biologically active natural products, as a key step, updating the subject from 2003 till date.
Collapse
Affiliation(s)
- Leyla Mohammadkhani
- Department of Chemistry, School of Sciences, Alzahra University Vanak, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Sciences, Alzahra University Vanak, Tehran, Iran
| |
Collapse
|
40
|
Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID. The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 2020; 38:586-667. [PMID: 33021301 DOI: 10.1039/d0np00051e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
41
|
Baudoin O. Mehrfache katalytische C‐H‐Bindungsfunktionalisierungen in der Naturstoffsynthese. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001224] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Olivier Baudoin
- University of Basel Department of Chemistry St. Johanns-Ring 19 CH-4056 Basel Schweiz
| |
Collapse
|
42
|
Baudoin O. Multiple Catalytic C-H Bond Functionalization for Natural Product Synthesis. Angew Chem Int Ed Engl 2020; 59:17798-17809. [PMID: 32220111 DOI: 10.1002/anie.202001224] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 01/17/2023]
Abstract
In the past decade, multiple catalytic C-H bond functionalization has been successfully applied in natural product synthesis as a strategy to reduce the number of steps, increase overall yield and employ more easily available starting materials. This minireview presents selected examples making use of multiple C-H bond functionalization in conceptually different ways. First, linear syntheses are discussed, wherein multiple C-H functionalization is employed either from simple (hetero)cyclic cores, at a late stage, or to build polycyclic systems. Second, the use of multiple C-H functionalization as a strategic tool in convergent synthesis to access and couple complex fragments is discussed. Information on the scalability of the employed methods is provided when available. The presented cases indicate that multiple C-H functionalization strategies should play a great role to shape the future synthesis of functional complex molecules with improved sustainability.
Collapse
Affiliation(s)
- Olivier Baudoin
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| |
Collapse
|
43
|
Popin RV, Delbaje E, de Abreu VAC, Rigonato J, Dörr FA, Pinto E, Sivonen K, Fiore MF. Genomic and Metabolomic Analyses of Natural Products in Nodularia spumigena Isolated from a Shrimp Culture Pond. Toxins (Basel) 2020; 12:toxins12030141. [PMID: 32106513 PMCID: PMC7150779 DOI: 10.3390/toxins12030141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
The bloom-forming cyanobacterium Nodularia spumigena CENA596 encodes the biosynthetic gene clusters (BGCs) of the known natural products nodularins, spumigins, anabaenopeptins/namalides, aeruginosins, mycosporin-like amino acids, and scytonemin, along with the terpenoid geosmin. Targeted metabolomics confirmed the production of these metabolic compounds, except for the alkaloid scytonemin. Genome mining of N. spumigena CENA596 and its three closely related Nodularia strains—two planktonic strains from the Baltic Sea and one benthic strain from Japanese marine sediment—revealed that the number of BGCs in planktonic strains was higher than in benthic one. Geosmin—a volatile compound with unpleasant taste and odor—was unique to the Brazilian strain CENA596. Automatic annotation of the genomes using subsystems technology revealed a related number of coding sequences and functional roles. Orthologs from the Nodularia genomes are involved in the primary and secondary metabolisms. Phylogenomic analysis of N. spumigena CENA596 based on 120 conserved protein sequences positioned this strain close to the Baltic Nodularia. Phylogeny of the 16S rRNA genes separated the Brazilian CENA596 strain from those of the Baltic Sea, despite their high sequence identities (99% identity, 100% coverage). The comparative analysis among planktic Nodularia strains showed that their genomes were considerably similar despite their geographically distant origin.
