1
|
Lv X, Martin J, Hoover H, Joshi B, Wilkens M, Ullisch DA, Leibold T, Juchum JS, Revadkar S, Kalinovska B, Keith J, Truby A, Liu G, Sun E, Haserick J, DeGnore J, Conolly J, Hill AV, Baldoni J, Kensil C, Levey D, Spencer AJ, Gorr G, Findeis M, Tanne A. Chemical and biological characterization of vaccine adjuvant QS-21 produced via plant cell culture. iScience 2024; 27:109006. [PMID: 38361610 PMCID: PMC10867646 DOI: 10.1016/j.isci.2024.109006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Many vaccines, including those using recombinant antigen subunits, rely on adjuvant(s) to enhance the efficacy of the host immune responses. Among the few adjuvants clinically approved, QS-21, a saponin-based immunomodulatory molecule isolated from the tree bark of Quillaja saponaria (QS) is used in complex formulations in approved effective vaccines. High demand of the QS raw material as well as manufacturing scalability limitation has been barriers here. We report for the first-time successful plant cell culture production of QS-21 having structural, chemical, and biologic, properties similar to the bark extracted product. These data ensure QS-21 and related saponins are broadly available and accessible to drug developers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John S. Juchum
- Phyton Biotech LLC, 1503 Cliveden Avenue, Delta, BC V3M 6P7, Canada
| | | | | | | | - Adam Truby
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | - Adrian V.S. Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | - Alexandra J. Spencer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing; Immune Health Program, New Lambton Heights, NSW, Australia
| | | | | | | |
Collapse
|
2
|
Yuan W, Wang Z, Zou Y, Zheng G. Design and Synthesis of Immunoadjuvant QS-21 Analogs and Their Biological Evaluation. Biomedicines 2024; 12:469. [PMID: 38398070 PMCID: PMC10887094 DOI: 10.3390/biomedicines12020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
A series of novel immunoadjuvant QS-21 analogs were synthesized, and their effects on the in vitro hemolysis of red blood cells were evaluated using QS-21 as a control and hemolytic properties as an index. Our results show that all the QS-21 analogs had lower hemolytic effects than QS-21, and their concentrations exhibited a certain quantitative effect relationship with the hemolysis rate. Notably, saponin compounds L1-L8 produced minimal hemolysis and showed lower hemolytic effects, warranting further investigation.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (W.Y.); (Z.W.)
| | - Ziming Wang
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (W.Y.); (Z.W.)
| | - Yening Zou
- Sinovac Life Sciences Co., Ltd., Beijing 102601, China
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (W.Y.); (Z.W.)
| |
Collapse
|
3
|
Zhu C, Xu L, Chen L, Zhang Z, Zhang Y, Wu W, Li C, Liu S, Xiang S, Dai S, Zhang J, Guo H, Zhou Y, Wang F. Epitope-Directed Antibody Elicitation by Genetically Encoded Chemical Cross-Linking Reactivity in the Antigen. ACS CENTRAL SCIENCE 2023; 9:1229-1240. [PMID: 37396855 PMCID: PMC10311653 DOI: 10.1021/acscentsci.3c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 07/04/2023]
Abstract
No current methods can selectively elicit an antibody response to a specific conformational epitope in a whole antigen in vivo. Here, we incorporated Nε-acryloyl-l-lysine (AcrK) or Nε-crotonyl-l-lysine (Kcr) with cross-linking activities into the specific epitopes of antigens and immunized mice to generate antibodies that can covalently cross-link with the antigens. By taking advantage of antibody clonal selection and evolution in vivo, an orthogonal antibody-antigen cross-linking reaction can be generated. With this mechanism, we developed a new approach for facile elicitation of antibodies binding to specific epitopes of the antigen in vivo. Antibody responses were directed and enriched to the target epitopes on protein antigens or peptide-KLH conjugates after mouse immunization with the AcrK or Kcr-incorporated immunogens. The effect is so prominent that the majority of selected hits bind to the target epitope. Furthermore, the epitope-specific antibodies effectively block IL-1β from activating its receptor, indicating its potential for the development of protein subunit vaccines.
Collapse
Affiliation(s)
- Chaoyang Zhu
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Liang Xu
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Longxin Chen
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Molecular
Biology Laboratory, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Zihan Zhang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhan Zhang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiping Wu
- Suzhou
Institute for Biomedical Research, Suzhou, Jiangsu 215028, China
| | - Chengxiang Li
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Shuang Liu
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Shuqin Xiang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Shengwang Dai
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100101, China
| | - Jay Zhang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Suzhou
Institute for Biomedical Research, Suzhou, Jiangsu 215028, China
| | - Hui Guo
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Suzhou
Institute for Biomedical Research, Suzhou, Jiangsu 215028, China
- Beijing
Translational Center for Biopharmaceuticals, Beijing 100101, China
| | - Yinjian Zhou
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Beijing
Translational Center for Biopharmaceuticals, Beijing 100101, China
| | - Feng Wang
- Key
Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Suzhou
Institute for Biomedical Research, Suzhou, Jiangsu 215028, China
- Beijing
Translational Center for Biopharmaceuticals, Beijing 100101, China
| |
Collapse
|
4
|
Gamboa Marin OJ, Heis F, Gauthier C. Synthesis of immunostimulatory saponins: A sweet challenge for carbohydrate chemists. Carbohydr Res 2023; 530:108851. [PMID: 37257206 DOI: 10.1016/j.carres.2023.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Saponins are a large family of natural glycosides showing a wide range of biological activities. Current research efforts on saponins as vaccine adjuvants have been mainly focused on the development of synthetic analogs. By mimicking the immunomodulatory saponins from Quillaja saponaria (QS), less complex and readily accessible analogs have been synthesized to improve the industrial applicability and efficacy of saponins as vaccine adjuvants. Through the exploration of several structural modifications on the skeleton of QS saponins, including changes in the sugar and aglycone compositions as well as in the nature and configuration of the glycosidic bonds, structure-activity relationship (SAR) studies developed by Pr. Gin in the early 2010s were taken as a starting point for the development of a new generation of immunomodulatory candidates. In this review, the recent synthetic strategies and SAR studies of mono- and bidesmosidic QS saponins are discussed. Original concepts of vaccination including self-adjuvanticity and the development of saponin-based glycoconjugates are described. The synthesis and semi-synthesis of saponin alternatives to QS, such as Momordica saponin and onjisaponin derivatives, are also discussed in this review.
Collapse
Affiliation(s)
- Oscar Javier Gamboa Marin
- Unité mixte de recherche (UMR) INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval and Chicoutimi, Canada
| | - Floriane Heis
- Unité mixte de recherche (UMR) INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval and Chicoutimi, Canada
| | - Charles Gauthier
- Unité mixte de recherche (UMR) INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval and Chicoutimi, Canada.
| |
Collapse
|
5
|
Sungsuwan S, Wu X, Shaw V, Kavunja H, McFall-Boegeman H, Rashidijahanabad Z, Tan Z, Lang S, Tahmasebi Nick S, Lin PH, Yin Z, Ramadan S, Jin X, Huang X. Structure Guided Design of Bacteriophage Qβ Mutants as Next Generation Carriers for Conjugate Vaccines. ACS Chem Biol 2022; 17:3047-3058. [PMID: 35142488 PMCID: PMC9363528 DOI: 10.1021/acschembio.1c00906] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Vaccines are critical tools to treat and prevent diseases. For an effective conjugate vaccine, the carrier is crucial, but few carriers are available for clinical applications. In addition, a drawback of current protein carriers is that high levels of antibodies against the carrier are induced by the conjugate vaccine, which are known to interfere with the immune responses against the target antigen. To overcome these challenges, we obtained the near atomic resolution crystal structure of an emerging protein carrier, i.e., the bacteriophage Qβ virus like particle. On the basis of the detailed structural information, novel mutants of bacteriophage Qβ (mQβ) have been designed, which upon conjugation with tumor associated carbohydrate antigens (TACAs), a class of important tumor antigens, elicited powerful anti-TACA IgG responses and yet produced lower levels of anticarrier antibodies as compared to those from the wild type Qβ-TACA conjugates. In a therapeutic model against an aggressive breast cancer in mice, 100% unimmunized mice succumbed to tumors in just 12 days even with chemotherapy. In contrast, 80% of mice immunized with the mQβ-TACA conjugate were completely free from tumors. Besides TACAs, to aid in the development of vaccines to protect against COVID-19, the mQβ based conjugate vaccine has been shown to induce high levels of IgG antibodies against peptide antigens from the SARS-CoV-2 virus, demonstrating its generality. Thus, mQβ is a promising next-generation carrier platform for conjugate vaccines, and structure-based rational design is a powerful strategy to develop new vaccine carriers.