Collapse
Affiliation(s)
- Rafael Vicentini Popin
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland;
| | - Endrews Delbaje
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
| | - Vinicius Augusto Carvalho de Abreu
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
- Institute of Exact and Natural Sciences, Federal University of Pará, Rua Augusto Corrêa 1, Belém 66075-10, Pará, Brazil
| | - Janaina Rigonato
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
| | - Felipe Augusto Dörr
- Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, São Paulo 05508-000, São Paulo, Brazil;
| | - Ernani Pinto
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
- Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, São Paulo 05508-000, São Paulo, Brazil;
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland;
| | - Marli Fatima Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
- Correspondence:
| |
Collapse
|
44
|
Zhang D, Lian M, Liu J, Tang S, Liu G, Ma C, Meng Q, Peng H, Zhu D. Preparation of O-Protected Cyanohydrins by Aerobic Oxidation of α-Substituted Malononitriles in the Presence of Diarylphosphine Oxides. Org Lett 2019; 21:2597-2601. [DOI: 10.1021/acs.orglett.9b00569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dapeng Zhang
- Department of Pharmaceutics, Harbin Medical University (Daqing), Daqing 163319, China
| | - Mingming Lian
- Department of Pharmaceutics, Harbin Medical University (Daqing), Daqing 163319, China
| | - Jia Liu
- Department of Pharmaceutics, Harbin Medical University (Daqing), Daqing 163319, China
| | - Shukun Tang
- Department of Pharmaceutics, Harbin Medical University (Daqing), Daqing 163319, China
| | - Guangzhi Liu
- Irradiation Technology Application Factory of Changshu, Changshu 215557, China
| | - Cunfei Ma
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology Department, Dalian University of Technology, Dalian 116024, China
| | - Qingwei Meng
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology Department, Dalian University of Technology, Dalian 116024, China
| | - Haisheng Peng
- Department of Pharmaceutics, Harbin Medical University (Daqing), Daqing 163319, China
| | - Daling Zhu
- Department of Pharmaceutics, Harbin Medical University (Daqing), Daqing 163319, China
| |
Collapse
|
45
|
Savadova K, Mazur-Marzec H, Karosienė J, Kasperovičienė J, Vitonytė I, Toruńska-Sitarz A, Koreivienė J. Effect of Increased Temperature on Native and Alien Nuisance Cyanobacteria from Temperate Lakes: An Experimental Approach. Toxins (Basel) 2018; 10:E445. [PMID: 30380769 PMCID: PMC6265895 DOI: 10.3390/toxins10110445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/27/2018] [Accepted: 10/28/2018] [Indexed: 11/17/2022] Open
Abstract
In response to global warming, an increase in cyanobacterial blooms is expected. In this work, the response of two native species of Planktothrix agardhii and Aphanizomenon gracile, as well as the response of two species alien to Europe-Chrysosporum bergii and Sphaerospermopsis aphanizomenoides-to gradual temperature increase was tested. The northernmost point of alien species distribution in the European continent was recorded. The tested strains of native species were favoured at 20⁻28 °C. Alien species acted differently along temperature gradient and their growth rate was higher than native species. Temperature range of optimal growth rate for S. aphanizomenoides was similar to native species, while C. bergii was favoured at 26⁻30 °C but sensitive at 18⁻20 °C. Under all tested temperatures, non-toxic strains of the native cyanobacteria species prevailed over the toxic ones. In P. agardhii, the decrease in concentration of microcystins and other oligopeptides with the increasing temperature was related to higher growth rate. However, changes in saxitoxin concentration in A. gracile under different temperatures were not detected. Accommodating climate change perspectives, the current work showed a high necessity of further studies of temperature effect on distribution and toxicity of both native and alien cyanobacterial species.
Collapse
Affiliation(s)
- Ksenija Savadova
- Institute of Botany, Nature Research Centre, LT-08412 Vilnius, Lithuania.
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka J. Piłsudskiego 46, PL-81-378 Gdynia, Poland.
| | - Jūratė Karosienė
- Institute of Botany, Nature Research Centre, LT-08412 Vilnius, Lithuania.
| | | | - Irma Vitonytė
- Institute of Botany, Nature Research Centre, LT-08412 Vilnius, Lithuania.
| | - Anna Toruńska-Sitarz
- Division of Marine Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka J. Piłsudskiego 46, PL-81-378 Gdynia, Poland.
| | - Judita Koreivienė
- Institute of Botany, Nature Research Centre, LT-08412 Vilnius, Lithuania.
| |
Collapse
|
46
|
Hasin O, Carmeli S. Isolation and Structure Elucidation of Secondary Metabolites from a Microcystis sp. Bloom Material Collected in Southern Israel. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The hydrophilic extract of Microcystis sp. bloom material collected from Bror Hayil Reservoir in southern Israel afforded four new metabolites, (2 S,3 S)-3-hydeoxy-1,4-diphenylbutan-2-yl-acetate, aeruginosins BH604, BH462A and BH462B, and two known metabolites cyanopeptolins S and SS. The planar structure of 1–4 was established by analyses of their 1D and 2D NMR data and mass spectrometric data. The absolute configurations of the chiral centers of 1 were established by Mosher method and analysis of the coupling constants between H-2 and H-3, and those of 2–4 by Merfay's method and advanced Merfay's method and chiral HPLC. The compounds do not inhibit the serine proteases trypsin and thrombin.