Collapse
Affiliation(s)
- Suttipun Sungsuwan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Xuanjun Wu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | | | - Herbert Kavunja
- Iaso Therapeutics Inc., 4942 Dawn Avenue, East Lansing, Michigan 48823, United States
| | | | | | | | | | | | | | | | - Sherif Ramadan
- Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt
| | | | | |
Collapse
|
6
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
7
|
Wang Z, Enotarpi J, Buffi G, Pezzicoli A, Gstöttner CJ, Nicolardi S, Balducci E, Fabbrini M, Romano MR, van der Marel GA, del Bino L, Adamo R, Codée JDC. Chemical Synthesis and Immunological Evaluation of Fragments of the Multiantennary Group-Specific Polysaccharide of Group B Streptococcus. JACS AU 2022; 2:1724-1735. [PMID: 35911445 PMCID: PMC9327088 DOI: 10.1021/jacsau.2c00302] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Group B Streptococcus (GBS) is a Gram-positive bacterium and the most common cause of neonatal blood and brain infections. At least 10 different serotypes exist, that are characterized by their different capsular polysaccharides. The Group B carbohydrate (GBC) is shared by all serotypes and therefore attractive be used in a glycoconjugate vaccine. The GBC is a highly complex multiantennary structure, composed of rhamnose rich oligosaccharides interspaced with glucitol phosphates. We here report the development of a convergent approach to assemble a pentamer, octamer, and tridecamer fragment of the termini of the antennae. Phosphoramidite chemistry was used to fuse the pentamer and octamer fragments to deliver the 13-mer GBC oligosaccharide. Nuclear magnetic resonance spectroscopy of the generated fragments confirmed the structures of the naturally occurring polysaccharide. The fragments were used to generate model glycoconjugate vaccine by coupling with CRM197. Immunization of mice delivered sera that was shown to be capable of recognizing different GBS strains. The antibodies raised using the 13-mer conjugate were shown to recognize the bacteria best and the serum raised against this GBC fragment-mediated opsonophagocytic killing best, but in a capsule dependent manner. Overall, the GBC 13-mer was identified to be a highly promising antigen for incorporation into future (multicomponent) anti-GBS vaccines.
Collapse
Affiliation(s)
- Zhen Wang
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jacopo Enotarpi
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Giada Buffi
- GSK
Siena Italy, Via Fiorentina
1 Siena 53100, Italy
| | | | - Christoph J. Gstöttner
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Simone Nicolardi
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | | | | | | | | | - Roberto Adamo
- GSK
Siena Italy, Via Fiorentina
1 Siena 53100, Italy
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
8
|
Abstract
Saponins are a large family of amphiphilic glycosides of steroids and triterpenes found in plants and some marine organisms. By expressing a large diversity of structures on both sugar chains and aglycones, saponins exhibit a wide range of biological and pharmacological properties and serve as major active principles in folk medicines, especially in traditional Chinese medicines. Isolation of saponins from natural sources is usually a formidable task due to the microheterogeneity of saponins in Nature. Chemical synthesis can provide access to large amounts of natural saponins as well as congeners for understanding their structure-activity relationships and mechanisms of action. This article presents a comprehensive account on chemical synthesis of saponins. First highlighted are general considerations on saponin synthesis, including preparation of aglycones and carbohydrate building blocks, assembly strategies, and protecting-group strategies. Next described is the state of the art in the synthesis of each type of saponins, with an emphasis on those representative saponins having sophisticated structures and potent biological activities.
Collapse
Affiliation(s)
- You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China.
| | - Stephane Laval
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | - Biao Yu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
9
|
Abstract
Saponins, as secondary metabolites in terrestrial plants and marine invertebrate, constitute one of the largest families of natural products. The long history of folk medicinal applications of saponins makes them attractive candidates for innovative drug design and development. Chemical synthesis has become a practical alternative to the availability of the natural saponins and their modified analogs, so as to facilitate SAR studies and the discovery of optimal structures for clinical applications. The recent achievements in the synthesis of these complex saponins reflect the advancements of both steroid/triterpene chemistry and carbohydrate chemistry. This chapter provides an updated review on the chemical synthesis of natural saponins, covering the literature from 2014 to 2020.
Collapse
Affiliation(s)
- Peng Xu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
10
|
Konishi N, Shirahata T, Yoshida Y, Sato N, Kaji E, Kobayashi Y. Efficient synthesis of diverse C-3 monodesmosidic saponins by a continuous microfluidic glycosylation/batch deprotection method. Carbohydr Res 2021; 510:108437. [PMID: 34597978 DOI: 10.1016/j.carres.2021.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022]
Abstract
Triterpene and steroid saponins have various pharmacological activities but the synthesis of C-3 monodesmosidic saponins remains challenging. Herein, a series of C-3 glycosyl monodesmosidic saponins was synthesized via the microfluidic glycosylation of triterpenoids or steroids at the C-3 position, without the formation of orthoester byproducts, and subsequent deprotection of the benzoyl (Bz) group. This microfluidic glycosylation/batch deprotection sequence enabled the efficient synthesis of C-3 saponins with fewer purification steps and a shorter reaction time than conventional batch synthesis and stepwise microfluidic glycosylation. Furthermore, this system minimized the consumption of the imidate donor. Using this reaction system, 18 different C-3 saponins and 13 different C-28-benzyl-C-3 saponins, including 8 new compounds, were synthesized from various sugars and triterpenes or steroids. Our synthetic approach is expected to be suitable for further expanding the C-3 saponin library for pharmacological studies.
Collapse
Affiliation(s)
- Naruki Konishi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tatsuya Shirahata
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Yuki Yoshida
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Noriko Sato
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Eisuke Kaji
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
11
|
Gurbanov R. Synthetic Polysaccharide‐Based Vaccines: Progress and Achievements. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
12
|
Fuentes R, Ruiz‐de‐Angulo A, Sacristán N, Navo CD, Jiménez‐Osés G, Anguita J, Fernández‐Tejada A. Replacing the Rhamnose-Xylose Moiety of QS-21 with Simpler Terminal Disaccharide Units Attenuates Adjuvant Activity in Truncated Saponin Variants. Chemistry 2021; 27:4731-4737. [PMID: 33236801 PMCID: PMC7986102 DOI: 10.1002/chem.202004705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Indexed: 01/03/2023]
Abstract
Adjuvants are key immunostimulatory components in vaccine formulations, which improve the immune response to the co-administered antigen. The saponin natural product QS-21 is one of the most promising immunoadjuvants in the development of vaccines against cancer and infectious diseases but suffers from limitations that have hampered its widespread human use. Previous structure-activity relationship studies have identified simplified saponin variants with truncated carbohydrate chains, but have not focused on the influence of the linear oligosaccharide domain of QS-21 in adjuvant activity. Herein, an expeditious 15-step synthesis of new linear trisaccharide variants of simplified QS-21-derived adjuvants is reported, in which the complex terminal xylose-rhamnose moiety has been replaced with commercially available, simpler lactose and cellobiose disaccharides in a β-anomeric configuration. In vivo immunological evaluation of the synthetic saponins showed attenuated antibody responses, highlighting the negative impact of such carbohydrate modifications on adjuvant activity, which could be associated with higher saponin conformational flexibility.