Collapse
Affiliation(s)
- Ohad Hasin
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Shmuel Carmeli
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
47
|
Beversdorf LJ, Rude K, Weirich CA, Bartlett SL, Seaman M, Kozik C, Biese P, Gosz T, Suha M, Stempa C, Shaw C, Hedman C, Piatt JJ, Miller TR. Analysis of cyanobacterial metabolites in surface and raw drinking waters reveals more than microcystin. WATER RESEARCH 2018; 140:280-290. [PMID: 29729580 DOI: 10.1016/j.watres.2018.04.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/10/2018] [Accepted: 04/14/2018] [Indexed: 05/26/2023]
Abstract
Freshwater cyanobacterial blooms are becoming increasingly problematic in regions that rely on surface waters for drinking water production. Microcystins (MCs) are toxic peptides produced by multiple cyanobacterial genera with a global occurrence. Cyanobacteria also produce a variety of other toxic and/or otherwise bioactive peptides (TBPs) that have gained less attention including cyanopeptolins (Cpts), anabaenopeptins (Apts), and microginins (Mgn). In this study, we compared temporal and spatial trends of four MCs (MCLR, MCRR, MCYR, MCLA), three Cpts (Cpt1020, Cpt1041, Cpt1007), two Apts (AptF, AptB), and Mgn690 in raw drinking water and at six surface water locations above these drinking water intakes in a eutrophic lake. All four MC congeners and five of six TBPs were detected in lake and raw drinking water. Across all samples, MCLR was the most frequently detected metabolite (100% of samples) followed by MCRR (97%) > Cpt1007 (74%) > MCYR (69%) > AptF (67%) > MCLA (61%) > AptB (54%) > Mgn690 (29%) and Cpt1041 (15%). Mean concentrations of MCs, Apts, and Cpts into two drinking water intakes were 3.9 ± 4.7, 0.14 ± 0.21, and 0.38 ± 0.92, respectively. Mean concentrations in surface water were significantly higher (p < 0.05) than in drinking water intakes for MCs but not for Cpts and Apts. Temporal trends in MCs, Cpts, and Apts in the two raw drinking water intakes were significantly correlated (p < 0.05) with measures of cell abundance (chlorophyll-a, Microcystis cell density), UV absorbance, and turbidity in surface water. This study expands current information about cyanobacterial TBPs that occur in lakes and that enter drinking water treatment plants and underscores the need to determine the fate of less studied cyanobacterial metabolites during drinking water treatment that may exacerbate toxicity of more well-known cyanobacterial toxins.
Collapse
Affiliation(s)
- Lucas J Beversdorf
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kayla Rude
- Department of Chemistry, Carroll University, Waukesha, WI, USA
| | - Chelsea A Weirich
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Sarah L Bartlett
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Mary Seaman
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Christine Kozik
- Department of Biological Sciences, University of Wisconsin - Milwaukee, WI, USA
| | - Peter Biese
- Menasha Drinking Water Treatment Plant, Menasha, WI, USA
| | - Timothy Gosz
- Menasha Drinking Water Treatment Plant, Menasha, WI, USA
| | - Michael Suha
- Appleton Drinking Water Treatment Plant, Menasha, WI, USA
| | | | | | - Curtis Hedman
- Wisconsin State Laboratory of Hygiene, Madison, WI, USA
| | - Joseph J Piatt
- Department of Chemistry, Carroll University, Waukesha, WI, USA
| | - Todd R Miller
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
48
|
Liu Y, Mao Z, Pradal A, Huang PQ, Oble J, Poli G. Palladium-Catalyzed [3 + 2]-C-C/N-C Bond-Forming Annulation. Org Lett 2018; 20:4057-4061. [PMID: 29897775 DOI: 10.1021/acs.orglett.8b01616] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis of bi- and tricyclic structures incorporating pyrrolidone rings is disclosed, starting from resonance-stabilized acetamides and cyclic α,β-unsaturated-γ-oxycarbonyl derivatives. This process involves an intermolecular Tsuji-Trost allylation/intramolecular nitrogen 1,4-addition sequence. Crucial for the success of this bis-nucleophile/bis-electrophile [3 + 2] annulation is its well-defined step chronology in combination with the total chemoselectivity of the former step. When the newly formed annulation product carries a properly located o-haloaryl moiety at the nitrogen substituent, a further intramolecular keto α-arylation can join the cascade, thereby forming two new cycles and three new bonds in the same synthetic operation.