Collapse
Affiliation(s)
- Roberto Fuentes
- Chemical Immunology LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Biscay Science and Technology Park, Building 801A48160DerioSpain
| | - Ane Ruiz‐de‐Angulo
- Chemical Immunology LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Biscay Science and Technology Park, Building 801A48160DerioSpain
| | - Nagore Sacristán
- Chemical Immunology LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Biscay Science and Technology Park, Building 801A48160DerioSpain
| | - Claudio Daniel Navo
- Computational Chemistry LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Biscay Science and Technology Park, Building 801A48160DerioSpain
| | - Gonzalo Jiménez‐Osés
- Computational Chemistry LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Biscay Science and Technology Park, Building 801A48160DerioSpain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Biscay Science and Technology Park, Building 801A48160DerioSpain
- IkerbasqueBasque Foundation for SciencePlaza Euskadi 548009BilbaoSpain
| | - Alberto Fernández‐Tejada
- Chemical Immunology LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Biscay Science and Technology Park, Building 801A48160DerioSpain
- IkerbasqueBasque Foundation for SciencePlaza Euskadi 548009BilbaoSpain
| |
Collapse
|
13
|
Natural and Synthetic Saponins as Vaccine Adjuvants. Vaccines (Basel) 2021; 9:vaccines9030222. [PMID: 33807582 PMCID: PMC8001307 DOI: 10.3390/vaccines9030222] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Saponin adjuvants have been extensively studied for their use in veterinary and human vaccines. Among them, QS-21 stands out owing to its unique profile of immunostimulating activity, inducing a balanced Th1/Th2 immunity, which is valuable to a broad scope of applications in combating various microbial pathogens, cancers, and other diseases. It has recently been approved for use in human vaccines as a key component of combination adjuvants, e.g., AS01b in Shingrix® for herpes zoster. Despite its usefulness in research and clinic, the cellular and molecular mechanisms of QS-21 and other saponin adjuvants are poorly understood. Extensive efforts have been devoted to studies for understanding the mechanisms of QS-21 in different formulations and in different combinations with other adjuvants, and to medicinal chemistry studies for gaining mechanistic insights and development of practical alternatives to QS-21 that can circumvent its inherent drawbacks. In this review, we briefly summarize the current understandings of the mechanism underlying QS-21’s adjuvanticity and the encouraging results from recent structure-activity-relationship (SAR) studies.
Collapse
|
14
|
Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat Rev Chem 2021; 5:197-216. [PMID: 37117529 PMCID: PMC7829660 DOI: 10.1038/s41570-020-00244-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 01/31/2023]
Abstract
Modern subunit vaccines based on homogeneous antigens offer more precise targeting and improved safety compared with traditional whole-pathogen vaccines. However, they are also less immunogenic and require an adjuvant to increase the immunogenicity of the antigen and potentiate the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new, potent and safe adjuvants. Notably, a number of natural and synthetic carbohydrate structures have been used as adjuvants in clinical trials, and two have recently been approved in human vaccines. However, naturally derived carbohydrate adjuvants are heterogeneous, difficult to obtain and, in some cases, unstable. In addition, their molecular mechanisms of action are generally not fully understood, partly owing to the lack of tools to elucidate their immune-potentiating effects, thus hampering the rational development of optimized adjuvants. To address these challenges, modification of the natural product structure using synthetic chemistry emerges as an attractive approach to develop well-defined, improved carbohydrate-containing adjuvants and chemical probes for mechanistic investigation. This Review describes selected examples of natural and synthetic carbohydrate-based adjuvants and their application in synthetic self-adjuvanting vaccines, while also discussing current understanding of their molecular mechanisms of action.
Collapse
|
15
|
Zeng ZY, Liao JX, Hu ZN, Liu DY, Zhang QJ, Sun JS. Synthetic Investigation toward QS-21 Analogues. Org Lett 2020; 22:8613-8617. [PMID: 33074676 DOI: 10.1021/acs.orglett.0c03185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
With glycosyl o-alkynylbenzotes as donors, a highly efficient protocol to construct the challenging glycosidic linkages at C3-OH of C23-oxo oleanane triterpenoids is disclosed, on the basis of which different strategies for the highly efficient synthesis of QS-21 analogues with the west-wing trisaccharide of QS-21 have been established.
Collapse
Affiliation(s)
- Zhi-Yong Zeng
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jin-Xi Liao
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhen-Ni Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - De-Yong Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Qing-Ju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jian-Song Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
16
|
Škalamera Đ, Kim H, Zhang P, Michalek SM, Wang P. Impact of C28 Oligosaccharide on Adjuvant Activity of QS-7 Analogues. J Org Chem 2020; 85:15837-15848. [PMID: 32463234 DOI: 10.1021/acs.joc.0c00359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have synthesized a number of Quillaja saponaria Molina (QS) saponin analogues with a different C28 sugar unit, which features either 3,4-diacetyl groups or a 3,4-cyclic carbonate group at the reducing end fucoside to mimic the naturally occurring saponin adjuvant QS-7. Immunological evaluations of these analogues in BALB/c mice indicate that truncating the C28 oligosaccharide of the natural product to the tetrasaccharide (as in 5d (β)) could retain the adjuvant's activity in enhancing IgG1 and IgG2a productions, albeit the activity is lower than that of QS-21. Further truncation or changing stereochemistry of glycosidic linkage between the tetrasaccharide and the triterpenoid quillaic acid (QA) core or within the tetrasaccharide eliminated the saponins' adjuvant activity in terms of IgG production. On the other hand, increasing resemblance to QS-7 increased adjuvant activity and led to saponin 3's similar IgG1 and IgG2a activities to QS-21's, indicating that the unique adjuvant activities of QS saponins are determined by their specific structures.
Collapse
|
17
|
Foamy matters: an update on Quillaja saponins and their use as immunoadjuvants. Future Med Chem 2019; 11:1485-1499. [DOI: 10.4155/fmc-2018-0438] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Immunoadjuvant Quillaja spp. tree saponins stimulate both cellular and humoral responses, significantly widening vaccine target pathogen spectra. Host toxicity of specific saponins, fractions and extracts may be rather low and further reduced using lipid-based delivery systems. Saponins contain a hydrophobic central aglycone decorated with several sugar residues, posing a challenge for viable chemical synthesis. These, however, may provide simpler analogs. Saponin chemistry affords characteristic interactions with cell membranes, which are essential for its mechanism of action. Natural sources include Quillaja saponaria barks and, more recently, Quillaja brasiliensis leaves. Sustainable large-scale supply can use young plants grown in clonal gardens and elicitation treatments. Quillaja genomic studies will most likely buttress future synthetic biology-based saponin production efforts.
Collapse
|
18
|
Wang P, Škalamera Đ, Sui X, Zhang P, Michalek SM. Synthesis and Evaluation of a QS-17/18-Based Vaccine Adjuvant. J Med Chem 2019; 62:1669-1676. [PMID: 30656932 DOI: 10.1021/acs.jmedchem.8b01997] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have synthesized a QS-17/18 analogue (7) and evaluated its adjuvant activity in the formulation with rHagB antigen. Compound 7 and QS-21 analogues 5 and 6 are presumably the major components of GPI-0100, a widely used complex mixture of semisynthetic derivatives of Quillaja saponaria (QS) Molina saponins. The QS-17/18 analogue 7 shows an adjuvant activity profile similar to that of GPI-0100, potentiating mixed Th-1/Th-2 immune responses, which is different from those of QS-21 analogues 5 and 6 that probably only induce a Th2-like immunity. The combination of QS-17/18 and QS-21 analogues does not show a synergistic effect. These results suggest that QS-17/18 analogue 7 might be the active component of GPI-0100 responsible for its immunostimulant property. Therefore, compound 7 can not only be a structurally defined alternative to GPI-0100 but also provide a valuable clue for rational design of new QS-based vaccine adjuvants with better adjuvant properties.
Collapse
|
19
|
Fleck JD, Betti AH, da Silva FP, Troian EA, Olivaro C, Ferreira F, Verza SG. Saponins from Quillaja saponaria and Quillaja brasiliensis: Particular Chemical Characteristics and Biological Activities. Molecules 2019; 24:E171. [PMID: 30621160 PMCID: PMC6337100 DOI: 10.3390/molecules24010171] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022] Open
Abstract
Quillaja saponaria Molina represents the main source of saponins for industrial applications. Q. saponaria triterpenoids have been studied for more than four decades and their relevance is due to their biological activities, especially as a vaccine adjuvant and immunostimulant, which have led to important research in the field of vaccine development. These saponins, alone or incorporated into immunostimulating complexes (ISCOMs), are able to modulate immunity by increasing antigen uptake, stimulating cytotoxic T lymphocyte production (Th1) and cytokines (Th2) in response to different antigens. Furthermore, antiviral, antifungal, antibacterial, antiparasitic, and antitumor activities are also reported as important biological properties of Quillaja triterpenoids. Recently, other saponins from Q. brasiliensis (A. St.-Hill. & Tul.) Mart. were successfully tested and showed similar chemical and biological properties to those of Q. saponaria barks. The aim of this manuscript is to summarize the current advances in phytochemical and pharmacological knowledge of saponins from Quillaja plants, including the particular chemical characteristics of these triterpenoids. The potential applications of Quillaja saponins to stimulate further drug discovery research will be provided.
Collapse
Affiliation(s)
- Juliane Deise Fleck
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Andresa Heemann Betti
- Bioanalysis Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Francini Pereira da Silva
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Eduardo Artur Troian
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| | - Cristina Olivaro
- Science and Chemical Technology Department, University Center of Tacuarembó, Udelar, Tacuarembó 45000, Uruguay.
| | - Fernando Ferreira
- Organic Chemistry Department, Carbohydrates and Glycoconjugates Laboratory, Udelar, Mondevideo 11600, Uruguay.
| | - Simone Gasparin Verza
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil.
| |
Collapse
|
20
|
Karimov RR, Tan DS, Gin DY. Synthesis of the hexacyclic triterpene core of the jujuboside saponins via tandem Wolff rearrangement-intramolecular ketene hetero-Diels-Alder reaction. Tetrahedron 2018; 74:3370-3383. [PMID: 30467444 DOI: 10.1016/j.tet.2018.04.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The jujubosides are saponin natural products reported to have immunoadjuvant, anticancer, antibacterial, antifungal, and antisweet activities. The triterpene component, jujubogenin contains a unique tricyclic ketal motif comprising the DEF ring system. Herein, we describe our efforts toward the total synthesis of jujubogenin, using a sterically-demanding intermolecular Diels-Alder reaction to assemble the C-ring and a tandem Wolff rearrangement-intramolecular ketene hetero-Diels-Alder reaction to form the DF-ring system. Acid-catalyzed cyclization of the resulting bicyclic enol ether then closes the E-ring to provide the hexacyclic core of jujubogenin.
Collapse
Affiliation(s)
- Rashad R Karimov
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, USA
| | - Derek S Tan
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, USA.,Chemical Biology Program and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, USA
| | - David Y Gin
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, USA.,Chemical Biology Program and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, USA
| |
Collapse
|
21
|
Wei MM, Wang YS, Ye XS. Carbohydrate-based vaccines for oncotherapy. Med Res Rev 2018; 38:1003-1026. [PMID: 29512174 DOI: 10.1002/med.21493] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/18/2018] [Accepted: 01/31/2018] [Indexed: 01/02/2023]
Abstract
Cancer is still one of the most serious threats to human worldwide. Aberrant patterns of glycosylation on the surface of cancer cells, which are correlated with various cancer development stages, can differentiate the abnormal tissues from the healthy ones. Therefore, tumor-associated carbohydrate antigens (TACAs) represent the desired targets for cancer immunotherapy. However, these carbohydrate antigens may not able to evoke powerful immune response to combat with cancer for their poor immunogenicity and immunotolerance. Different approaches have been developed to address these problems. In this review, we want to summarize the latest advances in TACAs based anticancer vaccines.
Collapse
Affiliation(s)
- Meng-Man Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yong-Shi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
22
|
Design, synthesis and evaluation of optimized saponin variants derived from the vaccine adjuvant QS-21. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractThe saponin natural product QS-21 is one of the most potent investigational adjuvants, which are substances added to vaccines to enhance the immunogenicity of the antigen and potentiate the immune response. While QS-21 has been coadministered with vaccines against cancers and infectious diseases in many clinical trials, its inherent liabilities (scarcity, heterogeneity, instability, and dose-limiting toxicity) have limited its widespread clinical use. Furthermore, its molecular mechanisms of action are poorly understood. Structural modification of the natural product using chemical synthesis has become an important strategy to overcome these limitations. This review focuses mainly on research efforts in the group of the late Professor David Y. Gin on the development of optimized synthetic saponin adjuvants derived from QS-21. A number of QS21 variants incorporating stable acyl chain amide linkages, truncated carbohydrate domains, and targeted modifications at the triterpene and central glycosyl ester linkage were designed, chemically synthesized, and immunologically evaluated. These studies delineated key minimal structural requirements for adjuvant activity, established correlations between saponin conformation and activity, and provided improved, synthetically accessible saponin adjuvants. Moreover, leveraging these structure–activity relationships, novel saponin probes with high potency and reduced toxicity were developed and used in biodistribution and fluorescence imaging studies, yielding early insights into their enigmatic mechanisms of action.
Collapse
|
23
|
Synthetic agonists of NOD-like, RIG-I-like, and C-type lectin receptors for probing the inflammatory immune response. Future Med Chem 2017; 9:1345-1360. [PMID: 28776416 DOI: 10.4155/fmc-2017-0101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synthetic agonists of innate immune cells are of interest to immunologists due to their synthesis from well-defined materials, optimized activity, and monodisperse chemical purity. These molecules are used in both prophylactic and therapeutic contexts from vaccines to cancer immunotherapies. In this review we highlight synthetic agonists that activate innate immune cells through three classes of pattern recognition receptors: NOD-like receptors, RIG-I-like receptors, and C-type lectin receptors. We classify these agonists by the receptor they activate and present them from a chemical perspective, focusing on structural components that define agonist activity. We anticipate this review will be useful to the medicinal chemist as a guide to chemical motifs that activate each receptor, ultimately illuminating a chemical space ripe for exploration.
Collapse
|
24
|
Konishi N, Shirahata T, Yokoyama M, Katsumi T, Ito Y, Hirata N, Nishino T, Makino K, Sato N, Nagai T, Kiyohara H, Yamada H, Kaji E, Kobayashi Y. Synthesis of Bisdesmosidic Oleanolic Acid Saponins via a Glycosylation-Deprotection Sequence under Continuous Microfluidic/Batch Conditions. J Org Chem 2017; 82:6703-6719. [DOI: 10.1021/acs.joc.7b00841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Naruki Konishi
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tatsuya Shirahata
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masaki Yokoyama
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tatsuya Katsumi
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshikazu Ito
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nozomu Hirata
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Nishino
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Noriko Sato
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takayuki Nagai
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroaki Kiyohara
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Haruki Yamada
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Eisuke Kaji
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshinori Kobayashi
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
25
|
Karimov RR, Tan DS, Gin DY. Rapid assembly of the doubly-branched pentasaccharide domain of the immunoadjuvant jujuboside A via convergent B(C 6F 5) 3-catalyzed glycosylation of sterically-hindered precursors. Chem Commun (Camb) 2017; 53:5838-5841. [PMID: 28498382 PMCID: PMC5531170 DOI: 10.1039/c7cc01783a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A convergent synthesis of the complex, doubly-branched pentasaccharide domain of the natural-product immunoadjuvant jujuboside A is described. The key step is a sterically-hindered glycosylation reaction between a branched trisaccharide trichloroacetimidate glycosyl donor and a disaccharide glycosyl acceptor. Conventional Lewis acids (TMSOTf, BF3·Et2O) were ineffective in this glycosylation, but B(C6F5)3 catalyzed the reaction successfully. Inherent complete diastereoselectivity for the undesired α-anomer was overcome by rational optimization with a nitrile solvent system (1 : 5 t-BuCN/CF3Ph) to provide flexible, effective access to the β-linked pentasaccharide.