Collapse
Affiliation(s)
- Yang Liu
- Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS , Institut Parisien de Chimie Moléculaire , IPCM, 4 place Jussieu , 75005 Paris , France
| | - Zhongyi Mao
- Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS , Institut Parisien de Chimie Moléculaire , IPCM, 4 place Jussieu , 75005 Paris , France
| | - Alexandre Pradal
- Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS , Institut Parisien de Chimie Moléculaire , IPCM, 4 place Jussieu , 75005 Paris , France
| | - Pei-Qiang Huang
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), College of Chemistry and Chemical Engineering , Xiamen University , Fujian 361005 , P. R. China
| | - Julie Oble
- Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS , Institut Parisien de Chimie Moléculaire , IPCM, 4 place Jussieu , 75005 Paris , France
| | - Giovanni Poli
- Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS , Institut Parisien de Chimie Moléculaire , IPCM, 4 place Jussieu , 75005 Paris , France
| |
Collapse
|
49
|
Driscoll CB, Meyer KA, Šulčius S, Brown NM, Dick GJ, Cao H, Gasiūnas G, Timinskas A, Yin Y, Landry ZC, Otten TG, Davis TW, Watson SB, Dreher TW. A closely-related clade of globally distributed bloom-forming cyanobacteria within the Nostocales. HARMFUL ALGAE 2018; 77:93-107. [PMID: 30005805 DOI: 10.1016/j.hal.2018.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
In order to better understand the relationships among current Nostocales cyanobacterial blooms, eight genomes were sequenced from cultured isolates or from environmental metagenomes of recent planktonic Nostocales blooms. Phylogenomic analysis of publicly available sequences placed the new genomes among a group of 15 genomes from four continents in a distinct ADA clade (Anabaena/Dolichospermum/Aphanizomenon) within the Nostocales. This clade contains four species-level groups, two of which include members with both Anabaena-like and Aphanizomenon flos-aquae-like morphology. The genomes contain many repetitive genetic elements and a sizable pangenome, in which ABC-type transporters are highly represented. Alongside common core genes for photosynthesis, the differentiation of N2-fixing heterocysts, and the uptake and incorporation of the major nutrients P, N and S, we identified several gene pathways in the pangenome that may contribute to niche partitioning. Genes for problematic secondary metabolites-cyanotoxins and taste-and-odor compounds-were sporadically present, as were other polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) gene clusters. By contrast, genes predicted to encode the ribosomally generated bacteriocin peptides were found in all genomes.
Collapse
Affiliation(s)
- Connor B Driscoll
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Kevin A Meyer
- Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA; Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, MI 48109-1005, USA
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Nathan M Brown
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Gregory J Dick
- Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA
| | - Huansheng Cao
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA
| | - Giedrius Gasiūnas
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257, Vilnius, Lithuania
| | - Albertas Timinskas
- Department of Bioinformatics, Institute of Biotechnology, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Yanbin Yin
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Zachary C Landry
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Timothy G Otten
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Timothy W Davis
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43402, USA
| | - Susan B Watson
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada
| | - Theo W Dreher
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
50
|
Cyanopeptolins with Trypsin and Chymotrypsin Inhibitory Activity from the Cyanobacterium Nostoc edaphicum CCNP1411. Mar Drugs 2018; 16:md16070220. [PMID: 29949853 PMCID: PMC6070996 DOI: 10.3390/md16070220] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
Cyanopeptolins (CPs) are one of the most frequently occurring cyanobacterial peptides, many of which are inhibitors of serine proteases. Some CP variants are also acutely toxic to aquatic organisms, especially small crustaceans. In this study, thirteen CPs, including twelve new variants, were detected in the cyanobacterium Nostoc edaphicum CCNP1411 isolated from the Gulf of Gdańsk (southern Baltic Sea). Structural elucidation was performed by tandem mass spectrometry with verification by NMR for CP962 and CP985. Trypsin and chymotrypsin inhibition assays confirmed the significance of the residue adjacent to 3-amino-6-hydroxy-2-piperidone (Ahp) for the activity of the peptides. Arginine-containing CPs (CPs-Arg²) inhibited trypsin at low IC50 values (0.24⁻0.26 µM) and showed mild activity against chymotrypsin (IC50 3.1⁻3.8 µM), while tyrosine-containing CPs (CPs-Tyr²) were selectively and potently active against chymotrypsin (IC50 0.26 µM). No degradation of the peptides was observed during the enzyme assays. Neither of the CPs were active against thrombin, elastase or protein phosphatase 1. Two CPs (CP962 and CP985) had no cytotoxic effects on MCF-7 breast cancer cells. Strong and selective activity of the new cyanopeptolin variants makes them potential candidates for the development of drugs against metabolic disorders and other diseases.
Collapse
|