Collapse
Affiliation(s)
- Rashad R Karimov
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, USA.
| | | | | |
Collapse
|
26
|
Shirahata T, Nagai T, Hirata N, Yokoyama M, Katsumi T, Konishi N, Nishino T, Makino K, Yamada H, Kaji E, Kiyohara H, Kobayashi Y. Syntheses and mucosal adjuvant activity of simplified oleanolic acid saponins possessing cinnamoyl ester. Bioorg Med Chem 2017; 25:1747-1755. [DOI: 10.1016/j.bmc.2016.09.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 01/22/2023]
|
27
|
Fernández-Tejada A, Walkowicz WE, Tan DS, Gin DY. Semisynthesis of Analogues of the Saponin Immunoadjuvant QS-21. Methods Mol Biol 2017; 1494:45-71. [PMID: 27718185 DOI: 10.1007/978-1-4939-6445-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Saponins are triterpene glycoside natural products that exhibit many different biological properties, including activation and modulation of the immune system, and have therefore attracted significant interest as immunological adjuvants for use in vaccines. QS-21 is the most widely used and promising saponin adjuvant but suffers from several liabilities, such as scarcity, dose-limiting toxicity, and hydrolytic instability. Chemical synthesis has emerged as a powerful approach to obtain homogeneous, pure samples of QS-21 and to improve its properties and therapeutic profile by providing access to optimized, synthetic saponin variants. Herein, we describe a general method for the semisynthesis of these molecules from QS-21, with detailed synthetic protocols for two saponin variants developed in our recent work.
Collapse
Affiliation(s)
- Alberto Fernández-Tejada
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road 12, OX1 3TA, Oxford, UK.
| | - William E Walkowicz
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Derek S Tan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - David Y Gin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
28
|
Wang P, Devalankar DA, Dai Q, Zhang P, Michalek SM. Synthesis and Evaluation of QS-21-Based Immunoadjuvants with a Terminal-Functionalized Side Chain Incorporated in the West Wing Trisaccharide. J Org Chem 2016; 81:9560-9566. [PMID: 27709937 PMCID: PMC6488304 DOI: 10.1021/acs.joc.6b00922] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three QS-21-based vaccine adjuvant candidates with a terminal-functionalized side chain incorporated in the west wing trisaccharide have been synthesized. The terminal polar functional group serves to increase the solubility of these analogues in water. Two of the synthetic analogues have been shown to have adjuvant activity comparable to that of GPI-0100. The stand-alone adjuvant activity of the new synthetic analogues again confirmed that it is a feasible way to develop new saponin-based vaccine adjuvants through derivatizing at the west wing branched trisaccharide domain. Inclusion of an additional polar functional group such as a carboxyl group (as in 3x) or a monosaccharide (as in 4x and 5x) is sufficient to increase the water solubility of the corresponding synthetic analogues to a level comparable to that of GPI-0100 and suitable for immunological studies and clinical application. The structure of the incorporated side chain has a significant impact on the adjuvant activity in terms of the magnitude and nature of the host's responses.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Dattatray A. Devalankar
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Qipu Dai
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Ping Zhang
- Department of Pediatric Dentistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Suzanne M Michalek
- Department of Microbiology, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| |
Collapse
|
29
|
Fernández-Tejada A, Tan DS, Gin DY. Development of Improved Vaccine Adjuvants Based on the Saponin Natural Product QS-21 through Chemical Synthesis. Acc Chem Res 2016; 49:1741-56. [PMID: 27568877 PMCID: PMC5032057 DOI: 10.1021/acs.accounts.6b00242] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Vaccines based on molecular subunit antigens
are increasingly being
investigated due to their improved safety and more precise targeting
compared to classical whole-pathogen vaccines. However, subunit vaccines
are inherently less immunogenic; thus, coadministration of an adjuvant
to increase the immunogenicity of the antigen is often necessary to
elicit a potent immune response. QS-21, an immunostimulatory saponin
natural product, has been used as an adjuvant in conjunction with various
vaccines in numerous clinical trials, but suffers from several inherent
liabilities, including scarcity, chemical instability, and dose-limiting
toxicity. Moreover, little is known about its mechanism of action.
Over a decade-long effort, beginning at the University of Illinois
at Urbana-Champaign and continuing at the Memorial Sloan Kettering
Cancer Center (MSKCC), the group of Prof. David Y. Gin accomplished
the total synthesis of QS-21 and developed a practical semisynthetic
approach to novel variants that overcome the liabilities of the natural
product. First, semisynthetic QS-21 variants were designed with stable
amide linkages in the acyl chain domain that exhibited comparable
in vivo adjuvant activity and lower toxicity than the natural product.
Further modifications in the acyl chain domain and truncation of the
linear tetrasaccharide domain led to identification of a trisaccharide
variant with a simple carboxylic acid side chain that retained potent
adjuvant activity, albeit with reemergence of toxicity. Conversely,
an acyl chain analogue terminating in a free amine was inactive but
enabled chemoselective functionalization with radiolabeled and fluorescent
tags, yielding adjuvant-active saponin probes that, unlike inactive
congeners, accumulated in the lymph nodes in vaccinated mice and internalized
into dendritic cells. Subtle variations in length, stereochemistry,
and conformational flexibility around the central glycosidic linkage
provided QS-21 variants with adjuvant activities that correlated with
specific conformations found in molecular dynamics simulations. Notably,
deletion of the entire branched trisaccharide domain afforded potent,
truncated saponin variants with negligible toxicity and improved synthetic
access, facilitating subsequent investigation of the triterpene core.
The triterpene C4-aldehyde substituent, previously proposed to be
important for QS-21 adjuvant activity, proved to be dispensable
in these truncated saponin variants, while the presence of the C16
hydroxyl group enhanced activity. Novel adjuvant conjugates incorporating
the small-molecule immunopotentiator tucaresol at the acyl chain terminus
afforded adjuvant-active variants but without significant synergistic
enhancement of activity. Finally, a new divergent synthetic approach
was developed to provide versatile and streamlined access to additional
linear oligosaccharide domain variants with modified sugars and regiochemistries,
opening the door to the rapid generation of diverse, synthetically
accessible analogues. In this Account, we summarize these multidisciplinary
studies at the interface of chemistry, immunology, and medicine, which
have provided critical information on the structure–activity
relationships (SAR) of this Quillaja saponin class;
access to novel, potent, nontoxic adjuvants for use in subunit vaccines;
and a powerful platform for investigations into the mechanisms of
saponin immunopotentiation.
Collapse
Affiliation(s)
- Alberto Fernández-Tejada
- Chemical
Biology Program, and ‡Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Derek S. Tan
- Chemical
Biology Program, and ‡Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - David Y. Gin
- Chemical
Biology Program, and ‡Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| |
Collapse
|
30
|
Fernández-Tejada A, Tan DS, Gin DY. Versatile strategy for the divergent synthesis of linear oligosaccharide domain variants of Quillaja saponin vaccine adjuvants. Chem Commun (Camb) 2015; 51:13949-13952. [PMID: 26243268 PMCID: PMC4643164 DOI: 10.1039/c5cc05244k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a new, versatile synthetic approach to Quillaja saponin variants based on the natural product immunoadjuvant QS-21. This modular, divergent strategy provides efficient access to linear oligosaccharide domain variants with modified sugars and regiochemistries. This new synthetic approach opens the door to the rapid generation of diverse analogues to identify novel saponin adjuvants with improved synthetic accessibility.
Collapse
Affiliation(s)
- Alberto Fernández-Tejada
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1 275 York Avenue, New York, NY 10065, USA.
| | - Derek S Tan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1 275 York Avenue, New York, NY 10065, USA.
- Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1 275 York Avenue, New York, NY 10065, USA.
| | - David Y Gin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1 275 York Avenue, New York, NY 10065, USA.
- Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1 275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
31
|
Hu J, Qiu L, Wang X, Zou X, Lu M, Yin J. Carbohydrate-based vaccine adjuvants - discovery and development. Expert Opin Drug Discov 2015; 10:1133-44. [PMID: 26372693 DOI: 10.1517/17460441.2015.1067198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The addition of a suitable adjuvant to a vaccine can generate significant effective adaptive immune responses. There is an urgent need for the development of novel po7tent and safe adjuvants for human vaccines. Carbohydrate molecules are promising adjuvants for human vaccines due to their high biocompatibility and good tolerability in vivo. AREAS COVERED The present review covers a few promising carbohydrate-based adjuvants, lipopolysaccharide, trehalose-6,6'-dibehenate, QS-21 and inulin as examples, which have been extensively studied in human vaccines in a number of preclinical and clinical studies. The authors discuss the current status, applications and strategies of development of each adjuvant and different adjuvant formulation systems. This information gives insight regarding the exciting prospect in the field of carbohydrate-based adjuvant research. EXPERT OPINION Carbohydrate-based adjuvants are promising candidates as an alternative to the Alum salts for human vaccines development. Furthermore, combining two or more adjuvants in one formulation is one of the effective strategies in adjuvant development. However, further research efforts are needed to study and develop novel adjuvants systems, which can be more stable, potent and safe. The development of synthetic carbohydrate chemistry can improve the study of carbohydrate-based adjuvants.
Collapse
Affiliation(s)
- Jing Hu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Liying Qiu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Xiaoli Wang
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Xiaopeng Zou
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Mengji Lu
- c 3 University Hospital Essen, Institute of Virology , Hufelandstr, 55, 45122 Essen, Germany +49 2 017 233 530 ; +49 2 017 235 929 ;
| | - Jian Yin
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| |
Collapse
|
32
|
Sungsuwan S, Yin Z, Huang X. Lipopeptide-Coated Iron Oxide Nanoparticles as Potential Glycoconjugate-Based Synthetic Anticancer Vaccines. ACS APPLIED MATERIALS & INTERFACES 2015; 7. [PMID: 26200668 PMCID: PMC4724168 DOI: 10.1021/acsami.5b05497] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Although iron oxide magnetic nanoparticles (NPs) have been widely utilized in molecular imaging and drug delivery studies, they have not been evaluated as carriers for glycoconjugate-based anticancer vaccines. Tumor-associated carbohydrate antigens (TACAs) are attractive targets for the development of anticancer vaccines. Due to the weak immunogenicity of these antigens, it is highly challenging to elicit strong anti-TACA immune responses. With their high biocompatibilities and large surface areas, magnetic NPs were synthesized for TACA delivery. The magnetic NPs were coated with phospholipid-functionalized TACA glycopeptides through hydrophobic-hydrophobic interactions without the need for any covalent linkages. Multiple copies of glycopeptides were presented on NPs, potentially leading to enhanced interactions with antibody-secreting B cells through multivalent binding. Mice immunized with the NPs generated strong antibody responses, and the glycopeptide structures important for high antibody titers were identified. The antibodies produced were capable of recognizing both mouse and human tumor cells expressing the glycopeptide, resulting in tumor cell death through complement-mediated cytotoxicities. These results demonstrate that magnetic NPs can be a new and simple platform for multivalently displaying TACA and boosting anti-TACA immune responses without the need for a typical protein carrier.
Collapse
|
33
|
Abstract
Saponins are a large family of amphiphilic glycosides of steroids and triterpenes found in plants and some marine organisms. By expressing a large diversity of structures on both sugar chains and aglycones, saponins exhibit a wide range of biological and pharmacological properties and serve as major active principles in folk medicines, especially in traditional Chinese medicines. Isolation of saponins from natural sources is usually a formidable task due to the microheterogeneity of saponins in Nature. Chemical synthesis can provide access to large amounts of natural saponins as well as congeners for understanding their structure-activity relationships and mechanisms of action. This article presents a comprehensive account on chemical synthesis of saponins. First highlighted are general considerations on saponin synthesis, including preparation of aglycones and carbohydrate building blocks, assembly strategies, and protecting-group strategies. Next described is the state of the art in the synthesis of each type of saponins, with an emphasis on those representative saponins having sophisticated structures and potent biological activities.
Collapse
Affiliation(s)
- You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China.
| | - Stephane Laval
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | - Biao Yu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
34
|
Fernández-Tejada A, Cañada FJ, Jiménez-Barbero J. Recent Developments in Synthetic Carbohydrate-Based Diagnostics, Vaccines, and Therapeutics. Chemistry 2015; 21:10616-28. [PMID: 26095198 DOI: 10.1002/chem.201500831] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glycans are everywhere in biological systems, being involved in many cellular events with important implications for medical purposes. Building upon a detailed understanding of the functional roles of carbohydrates in molecular recognition processes and disease states, glycans are increasingly being considered as key players in pharmacological research. On the basis of the important progress recently made in glycochemistry, glycobiology, and glycomedicine, we provide a complete overview of successful applications and future perspectives of carbohydrates in the biopharmaceutical and medical fields. This review highlights the development of carbohydrate-based diagnostics, exemplified by glycan imaging techniques and microarray platforms, synthetic oligosaccharide vaccines against infectious diseases (e.g., HIV) and cancer, and finally carbohydrate-derived therapeutics, including glycomimetic drugs and glycoproteins.
Collapse
Affiliation(s)
| | - F Javier Cañada
- Chemical and Physical Biology, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Jesús Jiménez-Barbero
- Infectious Disease Programme, Center for Cooperative Research in Biosciences, CIC-bioGUNE, Bizkaia Technology Park, 48160 Derio (Spain). .,Ikerbasque, Basque Foundation for Science, María López de Haro 13, 48009 Bilbao (Spain).
| |
Collapse
|
35
|
Bathula SR, Akondi SM, Mainkar PS, Chandrasekhar S. “Pruning of biomolecules and natural products (PBNP)”: an innovative paradigm in drug discovery. Org Biomol Chem 2015; 13:6432-48. [DOI: 10.1039/c5ob00403a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Smart Schneider: ‘Nature’ is the most intelligent tailor with an ability to utilize the resources. Researchers are still at an infant stage learning this art. The present review highlights some of the man made pruning of bio-molecules and NPs (PBNP) in finding chemicals with a better therapeutic index.
Collapse
Affiliation(s)
- Surendar Reddy Bathula
- Division of Natural Products Chemistry CSIR-Indian Institute of Chemical Technology
- Hyderabad
- 500007 India
| | - Srirama Murthy Akondi
- Division of Natural Products Chemistry CSIR-Indian Institute of Chemical Technology
- Hyderabad
- 500007 India
| | - Prathama S. Mainkar
- Division of Natural Products Chemistry CSIR-Indian Institute of Chemical Technology
- Hyderabad
- 500007 India
| | - Srivari Chandrasekhar
- Division of Natural Products Chemistry CSIR-Indian Institute of Chemical Technology
- Hyderabad
- 500007 India
| |
Collapse
|
36
|
Fernández-Tejada A, Chea EK, George C, Gardner JR, Livingston PO, Ragupathi G, Tan DS, Gin DY. Design, synthesis, and immunologic evaluation of vaccine adjuvant conjugates based on QS-21 and tucaresol. Bioorg Med Chem 2014; 22:5917-23. [PMID: 25284254 PMCID: PMC4410046 DOI: 10.1016/j.bmc.2014.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/02/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Abstract
Immunoadjuvants are used to potentiate the activity of modern subunit vaccines that are based on molecular antigens. An emerging approach involves the combination of multiple adjuvants in a single formulation to achieve optimal vaccine efficacy. Herein, to investigate such potential synergies, we synthesized novel adjuvant conjugates based on the saponin natural product QS-21 and the aldehyde tucaresol via chemoselective acylation of an amine at the terminus of the acyl chain domain in QS saponin variants. In a preclinical mouse vaccination model, these QS saponin-tucaresol conjugates induced antibody responses similar to or slightly higher than those generated with related QS saponin variants lacking the tucaresol motif. The conjugates retained potent adjuvant activity, low toxicity, and improved activity-toxicity profiles relative to QS-21 itself and induced IgG subclass profiles similar to those of QS-21, indicative of both Th1 cellular and Th2 humoral immune responses. This study opens the door to installation of other substituents at the terminus of the acyl chain domain to develop additional QS saponin conjugates with desirable immunologic properties.
Collapse
Affiliation(s)
- Alberto Fernández-Tejada
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Eric K Chea
- Pharmacology Graduate Program, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Constantine George
- Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jeffrey R Gardner
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Philip O Livingston
- Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Govind Ragupathi
- Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Derek S Tan
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Pharmacology Graduate Program, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - David Y Gin
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Pharmacology Graduate Program, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
37
|
Development of a minimal saponin vaccine adjuvant based on QS-21. Nat Chem 2014; 6:635-43. [PMID: 24950335 PMCID: PMC4215704 DOI: 10.1038/nchem.1963] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 04/22/2014] [Indexed: 11/16/2022]
Abstract
Adjuvants are materials added to vaccines to enhance the immunological response to an antigen. QS-21 is a natural product adjuvant under investigation in numerous vaccine clinical trials, but its use is constrained by scarcity, toxicity, instability, and an enigmatic molecular mechanism of action. Herein, we describe the development of a minimal QS-21 analogue that decouples adjuvant activity from toxicity and provides a powerful platform for mechanistic investigations. We found that the entire branched trisaccharide domain of QS-21 is dispensable for adjuvant activity and that the C4-aldehyde substituent, previously proposed to bind covalently to an unknown cellular target, is also not required. Biodistribution studies revealed that active adjuvants were retained at the injection site and nearest draining lymph nodes preferentially compared to attenuated variants. Overall, these studies have yielded critical insights into saponin structure–function relationships, provided practical synthetic access to non-toxic adjuvants, and established a platform for detailed mechanistic studies.
Collapse
|
38
|
Qin Q, Yin Z, Bentley P, Huang X. Carbohydrate antigen delivery by water soluble copolymers as potential anti-cancer vaccines. MEDCHEMCOMM 2014; 5:1126-1129. [PMID: 25396038 DOI: 10.1039/c4md00103f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor associated carbohydrate antigens (TACAs) are overexpressed on tumor cells, which renders them attractive targets for anti-cancer vaccines. To overcome the poor immunogenicity of TACAs, we designed a polymer platform for antigen presentation by co-delivering TACA and helper T (Th) cell epitope on the same chain. The block copolymer was synthesized by cyanoxyl-mediated free radical polymerization followed by conjugation with a TACA Tn antigen and a mouse Th-cell peptide epitope derived from polio virus (PV) to afford the vaccine construct. The glycopolymer vaccine elicited an anti-Tn immune response with significant titers of IgG antibodies, which recognized Tn-expressing tumor cells.
Collapse
Affiliation(s)
- Qian Qin
- Department of Chemistry, Michigan State University, Chemistry Building, Room 426, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Zhaojun Yin
- Department of Chemistry, Michigan State University, Chemistry Building, Room 426, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Philip Bentley
- Department of Chemistry, Michigan State University, Chemistry Building, Room 426, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, Chemistry Building, Room 426, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
39
|
Wang P, Dai Q, Thogaripally P, Zhang P, Michalek SM. Synthesis of QS-21-based immunoadjuvants. J Org Chem 2013; 78:11525-34. [PMID: 24147602 DOI: 10.1021/jo402118j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three structurally defined QS-21-based immune adjuvant candidates (2a-2c) have been synthesized. Application of the two-stage activation glycosylation approach utilizing allyl glycoside building blocks improved the synthetic accessibility of the new adjuvants. The efficient synthesis and establishment of the stand-alone adjuvanticity of the examined synthetic adjuvant (2b) open the door to the pursuit of a new series of structurally defined QS-saponin-based synthetic adjuvants.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of Chemistry, ‡Department of Pediatric Dentistry, and §Department of Microbiology, University of Alabama at Birmingham , 901 14th Street South, Birmingham, Alabama 35294, United States
| | | | | | | | | |
Collapse
|
40
|
Mukherjee C, Mäkinen K, Savolainen J, Leino R. Chemistry and Biology of Oligovalent β-(1→2)-Linked Oligomannosides: New Insights into Carbohydrate-Based Adjuvants in Immunotherapy. Chemistry 2013; 19:7961-74. [DOI: 10.1002/chem.201203963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/11/2013] [Indexed: 11/10/2022]
|
41
|
Ghosh SK, Chowdhury RR. Synthetic adjuvants for vaccine formulations: phytol derivatives. Expert Opin Drug Deliv 2013; 10:437-50. [PMID: 23293963 DOI: 10.1517/17425247.2013.757591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The development of vaccines is considered a key milestone in preventive medicine. There is no comparable cost-effective means for controlling or eradicating infectious diseases. Yet, a persistent societal problem is the concern about vaccine's safety and long-term effects, and this caters to detractors of vaccination. Pathogen-derived antigen(s) as well as adjuvants/immunostimulants are essential for vaccine efficacy. Currently, adjuvant selection is largely empirical, but the mechanism underlying adjuvanticity is beginning to unravel. This should help develop more defined or targeted adjuvants. AREAS COVERED This review provides a brief account and analysis of the host immune parameters modulated by some commonly used as well as new adjuvants, including phytol-based diterpenoids. The major efforts are directed toward evaluating their relative safety and immunomodulatory efficiency, compared to known synthetic and natural adjuvants. Concerns for adverse pathological inflammation and autoimmunity are also addressed. EXPERT OPINION The phytol-based adjuvants hold great promise for improving vaccine efficacy, as they cause little or no persistent inflammation, but are highly effective in stimulating a multifaceted immune response, characterized by proficient recruitment of immune cells, generation of antibody and immunological memory, and activation of both Th1 and Th2 responses. Future focus will be on developing cocktail adjuvants to activate the complement system, mobilize follicular T helper cells as well as NKT and γδ T cells and activate cross-presenting dendritic cells to stimulate CD8(+) effector T cells.
Collapse
Affiliation(s)
- Swapan K Ghosh
- Indiana State University, Department of Biology, Terre Haute, IN 47809, USA.
| | | |
Collapse
|
42
|
Chea EK, Fernández-Tejada A, Damani P, Adams MM, Gardner JR, Livingston PO, Ragupathi G, Gin DY. Synthesis and preclinical evaluation of QS-21 variants leading to simplified vaccine adjuvants and mechanistic probes. J Am Chem Soc 2012; 134:13448-57. [PMID: 22866694 DOI: 10.1021/ja305121q] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
QS-21 is a potent immunostimulatory saponin that is currently under clinical investigation as an adjuvant in various vaccines to treat infectious diseases, cancers, and cognitive disorders. Herein, we report the design, synthesis, and preclinical evaluation of simplified QS-21 congeners to define key structural features that are critical for adjuvant activity. Truncation of the linear tetrasaccharide domain revealed that a trisaccharide variant is equipotent to QS-21, while the corresponding disaccharide and monosaccharide congeners are more toxic and less potent, respectively. Modification of the acyl chain domain in the trisaccharide series revealed that a terminal carboxylic acid is well-tolerated while a terminal amine results in reduced adjuvant activity. Acylation of the terminal amine can, in some cases, restore adjuvant activity and enables the synthesis of fluorescently labeled QS-21 variants. Cellular studies with these probes revealed that, contrary to conventional wisdom, the most highly adjuvant active of these fluorescently labeled saponins does not simply associate with the plasma membrane, but rather is internalized by dendritic cells.
Collapse
Affiliation(s)
- Eric K Chea
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lim YT, Shim SM, Noh YW, Lee KS, Choi DY, Uyama H, Bae HH, Kim JH, Hong KS, Sung MH, Poo H. Bioderived polyelectrolyte nanogels for robust antigen loading and vaccine adjuvant effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:3281-3286. [PMID: 22009658 DOI: 10.1002/smll.201101836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Indexed: 05/31/2023]
Abstract
An easy but robust strategy for the synthesis of bioderived polyelectrolyte nanogels for protein antigen loading and vaccine adjuvant systems that can improve both humoral (Th2) and cellular immunity (Th1) is presented. The synthesized polyelectrolyte nanogels promote the uptake of antigens into antigen-presenting cells and strongly induce ovalbumin-specific INF-γ producing cells, cytotoxic T cell activity, and antibody production.
Collapse
Affiliation(s)
- Yong Taik Lim
- Graduate School and Department of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The role for adjuvants in human vaccines has been a matter of vigorous scientific debate, with the field hindered by the fact that for over 80 years, aluminum salts were the only adjuvants approved for human use. To this day, alum-based adjuvants, alone or combined with additional immune activators, remain the only adjuvants approved for use in the USA. This situation has not been helped by the fact that the mechanism of action of most adjuvants has been poorly understood. A relative lack of resources and funding for adjuvant development has only helped to maintain alum's relative monopoly. To seriously challenge alum's supremacy a new adjuvant has many major hurdles to overcome, not least being alum's simplicity, tolerability, safety record and minimal cost. Carbohydrate structures play critical roles in immune system function and carbohydrates also have the virtue of a strong safety and tolerability record. A number of carbohydrate compounds from plant, bacterial, yeast and synthetic sources have emerged as promising vaccine adjuvant candidates. Carbohydrates are readily biodegradable and therefore unlikely to cause problems of long-term tissue deposits seen with alum adjuvants. Above all, the Holy Grail of human adjuvant development is to identify a compound that combines potent vaccine enhancement with maximum tolerability and safety. This has proved to be a tough challenge for many adjuvant contenders. Nevertheless, carbohydrate-based compounds have many favorable properties that could place them in a unique position to challenge alum's monopoly over human vaccine usage.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide, 5042 Australia.
| | | |
Collapse
|
45
|
Gin DY, Slovin SF. Enhancing Immunogenicity of Cancer Vaccines: QS-21 as an Immune Adjuvant. CURRENT DRUG THERAPY 2011; 6:207-212. [PMID: 25473385 DOI: 10.2174/157488511796391988] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Saponins comprise a class of plant natural products that incorporate a lipophilic terpenoid core, to which is appended one or more carbohydrate residues. They are amphiphilic molecules and often exhibit toxic biological profiles, likely as a result of their roles as vital components in protective coatings to defend against phytopathogen infection and insect predation. The most notable of adjuvant-active saponins investigated for vaccine development come from the Chilean Soapbark Tree, Quillaja saponaria (i.e., QS). More than 30 years ago, semi-purified extracts (i.e., Quil A) from the cortex of Quillaja saponaria were found to be highly effective as adjuvants in veterinary vaccines. However, due to significant and variable toxicity effects, Quil A was not deemed appropriate for human vaccines. More refined purification methods have led to multiple fractions which are derived from the original plant extract. As such, QS-21 to date appears to be one of the more scientifically interesting and robust adjuvants in use in vaccinology. The role of QS-21 as an adjuvant for use in a variety of cancer vaccine trials and its comparison to other adjuvants is discussed in this review.
Collapse
Affiliation(s)
- David Y Gin
- Member, Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, NY
| | - Susan F Slovin
- Associate Attending Physician, Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan-Kettering Cancer Center, NY, and Associate Professor of Medicine, Weill-Cornell Medical College, NY
| |
Collapse
|
46
|
Osbourn A, Goss RJM, Field RA. The saponins: polar isoprenoids with important and diverse biological activities. Nat Prod Rep 2011; 28:1261-8. [PMID: 21584304 DOI: 10.1039/c1np00015b] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Saponins are polar molecules that consist of a triterpene or steroid aglycone with one or more sugar chains. They are one of the most numerous and diverse groups of plant natural products. These molecules have important ecological and agronomic functions, contributing to pest and pathogen resistance and to food quality in crop plants. They also have a wide range of commercial applications in the food, cosmetics and pharmaceutical sectors. Although primarily found in plants, saponins are produced by certain other organisms, including starfish and sea cucumbers. The under explored biodiversity of this class of natural products is likely to prove to be a vital resource for discovery of high-value compounds. This review will focus on the biological activity of some of the best-studied examples of saponins, on the relationship between structure and function, and on prospects for synthesis of ‘‘designer’’ saponins.
Collapse
Affiliation(s)
- Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, UK.
| | | | | |
Collapse
|
47
|
Ekholm FS, Schneider G, Wölfling J, Leino R. An approach to the synthesis and attachment of scillabiose to steroids. Steroids 2011; 76:588-95. [PMID: 21352842 DOI: 10.1016/j.steroids.2011.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/03/2011] [Accepted: 02/16/2011] [Indexed: 11/20/2022]
Abstract
Hellebrin and transvaalin are two naturally occurring saponins with biological activity. In the present paper, we describe a high yielding route to the synthesis and coupling of their shared glycone, scillabiose, to a model steroid. A convergent coupling strategy utilizing a scillabiose-based glycosyl donor was devised for the glycosylation. This convergent approach is appealing due to its high efficiency and simple deprotection procedure and may find further use in total synthesis of naturally occurring saponins and related compounds sharing the same glycone. Due to the widespread occurrence of this glycone in nature, the complete NMR spectroscopic characterization of all compounds prepared herein is provided as reference material. In addition, glycosylations were performed with the monosaccharide constituents of scillabiose, thereby providing a limited series of glycosylated steroids for potential future evaluation of the effects of the glycone on the overall biological activity.
Collapse
Affiliation(s)
- Filip S Ekholm
- Laboratory of Organic Chemistry, Åbo Akademi University, Biskopsgatan 8, FI-20500 Åbo, Finland
| | | | | | | |
Collapse
|
48
|
Rödig J, Rapp E, Djeljadini S, Lohr V, Genzel Y, Jordan I, Sandig V, Reichl U. Impact of Influenza Virus Adaptation Status on HAN-Glycosylation Patterns in Cell Culture-Based Vaccine Production. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.604454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
49
|
Ragupathi G, Gardner JR, Livingston PO, Gin DY. Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer. Expert Rev Vaccines 2011; 10:463-70. [PMID: 21506644 PMCID: PMC3658151 DOI: 10.1586/erv.11.18] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the most widely used and potent immunological adjuvants is a mixture of soluble triterpene glycosides purified from the soap bark tree (Quillaja saponaria). Despite challenges in production, quality control, stability and toxicity, the QS-21 fraction from this extract has exhibited exceptional adjuvant properties for a range of antigens. It possesses an ability to augment clinically significant antibody and T-cell responses to vaccine antigens against a variety of infectious diseases, degenerative disorders and cancers. The recent synthesis of active molecules of QS-21 has provided a robust method to produce this leading vaccine adjuvant in high purity as well as to produce novel synthetic QS-21 congeners designed to induce increased immune responsiveness and decreased toxicity.
Collapse
Affiliation(s)
- Govind Ragupathi
- Laboratory of Tumor Vaccinology, Melanoma and Sarcoma Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
50
|
|